必修1第二章函数学业水平测试复习(二)题

合集下载

新人教A版高中数学必修一 第二章一元二次函数、方程和不等式 拔高检测题 (2)

新人教A版高中数学必修一 第二章一元二次函数、方程和不等式 拔高检测题 (2)

新人教A 版高中数学必修一 第二章一元二次函数、方程和不等式 拔高检测题 (2)一、单选题1.已知m ,n 是正实数,且1m n +=,则12m n+的最小值是( ). A.3 B.3+C .92D .52.已知正数a,b 满足ab =10,则a +b 的最小值是( ) A .10B .25C .5D.3.设x ,y 均为负数,且1x y +=-,那么1xy xy+有( ). A .最大值174-B .最小值174-C .最大值174D .最小值1744.已知0a >,0b >,2a b A +=,B =2abC a b=+,则A ,B ,C 的大小关系为( ). A .A B C ≤≤B .AC B ≤≤C .B C A ≤≤D .C B A ≤≤5.若不等式a 2+b 2+2>λ(a+b )对任意正数a ,b 恒成立,实数λ的取值范围是( ) A .B .(﹣∞,1)C .(﹣∞,2)D .(﹣∞,3)6.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd <7.已知a b c >>,下列不等关系一定成立的是( ) A .2ac b ab bc +>+ B .2ab bc b ac +>+ C .2ac bc c ab +>+ D .22a bc b ab +>+8.已知,αβ满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,,则3αβ+的取值范围是( )A .137αβ≤+≤B .313αβ+-5≤≤C .37αβ+-5≤≤D .1313αβ+≤≤ 9.若0x y <<,则下列不等式不成立的是( ) A .2211x y -<- B .()22*nn xy n <∈NC .()2121*n n xyn ++<∈ND .11y x x>- 10.已知“1a >且1b >”,则与此判断等价的是( ) A .2a b +>且1ab > B .2a >且0b > C .0a >且0b >D .10a ->且10b ->11.若不等式212x mx x m ++>+对满足2m <的所有实数m 恒成立,则实数x 的取值范围是() A .22x -<< B .3x ≥C .1x ≤D .1x ≤-或3x ≥12.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-二、填空题13.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15,25,30AB m AC m BCM ==∠=︒,则tan θ的最大值为_______.14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,则a 5与b 5的大小关系为________. 15.已知-13a b <+<,且24a b <-<,那么23a b +的取值范围是_________. 16.有下列四个命题:①若“1xy=,则,x y 互为倒数的逆命题;②面积相等的三角形全等的否命题;③“若m 1≥,则2x 2x m 0-+=有实数解”的逆否命题;④“若A B A =,则A B ⊆”的逆否命题.其中真命题为_____17.设,a b 为正实数,则下列结论:①若221a b -=,则1a b -<;②若111b a-=,则1a b -<;1=,则1a b -<;④若1,1a b ≤≤,则1a b ab -<-.其中正确的有______.18.设直线l :a 2x +4y -a =0(a >0),当此直线在x ,y 轴上的截距之和最小时,直线l 的方程为________.三、解答题19.设矩形ABCD (其中AB BC >)的周长为24,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AB x =,求ADP △的最大面积.20.设桌面上有一个由铁丝围成的封闭曲线,周长是2L .回答下面的问题:(1)当封闭曲线为平行四边形时,用直径为L 的圆形纸片是否能完全覆盖这个平行四边形?请说明理由.(2)求证:当封闭曲线是四边形时,正方形的面积最大. 21.关于x 的方程2(1)430m x x m -+--=. (1)求证:方程总有实根.(2)若方程的解集中只含有正整数,求整数m 的值.22.已知函数2*()2,(,)f x ax x c a c N =++∈满足①(1)5f =;②6(2)11f <<.(1)求函数()f x 的解析表达式;(2)若对任意[]1,2x ∈,都有()21f x mx -≥成立,求实数m 的取值范围.23.在一个限速40km /h 的弯道上,甲.乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m .又知甲,乙两种车型的刹车距离s m 与车速x km /h 之间分别有如下关系:20.10.01s x x =+甲,20.050.005s x x =+乙.问超速行驶谁应负主要责任?24.为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.某大学毕业生按照相关政策投资销售一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月的销售量y (单位:件)与销售单价x (单位:元)之间的关系近似满足一次函数:10500y x =-+.(1)设他每月获得的利润为w (单位:元),写出他每月获得的利润w 与销售单价x 的函数关系. (2)相关部门规定,这种节能灯的销售单价不得高于25元.如果他想要每月获得的利润不少于3000元,那么政府每个月为他承担的总差价的取值范围是多少?25.已知命题p :{}12x x x ∀∈<≤≤,2210x ax -+>恒成立;命题q :x ∃∈R ,()2110x a x +-+<.(1)若p 是真命题,求a 的取值范围; (2)若p 、q 一真一假,求a 的取值范围. 26.关于x 的方程x 2-2x +a =0,求a 为何值时: (1)方程一根大于1,一根小于1;(2)方程一个根在(-1,1)内,另一个根在(2,3)内; (3)方程的两个根都大于零?参考答案1.B 【解析】 【分析】由题意将所给的代数式进行恒等变形,然后结合均值不等式的结论即可求得最小值. 【详解】 由题意可得:()12122333n m m n m n m n m n ⎛⎫+=++=++≥+=+ ⎪⎝⎭当且仅当12m n n m mn +=⎧⎪⎨=⎪⎩时等号成立.据此可得12m n+的最小值是3+故选:B . 【点睛】本题主要考查基本不等式求最值的方法,“1”的灵活巧妙应用等知识,意在考查学生的转化能力和计算求解能力. 2.D 【解析】 【分析】根据基本不等式求最值,即得结果. 【详解】a b +≥=a b ==D .【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属基础题. 3.D 【解析】 【分析】设a x =-,b y =-,由题意结合均值不等式可得ab 的取值范围,然后结合函数1y x x=+的图像即可确定1xy xy+的性质与最值.【详解】设a x =-,b y =-,则0a >,0b >.由1a b +=≥14ab ≤. 由函数1y x x =+的图像得,当104ab <≤时,1ab ab +在14ab =处取得最小值, 11117444xy ab xy ab ∴+=++=≥,当且仅当12x y ==-时取等号成立. 综上可得,1xy xy +有最小值174. 故选:D .【点睛】本题主要考查对勾函数的应用,基本不等式求最值的方法,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力. 4.D 【解析】 【分析】由题意结合均值不等式可比较AB 的大小,然后结合不等式的性质比较BC 的大小即可. 【详解】由于0a >,0b >,故a b +≥,则2a b+≥,即A B ≥,结合02a b +<≤2a b≥+,两边乘以ab 2ab a b ≥+,即B C ≥.据此可得:C B A ≤≤. 故选:D . 【点睛】本题主要考查基本不等式的应用,比较大小的方法等知识,意在考查学生的转化能力和计算求解能力.。

人教版高中数学选择性必修第一册第二章测试题及答案解析

人教版高中数学选择性必修第一册第二章测试题及答案解析

人教版高中数学选择性必修第一册第二章测试题及答案解析一、测试题1. 解方程:$3(x+1)-2(x-2) = 4(x-1)+6$解:首先,将方程两边的括号展开,得到:$3x+3-2x+4 = 4x-4+6$然后,合并同类项,得到:$x+7=4x+2$接下来,移项,将未知数x的项移到等式的一边:$x-4x = 2-7$化简得:$-3x = -5$最后,将方程两边同时除以-3,得到最终结果:$x = \frac{-5}{-3} = \frac{5}{3}$2. 计算:$\sqrt{24} \cdot \sqrt{\frac{8}{3}}$解:首先,对根号内的数进行因式分解,得到:$\sqrt{2 \cdot 2 \cdot 2 \cdot 3} \cdot \sqrt{\frac{2 \cdot 2 \cdot 2}{1 \cdot 3}}$然后,利用根号乘法法则,将两个根号内的因子合并,得到:$2 \sqrt{6} \cdot \frac{2}{\sqrt{3}}$接下来,化简分数并移动根号,得到:$2\sqrt{6} \cdot\frac{2}{\sqrt{3}} = 2 \cdot 2 \cdot \frac{\sqrt{6}}{\sqrt{3}}$化简根号内的分数,得到最终结果:$4\sqrt{2}$3. 求函数$f(x)=2x^2-5$的图像在坐标系上关于x轴对称的点的坐标。

解:首先,关于x轴对称的点的特点是,其横坐标不变,纵坐标相反。

即,对于点P(x,y),其关于x轴对称的点为P'(x,-y)。

对于函数$f(x)=2x^2-5$来说,我们需要求出函数图像上的点,然后对其进行关于x轴的对称操作。

例如,当$x=1$时,$f(1) = 2(1)^2-5 = -3$,即点P(1,-3)。

在坐标系上,找到点P(1,-3),将其关于x轴对称,得到点P'(1,3)。

因此,函数$f(x)=2x^2-5$的图像在坐标系上关于x轴对称的点的坐标为P'(1,3)。

高一北师大版数学必修1第二章 函数单元测试题试卷含答案解析

高一北师大版数学必修1第二章 函数单元测试题试卷含答案解析

阶段性检测卷二(时间:120分钟,满分:150分)一、选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}答案 D2.已知(x ,y )在映射f 作用下的像是(x +y ,x -y ),则(1,2)关于f 的原像是( )A .(1,2)B .(3,-1)C.⎝ ⎛⎭⎪⎫32,-12 D.⎝ ⎛⎭⎪⎫-12,32 解析 由⎩⎪⎨⎪⎧x +y =1,x -y =2.得⎩⎪⎨⎪⎧x =32,y =-12.故选C.答案 C3.下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2D .y =x 13答案 A4.下列函数中,是同一函数的是( ) A .y =(x -1)0与y =1 B .y =x 与y =xC .y =|x |与y =⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0D .y =x 2与y =(x -1)2解析 A 中y =(x -1)0的定义域为{x |x ∈R ,且x ≠1},y =1的定义域为R ,定义域不同,故不是同一函数;B 中y =x 的定义域为[0,+∞),y =x 的定义域为R ,定义域不同,故不是同一函数,D 中的对应法则不同.答案 C5.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析 由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12. 答案 B6.若在[1,+∞)上,函数y =(a -1)x 2+1与y =ax 均单调递减,则a 的取值范围是( )A .a >0B .a >1C .0≤a ≤1D .0<a <1解析 显然a ≠1,且a ≠0,由题意得⎩⎪⎨⎪⎧a -1<0,a >0,得0<a <1.答案 D7.设f (x )是定义在R 上的增函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+1)<f (2a )D .f (a 2+1)>f (a )解析 ∵a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0∴a 2+1>a ,由函数的单调性可知f (a 2+1)>f (a ).答案 D8.函数y =x 53的图像大致是下图中的( )解析 y =x 53为奇函数,定义域为R ,且53>1,∴x >0时图像是下凸的,故选B.答案 B9.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 1)-f (x 2)x 1-x 2<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析 由已知f (x 1)-f (x 2)x 1-x 2<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (3)<f (-2)<f (1),故选A.答案 A10.已知偶函数f (x )在区间[0,+∞)上是增加的,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .[13,23)B .(13,23)C .(12,23)D .[12,23)解析 作出示意图可知:f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇒-13<2x -1<13,即13<x <23,故选B.答案 B二、填空题(本大题共5小题,每题5分,共25分.将答案填在题中横线上.)11.设函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≤2),2x(x >2),)则f (-4)=________,若f (x 0)=8,则x 0=________.解析 f (-4)=(-4)2+2=18,由f (x 0)=8,得⎩⎪⎨⎪⎧ x 0≤2,x 20+2=8,或⎩⎪⎨⎪⎧x 0>2,2x 0=8,得x 0=-6,或x 0=4. 答案 18 -6或4 12.函数y =(m 2-m -1)·xm 2-2m -3是幂函数,且当x ∈(0,+∞)时为减函数,则m =________.解析 由题意得m 2-m -1=1,得m =2,或m =-1,当m =-1时,y =x 0不合题意,当m =2时,y =x -3,符合题意.答案 213.将y =1x 的图像沿x 轴向右平移1个单位,再向上平移两个单位得到的函数的解析式为________.答案 f (x )=2x -1x -114.函数f (x )=x 2+2mx +1在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,则实数m =________.解析 由于f (x )在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,知f (x )的对称轴为x =-1,即-m =-1得m =1.答案 115.函数y =x 2-2x +5,在x ∈[1,2]上的最大值是________,最小值是________.解析 ∵函数y =x 2-2x +5在[1,2]上单调递增,∴当x =1时,y min =1-2+5=4,当x =2时,y max =4-4+5=5.答案 5 4三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(12分)求函数f (x )=3x +1x 2-x -2的定义域.解 欲使该函数有意义,需⎩⎪⎨⎪⎧3x +1≥0,x 2-x -2≠0,得⎩⎨⎧x ≥-13,x ≠-1且x ≠2,即x ≥-13,且x ≠2.∴该函数的定义域为⎣⎢⎡⎭⎪⎫-13,2∪(2,+∞).17.(12分)已知幂函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且在(0,+∞)上是增函数,求f (x )的解析式.解 由题意得-2m 2+m +3>0,得-1<m <32, 又m ∈Z ,m =0,或m =1,又f (x )为偶函数, ∴m =1,f (x )=x 2.18.(12分)已知函数f (x )=x 2+ax +b ,(1)若对于任意的实数x ,都有f (1+x )=f (1-x )成立,求实数a 的值;(2)若f (x )为偶函数,求a 的值. 解 (1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )关于x =1对称,∴-a2=1, ∴a =-2.(2)∵f (x )为偶函数,∴f (-x )=f (x ), ∴x 2-ax +b =x 2+ax +b , ∴a =0.19.(13分)如图所示,函数的图像是由两条射线及抛物线的一部分组成,求函数的解析式.解 设左侧射线对应的解析式为y =kx +b (x ≤1), ∵(1,1),(0,2)在射线上.∴⎩⎪⎨⎪⎧ k +b =1,b =2,得⎩⎪⎨⎪⎧k =-1,b =2.∴x ≤1时,f (x )=-x +2.设右侧射线对应的解析式为y =k 1x +b 1(x ≥3),∵(3,1),(4,2)在射线上,∴⎩⎪⎨⎪⎧3k 1+b 1=1,4k 1+b 1=2,得⎩⎪⎨⎪⎧k 1=1,b 1=-2.∴当x ≥3时,f (x )=x -2. 设1≤x ≤3时f (x )=a (x -2)2+2,将(1,1)代入上式得a =-1.∴当1≤x ≤3时,f (x )=-(x -2)2+2=-x 2+4x -2. 综上得f (x )=⎩⎪⎨⎪⎧-x +2,x <1,-x 2+4x -2,1≤x ≤3,x -2,x >3.20.(13分)求函数f (x )=(4-3a )x 2-2x +a 在区间[0,1]上的最大值.解 (1)当4-3a =0,即a =43时,f (x )=-2x +43在[0,1]上为减函数,∴f (x )max =f (0)=43.(2)当a >43时,4-3a <0,开口向下,对称轴为x =14-3a <0,则二次函数在区间[0,1]上为减函数∴f (x )max =f (0)=a .(3)当a <43时,4-3a >0,开口向上,对称轴为x =14-3a >0,①当0<14-3a ≤12时,即a ≤23时,f (x )max =f (1)=2-2a , ②当14-3a >12时,即23<a <43时,f (x )max =f (0)=a ,综上所述,当a >23时,f (x )max =a ; 当a ≤23时,f (x )max =2-2a .21.(13分)已知函数f (x )=ax +b1+x 2是定义域为(-1,1)的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)求实数a ,b 的值.(2)判断f (x )在(-1,1)上的单调性,并用定义证明. (3)解不等式:f (t -1)+f (t )<0.解(1)有⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,解得a =1,b =0.(2)f (x )在(-1,1)上是增函数,证明如下:在(-1,1)上任取两数x 1和x 2且-1<x 1<x 2<1,则f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 故f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)<0, ∴f (x 1)<f (x 2),∴f (x )在(-1,1)上为增函数.(3)f (x )为奇函数,定义域为(-1,1),由f (t -1)+f (t )<0得f (t -1)<-f (t )=f (-t ),∵f (x )在(-1,1)上为增函数, ∴-1<t -1<-t <1,解得0<t <12. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫t |0<t <12.。

第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册

第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册

第二章 函数 期末综合复习测评卷一、单选题 1.函数()g x =) A .(2,0)(0,1)- B .[2,0)(0,1]- C .(1,0)(0,1]-⋃ D .[1,0)(0,2]-⋃2.已知(),()f x g x 都是定义在R 上的函数,下列两个命题: ①若()f x 、()g x 都不是单调函数,则(())f g x 不是增函数. ①若()f x 、()g x 都是非奇非偶函数,则(())f g x 不是偶函数. 则( ) A .①①都正确B .①正确①错误C .①错误①正确D .①①都错误3.设()f x 为定义在R 上的奇函数,且满足()(4)f x f x =+,(1)1f =,则(1)(8)f f -+=( ) A .2-B .1-C .0D .14.设函数17,0()20xx f x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨≥,若()1f a <,则实数a 的取值范围是( )A .(,3)-∞-B .(1,)+∞C .(3,1)-D .(,3)(1,)-∞-⋃+∞5.函数()f x 在(),-∞+∞单调递减,且为奇函数,若()21f =-,则满足()111f x -≤-≤的x 的取值范围为( )A .[]22-,B .[]1,3-C .[]1,3D .[]1,1-6.函数y =331x x -的图象大致是( )A .B .C .D .7.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大整数,如[]1,81=,[]1,82-=-.下面说法错误的是( )A .当[)0,1x ∈时,()f x x =;B .函数()y f x =的值域是[)0,1;C .函数()y f x =与函数14y x =的图象有4个交点;D .方程()40f x x -=根的个数为7个.8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当qx p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则( )注:p ,q 为互质的正整数()p q >,即qp为已约分的最简真分数. A .()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B .()()()R a b R a R b ⋅≥⋅C .()()()R a b R a R b +≥+D .以上选项都不对二、多选题9.函数()y f x =的图象如图所示,则( )A .函数()f x 的定义域为[-4,4)B .函数()f x 的值域为[)0,+∞C .此函数在定义域内是增函数D .对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应10.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图8-3-1所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A .①反映建议(1)B .①反映建议(1)C .①反映建议(2)D .①反映建议(2)11.有下列几个命题,其中正确的是( ) A .函数y =2x 2+x +1在(0,+∞)上是增函数 B .函数y =11x +在(-∞,-1)①(-1,+∞)上是减函数C .函数y [-2,+∞)D .已知函数g (x )=23,0(),0x x f x x ->⎧⎨<⎩是奇函数,则f (x )=2x +312.对于定义在 R 上的函数()f x ,下列判断错误的有( ). A .若()()22f f ->,则函数()f x 是 R 的单调增函数 B .若()()22f f -≠,则函数()f x 不是偶函数 C .若()00f =,则函数()f x 是奇函数D .函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数三、填空题 13.若函数()2743kx f x kx kx +=++的定义域为R ,则实数k 的取值范围是__________ .14.已知函数()()3,01,0x x f x f x x ≤⎧=⎨->⎩,则56f ⎛⎫= ⎪⎝⎭_______ 15.已知函数()f x x=()2g x x ,则()()f x g x +=_________. 16.已知偶函数()y f x =定义在(1,1)-上,且在(1,0]-上是单调增加的.若不等式(1)(31)f a f a -<-成立,则实数a 的取值范围是___________.四、解答题17.已知幂函数22()(22)m f x m m x +=+-,且在(0,)+∞上是减函数. (1)求()f x 的解析式;(2)若(3)(1)m m a a ->-,求a 的取值范围.18.已知函数11()1(0)2f x x x =-+>.(1)若0m n >>时,()()f m f n =,求11m n+的值; (2)若0m n >>时,函数()f x 的定义域与值域均为[],n m ,求所有,m n 值.19.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =+.(1)求出函数()f x 在R 上的解析式,并补出函数()f x 在y 轴右侧的图像; (2)①根据图像写出函数()f x 的单调递减区间;①若[]1,x m ∈-时函数()f x 的值域是[]1,1-,求m 的取值范围.20.已知函数f (x )=221x x +.(1)求f (2)+f 12⎛⎫ ⎪⎝⎭,f (3)+f 13⎛⎫⎪⎝⎭的值;(2)由(1)中求得的结果,你发现f (x )与f 1x ⎛⎫⎪⎝⎭有什么关系?并证明你的发现.(3)求2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭的值.21.已知函数2(1)(f x ax bx a b =++,均为实数),x ∈R , (),0()(),0f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0f -=,且函数()f x 的值域为[0)+∞,,求()F x 的解析式; (2)在(1)的条件下,当2][2x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围; (3)设000mn m n a <+>>,,,且()f x 为偶函数,判断()()F m F n +是否大于零,并说明理由.22.已知函数()y x ϕ=的图象关于点(),P a b 成中心对称图形的充要条件是()()2a x a x b ϕϕ++-=.给定函数()61f x x x =-+. (1)求函数()f x 图象的对称中心;(2)判断()f x 在区间()0,∞+上的单调性(只写出结论即可);(3)已知函数()g x 的图象关于点()1,1对称,且当[]0,1x ∈时,()2g x x mx m =-+.若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围.参考答案1.B 【分析】首先根据题中所给的函数解析式,结合偶次根式和分式的要求列出不等式组求得结果.【解析】由题意得2200x x x ⎧--+≥⎨≠⎩,即2200x x x ⎧+-≤⎨≠⎩,解得21x -≤≤且0x ≠,所以函数()g x =[2,0)(0,1]-, 故选:B. 2.D【解析】解::当1,0()()0,0x f x g x x x ⎧≠⎪==⎨⎪=⎩,则(())f g x x =,故①不正确;当2()(1)f x x =+,()1g x x =-,则2(())f g x x =,故①不正确. ①①①都错误. 故选:D . 3.B 【解析】解:()f x 是定义在R 上的奇函数,(0)0f =,满足()(4)f x f x =+,(8)(4)(0)0f f f ∴===,又(1)(1)1f f -=-=-,(1)(8)1f f ∴-+=-.故选:B. 【点睛】本题考查了利用奇偶性和周期性求函数值,属于基础题. 4.C 【分析】0a <时,()1f a <即1()712a-<,0a1<,分别求解即可.【解析】0a <时,()1f a <即1()712a-<,解得3a >-,所以30a -<<;0a1,解得01a <综上可得:31a -<< 故选:C . 【点睛】本题考查分段函数解不等式问题,考查了分类讨论思想的应用,属基本题,难度不大. 5.B【分析】根据函数的奇偶性以及函数的单调性求出x 的范围即可. 【解析】解:因为()f x 为奇函数, 所以()()221f f -=-=,于是()111f x -≤-≤等价于()()()212f f x f ≤-≤-, 又()f x 在(,)-∞+∞单调递减,212x ∴-≤-≤,13x ∴-≤≤.故选:B . 【点睛】本题考查了函数的单调性和奇偶性问题,考查转化思想,属于中档题. 6.C【解析】由函数解析式可得,该函数定义域为(-∞,0)①(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x→+∞时,3x-1远远大于x 3的值且都为正,故331xx -→0且大于0,故排除D ,选C. 7.C 【分析】作出函数()[]f x x x =-的图像,结合图像可判断A ,B 均正确,再作出14y x =,14y x =的图像,结合方程的根与函数零点的关系,可判断C ,D 是否正确.【解析】解:作出函数()[]f x x x =-的图像如图所示,显然A ,B 均正确; 在同一坐标系内作函数14y x =的图像(坐标系内第一象限的射线部分), 作出14y x =的图像(图像中的折线部分),可以得到C 错误,D 正确. 故选:C.【点睛】本题考查了函数图像的应用,考查了函数值域的求解,考查了函数的零点与方程的根.本题的关键是由题目条件,作出()[]f x x x =-的图像.本题的难点是作图时,临界点空心圆、实心圆的标定. 8.B 【分析】设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数) ,B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C选项:分①a A ∈,b A ∈;①a B ∈,b B ∈;①a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【解析】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数, 故选项A 错误; 对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅; ①当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;①当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误, 故选:B. 【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析. 9.BD 【分析】结合函数图象一一分析即可;【解析】解:由题图可知,函数()f x 的定义域为[][)4,01,4-⋃,故A 错误; 函数()f x 的值域为[)0,+∞,故B 正确; 函数()f x 在定义域内不单调,故C 错误;对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应,故D 正确. 故选:BD .【分析】由于图象表示收支差额y 与乘客量x 的函数关系,因此需要正确理解图中直线的倾斜角及纵截距的含义.同时对于建议(1)(2)前后图象的变化,也可以理解为对原图象做平移或旋转得到新的图象【解析】对于建议(1)因为不改变车票价格,故建议后的图象(虚线)与目前的图象(实线)倾斜方向相同(即平行),由于减少支出费用,收支差变大,则纵截距变大,相当于将原图象向上平移即可得到,故①反映建议(1);对于建议(2)因为不改变支出费用,则乘客量为0时前后的收支差是相等的,即前后图象纵截距相等,由于提高车票价格,故建议后的图象(虚线)比目前的图象(实线)的倾斜角大.相当于将原图象绕与y 轴的交点按逆时针旋转一定的角度得到的图象,故①反映建议(2). 故选:AC. 11.AD 【分析】根据简单函数的单调性,复合函数的单调性,以及由函数奇偶性求函数解析式,即可容易判断和选择.【解析】由y =2x 2+x +1=2217()48x ++在1[,)4-+∞上递增知,函数y =2x 2+x +1在(0,+∞)上是增函数,故A 正确; y =11x +在(-∞,-1),(-1,+∞)上均是减函数, 但在(-∞,-1)①(-1,+∞)上不是减函数, 如-2<0,但112101<-++故B 错误;y [),(5,)2,1--+∞上无意义, 从而在[-2,+∞)上不是单调函数,故C 错误; 设x <0,则-x >0,g (-x )=-2x -3,因为g (x )为奇函数,所以f (x )=g (x )=-g (-x )=2x +3,故D 正确. 故选:AD . 【点睛】本题考查函数单调区间的求解,复合函数的单调性判断以及利用函数奇偶性求函数解析式,属中档题. 12.ACD利用单调性的定义及性质,奇偶函数定义进行判断即可.【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在x =0 处,有可能会出现右侧比左侧低的情况,故错误. 故选:ACD 【点睛】本题考查了函数的单调性的定义和性质,考查了函数奇偶性的性质,属于基础题. 13.30,4⎡⎫⎪⎢⎣⎭【分析】分析可知,对任意的x ∈R ,2430kx kx ++≠恒成立,分0k =、0k ≠两种情况讨论,结合已知条件可求得实数k 的取值范围. 【解析】因为函数()2743kx f x kx kx +=++的定义域为R ,所以,对任意的x ∈R ,2430kx kx ++≠恒成立. ①当0k =时,则有30≠,合乎题意;①当0k ≠时,由题意可得216120k k ∆=-<,解得304k <<. 综上所述,实数k 的取值范围是30,4⎡⎫⎪⎢⎣⎭.故答案为:30,4⎡⎫⎪⎢⎣⎭.14.12-【分析】利用函数()f x 的解析式可求得56f ⎛⎫⎪⎝⎭的值.【解析】因为()()3,01,0x x f x f x x ≤⎧=⎨->⎩,所以,511136662f f ⎛⎫⎛⎫⎛⎫=-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:12-.15.()0x x -> 【分析】求出函数()f x 、()g x 的定义域,将函数()f x 、()g x 解析式相加即可得解.【解析】函数()f x x =()2g x x =的定义域均为()0,∞+, 因此,()()()0f x g x x x +=->.故答案为:()0x x ->.16.1(0,)2【分析】由()y f x =在(1,0]-上为单调增,结合函数的奇偶性,可得()y f x =在[)0,1上为单调减,将(1)(31)f a f a -<-转化为131a a ->-,结合定义域,解不等式可得a 的取值范围. 【解析】偶函数()y f x =在(1,0]-上为单调增,∴()y f x =在[)0,1上为单调减,∴(1)(31)f a f a -<-等价于1311111311a a a a ⎧->-⎪-<-<⎨⎪-<-<⎩,解得:10202203a a a ⎧<<⎪⎪<<⎨⎪⎪<<⎩∴实数a 的取值范围是1(0,)2. 故答案为:1(0,)2. 【点睛】本题主要考查利用函数的奇偶性和单调性求解不等式问题,考查计算能力,属于中档题. 17.(1)()1f x x=;(2){|23a a <<或1}a <. 【分析】(1)根据幂函数的定义和单调性建立条件关系即可得到结论,(2)令3()g x x -=,根据其单调性即可求解结论.【解析】解:(1)函数是幂函数,2221m m ∴+-=, 即2230m m +-=,解得1m =或3m =-,幂函数()f x 在(0,)+∞上是减函数,20m ∴+<,即2m <-,3m ∴=-,(2)令3()g x x -=,因为()g x 的定义域为(-∞,0)(0⋃,)+∞,且在(,0)-∞和(0,)+∞上均为减函数,33(3)(1)a a --->-,310a a ∴-<-<或031a a <-<-或301a a ->>-,解得23a <<或1a <,故a 的取值范围为:{|23a a <<或1}a <.18.(1)2;(2)32m =,12n =. 【分析】(1)根据绝对值定义去掉绝对值,由()()f m f n =化简即可得出结果;(2)根据01n m <<≤,1m n >≥,01n m <<<三种情况去掉绝对值,根据函数的单调性,列出方程,计算求解即可得出结果.【解析】(1)因为()()f m f n =,所以11111122m n -+=-+ 所以1111m n -=-, 所以1111m n -=-或1111m n -=-,因为0m n >>,所以112m n+=. (2)1 当01n m <<≤时,11()2f x x =-在[],n m 上单调递减,因为函数()f x 的定义域与值域均为[],n m ,所以()()f n m f m n=⎧⎨=⎩,两式相减得1mn =不合,舍去. 2 当1m n >≥时,31()2f x x =-在[],n m 上单调递增,因为函数()f x 的定义域与值域均为[],n m ,所以()()f m m f n n =⎧⎨=⎩,无实数解. 3 当01n m <<<时,11,[,1],2()31,(1,],2x n x f x x m x⎧-∈⎪⎪=⎨⎪-∈⎪⎩ 所以函数()f x 在[,1]n 上单调递减,在(]1,m 上单调递增.因为函数()f x 的定义域与值域均为[],n m ,所以1(1)2n f ==,13()22m f ==.综合所述,32m =,12n =. 【点睛】本题考查分段函数的单调性及值域问题,考查分类讨论的思想,属于中档题.19.(1)()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩,图象答案见解析;(2)①减区间为:(),1-∞-和()1,+∞;①1m ⎡⎤∈⎣⎦.【分析】(1)由奇函数的定义求得解析式,根据对称性作出图象.(2)由图象的上升与下降得增减区间,解出方程221x x -+=-的正数解,可得结论.【解析】(1)当0x >,0x -<,则()()2222f x x x x x -=--=-因为()f x 为奇函数,则()()f x f x -=-,即0x >时,()22f x x x =-+ 所以()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩, 图象如下:(2)如图可知,减区间为:(),1-∞-和()1,+∞()11f -=-,()11f =令22212101x x x x x -+=-⇒--=⇒==①1x >①1x =故由图可知1m ⎡⎤∈⎣⎦. 【点睛】本题考查函数的奇偶性,考查图象的应用,由图象得单调区间,得函数值域.是我们学好数学的基本技能.20.(1)f (2)+f 12⎛⎫ ⎪⎝⎭=1,f (3)+f 13⎛⎫ ⎪⎝⎭=1;(2)f (x )+f 1x ⎛⎫ ⎪⎝⎭=1;证明见解析;(3)2018. 【分析】(1)根据函数解析式,代值计算即可;(2)观察(1)中所求()11f x f x ⎛⎫+= ⎪⎝⎭,结合函数解析式,即可证明; (3)根据(2)中所求,两两配对,即可容易求得结果.【解析】(1)因为f (x )=221x x +, 所以f (2)+f 12⎛⎫ ⎪⎝⎭=22212++2212112⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1 f (3)+f 13⎛⎫ ⎪⎝⎭=22313++2213113⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1. (2)由(1)可发现f (x )+f 1x ⎛⎫ ⎪⎝⎭=1.证明如下: f (x )+f 1x ⎛⎫ ⎪⎝⎭=221x x ++22111x x ⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭ =221x x ++211x +=2211x x ++=1,是定值. (3)由(2)知,f (x )+f 1x ⎛⎫ ⎪⎝⎭=1, 因为f (1)+f (1)=1,f (2)+f 12⎛⎫ ⎪⎝⎭=1, f (3)+f 13⎛⎫ ⎪⎝⎭=1, f (4)+f 14⎛⎫ ⎪⎝⎭=1, …f (2018)+f 12018⎛⎫ ⎪⎝⎭=1,所以2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫ ⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭=2018.【点睛】本题考查函数值的求解,注意观察,属基础题.21.(1)22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩;(2)(][)26∞∞-,-,+;(3)大于零,理由见解析. 【分析】(1)由(1)0f -=,得10a b -+=及函数()f x 的值域为[0)+∞,,得240a b -=, 联立求解可得;(2)由222(2)()124()k k g x x --=++-,当2][2x ∈-,时,()()g x f x kx =-是单调函数,则222k -≤-或222k -≥得解; (3)()f x 为偶函数,则2()1f x ax =+,不妨设m n >,则0n <,由0m n +>,得0m n >->,则22m n >所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=得解【解析】(1)因为(1)0f -=,所以10a b -+= ①.又函数()f x 的值域为[0)+∞,,所以0a ≠. 由224()24b a b y a x a a-=++知2404a b a -=, 即240a b -=①.解①①,得12a b ==,. 所以22()21(1)f x x x x =++=+.所以22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩; (2)由(1)得2222(2()())()21()124k k g x f x kx x k x x --=-=-=++-++ 因为当2][2x ∈-,时,()()g x f x kx =-是单调函数, 所以222k -≤-或222k -≥, 即2k ≤-或6k ≥,故实数k 的取值范围为(][)26∞∞-,-,+(3)大于零.理由如下:因为()f x 为偶函数,所以2()1f x ax =+,所以221,0()1,0ax x F x ax x ⎧+>=⎨--<⎩不妨设m n >,则0n <由0m n +>,得0m n >->所以22m n >又0a >,所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=,所以()()F m F n +大于零.【点睛】本题考查函数性质的应用,涉及分段函数解析式、函数的值域,单调性,奇偶性,属于基础题.22.(1)()1,1--;(2)()f x 在区间()0,∞+上为增函数;(3)[]2,4-.【分析】(1)根据题意可知,若函数()f x 关于点(),a b 中心对称,则()()2f a x f a x b ++-=, 然后利用()61f x x x =-+得出()f a x +与()f a x -,代入上式求解; (2)因为函数y x =及函数61y x =-+在()0,∞+上递增,所以函数()61f x x x =-+在()0,∞+上递增; (3)根据题意可知,若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,则只需使函数()g x 在[]10,2x ∈上的值域为()f x 在[]21,5x ∈上的值域的子集,然后分类讨论求解函数()g x 的值域与函数()f x 的值域,根据集合间的包含关求解参数m 的取值范围.【解析】解:(1)设函数()f x 图象的对称中心为(),a b ,则()()20f a x f a x b ++--=. 即()()662011x a x a b x a x a +-+-+--=++-++, 整理得()()()()22161a b x a b a a -=-+-+,于是()()()()21610a b a b a a -=-+-+=,解得1a b ==-.所以()f x 的对称中心为()1,1--;(2)函数()f x 在()0,∞+上为增函数;(3)由已知,()g x 值域为()f x 值域的子集.由(2)知()f x 在[]1,5上单增,所以()f x 的值域为[]2,4-.于是原问题转化为()g x 在[]0,2上的值域[]2.4A ⊆-.①当02m ≤,即0m ≤时,()g x 在[]0,1单增,注意到()2g x x mx m =-+的图象恒过对称中心()1,1,可知()g x 在(]1,2上亦单增,所以()g x 在[]0,2上单增,又()0g m =,()()2202g g m =-=-,所以[],2A m m =-.因为[][],22,4m m -⊆-,所以224m m ≥-⎧⎨-≤⎩,解得20m -≤≤. ①当012m <<,即02m <<时,()g x 在0,2m ⎛⎫ ⎪⎝⎭单减,,12m ⎛⎫ ⎪⎝⎭单增, 又()g x 过对称中心()1,1,所以()g x 在1,22m ⎛⎫- ⎪⎝⎭单增,2,22m ⎛⎤- ⎥⎝⎦单减; 此时()()min 2,,max 0,222m m A g g g g ⎛⎫⎧⎫⎧⎫⎛⎫⎛⎫=-⎨⎬⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭⎝⎭. 欲使[]2,4A ⊆-,只需()()222022224g g m m m g m ⎧=-=-≥-⎪⎨⎛⎫=-+≥- ⎪⎪⎝⎭⎩且()2042224224g m m m m g g m ⎧=≤⎪⎨⎛⎫⎛⎫-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩解不等式得24m -≤,又02m <<,此时02m <<.①当12m ≥,即2m ≥时,()g x 在[]0,1单减,在(]1,2上亦单减, 由对称性,知()g x 在[]0,2上单减,于是[]2,A m m =-.因为[][]2,2,4m m -⊆-,所以224m m -≥-⎧⎨≤⎩,解得24m ≤≤. 综上,实数m 的取值范围为[]2,4-。

高中数学必修一第二章测试题(含答案)

高中数学必修一第二章测试题(含答案)

高中数学必修一第二章测试题(2)一、选择题:1.已知p>q>1,0<a<1,则下列各式中正确的是()A.qp aa>B.aa qp>C.qp aa-->D.aa qp-->2、已知(10)xf x=,则(5)f=()A、510B、105C、lg10D、lg53.函数xyalog=当x>2 时恒有y>1,则a的取值范围是()A.1221≠≤≤aa且B.02121≤<≤<aa或C.21≤<a D.211≤<≥aa或4.当a≠0时,函数y ax b=+和y b ax=的图象只可能是()5、设1.50.90.4812314,8,2y y y-⎛⎫=== ⎪⎝⎭,则()A、312y y y>>B、213y y y>>C、132y y y>>D、123y y y>>6.下列函数中,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.y=-x+1C.y=⎝⎛⎭⎫12x D.y=x+1x7.若a<12,则化简4(2a-1)2的结果是()A.2a-1B.-2a-1C.1-2a D.-1-2a8.函数y=lg x+lg(5-3x)的定义域是()A.[0,53) B.[0,53]C.[1,53) D.[1,53]9.幂函数的图象过点⎝⎛⎭⎫2,14,则它的单调递增区间是()A.(0,+∞) B.[0,+∞)C.(-∞,0) D.(-∞,+∞)10.函数y=2+log2(x2+3)(x≥1)的值域为()A.(2,+∞) B.(-∞,2)C.[4,+∞) D.[3,+∞)11.函数y=a x-1a(a>0,且a≠1)的图象可能是()12.若0<x<y<1,则()A.3y<3x B.log x3<log y3C.log4x<log4y D.(14)x<(14)y二、填空题13.函数f(x)=a x-1+3的图象一定过定点P,则P点的坐标是________.14.函数f(x)=log5(2x+1)的单调增区间是________.15.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是______.13.将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为. 三、解答题 17.化简下列各式:(1)[(0.06415)-2.5]23-3338-π0; (2)2lg 2+lg 31+12 lg 0.36+14lg 16.18.已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R ).(1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值. 19.已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小. 20.已知函数f (x )=2x -12|x |.(1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 21.已知函数f (x )=a x -1(a >0且a ≠1).(1)若函数y =f (x )的图象经过P (3,4)点,求a 的值;(2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程. 22.已知f (x )=10x -10-x10x +10-x.(1)求证f (x )是定义域内的增函数; (2)求f (x )的值域.答案一. 选择题1—5.BDAAC 6—10.ACCCC 11—12.DC 二.填空题13.(1,4)14.⎝⎛⎭⎫-12,+∞15.(-1,0)∪(1,+∞)16.1)1(log 2--=x y17.解 (1)原式=⎩⎨⎧⎭⎬⎫⎣⎡⎦⎤⎝⎛⎭⎫641 00015-5223-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫410315×⎝⎛⎭⎫-52×23-⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0. (2)原式=2lg 2+lg 31+12lg 0.62+14lg 24=2lg 2+lg 31+lg 2×310+lg 2=2lg 2+lg 31+lg 2+lg 3-lg 10+lg 2=2lg 2+lg 32lg 2+lg 3=1. 18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a20=1-a =0.∴a =1.设x ∈[0,1],则-x ∈[-1,0]. ∴f (-x )=14-x -12-x =4x -2x .又∵f (-x )=-f (x ), ∴-f (x )=4x -2x . ∴f (x )=2x -4x .(2)当x ∈[0,1],f (x )=2x -4x =2x -(2x )2, ∴设t =2x (t >0),则f (t )=t -t 2. ∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x .由条件可知2x -12x =2,即22x -2·2x -1=0,解得2x =1±2.∵2x>0,∴x =log 2(1+2). (2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0,即m (22t -1)≥-(24t -1). ∵22t -1>0,∴m ≥-(22t +1). ∵t ∈[1,2],∴-(1+22t )∈[-17,-5], 故m 的取值范围是[-5,+∞). ∴lg a lg a -1=2(或lg a -1=log a 100). 21.解 (1)∵函数y =f (x )的图象经过P (3,4),∴a3-1=4,即a 2=4.又a >0,所以a =2.(2)由f (lg a )=100知,a lg a -1=100. ∴(lg a -1)·lg a =2. ∴lg 2a -lg a -2=0, ∴lg a =-1或lg a =2, ∴a =110或a =100.(3)当a >1时,f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,f ⎝⎛⎭⎫lg 1100<f (-2.1). 因为,f ⎝⎛⎭⎫lg 1100=f (-2)=a -3, f (-2.1)=a-3.1,当a >1时,y =a x 在(-∞,+∞)上为增函数,∵-3>-3.1,∴a -3>a-3.1.即f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a-3.1,即f ⎝⎛⎭⎫lg 1100<f (-2.1). 22.(1)证明 因为f (x )的定义域为R ,且f (-x )=10-x -10x 10-x +10x =-f (x ),所以f (x )为奇函数.f (x )=10x -10-x 10x +10-x =102x -1102x +1=1-2102x +1. 令x 2>x 1,则 f (x 2)-f (x 1)=(1-2102x 2+1)-(1-2102x 1+1)=2·102x 2-102x 1(102x 2+1)(102x 1+1).因为y =10x 为R 上的增函数, 所以当x 2>x 1时,102x 2-102x 1>0.又因为102x 1+1>0,102x 2+1>0. 故当x 2>x 1时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1). 所以f (x )是增函数.(2)解 令y =f (x ).由y =102x -1102x +1,解得102x =1+y1-y.因为102x >0,所以-1<y <1. 即f (x )的值域为(-1,1).。

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(包含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(包含答案解析)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7- D .()F x 的最大值为3,最小值为-13.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<6.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞7.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 8.若函数()f x =的值域为0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞9.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3811.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.15.函数2()23||f x x x =-的单调递减区间是________.16.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .17.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 18.如图,是某个函数的图象,则该函数的解析式y =__________;19.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.20.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值;(3)求函数()22f x x x =-的所有的“和谐区间”.25.已知函数()bf x ax x=+的是定义在()0,∞+上的函数,且图象经过点()1,1A ,()2,1B -.(1)求函数()f x 的解析式;(2)证明:函数()f x 在()0,∞+上是减函数; (3)求函数()f x 在[]2,5的最大值和最小值. 26.已知二次函数2()23=-+f x x x .(Ⅰ)求函数()2log 2y f x =+,1,44x ⎛⎤∈ ⎥⎝⎦的值域;(Ⅱ)若对任意互不相同的21,(2,4)x x ∈,都有()()1212f x f x k x x -<-成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭,若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭.【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =27x =. 3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题4.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.5.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解由函数单调性性质得:3y x =,21x y =+在R 上单调递增 所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.6.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b -≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.7.A解析:A 【分析】 由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x<的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;8.D解析:D 【分析】 令22(2)1t mx m x =+-+()0,t ∈+∞()22(2)0,1mx m x +-++∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】 令22(2)1t mxm x =+-+,则1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞,即()22(2)0,1mx m x +-+∈+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.A解析:A 【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果.【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<.综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .15.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题16.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.17.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.18.【分析】根据分段函数图象用待定系数法求解即可【详解】当时设函数为当时解得;当时设函数为当时时解得所以故答案为:【点睛】本题考查利用函数图象求解析式考查待定系数法是基础题解析:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【分析】根据分段函数图象,用待定系数法求解即可.当01x ≤<时,设函数为y kx =,当1x =时2y =,解得2k =; 当13x ≤≤时,设函数为y ax b =+, 当1x =时3y =,3x =时0y =,解得32a =-,92b =. 所以2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩. 故答案为:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【点睛】本题考查利用函数图象求解析式,考查待定系数法,是基础题.19.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .20.【分析】根据分段函数的单调性在各个分段上递增且在衔接点处也要递增列式即可得解【详解】由是上的增函数则:解得故答案为:【点睛】本题考查了分段函数单调性问题考查了一次函数的单调性属于中档题求分段函数递增 解析:[1,6)【分析】根据分段函数的单调性,在各个分段上递增,且在衔接点处也要递增,列式即可得解. 【详解】由(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数, 则:60065a a a a ->⎧⎪>⎨⎪-≤⎩,解得16a ≤<,故答案为:[1,6). 【点睛】本题考查了分段函数单调性问题,考查了一次函数的单调性,属于中档题. 求分段函数递增(递减)要注意以下两点: (1)在各个分段上分别递增(递减);(2)在衔接点处也要递增(递减),此处为易错点.三、解答题21.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

高中数学必修第一册第二章《一元二次函数、方程和不等式》测试卷

高中数学必修第一册第二章《一元二次函数、方程和不等式》测试卷

2020-2021学年高中数学必修第一册第二章《一元二次函数、方程和不等式》测试卷解析版一.选择题(共8小题)1.已知正实数a ,b 满足a +b =2,则√a +1+√b +1的最大值为( )A .2√2B .4C .4√2D .16解:因为(√a +1+√b +1)2=(a +1)(b +1)+2√a +1•√b +1≤(a +1)+(b +1)+(a +1)+(b +1)=2(a +b +2)=8,当且仅当a =b =1时取等号,由:(√a +1+√b +1)2最大值为8,所以√a +1+√b +1的最大值为2√2.故选:A .2.已知m =a +1a−2(a >2),n =4﹣b 2(b ≠0),则m ,n 之间的大小关系是( )A .m >nB .m <nC .m =nD .不确定 解:∵a >2,∴a ﹣2>0,∴m =a +1a−2=(a −2)+1a−2+2≥2√(a −2)⋅1a−2+2=4,由b ≠0得,b 2>0,∴n =4﹣b 2<4,∴m >n .故选:A .3.若a >0,b >0,a +2b =1,则2a +3a+1b 的最小值为( )A .8B .6C .12D .9 解:2a +3a+1b =2a+4b a +3a+a+2b b =4+4b a +4a b ≥4+2√4b a ×4a b =12.(当且仅当a =b时取“=”).故选:C .4.不等式ax 2+bx +c >0的解集为(﹣4,1),则不等式b (x 2+1)﹣a (x +3)+c >0的解集为( )A .(−43,1)B .(−1,43)C .(−∞,−43)∪(1,+∞)D .(−∞,−1)∪(43,+∞)解:不等式ax 2+bx +c >0的解集为(﹣4,1),则不等式对应方程的实数根为﹣4和1,且a <0;由根与系数的关系知,{−4+1=−b a −4×1=c a , ∴{b =3a c =−4a, ∴不等式b (x 2+1)﹣a (x +3)+c >0化为3a (x 2+1)﹣a (x +3)﹣4a >0,即3(x 2+1)﹣(x +3)﹣4<0,解得﹣1<x <43,∴该不等式的解集为(﹣1,43). 故选:B .5.已知函数f (x )=x 2+ax +b (a ,b ∈R )的最小值为0,若关于x 的不等式f (x )<c 的解集为(m ,m +4),则实数c 的值为( )A .9B .8C .6D .4解:f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴4b−a 24=0,∴b =a 24,∵f (x )<c 的解集为(m ,m +4),∴f (x )﹣c =0的根为m ,m +4,即x 2+ax +a 24−c =0的根为m ,m +4, ∵(m +4﹣m )2=(﹣a )2﹣4(a 24−c ),∴4c =16,c =4.故选:D . 6.已知正实数p ,q ,r 满足:(1+p )(1+q )=(1+r )2,a =√pq ,b =p+q 2,c =√p 2+q 22,则以下不等式正确的是( )A .r ≤aB .a ≤r ≤bC .b ≤r ≤cD .r ≥c。

人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)(2)

人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)(2)

一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞2.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .33.已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A .9-B .8-C .7-D .6-4.已知(1,0),(1,0)A B -,点M 是曲线x =上异于B 的任意一点,令,MAB MBA αβ∠=∠=,则下列式子中最大的是( )A .|tan tan |αβ⋅B .|tan tan |αβ+C .|tan tan |αβ-D .tan tan αβ5.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( )A .a v <<B .v <C 2a bv +<<D .2abv a b=+ 6.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .167.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ).A .1B .5C .D .3+8.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15 C .a <15 D .a ≤159.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 10.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .611.已知01a <<,1b >,则下列不等式中成立的是( )A .4aba b a b+<+ B 2aba b<+C <D .a b +12.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .5二、填空题13.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________.. 14.已知,x y R +∈,且1112x y+=,则x y +的最小值为________ 15.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.16.已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.17.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 18.已知向量1a =,向量b 满足4a b a b -++=,则b 的最小值为______.19.函数()2436x x f x x ++=-的值域为__________.20.已知正实数,x y 满足3x+y+=xy ,则x y +的最小值为__________.三、解答题21.已知0,0x y >>,且440x y +=. (1)求xy 的最大值;(2)求11x y+的最小值.22.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.23.已知命题p :方程240x mx ++=无实数根:命题q :不等式()2310x m x +-+>在x ∈R 上恒成立.(1)如果命题p 是假命题,请求出实数m 的取值范围;(2)如果命题p q ∨为真命题,且命题p q ∧为假命题,请求出实数m 的取值范围.24.设m ∈R ,不等式()()231210mx m x m -+++>的解集记为集合P .(1)若{}12P x x =-<<,求m 的值; (2)当0m >时,求集合P .25.(理)已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >. (1)求实数a ,b 的值;(2)解关于x 的不等式()()0ax b x c -->(c 为常数).26.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac aba b c++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t t f +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误;对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则2b a a b +≥=,当且仅当22a b =时取等号,显然成立,②正确;对于③,2y =≥=,=231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以43x x+≥ 函数()4230y x x x=-->的最大值为2-,所以结论不正确,④错误. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值. 【详解】依题意,0,0a b >>,20a b ab +-=可知121a b+=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立.22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪,即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C. 【点睛】 关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.4.C解析:C 【分析】化简曲线为221(1)x y x -=≥,易知该曲线为双曲线,分别计算选项的取值范围,即可得答案; 【详解】设直线MA ,MB 的斜率分别为12,k k ,11(,)M x y ,则12tan ,tan k k αβ==-, 对A ,1111|tan tan |||111y yx x αβ⋅=⋅=+-; 对B ,C ,tan 0,tan 0αβ><,∴|tan tan |αβ->|tan tan |αβ+,1|tan tan ||tan |2tan αβαα-=+≥, 对D ,1k 小于双曲线渐近线的斜率,∴2tan tan 1tan ααβ=<, ∴|tan tan |αβ-最大,故选:C. 【点睛】通过将斜率转化为直线倾斜角的正切值,再结合基本不等式是求解的关键.5.C解析:C根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s s a b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.6.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->,所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.7.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭ 取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.8.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15,所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.9.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<,即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.10.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A2211aba b a b>=++,所以排除选项B ;接着根据基本>=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误;对于选项B 2211aba b a b>=++,故选项B 错误;对于选项C>=C 错误;对于选项D :()22222222a b a ab b a b +>++=+, 所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.12.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.二、填空题13.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中 解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题.【详解】不等式()21212x xm m ⎛⎫--< ⎪⎝⎭转化为2214x x m m +-<,化简为2211()22x x m m -<+, 令12xt =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<.故答案为:()2,3-【点睛】方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.14.【分析】由条件可得利用均值不等式可得答案【详解】当且仅当即也即时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)【分析】由条件可得()2112112x y x y x y x y y x ⎛⎫+=+=++⎪⎭+⎝+,利用均值不等式可得答案. 【详解】 ()11332122212x y x y y x x y x y ⎛⎫+=+=+++++≥+= ⎪⎝⎭当且仅当2x y y x =,即x =,也即x y ⎧=⎪⎪⎨⎪=⎪⎩时取等号.故答案为:32+ 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号. 则32233838y x x y xy ++==,故答案为:8.【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.16.10【分析】由得出利用基本不等式即可得出答案【详解】(当且仅当时取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用属于中档题 解析:10【分析】由49abc a b =+得出94c a b=+,利用基本不等式即可得出答案. 【详解】 49abc a b =+4994a b c ab ab +∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用,属于中档题.17.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.【分析】根据平行四边形性质可得再结合基本不等式即可求出的最小值【详解】由平行四边形性质可得:由基本不等式可得:当且仅当时等号成立所以即所以所以的最小值为故答案为:【点睛】本题主要考查了向量的数量积的【分析】 根据平行四边形性质可得()22222a b a b a b++-=+,再结合基本不等式即可求出b 的最小值.【详解】 由平行四边形性质可得:()22222a b a b a b ++-=+,由基本不等式可得:()2222a b a b a b a b ++-++-≥,当且仅当a b a b +=-时等号成立, 所以()()22222a b ab a b ++-+≥,即()224212b +≥, 所以3b ≥,所以b 的最小值为.【点睛】 本题主要考查了向量的数量积的运算及基本不等式的应用,属于中档题.19.【分析】设将关于的函数利用基本不等式即可求出值域【详解】设当时当且仅当时等号成立;同理当时当且仅当时等号成立;所以函数的值域为故答案为:【点睛】本题考查函数的值域注意基本不等式的应用属于基础题解析:(),161667,⎡-∞-++∞⎣ 【分析】设6x t -=,将()f x 关于t 的函数,利用基本不等式,即可求出值域.【详解】设21663636,6,()16t t x t x t g t t t t++-==+==++, 当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣. 故答案为: (),161667,⎡-∞-++∞⎣. 【点睛】本题考查函数的值域,注意基本不等式的应用,属于基础题. 20.6【分析】由题得解不等式即得x+y 的最小值【详解】由题得所以所以所以x+y≥6或x+y≤-2(舍去)所以x+y 的最小值为6当且仅当x=y=3时取等故答案为6【点睛】本题主要考查基本不等式求最值意在考解析:6【分析】由题得2)34x y x+y+=xy +≤(,解不等式即得x+y 的最小值.【详解】 由题得2)34x y x+y+=xy +≤(, 所以2)4(x y x y +-+≥()-120, 所以6)(2)0x y x y +-++≥(, 所以x+y≥6或x+y≤-2(舍去),所以x+y 的最小值为6.当且仅当x=y=3时取等.故答案为6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题21.无22.无23.无24.无25.无26.无。

(压轴题)高中数学必修一第二单元《函数》测试题(含答案解析)(2)

(压轴题)高中数学必修一第二单元《函数》测试题(含答案解析)(2)

一、选择题1.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦2.以下说法正确的有( ) (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个3.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,44.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦ C .41,152⎡⎤⎢⎥⎣⎦D .152,4⎡⎤⎢⎥⎣⎦5.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .36.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14, 7.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( )①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .18.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,9.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤-D .5(3)()2f f -<-10.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( ) A .(1,2)- B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞11.已知函数log ,0(),0a x x x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( )A .1B .0C .-1D .a12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.14.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.15.已知函数y =f (n),满足f (1)=2,且f (n+1)=3f (n),n ∈N + .则f (3)=____________.16.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.17.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.18.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.19.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若()()0f f x A ∈,则0x 的取值范围是__________.20.函数的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数,例如,函数()21f x x =+()R x ∈是单函数,下列命题: ①函数4()f x x =()R x ∈是单函数;②若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠;③若:f A B →为单函数,则对于任意b B ∈,在A 中至多有一个数与它对应; ④函数()f x 在某区间上具有单调性,则()f x 在其定义域上一定是单函数. 期中正确命题的序号是___________.三、解答题21.已知()f x 是定义域为R +的增函数,且对任意正实数a 和b ,都有()()()1f ab f a f b =+-.(1)证明:当1x >时,()1f x >;(2)若又知1()02f =,解不等式(32)(1)()2f x f x f x -+-<+.22.已知函数()222f x x ax =++,[]5,5x ∈-.(1)当1a =-时,求函数()f x 的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数. (3)求函数()f x 的最小值()g a 的表达式,并求()g a 的最大值.23.已知二次函数()2f x ax bx =+满足()20f =,且方程()f x x =有两个相等实根.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使()f x 的定义域是[],m n ,值域是[]3,3m n .若存在,求,m n 的值,若不存在,请说明理由. 24.已知11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭. (1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明.25.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值; (3)求函数()22f x x x =-的所有的“和谐区间”. 26.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

必修一学业水平测试复习(1-2章)

必修一学业水平测试复习(1-2章)

必修一学业水平测试复习复习内容:必修1第1章至第2章【基础知识梳理】1.1从生物圈到细胞1、病毒没有细胞结构,但必须依赖()才能生存和繁殖。

2、生命活动离不开细胞,细胞是生物体()的基本单位。

3、生命系统的结构层次:4、植物没有()层次,单细胞生物既可化做()层次,又可化做()层次。

5、地球上最基本的生命系统是()。

6、种群:在一定的区域内同种生物个体的总和。

例:一个池塘中所有的鲤鱼。

7、群落:在一定的区域内所有生物的总和。

例:一个池塘中所有的生物。

(不是所有的鱼)8、生态系统:生物群落和它生存的无机环境相互作用而形成的统一整体。

9、以()为基础的生物与环境之间的物质和能量的交换;以()为基础的生长与发育;以()为基础的遗传与变异等生命活动都离不开细胞。

1.2一、高倍镜的使用步骤(尤其要注意第1和第4步)1、在低倍镜下找到物象,将物象移至(),2、转动(),换上高倍镜。

3、调节()和(),使视野亮度适宜。

4、调节(),使物象清晰。

二、显微镜使用常识1、调亮视野的两种方法(放大光圈)、(使用凹面镜)。

2、高倍镜:物象(),视野(),看到细胞数目()。

低倍镜:物象(),视野(),看到的细胞数目()。

3、物镜:()螺纹,镜筒越(),放大倍数越大。

目镜:()螺纹,镜筒越(),放大倍数越大。

放大倍数越大视野范围越小视野越暗视野中细胞数目越少每个细胞越大放大倍数越小视野范围越大视野越亮视野中细胞数目越多每个细胞越小4、放大倍数=物镜的放大倍数х目镜的放大倍数设计到的计算:如:在目镜10×物镜10×的视野中有一行细胞,数目是20个,在目镜不换物镜换成40×,那么在视野中能看见多少个细胞?如:在目镜为10×物镜为10×的视野中看见布满的细胞数为20个,在目镜不换物镜换成20×,那么在视野中我们还能看见多少个细胞?三、原核生物与真核生物主要类群:原核生物:蓝藻,含有()和(),可进行光合作用,属。

【高一】北师大版高一数学必修1第二章函数练习题(含答案)

【高一】北师大版高一数学必修1第二章函数练习题(含答案)

【高一】北师大版高一数学必修1第二章函数练习题(含答案)第二节对函数的进一步认识一、(每题5分,共20分)1.下列两个函数完全相同的是( )a、 Y=X2X和Y=XB Y=x2和Y=XC Y=(x)2和Y=XD Y=3x3和Y=x【解析】a中y=x2x的定义域为{xx≠0},而y=x的定义域为r;在C中,y=(x)2的域是[0,+∞), 而y=x的域是r,所以a和C是错误的;b中y=x2=x与y=x的对应关系不同,所以b错;在D中,y=3x3=x和y=x具有相同的域和对应关系,因此D是正确的【答案】d2.函数y=1x+1的定义字段为()a.[-1,+∞)b.[-1,0)c.(-1,+∞)d.(-1,0)【分析】要使函数公式有意义,必须满足x+1>0,∴x>-1,故定义域为(-1,+∞).[答:]C3.如图所示,可表示函数图象的是( )A.①B②③④C①③④d。

②【解析】因为在②图中,给定x的一个值,有两个y值与它对应,不满足函数的定义,而①、③、④均满足函数定义.[答:]C4.已知f(x)=x2+1,则f[f(-1)]的值等于( )a、 2b。

3c。

4d。

五【解析】f(-1)=2,∴f(f(-1))=f(2)=5.[答:]d二、题(每小题5分,共10分)5.以下几组数字用区间表示:(1){xx≥1}=.(2){x2<x≤4}=.(3){xx>-1且x≠2}=.[答](1)[1,+∞) (2) (2,4] (3) (- 1,2) ∪ (2, + ∞)6.函数y=-x2+2x+1的值域为.[分析]∵ y=-x2+2x+1=-(x-1)2+2≤ 2.∴函数的值域是(-∞,2].[答:]∞, 2)三、解答题(每小题10分,共20分)7.查找以下函数的域(1)f(x)=x+1x-1;(2) f(x)=11+1x。

【解析】(1)要使函数有意义,须x+1≥0x-1>0x≥-1x>1x>1∴f(x)的定义域为(1,+∞)(2)使函数有意义x≠01+1x≠0?x≠0且x≠-1F(x)的域是{XX∈ R和X≠ 0和X≠ - 1}8.已知函数f(x)=x2+x-1.(1)找到f(2);(2)找到f(1x+1);(3)如果f(x)=5,求x的值【解析】(1)f(2)=4+2-1=5.(2).(3)f(x)=5,即x2+x-1=5,也就是说,X2+X-6=0,解为X=2或X=-39.(10分)已知函数y=ax+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.[分析]已知函数y=ax+1(a<0且a为常数),∵ax+1≥0,a<0,‡x≤ - 1A,也就是说,函数的定义域是∵函数在区间(-∞,1]上有意义,∴,∴-1a≥1,a<0,——-1≤ a<0,即a的取值范围是[-1,0).。

北京师范大学附属中学必修一第二单元《函数》测试题(答案解析)

北京师范大学附属中学必修一第二单元《函数》测试题(答案解析)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦3.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-4.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对5.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 6.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .77.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确8.已知定义在R 上的函数()f x 的图像关于y 轴对称,且当0x >时()f x 单调递减,若()()()1.360.5log 3,0.5,0.7,a f b f c f -===则,,a b c 的大小关系( )A .c a b >>B .b a c >>C .a c b >>D .c b a >>9.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1 B .0 C .-1 D .a10.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-11.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃12.已知偶函数()f x 在 [0,)+∞上是增函数,且(2)0f =,则不等式 (1)0f x +<的解集是( ) A .[0,2)B .[]3,1-C .(1,3)-D .(2,2)-二、填空题13.若函数()y f x =的定义域是[0,2],则函数()1g x x =-的定义域是______. 14.函数()12x f x =-的定义域是__________.15.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.16.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,()f x 的图象如图,则不等式()0xf x <的解集是___________.17.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .18.已知函数()f x 在定义域(0,)+∞上是单调函数,若对任意(0,)x ∈+∞,都有1()2f f x x ⎡⎤-=⎢⎥⎣⎦,则12020f ⎛⎫⎪⎝⎭的值是______________.19.若233()1x x f x x -+=-,()2g x x =+,求函数()()y f g x =的值域________.20.若函数()log (3)4,1(43)41,1a x x f x a x a x ++≥-⎧=⎨-+-<-⎩且满足对任意的实数m n ≠都有()()0f m f n m n -<-成立,则实数a 的取值范围____.三、解答题21.已知函数()21f x x=- (1)证明函数()f x 在()0,∞+上是减函数. (2)求函数()f x 在[)2,x ∈+∞时的值域. 22.已知函数()1f x x x=+. (1)判断函数()f x 的奇偶性;(2)证明:函数()f x 在[)1,+∞上是增函数; (3)求函数()f x 在[]41--,上的最大值与最小值. 23.设函数12ax y x +=-. (1)当1a =时,在区间[)(]2,22,6-⋃上画出这个函数的图像;(2)是否存在整数a ,使该函数在[4,)+∞上是严格减函数,且当4x ≥时,都有4y ≤,如果存在,求出所有符合条件的a ,若不存在,请说明理由.24.已知二次函数 ()f x 的值域为[4,)-+∞,且不等式0( )f x <的解集为(1,3)-. (1)求()f x 的解析式;(2)若对于任意的[2,2]x ∈-,都有2() f x x m >+恒成立,求实数m 的取值范围. 25.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式.26.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

完整版)高中数学必修一第二章测试题(含答案)

完整版)高中数学必修一第二章测试题(含答案)

完整版)高中数学必修一第二章测试题(含答案)1.已知p>q>1,0<a<1,则下列各式中正确的是:A。

ap>aq B。

pa>qa C。

a-p>a-q D。

p-a>q-a正确答案:A解析:因为p>q>1,所以p-q>0,又因为0<a<1,所以a 的p-q次方小于1,即a^p-q<1,所以ap<aq,即选项A正确。

2.已知f(10x)=x,则f(5)=?A。

105 B。

510 C。

lg10 D。

lg5正确答案:B解析:将f(10x)=x代入x=5/10=1/2中,得到f(1/2)=5,又因为f(5)=f(1/2)/10=5/10=1/2,所以选项B正确。

3.当a≠0时,函数y=ax+b和y=ba^x的图象只可能是?正确答案:直线和指数函数曲线解析:当a=1时,y=x+b和y=be^x,即两个函数都是直线;当a>1时,y=ax+b的图象是一条上升的直线,y=ba^x的图象是一条上升的指数函数曲线;当0<a<1时,y=ax+b的图象是一条下降的直线,y=ba^x的图象是一条下降的指数函数曲线。

4.当a≠1时,函数y=a^(x+b)和y=b^(ax)的图象只可能是?正确答案:指数函数曲线解析:y=a^(x+b)可以化为y=a^b*a^x,因此是一条上升的指数函数曲线;y=b^(ax)可以化为y=(b^a)^x,因此也是一条上升的指数函数曲线。

5.设y1=4,y2=80.90.48,y3=1/2,则递增区间是?正确答案:(0,+∞)解析:因为y1<y3<y2,所以递增区间是(0,+∞)。

6.下列函数中,在区间(0,+∞)上为增函数的是?A。

y=ln(x+2) B。

y=-x+1 C。

y=1/(1+x) D。

y=sin(x)正确答案:A解析:求导可得y'=(1/(x+2))>0,所以y在区间(0,+∞)上为增函数,因此选项A正确。

高中数学 第二章 函数测试题 北师大版必修1-北师大版高一必修1数学试题

高中数学 第二章 函数测试题 北师大版必修1-北师大版高一必修1数学试题

第二章测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,在(-∞,0)上为递增的是( ) A .f (x )=-2x +1 B .g (x )=|x -1| C .y =1xD .y =-1x[答案] D[解析] 熟悉简单函数的图像,并结合图像判断函数单调性,易知选D. 2.下列四个图像中,表示的不是函数图像的是( )[答案] B[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.3.函数f (x )=x -2+1x -3的定义域是( ) A .[2,3)B .(3,+∞)C .[2,3)∪(3,+∞)D .(2,3)∪(3,+∞)[答案] C[解析] 要使函数有意义,x 需满足⎩⎪⎨⎪⎧x -2≥0x -3≠0解得x ≥2且x ≠3.故选C.4.二次函数y =-2(x +1)2+8的最值情况是( ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值 [答案] C[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值. 5.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b 是从A 到B 的映射,若1和8的原像分别是3和10,则5在f 作用下的像是( )A .3B .4C .5D .6[答案] A[解析] 由已知可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1b =-2.于是y =x -2,因此5在f 下的像是5-2=3.6.若函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,f x +2,x <0,那么f (-3)的值为( ) A .-2 B .2 C .0 D .1[答案] B[解析] 依题意有f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=1+1=2,即f (-3)=2.7.不论m 取何值,二次函数y =x 2+(2-m )x +m 的图像总过的点是( ) A .(1,3) B .(1,0) C .(-1,3) D .(-1,0)[答案] A[解析] 由题意知x 2+2x -y +m (1-x )=0恒成立,∴⎩⎪⎨⎪⎧x 2+2x -y =01-x =0,解得⎩⎪⎨⎪⎧x =1y =3,∴图像总过点(1,3).8.定义在R 上的偶函数f (x )在区间[-2,-1]上是增函数,将f (x )的图像沿x 轴向右平移2个单位,得到函数g (x )的图像,则g (x )在下列区间上一定是减函数的是( )A .[3,4]B .[1,2]C .[2,3]D .[-1,0][答案] A[解析] 偶函数f (x )在[-2,-1]上为增函数,则在[1,2]上为减函数,f (x )向右平移2个单位后在[3,4]上是减函数.9.若函数f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( ) A .f (3)+f (4)<0 B .f (-3)-f (-2)<0 C .f (-2)+f (-5)<0 D .f (4)-f (-1)>0 [答案] D[解析] 由题意知函数f (x )在[0,6]上递增.A 中f (3)+f (4)与0的大小不定,A 错;B 中f (-3)-f (-2)=f (3)-f (2)>0,B 错;C 中f (-2)+f (-5)=f (2)+f (5)与0的大小不定,C 错;D 中f (4)-f (-1)=f (4)-f (1)>0,D 正确. 10.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值X 围为( )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[答案] D[解析]∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立;k ≠0时,Δ<0,也成立.∴0≤k <34.11.函数y =ax 2-bx +c (a ≠0)的图像过点(-1,0),则ab +c +ba +c -ca +b的值是( )A .-1B .1 C.12 D .-12[答案] A[解析]∵函数y =ax 2-bx +c (a ≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b . ∴ab +c +ba +c -ca +b=-1.12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值X 围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23[答案] A[解析]由题意得|2x-1|<13⇒-13<2x-1<13⇒23<2x<43⇒13<x<23,∴选A. 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y=x2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是________.[答案]y=x2+4x+2[解析]y=(x+2)2+1-3=(x+2)2-2=x2+4x+2.14.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.[答案]0[解析]本题考查偶函数的定义等基础知识.∵f(x)为偶函数,∴f(-x)=f(x),即x2-|-x+a|=x2-|x+a|,∴|x-a|=|x+a|,平方,整理得:ax=0,要使x∈R时恒成立,则a=0.15.已知函数f(x),g(x)分别由下表给出则f[g(1)]的值为当g[f(x)]=2时,x=________.[答案] 1 1[解析]f[g(1)]=f(3)=1,∵g[f(x)]=2,∴f(x)=2,∴x=1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y=2x2+1,值域为{9}的“孪生函数”有三个:①y=2x2+1,x∈{-2};②y=2x2+1,x∈{2};③y=2x2+1,x∈{-2,2}.那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”有________个.[答案] 3[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=⎩⎪⎨⎪⎧x 2|x |≤11 |x |>1,(1)画出f (x )的图像; (2)求f (x )的定义域和值域.[分析] 解答本题可分段画出图像,再结合图像求函数值域. [解析] (1)利用描点法,作出f (x )的图像,如图所示.(2)由条件知,函数f (x )的定义域为R .由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].18.(本小题满分12分)已知函数f (x )=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f (x )的最大值和最小值;(2)某某数a 的取值X 围,使y =f (x )在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f (x )=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5, 所以当x =-3时,f (x )min =-19, 当x =3时,f (x )max =41.(2)函数f (x )=(x -a )2+2-a 2的图像的对称轴为x =a ,因为f (x )在[-3,3]上是单调函数,所以a ≤-3或a ≥3.19.(本小题满分12分)已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增加的;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2.则f (x 1)-f (x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2). ∴函数f (x )在(0,+∞)上是增加的. (2)∵f (x )在[12,2]上的值域是[12,2],又∵f (x )在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f 12=12,f 2=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z },满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足(1),(2)的幂函数f (x )的解析式,并求x ∈[0,3]时f (x )的值域. [解析] 由{x |-2<x <2,x ∈Z }={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m <1,∴m =-1或0.由(2)知f (x )是奇函数.当m =-1时,f (x )=x 2为偶函数,舍去. 当m =0时,f (x )=x 3为奇函数. ∴f (x )=x 3.当x ∈[0,3]时,f (x )在[0,3]上为增函数, ∴f (x )的值域为[0,27].21.(本小题满分12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:f (x )是偶函数;(2)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称,f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2, 当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -12-2,x ≥0,x +12-2,x <0.根据二次函数的作图方法,可得函数图像,如图函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1]上为减函数,在[-1,0),[1,3]上为增函数.(3)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2. 当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2. 故函数f (x )的值域为[-2,2].22.(本小题满分12分)已知函数f (x )=x +x 3,x ∈R . (1)判断函数f (x )的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b >0,试比较f (a )+f (b )与0的大小. [解析] (1)函数f (x )=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1)=(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=x +x 3,x ∈R 是增函数. (2)由a +b >0,得a >-b ,由(1)知f (a )>f (-b ), 因为f (x )的定义域为R ,定义域关于坐标原点对称, 又f (-x )=(-x )+(-x )3=-x -x 3=-(x +x 3)=-f (x ), 所以函数f (x )为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.。

#【数学】第二章《基本初等函数》测试(2)(新人教A版必修1)

#【数学】第二章《基本初等函数》测试(2)(新人教A版必修1)

新课标高一数学同步测试第二章测试一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.已知p >q >1,0<a <1,则下列各式中正确的是 ( )A .q pa a >B .a a qp >C .q pa a--> D .a a q p -->2.已知c x b ax x f ++=)((a ,b ,c 是常数)的反函数352)(1-+=-x x x f ,则 ( )A .a =3,b =5,c =-2B .a =3,b =-2,c =5C .a =2,b =3,c =5D .a =2,b =-5,c =33.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是( )A .1221≠≤≤a a 且 B .02121≤<≤<a a 或 C .21≤<a D .2101≤<≥a a 或4.函数f(x )的图象与函数g (x )=(21)x的图象关于直线y =x 对称,则f (2x -x 2)的单调减区间为( ) A .(-∞,1)B .[1,+∞]C .(0,1)D .[1,2] 5.函数y =11+-x x ,x ∈(0,1)的值域是( )A .[ -1,0)B .(-1,0]C .(-1,0)D .[-1,0]6. 设g (x )为R 上不恒等于0的奇函数,)(111)(x g b a x f x⎪⎭⎫⎝⎛+-=(a >0且a ≠1)为偶函数,则常数b 的值为( )A .2B .1C .21 D .与a 有关的值7.设f (x )=a x ,g (x )=x 31,h (x )=log a x ,a 满足log a (1-a 2)>0,那么当x >1时必有( )A .h (x )<g (x )<f (x )B .h (x )<f (x )<g (x )C .f(x )<g (x )<h (x )D .f (x )<h (x )<g (x ) 8.函数xx x a y --=22(a >0)的定义域是( )A .[-a ,a ]B .[-a ,0]∪(0,a )C .(0,a )D .[-a ,0]9.lgx +lgy =2lg (x -2y ),则yx2log 的值的集合是( )A .{1}B .{2}C .{1,0}D .{2,0}10.函数x xx y +=的图象是( )二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.按以下法则建立函数f (x ):对于任何实数x ,函数f (x )的值都是3-x 与x 2-4x +3中的最大者,则函数f (x )的最小值等于 . 12.设函数c bx x x x f ++=)(,给出四个命题: ①0=c 时,有)()(x f x f -=-成立;②c b ,0=﹥0时,方程0)(=x f ,只有一个实数根; ③)(x f y =的图象关于点(0,c )对称; ④方程0)(=x f ,至多有两个实数根.上述四个命题中所有正确的命题序号是 。

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试(包含答案解析)(2)

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试(包含答案解析)(2)

一、选择题1.已知a >0,b >0,a +b =1,则下列等式可能成立的是( ) A .221a b += B .1ab = C .212a b +=D .2212a b -=2.已知函数22(0)y ax bx c a =+->的图象与x 轴交于()2,0A 、()6,0B 两点,则不等式220cx bx a +-< 的解集为( ) A .(6,2)-- B .11,,62⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭C .11,26--⎛⎫⎪⎝⎭D .11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭3.若,a b ∈R ,且0ab >,则下列不等式中恒成立的是( )A .222a b ab +>B .a b +≥C .11a b +>D .2b aa b+≥ 4.下列函数中,最大值为12的是( )A .22116y x x=+B .yC .241x y x =+D .()422y x x x =+>-+ 5.函数2()f x x bx c =++对任意实数t 满足()(4)f t f t =-,则(1),(2),(4)f f f 的大小关系是( ) A .(1)(2)(4)f f f << B .(2)(1)(4)f f f << C .(4)(2)(1)f f f <<D .(4)(1)(2)f f f <<6.已知不等式20ax bx c ++>的解集是{}41x x -<<,则不等式2(1)(3)0b x a x c -+++>的解集为( )A .{}14x x -<< B .413x x ⎧⎫-<<⎨⎬⎩⎭C .413x x x⎧⎫⎨⎬⎩⎭或 D .{}21x x x -或7.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .88.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15C .a <15D .a ≤159.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+≥+恒成立时实数m 的取值范围是( ) A .[]4,3- B .[]2,6- C .[]6,2- D .[]3,4-10.若不等式2210ax ax ++>对任意的x ∈R 恒成立,则实数a 的取值范围是( )A .[)0,1B .[)0,+∞C .(](),01,-∞+∞ D .()0,111.下列命题正确的是( ) A .若a bc c>,则a b > B .若22a b >,则a b >C .若2211a b>,则a b < D <a b <12.若a >b ,则下列不等式一定成立的是( ). A .11a b< B .55a b > C .22ac bc >D .a b >二、填空题13.已知函数2()22b a f x ax x =+-,当[1,1]x ∈-时,1()2f x ≥-恒成立,则+a b 的最大值为________.14.定义,,a a ba b b a b ≥⎧⊗=⎨<⎩,若,0x y >,则222241616xy y x xy x y μ⎛⎫⎛⎫++=⊗ ⎪ ⎪⎝⎭⎝⎭的最小值____________.15.已知函数2()21f x x ax =-+,若对∀(]0,2x ∈,恒有()0f x ≥,则实数a 的取值范围是___________.16.已知正实数m ,n 满足119222m n m n +++=,则2m n +的最小值是_______. 17.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.18.若命题“对任意实数0a >,0b >且4a b +=,不等式41m a b+>恒成立”为假命题,则m 的取值范围为_______.19.一批救灾物资随51辆汽车从某市以/vkm h 的速度匀速直达灾区,已知两地公路线长400km ,为了安全起见,两辆汽车的间距不得小于2800v km ,那么这批物资全部到达灾区,最少需要______.h20.已知函数3()3f x x x =-,若对任意的实数x ,不等式()()(0)f x t f x t t +>+≠恒成立,则实数t 的取值范围__________.三、解答题21.近年来,某西部乡村农产品加工合作社每年消耗电费24万元.为了节能环保,决定修建一个可使用16年的沼气发电池,并入该合作社的电网.修建沼气发电池的费用(单位:万元)与沼气发电池的容积x (单位:米3)成正比,比例系数为0.12.为了保证正常用电,修建后采用沼气能和电能互补的供电模式用电.设在此模式下,修建后该合作社每年消耗的电费C (单位:万元)与修建的沼气发电池的容积x (单位:米3)之间的函数关系为()50kC x x =+(0x ≥,k 为常数).记该合作社修建此沼气发电池的费用与16年所消耗的电费之和为F (单位:万元).(1)解释()0C 的实际意义,并写出F 关于x 的函数关系;(2)该合作社应修建多大容积的沼气发电池,可使F 最小,并求出最小值.(3)要使F 不超过140万元,求x 的取值范围.22.对于四个正数x y z w ,,,,如果xw yz <,那么称()x y ,是()z w ,的“下位序对”. (1)对于23711,,,,试求()27,的“下位序对”; (2)设a b c d ,,,均为正数,且()a b ,是()c d ,的“下位序对”,试判断c a a cd b b d++,,之间的大小关系.23.已知关于x 的不等式2120x mx +-<的解集为(6,)n -. (1)求实数m ,n 的值;(2)正实数a ,b 满足22na mb +=. ①求11a b+的最小值; ②若2160a b t +-≥恒成立,求实数t 的取值范围.24.已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)解不等式()2220x a x a +-->;(2)b 为何值时,230ax bx ++≥的解集为R ?25.已知二次函数()f x 满足()01f =,()()125f x f x x +-=+. (1)求()f x 的解析式;(2)若[]3,1x ∈-,若()25f x m m ≤-恒成立,求实数m 的取值范围.26.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立. 【详解】001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立; 2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D2.D解析:D 【分析】利用函数图象与x 的交点,可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,再利用根与系数的关系,转化为4b a =-,12c a =-,最后代入不等式220cx bx a +-<,求解集.【详解】由条件可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,则226b a +=-,26ca⨯=-,得4b a =-,12c a =-, 22201280cx bx a ax ax a ∴+-<⇔---<,整理为:()()21281021610x x x x ++>⇔++>, 解得:16x >-或12x <-, 所以不等式的解集是11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭. 故选:D 【点睛】思路点睛:本题的关键是利用根与系数的关系表示4b a =-,12c a =-,再代入不等式220cx bx a +-<化简后就容易求解.3.D解析:D 【分析】利用基本不等式的性质来逐一判断正误即可. 【详解】对于A ,222a b ab +≥,当且仅当a b =时,等号成立,故A 错误;对于B 、C ,虽然0ab >,只能说明,a b 同号,若,a b 都小于0时,则不等式不成立,故B ,C 错误;对于D ,0ab >,,0b aa b∴>,2b a a b ∴+≥,当且仅当a b =时,等号成立,故D 正确; 故选:D. 【点睛】易错点睛:本题考查基本不等式的相关性质,利用基本不等式求最值时,要注意其必须满足的三个条件:一正、二定、三相等,考查学生的逻辑推理能力,属于基础题.4.C解析:C 【分析】 用排除法求解. 【详解】由于20x >,因此22116y x x=+无最大值,A 错;[0,1]y =,最小值为0,最大值为1,B 错; 2x >-,20x +>,42y x x =++无最大值,D 错, 只有C 正确、 故选:C . 【点睛】关键点点睛:本题考查求函数的最大值.对于单选题可以从简单入手,利用排除法确定正确选项.实际上C 可以用基本不等式求解:24()1x f x x =+,0x =时,(0)0f =,0x ≠时,221()1f x x x =+, 而2212x x +≥,当且仅当1x =±时等号成立,∴10()2f x <≤, 综上有()f x 的值域是1[0,]2,最大值为12. 5.B解析:B 【分析】由题意知()f x 关于2x =对称,结合函数解析式即可判断(1),(2),(4)f f f 的大小. 【详解】由对任意实数t 满足()(4)f t f t =-,知:()f x 关于2x =对称, 由函数2()f x x bx c =++知:图象开口向上,对称轴为22bx =-=, ∴()f x 在[2,)+∞上单调递增,而(1)(41)(3)f f f =-=,∴(2)(1)(4)f f f <<. 故选:B 【点睛】本题考查了二次函数的性质,根据对称性,结合二次函数的性质比较函数值的大小,属于基础题.6.B解析:B 【分析】根据不等式的解集与对应的方程根的关系的关系求得3,4b a c a ==-且0a <,化简不等式为2340x x +-<,结合一元二次不等式的解法,即可求解. 【详解】由题意,不等式20ax bx c ++>的解集是{}41x x -<<, 可得4x =-和1x =是方程20ax bx c ++=的两根,且0a <,所以4141b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,可得3,4b a c a ==-,所以不等式2(1)(3)0b x a x c -+++>可化为23(1)(3)40a x a x a -++->, 因为0a <,所以不等式等价于23(1)(3)40x x -++-<, 即234(1)(34)0x x x x +-=-+<,解得413x -<<, 即不等式2(1)(3)0b x a x c -+++>的解集为413x x ⎧⎫-<<⎨⎬⎩⎭. 故选:B. 【点睛】解答中注意解一元二次不等式的步骤:(1)变:把不等式变形为二次项系数大于零的标准形式; (2)判:计算对应方程的判别式;(3)求出对应的一元二次方程的根,或根据判别式说明方程有没有实根; (4)利用“大于取两边,小于取中间”写出不等式的解集.7.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】 ∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15, 所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.9.C解析:C 【分析】由题意利用等差数列的定义和性质求得13a b =+,再利用基本不等式求得112ab,根据题意,2412m m +,由此求得m 的范围. 【详解】解:两个正实数a ,b 满足3a ,12,b 成等差数列, 13a b ∴=+,123ab ∴,112ab∴,∴112ab. ∴不等式2134m m a b ++恒成立,即234a b m m ab++恒成立, 即214m m ab+恒成立. 2412m m ∴+,求得62m -,故选:C . 【点睛】本题主要考查等差数列的定义和性质,不等式的恒成立问题,基本不等式的应用,属于基础题.10.A解析:A 【分析】设函数()221f x ax ax =++,把不等式2210ax ax ++>在x ∈R 上恒成立,转化为()0f x >对于x R ∀∈恒成立,结合函数的性质,即可求解.【详解】解:设函数()221f x ax ax =++,则不等式2210ax ax ++>在x ∈R 上恒成立,即()0f x >对于x R ∀∈恒成立, 当0a =时,()10f x =>,显然成立; 当0a ≠时,要使()0f x >在x ∈R 上恒成立,需函数()221f x ax ax =++开口向上,且与x 轴没有交点,即20(2)410a a a >⎧⎨∆=-⨯⨯<⎩,解得01a <<, 综上知,实数a 的取值范围为[0,1).故选:A. 【点睛】本题主要考查了不等式的恒成立问题,以及二次函数的图象与性质的应用,其中解答中把不等式的恒成立问题转化为利用二次函数的性质求解是解答的关键,着重考查转化思想,以及推理与计算能力.11.D解析:D 【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小.【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D <定有a b <,故D 项正确. 故选:D 【点睛】本题主要考查不等关系与不等式,属于基础题.12.B解析:B 【分析】利用函数的单调性、不等式的基本性质即可判断出结论. 【详解】 a >b ,则1a 与1b的大小关系不确定;由函数y =x 5在R 上单调递增,∴a 5>b 5; c =0时,ac 2=bc 2;取a =-1,b =-2,|a |>|b |不成立.因此只有B 成立. 故选B . 【点睛】本题考查了函数的单调性、不等式的基本性质,考查了推理能力与计算能力,属于基础题.二、填空题13.2【分析】由时恒成立转化为恒成立根据中ab 系数相等令求解【详解】因为时恒成立所以恒成立令则或当时即当时即要使时的等号成立则即解得函数图象开口向上对称轴为所以则的最大值为2故答案为:2【点睛】关键点点解析:2 【分析】由[1,1]x ∈-时,1()2f x ≥-恒成立,转化为211222xa xb ⎛⎫-+≥- ⎪⎝⎭恒成立,根据+a b中,a ,b 系数相等,令2122xx -=求解. 【详解】因为[1,1]x ∈-时,1()2f x ≥-恒成立, 所以2211()22222b a x f x ax x a x b ⎛⎫=+-=-+≥- ⎪⎝⎭恒成立, 令2122x x -=,则12x =-或1x =,当1x =时,()21122a b f =+≥- ,即1a b +≥-, 当12x =-时,112442a b f ⎛⎫-=--≥- ⎪⎝⎭,即2a b +≤, 要使12x =-时,1()2f x ≥-的等号成立, 则min 11()22f x f ⎛⎫=-=- ⎪⎝⎭,即14211114422b a a b a ⎧-=-⎪⎪⎨⎪--=-⎪⎩, 解得2343a b ⎧=⎪⎪⎨⎪=⎪⎩,203a =>,函数图象开口向上,对称轴为12x =-, 所以则+a b 的最大值为2,故答案为:2【点睛】关键点点睛:由+a b 中,a ,b 系数相等,令2122x x -=是本题求解的关键.. 14.【分析】换元判定单调性利用基本不等式求解【详解】令则在为增函数在在为减函数从而当且仅当时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就 解析:94【分析】换元判定单调性,利用基本不等式求解【详解】 令y t x =,则 22244xy y t t x+=+在()0,∞+为增函数, 22216111616x xy y t t+=+在在()0,∞+为减函数, 从而22111942164t t t t μ⎛⎫≥+++≥ ⎪⎝⎭, 当且仅当12t =时取等号. 故答案为:94【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.【分析】利用参变分离得在上恒成立结合双勾函数性质求出的最小值即可【详解】解:由题意知:在上恒成立所以在上恒成立又因为函数在上单调递减在上单调递增所以当时最小为2所以即故答案为:【点睛】方法点睛:在解 解析:1a ≤【分析】 利用参变分离得2112x a x x x+≤=+在(]02x ∈,上恒成立,结合双勾函数性质求出1y x x=+的最小值即可. 【详解】 解:由题意知:()2210f x x ax =-+≥在(]02x ∈,上恒成立,所以2112x a x x x +≤=+在(]02x ∈,上恒成立, 又因为函数1y x x=+在()01x ∈,上单调递减,在()12x ∈,上单调递增,所以当1x =时,1x x+最小为2, 所以2a ≤2,即1a ≤,故答案为:1a ≤.【点睛】方法点睛:在解决二次函数的恒成立问题,常常采用参变分离法,如此可以避免对参数进行分类讨论.16.【分析】利用基本不等式可求得再结合可得从而可求出的取值范围即可得到的最小值【详解】由题意当且仅当时等号成立又所以令则解得所以即的最小值是故答案为:【点睛】关键点点睛:本题考查求代数式的最值解题关键是 解析:32【分析】()1112222n m m n m n m n ⎛⎫++=+++ ⎪⎝⎭,利用基本不等式,可求得()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再结合()119222m n m n +=-+,可得()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的取值范围,即可得到2m n +的最小值.【详解】由题意,()11155922222222n m m n m n m n ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当n m m n=时,等号成立, 又()119222m n m n +=-+,所以()()()1199222222m n m n m n m n ⎛⎫⎡⎤++=+-+≥ ⎪⎢⎥⎝⎭⎣⎦, 令2m n t +=,则9922t t ⎛⎫-≥ ⎪⎝⎭,解得332t ≤≤, 所以32,32m n ⎡⎤+∈⎢⎥⎣⎦,即2m n +的最小值是32. 故答案为:32. 【点睛】关键点点睛:本题考查求代数式的最值,解题关键是利用基本不等式求出()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再根据()119222m n m n ⎛⎫+++= ⎪⎝⎭,可得到只包含2m n +的关系式()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.17.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号.则32233838y x x y xy ++==,故答案为:8. 【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.18.【分析】利用基本不等式求出的最小值可得不等式恒成立时的取值范围再取其补集即可【详解】若不等式对任意实数且恒成立则当且仅当且即时等号成立所以故命题为假命题时的取值范围为故答案为:【点睛】本题主要考查命 解析:94m ≥ 【分析】 利用基本不等式求出41a b +的最小值,可得不等式41m a b+>恒成立时,m 的取值范围,再取其补集即可.【详解】若不等式41m a b+>对任意实数0a >,0b >且4a b +=恒成立,则411411419()()(5)5)4444b a a b a b a b a b +=++=++≥=, 当且仅当4b a a b =且4a b +=,即83a =,43b =时等号成立. 所以94m <,故命题为假命题时,m 的取值范围为94m ≥. 故答案为: 94m ≥【点睛】本题主要考查命题的真假,基本不等式的应用,属于中档题.19.10【分析】用速度v 表示时间结合基本不等式计算最小值即可【详解】当最后一辆车子出发第一辆车子走了小时最后一辆车走完全程共需要小时所以一共需要小时结合基本不等式计算最值可得故最小值为10小时【点睛】考 解析:10【分析】用速度v 表示时间,结合基本不等式,计算最小值,即可.【详解】当最后一辆车子出发,第一辆车子走了25080016v v v ⋅=小时,最后一辆车走完全程共需要400v 小时,所以一共需要40016v v +小时,结合基本不等式,计算最值,可得4001016v v +≥=,故最小值为10小时 【点睛】考查了基本不等式计算函数最值问题,关键利用a b +≥中等.20.【分析】代入函数解析式可得不等式等价于任意的实数恒成立利用判别式小于0即可求解【详解】不等式恒成立即恒成立整理得恒成立可知则任意的实数恒成立解得(舍去)或实数的取值范围是故答案为:【点睛】本题考查一 解析:()4,+∞【分析】代入函数解析式可得不等式等价于223340x tx t 任意的实数x 恒成立,利用判别式小于0即可求解.【详解】 3()3f x x x =-,不等式()()(0)f x t f x t t +>+≠恒成立,即()()3333x t x t x x t +-+>-+恒成立,整理得2233340tx t x t t 恒成立,可知0t >,则223340x tx t 任意的实数x 恒成立,2234340t t ,解得4t <-(舍去)或4t >, ∴实数t 的取值范围是()4,+∞.故答案为:()4,+∞.【点睛】本题考查一元二次不等式的恒成立,属于基础题.三、解答题21.(1)()0C 的实际意义是未修建沼气发电池时,该合作社每年消耗的电费;192000.1250F x x =++,0x ≥;(2)该合作社应修建容积为350立方米的沼气发电池时,可使F 最小,且最小值为90万元;(3)3050100,3⎡⎤⎢⎥⎣⎦. 【分析】(1)根据题中函数关系式,可直接得到()0C 的实际意义;求出k ,进而可得F 关于x 的函数关系;(2)根据(1)中F 的函数关系,利用基本不等式,即可求出最小值;(3)将140F ≤,转化为关于x 的不等式,求解即可.【详解】(1)()0C 的实际意义是修建这种沼气发电池的面积为0时的用电费用,即未修建沼气发电池时,该合作社每年消耗的电费;由题意可得,()02450k C ==,则1200k =; 所以该合作社修建此沼气发电池的费用与16年所消耗的电费之和为120019200160.120.125050F x x x x =⨯+=+++,0x ≥; (2)由(1)()19200192000.120.125065050F x x x x =+=++-++690≥=, 当且仅当()192000.125050x x =++,即350x =时,等号成立, 即该合作社应修建容积为350立方米的沼气发电池时, 可使F 最小,且最小值为90万元;(3)为使F 不超过140万元,只需192000.1214050F x x =+≤+, 整理得2333503050000x x -+≤,则()()330501000x x --≤,解得30501003x ≤≤, 即x 的取值范围是3050100,3⎡⎤⎢⎥⎣⎦【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.无23.无24.无25.无26.无。

常德市必修一第二单元《函数》测试(含答案解析)

常德市必修一第二单元《函数》测试(含答案解析)

一、选择题1.如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()f x 在区间I 上为“缓增函数”,区间I 为()f x 的“缓增区间”.若函数()224f x x x =-+是区间I 上的“缓增函数”,则()f x 的“缓增区间”I 为( )A .[)1,+∞B .[)2,+∞C .[]0,1D .[]1,22.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<3.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x 的最大值为2C .()F x 的最大值为7-,无最小值D .()F x 的最大值为3,最小值为-14.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x <<D .{|4x x >或0}x <5.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2B .1[,3]2C .[)3,+∞D .(]0,36.对二次函数()2f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ). A .1-是()0f x =的一个解 B .直线1x =是()f x 的对称轴 C .3是()f x 的最大值或最小值D .点()2,8在()f x 的图象上7.设0a >且1a ≠,函数221x x y a a =+-在区间[]1,1-上的最大值是14,则实数a 的值为( ) A .13或2 B .2或3C .12或2 D .13或3 8.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为( ) A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-9.已知函数()3221x f x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<10.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,411.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( )A .()2,+∞B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-12.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .二、填空题13.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.14.对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,则实数t 的取值范围是________________.15.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.16.若()22f x x ax =-+与()ag x x=在区间[]1,2上都是减函数,则a 的取值范围是______.17.如图,是某个函数的图象,则该函数的解析式y =__________;18.若函数211x y x -=-的值域是()[),03,-∞+∞,则此函数的定义域是____.19.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()0)(f b f a f x b a-=-,则称函数()y f x =是[],a b 上的“平均值函数”.0x 是它的一个均值点,若函数()2f x x mx =+是[]1,1-上的平均值函数,则实数m 的取值范围是___________.20.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 三、解答题21.设函数()f x 的定义域是(0,)+∞,且对任意的正实数,x y 都有()()()f xy f x f y =+恒成立,已知(2)1f =,且1x >时,()0f x >.(1)求12f ⎛⎫ ⎪⎝⎭的值; (2)判断()y f x =在(0,)+∞上的单调性,并给出你的证明;(3)解不等式2()(86)1f x f x >--.22.已知函数()2()01axf x a x =≠+. (1)判断函数()f x 在()1,1-上的单调性,并用单调性的定义加以证明; (2)若2a =,函数满足44()55f x -≤≤,求x 的取值范围. 23.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.24.已知函数()24f x x ax =-.(1)当1a =时,求函数()f x 的值域; (2)解关于x 的不等式()230f x a +>;(3)若对于任意的[)2,x ∈+∞,()21f x x >-均成立,求a 的取值范围. 25.已知二次函数2()23=-+f x x x . (Ⅰ)求函数()2log 2y f x =+,1,44x ⎛⎤∈⎥⎝⎦的值域; (Ⅱ)若对任意互不相同的21,(2,4)x x ∈,都有()()1212f x f x k x x -<-成立,求实数k 的取值范围.26.已知函数2()2(1)4f x x k x =+-+.(Ⅰ)若函数()f x 在区间[2,4]上具有单调性,求实数k 的取值范围; (Ⅱ)若()0f x >对任意的[1,2]x ∈恒成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 求得()42f x x x x=+-,利用双勾函数的单调性可求出函数()f x x 的单调递减区间,并求出函数()f x 的单调递增区间,取交集可得出()f x 的“缓增区间”. 【详解】由二次函数的基本性质可知,函数()224f x x x =-+的单调递增区间为[)1,+∞.设()()42f x g x x x x==+-,则函数()g x 在区间(]0,2上为减函数,在区间[)2,+∞上为增函数,下面来证明这一结论.任取1x 、[)22,x ∈+∞且12x x >,即122x x >≥,()()()1212121212444422g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()21121212121244x x x x x x x x x x x x ---=-+=,122x x >≥,则120x x ->,124x x >,所以,()()12g x g x >,所以,函数()g x 在区间[)2,+∞上为增函数,同理可证函数()g x 在区间(]0,2上为减函数. 因此,()f x 的“缓增区间”为[)(][]1,0,21,2I =+∞=.故选:D. 【点睛】关键点点睛:本题考查函数的新定义,求解本题的关键在于理解“缓增区间”的定义,结合二次函数和双勾函数的单调性求对应函数的单调区间.2.C解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意; 当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则0a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则0a <⎧⎨∆≤⎩. 3.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =+或27x =-.4.B解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >.故选:B 【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.5.A解析:A 【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==, ∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤.故选:A 【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围6.A解析:A 【分析】可采取排除法,分别考虑A 、B 、C 、D 中有一个错误,通过解方程求得a ,判断a 是否为非零整数,即可得出结论. 【详解】①若A 错,则B 、C 、D 正确,直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得212434428b a ac baa b c ⎧-=⎪⎪-⎪=⎨⎪++=⎪⎪⎩,解得5108a b c =⎧⎪=-⎨⎪=⎩,合乎题意; ②若B 错,则A 、C 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=,3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得20434428a b c ac b a a b c -+=⎧⎪-⎪=⎨⎪++=⎪⎩,该方程组无解,不合乎题意; ③若C 错误,则A 、B 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=,可得012428a b c b a a b c -+=⎧⎪⎪-=⎨⎪++=⎪⎩,解得831638a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,不合乎题意;④若D 错误,则A 、B 、C 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,可得2012434a b c b a ac b a⎧⎪-+=⎪⎪-=⎨⎪⎪-=⎪⎩,解得343294a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,不合乎题意.故选:A. 【点睛】关键点点睛:本题考查利用二次函数的基本性质求解参数,解本题的关键就是根据已知信息列出关于a 、b 、c 的方程组,解出参数的值,再逐一判断.7.D解析:D 【分析】本题首先可以令x t a =,将函数转化为()212y t =+-并判断出函数的单调性,然后分为01a <<、1a >两种情况进行讨论,根据最大值是14进行计算,即可得出结果. 【详解】令x t a =(0a >、1a ≠),则()222112y t t t =+-=+-, 因为0a >,所以0x t a =>,函数()212y t =+-是增函数, 当01a <<、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时2max11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15-(舍去);当1a >、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时()2max 1214y a =+-=,解得3a =或5-(舍去), 综上所述,实数a 的值为13或3, 故选:D. 【点睛】本题考查根据函数的最值求参数,能否通过换元法将函数转化为二次函数是解决本题的关键,考查二次函数单调性的判断和应用,考查分类讨论思想,考查计算能力,是中档题.8.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+,()11,012x∴-∈-+, 1111,21222x ⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.9.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21xy =+在R 上单调递增所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.10.B解析:B 【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解 【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭. 故选:B 【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-; (2)换元法求解函数值域必须注意新元取值范围.11.D解析:D 【分析】按0a >和0a <分类解不等式即可得. 【详解】[()()]0a f a f a -->,若0a >,则()()0f a f a -->,即1[2()1]0a a +--⨯-->,解得2a <,所以02a <<,若0a <,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为(2,0)(0,2)-.故选:D . 【点睛】本题考查解不等式,解题方法是分类讨论.掌握分类讨论的思想方法是解题关键.12.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.二、填空题13.【分析】本题首先可讨论的情况此时然后根据函数的解析式求出和通过即可求出的值最后讨论的情况此时通过得出此时无解即可得出结果【详解】若则因为函数所以因为所以解得若则因为函数所以因为所以无解综上所述的取值解析:32⎧⎫⎨⎬⎩⎭【分析】本题首先可讨论0a >的情况,此时11a -<、11a +>,然后根据函数()f x 的解析式求出()1f a -和()1f a +,通过()()11f a f a -=+即可求出a 的值,最后讨论0a <的情况,此时11a ->、11a +<,通过()()11f a f a -=+得出此时a 无解,即可得出结果. 【详解】若0a >,则11a -<,11a +>,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以1212f aa a a ,1121f a a aa ,因为()()11f a f a -=+,所以21a a ,解得32a =, 若0a <,则11a ->,11a +<,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以11213f aa a a ,12123f a a a a ,因为()()11f a f a -=+,所以1323a a ,无解,综上所述,32a =,a 的取值范围是32⎧⎫⎨⎬⎩⎭, 故答案为:32⎧⎫⎨⎬⎩⎭. 【点睛】本题考查分段函数的相关问题的求解,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,考查分类讨论思想,考查计算能力,是中档题.14.【分析】令由题意得出解出该不等式组即可得出实数的取值范围【详解】对于任意的不等式恒成立即不等式恒成立令则解得或因此实数的取值范围是故答案为:【点睛】本题考查不等式恒成立问题涉及主元思想的应用将问题转解析:()(),52,-∞-+∞【分析】令()()224f m t m t =-+-,由题意得出()10230f f ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪>⎩,解出该不等式组,即可得出实数t 的取值范围. 【详解】对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,即不等式()2240t m t -+->恒成立,令()()224f m t m t =-+-,则()()()()()()2211524202223324250f t t t t f t t t t ⎧⎛⎫⎛⎫=-+-=-+>⎪ ⎪⎪⎝⎭⎝⎭⎨⎪=-+-=-+>⎩, 解得5t <-或2t >,因此,实数t 的取值范围是()(),52,-∞-+∞.故答案为:()(),52,-∞-+∞.【点睛】本题考查不等式恒成立问题,涉及主元思想的应用,将问题转化为一次函数不等式恒成立是解题的关键,考查运算求解能力,属于基础题.15.【分析】先令则求解的值然后再分类讨论求解的值【详解】令则当时有无解当时有解得或所以或当时故无解;当时若则得若则即无解综上所述:故答案为:【点睛】本题考查分段函数的应用考查根据函数值求参难度一般解答时【分析】先令()f a t =,则()2f t =,求解t 的值,然后再分类讨论,求解a 的值. 【详解】令()f a t =,则()2f t =,当0t >时,有22t -=,无解, 当0t ≤时,有2222t t ++=,解得0t =,或2t =-, 所以()0f a =或()2f a =-,当()0f a =时,()2222110a a a ++=++>,20a -<,故 ()0f a =无解;当()2f a =-时,若0a >,则22a -=-,得a =若0a ≤,则2222a a ++=-,即2240a a ++=,无解,综上所述:a =【点睛】本题考查分段函数的应用,考查根据函数值求参,难度一般,解答时注意分类讨论思想的运用.16.【分析】根据二次函数和分式函数的单调性求解即可【详解】根据与在区间上都是减函数又的对称轴为所以又在区间上是减函数所以所以即的取值范围为故答案为:【点睛】本题考查了已知函数的单调性求参数问题考查了数学解析:(]01, 【分析】根据二次函数和分式函数的单调性求解即可. 【详解】根据2()2f x x ax =-+与()ag x x=在区间[1,2]上都是减函数, 又()f x 的对称轴为x a =,所以1a ≤, 又()ag x x=在区间[1,2]上是减函数,所以0a > 所以01a <≤,即a 的取值范围为(]01,.故答案为:(]01,【点睛】本题考查了已知函数的单调性求参数问题,考查了数学运算能力.属于中档题.17.【分析】根据分段函数图象用待定系数法求解即可【详解】当时设函数为当时解得;当时设函数为当时时解得所以故答案为:【点睛】本题考查利用函数图象求解析式考查待定系数法是基础题解析:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【分析】根据分段函数图象,用待定系数法求解即可. 【详解】当01x ≤<时,设函数为y kx =,当1x =时2y =,解得2k =; 当13x ≤≤时,设函数为y ax b =+, 当1x =时3y =,3x =时0y =,解得32a =-,92b =. 所以2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩.故答案为:2,0139,1322x xyx x≤<⎧⎪=⎨-+≤≤⎪⎩【点睛】本题考查利用函数图象求解析式,考查待定系数法,是基础题.18.【分析】先计算当和时的值然后分析原函数的图象性质根据函数的图象性质判断定义域【详解】令得令得函数则原函数在上单调递减在上递减画出函数的图象如图所示:由函数的图象可知当值域为时定义域应为故答案为:【点解析:(]1,11,22⎛⎫⋃⎪⎝⎭【分析】先计算当0y=和3y=时x的值,然后分析原函数的图象性质,根据函数的图象性质判断定义域.【详解】令211xyx-==-得12x=,令2131xyx-==-得2x=,函数2122112111x xyx x x--+===+---,则原函数在(),1-∞上单调递减,在()1,+∞上递减,画出函数211xyx-=-的图象如图所示:由函数211xyx-=-的图象可知,当值域为()[),03,-∞+∞时,定义域应为(]1,11,22⎛⎫⋃⎪⎝⎭.故答案为:(]1,11,22⎛⎫⋃⎪⎝⎭.【点睛】解答本题时,要先根据函数值域的端点求出自变量的值,然后通过原函数的图象及性质分析自变量的取值情况,其中将原函数解析式化为121y x =+-,结合反比例函数的图象性质分析211x y x -=-的性质是关键. 19.【分析】根据新定义可得在区间上有解利用分离变量法即可求出答案【详解】解:设∴在区间上有解即在区间上有解∵令单调递减时单调递增所以所以实数的取值范围是故答案为:【点睛】关键点点睛:此题考查了函数的新定 解析:[)0,+∞【分析】根据新定义可得2x mx m +=在区间()1,1-上有解,利用分离变量法即可求出答案. 【详解】解:设11x -<<,()()()()1111f f f x m --==--, ∴2x mx m +=在区间()1,1-上有解,即21x m x=-在区间()1,1-上有解,∵()()()()22212112211121111x x x x x y x x x x x-+----+====-+-----, 令()10,2x t -=∈,12y t t∴=+-,(]0,1t ∈单调递减,[)1,2t ∈时单调递增,所以120y t t=+-≥,所以实数m 的取值范围是[)0,+∞. 故答案为:[)0,+∞. 【点睛】关键点点睛:此题考查了函数的新定义题目,解题的关键是将问题转化为2x mx m +=在区间()1,1-上有解,分离参数求解,意在考查了分析能力、数学运算.20.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解.【详解】当1a >时,xy a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,xy a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.三、解答题21.(1)1-; (2)函数单调递增,证明见解析; (3)3{|14x x <<或3}x >. 【分析】(1)利用赋值法,即可求得所求的函数值,得到答案;(2)首先判定函数为增函数,然后利用函数的单调性的定义和所给条件进行证明即可; (3)利用函数的单调性和所得函数值对应的自变量得到函数不等式,得出不等式组,即可求解. 【详解】(1)由题意,函数()f x 对任意的正实数x ,y 都有()()()f xy f x f y =+恒成立, 令1x y ==,可得(1)(1)(1)f f f =+,所以()10f =, 令12,2x y ==,可得1(1)(2)()2f f f =+,即11()02f +=,解得1()12f =-. (2)函数()f x 为增函数,证明如下: 设12,(0,)x x ∈+∞且12x x <, 令211,x x x y x ==,根据题意,可得2121()()()x f x f f x x +=,即2211()()()x f x f x f x -=, 又由1x >时,()0f x >,因为211x x >,可得21()0x f x >,即21()()0f x f x ->,即21()()f x f x >, 所以函数()y f x =在(0,)+∞上的单调性.(3)由题意和(1)可得11(86)1(86)()[(86)](43)22f x f x f f x f x --=-+=-=-,又由不等式2()(86)1f x f x >--,即2()(43)f x f x >-,可得243430x x x ⎧>-⎨->⎩,解得314x <<或3x >,即不等式2()(86)1f x f x >--的解集为3{|14x x <<或3}x >. 【点睛】求解函数有关的不等式的方法及策略: 解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 22.(1)答案见解析;(2)(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【分析】(1)先设﹣1<x 1<x 2<1,然后利用作差法比较f (x 2)与f (x 1)的大小即可判断函数的单调性,(2)把a =2代入后,然后把分式不等式转化为二次不等式组求解即可. 【详解】(1)当0a >时,函数()f x 在()1,1-上是增函数;当0a <时,()f x 在()1,1-上是减函数. 理由如下:当0a >时,任取1211x x -<<<,21212221()()11ax ax f x f x x x -=-++ 21122221()(1)(1)(1)a x x x x x x --=++. 因为111x -<<,211x -<<,∴1211x x -<<,1210x x ->,2212(1)(1)0x x ++>,210x x ->,所以21122212()(1)0(1)(1)x x x x x x -->++, 当0a >时,得21()()f x f x >,故函数()f x 在()1,1-上是增函数;同理可证,当0a <时,21()()f x f x <,所以函数()f x 在()1,1-上是减函数,得证.(2)2a =时,得22()1xf x x =+, ∴44()55f x -≤≤,即2424515x x -≤≤+,∴222520112,,2222520x x x x x x x ⎧++≥⇒≤--≤≤≥⎨-+≥⎩. 由此可得,x 的取值范围是(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【点睛】过程点睛:用定义证明单调性时,第一步,任取12,x x 并规定大小;第二步,将函数值作差并化简;第三步,判断每个因式符号进而得到函数值大小;第四步,下结论. 23.(1)0a =;(2)62a -≤≤. 【分析】(1)当0a =时,由()43f x x =+判断,当0a ≠时,由()(),f a f a -的关系判断;(2)根据()g x 是偶函数,将()()6g x a g x +≤-,转化为 ()()6g x a g x +≤-,再根据()g x 在[)0,+∞是增函数,转化为[]1,2x ∈时,6x a x +≤-恒成立求解. 【详解】(1)当0a =时,()43f x x =+是偶函数,当0a ≠时,a a ≠-,而()()()420f a f a a --=≠,()f x 不可能是偶函数,所以当0a =时,()f x 是偶函数;(2)由()g x 是偶函数知()()g x a g x a +=+,()()66g x g x -=-,且x a +,60x -≥,因为()g x 在[)0,+∞是增函数,及()()6g x a g x +≤-,所以当[]1,2x ∈时,6x a x +≤-恒成立, 即当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,66x x a x -≤+≤-恒成立, 即当[]1,2x ∈时,662a x -≤≤-恒成立,所以62a -≤≤. 【点睛】方法点睛:函数奇偶性与单调性求参数问题,当涉及到偶函数时,要利用()()()f x f x f x -==转化为求解.24.(1)[)4,-+∞;(2)答案见解析;(3)1,8⎛⎫-∞ ⎪⎝⎭. 【分析】(1)由二次函数值域的求解方法可直接求得结果;(2)将不等式变为()()30x a x a -->,分别在0a =、0a <和0a >三种情况下讨论得到不等式的解集;(3)利用分离变量法得到142a x x <+-,令()12g x x x=+-,由对勾函数性质可求得()min g x ,由()min 4a g x <可求得结果.【详解】(1)当1a =时,()24f x x x =-,∴当2x =时,()min 484f x =-=-,则()f x 的值域为[)4,-+∞.(2)由()230f x a +>得:()()224330x ax a x a x a -+=-->,当0a =时,20x >,则不等式的解集为()(),00,-∞⋃+∞; 当0a <时,3a a <,则不等式的解集为()(),3,a a -∞+∞; 当0a >时,3a a >,则不等式的解集为()(),3,a a -∞+∞.(3)由()21f x x >-得:2421x ax x ->-,[)2,x ∈+∞142a x x∴<+- 记函数()12g x x x=+-,由对勾函数性质知:()g x 在[)2,+∞上单调递增, ()()1122222g x g ∴≥=+-=,142a ∴<,解得:18a <,a ∴的取值范围为1,8⎛⎫-∞ ⎪⎝⎭.【点睛】方法点睛:恒成立问题的常用处理方法是采用分离变量的方式,将问题转化为变量与函数最值之间的大小关系:①若()a f x ≤恒成立,则()min a f x ≤;②若()a f x ≥恒成立,则()max a f x ≥.25.(Ⅰ)[]2,11;(Ⅱ)[)6,+∞. 【分析】(Ⅰ)令2log 2t x =+,求出其值域;再结合二次函数的性质即可求解;(Ⅱ)设12x x <,可得()()2211f x kx f x kx -<-,令()()g x f x kx =-,()2,4x ∈, 问题转化为()g x 在()2,4上是减函数,利用二次函数的性质建立不等式,即可求解. 【详解】(Ⅰ)令2log 2t x =+,因为1,44x ⎛⎤∈⎥⎝⎦, 所以(]2log 2,2x ∈-,(]2log 20,4t x =+∈,()()22log 223y f x f t t t =+==-+,对称轴为:1t = ,所以()223f t t t =-+在区间()0,1上单调递减,在区间()1,4上单调递增, 所以()()min 11232f t f ==-+=,()()2max 4424311f t f ==-⨯+=, 所以函数()2log 2y f x =+,1,44x ⎛⎤∈ ⎥⎝⎦的值域为[]2,11, (Ⅱ)设12x x <,易知2()23=-+f x x x 在区间(2,4)上单调递增,所以()()12f x f x <,故()()1212f x f x k x x -<-可化为()()2122f x f x kx kx -<-,即()()2211f x kx f x kx -<-,令()()()223g x f x kx x k x =-=-++,()2,4x ∈, 所以()()21g x g x <,即()g x 在()2,4上是减函数,故242k +≥, 解得:6k ≥所以实数k 的取值范围是[)6,+∞【点睛】 关键点点睛:第二问的关键点是将已知条件转化为()()2211f x kx f x kx -<-,构造函数()()g x f x kx =-,可得()()21g x g x <,问题转化为()g x 在()2,4上是减函数,利用二次函数的对称轴建立不等式,即可求解.26.(1)(,3][1,)-∞-⋃-+∞(2)()1,-+∞【分析】(1)根据二次函数对称轴与区间关系,即可求解;(2)分离参数可得42(1)4k x ->--,求出44y x =--的最大值即可求解. 【详解】(1)由函数2()2(1)4f x x k x =+-+知, 函数()f x 图象的对称轴为1x k =-.因为函数()f x 在区间[]2,4上具有单调性,所以12k -≤或14k -≥,解得3k ≤-或1k ≥-,所以实数k 的取值范围为(,3][1,)-∞-⋃-+∞.(2) 因为()0f x >对任意的[1,2]x ∈恒成立, 所以可得42(1)k x x->--对任意的[1,2]x ∈恒成立,因为44()44y x x x =--=-+≤-=-,当且仅当2x =时等号成立, 即max 4y =-,所以只需2(1)4k ->-,解得1k -<,所以实数k 的取值范围为()1,-+∞.【点睛】关键点睛:不等式在某区间上恒成立求参数的取值范围,一般需要分离参数,转化为求最值问题,往往可以利用函数单调性或均值不等式求最值,即可求出答案,本题中利用了均值不等式,特别注意等号是否能取到,否则不能用均值不等式求最值.。

综合复习 第2章一元二次函数、方程和不等式(2)-【新教材】人教A版(2019)高中数学必修第一册

综合复习 第2章一元二次函数、方程和不等式(2)-【新教材】人教A版(2019)高中数学必修第一册

第二章综合题一1.已知集合A={-1,0,1,2,3},集合B={x∈Z|-2<x≤2},则A∩B=() A.{-1,0,1}B.{-1,0,1,2}C.{-1,1} D.{-1,1,2}2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是()A.A≤B B.A≥BC.A<B或A>B D.A>B3.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件4.已知命题p:实数的平方是非负数,则下列结论正确的是()A.命题p是真命题B.命题p是存在量词命题C.命题p是全称量词命题D.命题p既不是全称量词命题也不是存在量词命题5.不等式(x-1)x+2≥0的解集是()A.{x|x>1} B.{x|x≥1}C.{x|x≥1或x=-2} D.{x|x≤-2或x=1}6.下列选项中,使不等式x<1x<x2成立的x的取值范围是()A.{x|x<-1} B.{x|-1<x<0}C.{x|0<x<1} D.{x|x>1}7.已知x>1,则x2+2x-1的最小值是()A.23+2 B.23-2C.2 3 D.28.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b <0的解集是A∩B,那么a+b等于()A.-3 B.1C.-1 D.39.(多选)如果a,b,c满足c<b<a,且ac<0,那么下列不等式中一定成立的是()A.ab>ac B.c(b-a)>0C.cb2<ab2D.ac(a-c)<010.(多选)设a>0,b>0,则下列不等式中一定成立的是()A.a+b+1ab≥2 2 B.2aba+b≥abC.a2+b2ab≥a+b D.(a+b)⎝⎛⎭⎫1a+1b≥411.(多选)已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是∅高一年级数学学科寒假作业使用日期:寒假编辑:校对:审核:D .不等式ax 2+bx +3>0的解集可以是{x |-1<x <3}12.(多选)已知关于x 的方程x 2+(m -3)x +m =0,下列结论正确的是( ) A .方程x 2+(m -3)x +m =0有实数根的充要条件是m ∈{m |m <1或m >9} B .方程x 2+(m -3)x +m =0有一正一负根的充要条件是m ∈{m |m <0} C .方程x 2+(m -3)x +m =0有两正实数根的充要条件是m ∈{m |0<m ≤1} D .方程x 2+(m -3)x +m =0无实数根的必要条件是m ∈{m |m >1}13.命题“∀k >0,方程x 2+x -k =0有实根”的否定为________________.14.(一题两空)已知12<a <60,15<b <36,则a -b 的取值范围为________,ab 的取值范围为________.15.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________.16.若命题“∃x ∈R ,x 2+2mx +m +2<0”为假命题,则m 的取值范围是________. 17.(本小题满分10分)已知函数f (x )=x 2+2x +c 的图象经过原点. (1)求f (x )的解析式; (2)解不等式f (x )<0.18.(本小题满分12分)当p ,q 都为正数且p +q =1时,试比较代数式(px +qy )2与px 2+qy 2的大小.19.(本小题满分12分)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪2x x -2<1,集合B ={x |x 2-(2m +1)x +m 2+m <0}.(1)求集合A ,B ;(2)若B ⊆A ,求实数m 的取值范围.20.(本小题满分12分)解下列不等式(组):(1)⎩⎪⎨⎪⎧x (x +2)>0,x 2<1;(2)6-2x ≤x 2-3x <18.21.(本小题满分12分)已知a >0,b >0且1a +2b =1.(1)求ab 的最小值;(2)求a +b 的最小值.22.(本小题满分12分)某镇计划建造一个室内面积为800 m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?第二章综合题一答案1.解析:选B ∵集合A ={-1,0,1,2,3}, 集合B ={x ∈Z|-2<x ≤2}={-1,0,1,2},∴A ∩B ={-1,0,1,2},故选B.2.解析:选B ∵A -B =a 2+3ab -(4ab -b 2)=⎝⎛⎭⎫a -b 22+34b 2≥0,∴A ≥B . 3.解析:选C 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.4解析:选C 命题p :实数的平方是非负数,是全称量词命题,且是真命题,故綈p 是假命题.5解析:选C 当x =-2时,0≥0成立;当x >-2时,原不等式变为x -1≥0,即x ≥1.∴不等式的解集为{x |x ≥1或x =-2}.6解析:选A 法一:取x =-2,知符合x <1x <x 2,即-2是此不等式的解集中的一个元素,所以可排除选项B 、C 、D.法二:由题知,不等式等价于⎩⎨⎧x -1x <0,1x -x 2<0,解得x <-1,选A.7解析:选A ∵x >1,∴x -1>0.∴x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥23+2⎝⎛⎭⎫当且仅当x -1=3x -1,即x =3+1时等号成立.8解析:选A 由题意:A ={x |-1<x <3},B ={x |-3<x <2},则A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,故a +b =-3.9解析:选ABD 由c <b <a 且ac <0,知a >0,c <0,而b 的取值不确定,当b =0时,C 不成立.根据不等式的性质可知A 、B 、D 均正确.10解析:选ACD 因为a >0,b >0,所以a +b +1ab ≥2ab +1ab ≥22,当且仅当a =b 且2ab =1ab即a =b =22时取等号,故A 一定成立.因为a +b ≥2ab >0,所以2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时取等号,所以2ab a +b≥ab 不一定成立.故B 不成立.因为a 2+b 2a +b =(a +b )2-2ab a +b =a +b -2ab a +b ≥2ab -ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b≥ab ,所以a 2+b 2ab≥a +b ,故C 一定成立.因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥4,当且仅当a =b 时取等号,故D 一定成立.故选A 、C 、D. 11.解析:选ABD 在A 中,依题意得a =0,得bx +3>0,当x >3时,b >-3x >-1.即当b >-1时,x >3可使bx +3>0成立,故A 正确;在B 中,取a =1,b =2,得x 2+2x +3=(x +1)2+2>0,解集为R ,故B 正确;在C 中,当x =0时,ax 2+bx +3=3>0,知其解集不为∅,当a <0,Δ>0,知其解集也不为∅,故C 错误;在D 中,依题意得a <0,且⎩⎨⎧-1+3=-ba ,-1×3=3a ,解得⎩⎪⎨⎪⎧a =-1,b =2.符合题意,故D 正确.12.解析:选BCD 在A 中,由Δ=(m -3)2-4m ≥0得m ≤1或m ≥9,故A 错误;在B 中,当x =0时,函数y =x 2+(m -3)x +m 的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是m ∈{m |m <0},故B 正确;在C 中,由题意得⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,3-m >0,m >0,解得0<m ≤1,故C 正确;在D 中,由Δ=(m -3)2-4m <0得1<m <9,又{m |1<m <9}⊆{m |m >1},故D 正确.13.答案:∃k >0,方程x 2+x -k =0没有实根 14.解析:由15<b <36得-36<-b <-15. 又因为12<a <60,所以-24<a -b <45. 由15<b <36得136<1b <115.又因为12<a <60,所以13<ab <4.答案:-24<a -b <45 13<ab<415.解析:由a +b =1,知13a +2+13b +2=3b +2+3a +2(3a +2)(3b +2)=79ab +10,又ab ≤⎝⎛⎭⎫a +b 22=14⎝⎛⎭⎫当且仅当a =b =12时等号成立.∴9ab +10≤494,∴79ab +10≥47.答案:4716.解析:命题“∃x ∈R ,x 2+2mx +m +2<0”为假命题, 则命题“∀x ∈R ,使得x 2+2mx +m +2≥0”是真命题. 故4m 2-4(m +2)≤0,解得-1≤m ≤2. 答案:{m |-1≤m ≤2}17. 解:(1)∵f (x )=x 2+2x +c 的图象经过原点, ∴f (0)=0,即c =0. 从而f (x )=x 2+2x .(2)f (x )<0即x 2+2x <0,x (x +2)<0,解得-2<x <0,即不等式f (x )<0的解集为{x |-2<x <0}. 18.解:(px +qy )2-(px 2+qy 2)=p (p -1)x 2+q (q -1)y 2+2pqxy . 因为p +q =1,所以p -1=-q ,q -1=-p ,所以(px +qy )2-(px 2+qy 2)=-pq (x 2+y 2-2xy )=-pq (x -y )2.因为p ,q 都为正数,所以-pq (x -y )2≤0,因此(px +qy )2≤px 2+qy 2,当且仅当x =y 时等号成立.19.解:(1)2xx -2<1⇔x +2x -2<0⇔-2<x <2,所以A ={x |-2<x <2}.x 2-(2m +1)x +m 2+m <0⇔(x -m )[x -(m +1)]<0⇔m <x <m +1,所以B ={x |m <x <m +1}.(2)B ⊆A ⇒⎩⎪⎨⎪⎧m ≥-2,m +1≤2⇒-2≤m ≤1.故实数m 的取值范围为{m |-2≤m ≤1}.20.解:(1)原不等式组可化为⎩⎪⎨⎪⎧x <-2或x >0,-1<x <1,即0<x <1,所以原不等式组的解集为{x |0<x <1}.(2)原不等式等价于⎩⎪⎨⎪⎧6-2x ≤x 2-3x ,x 2-3x <18,即⎩⎪⎨⎪⎧x 2-x -6≥0,x 2-3x -18<0,因式分解,得⎩⎪⎨⎪⎧(x -3)(x +2)≥0,(x -6)(x +3)<0,所以⎩⎪⎨⎪⎧x ≤-2或x ≥3,-3<x <6, 所以-3<x ≤-2或3≤x <6.所以不等式的解集为{x |-3<x ≤-2或3≤x <6}.21.解:(1)因为a >0,b >0且1a +2b =1,所以1a +2b≥21a ·2b=22ab,则22ab≤1, 即ab ≥8,当且仅当⎩⎨⎧1a +2b=1,1a =2b,即⎩⎪⎨⎪⎧a =2,b =4时取等号,所以ab 的最小值是8. (2)因为a >0,b >0且1a +2b =1,所以a +b =⎝⎛⎭⎫1a +2b (a +b ) =3+b a +2ab≥3+2b a ·2ab=3+22, 当且仅当⎩⎨⎧1a +2b =1,b a =2a b,即⎩⎨⎧a =1+2,b =2+2时取等号,所以a +b 的最小值是3+2 2.22.解:设矩形温室的左侧边长为a m ,后侧边长为b m ,蔬菜的种植面积为S m 2,则ab =800. 所以S =(a -4)(b -2)=ab -4b -2a +8=808-2(a +2b )≤808-42ab =648, 当且仅当a =2b ,即a =40,b =20时等号成立,则S 最大值=648.故当矩形温室的左侧边长为40 m ,后侧边长为20 m 时,蔬菜的种植面积最大,最大种植面积为648 m 2.。

广州市必修一第二单元《函数》测试题(包含答案解析)

广州市必修一第二单元《函数》测试题(包含答案解析)

一、选择题1.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11282.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤< B .32a --≤≤ C .2a ≤- D .0a <3.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C.1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠) 4.以下说法正确的有( ) (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个5.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >6.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为( ) A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-7.函数sin y x x =的图象可能是( )A .B .C .D .8.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( )A .[]1,4B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦9.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .110.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞B .[]1,2C .()1,2D .(],1-∞ 11.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,但与b 有关D .与a 无关,且与b 无关12.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-二、填空题13.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 14.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.15.已知(2)1(1)()(1)xa x x f x a x -+<⎧=⎨≥⎩满足对任意121212()(),0f x f x x x x x -≠>-都有成立,那么a 的取值范围是_______16.函数2()23||f x x x =-的单调递减区间是________.17.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______.18.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.19.设函数()y f x =是定义在R 上的偶函数,2()()g x f x x =-,若函数()y g x =在区间[0,)+∞上是严格增函数,则不等式2(1)(1)2f x f x x +->+的解集为___________.20.对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()12423xx f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是______三、解答题21.(1)已知函数15()xf x +-=,求()f x 的定义域; (2)已知函数1()2f x x x=-+,依据函数单调性的定义证明()f x 在(0,)+∞上单调递减,并求该函数在[1,3]上的值域.22.已知函数2()21,[1,3]f x ax bx x =++∈(,a b ∈R 且,a b 为常数) (1)若1a =,求()f x 的最大值;(2)若0a >,1b =-,且()f x 的最小值为4-,求a 的值. 23.已知11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭.(1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明. 24.已知函数1()1f x x =-,()1g x x x =+-.(1)判断当()1,x ∈+∞时函数()f x 的单调性,并用定义证明; (2)用分段函数的形式表示()g x 函数,并画出函数()g x 的图像. 25.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值. 26.已知函数()()90f x x x x=+≠. (1)当()3,x ∈+∞时,判断并证明()f x 的单调性;(2)求不等式()()2330f xf x +≤的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n n f f f f f --⎛⎫⎛⎫⎛⎫⎛⎫======⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12231011111111232232232232n n n n n f f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭. ∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D 【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 2.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.3.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.4.B解析:B 【分析】 根据AB 为点集,可判断(1)的正误;根据奇函数的性质,可判断(2)的正误;分解反比例函数的单调性,可判断(3)的正误;根据映射的概念,可判断(4)的正误. 【详解】 (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}(3,1)AB =,所以(1)错误;(2)若()f x 是定义在R 上的奇函数,则()00f =,所以(2)正确; (3)函数1y x=的单调区间是(),0-∞和()0,∞+,所以(3)错误; (4)设A 中元素为(,)x y ,由题意可知1031x y -=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以A 中元素是()1,2,所以(4)正确;所以正确命题的个数是2个, 故选:B. 【点睛】关键点点睛:该题考查的是有关命题的真假判断,在解题的过程中,关键点是要熟练掌握基础知识,此类题目综合性较强,属于中档题目.5.A解析:A 【分析】利用抽象函数的定义域列不等式判断A ;利用特例法判断BCD. 【详解】因为函数()f x 的定义域为(1,4),由21412x x <<⇒<<或21x -<<-,所以函数()2f x 的定义域为(2,1)(1,2)--⋃,A 正确;1y x =+和1,11,1x x y x x +≥-⎧==⎨--<-⎩,对应法则不同,不表示同一函数,B 错; 偶函数()1f x =在(0,)+∞和(,0)-∞上不具有相反的单调性,C 错;0a b 时,不等式220ax bx ++>恒成立,但280b a -<且0a >不成立,D 错;故选:A. 【点睛】方法点睛:若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出,若已知函数()()f g x 的定义域为[],a b ,则()f x 的定义域为()g x 在[],x a b ∈时的值域.6.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+, ()11,012x∴-∈-+,1111,21222x ⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.7.A解析:A 【分析】先判断函数奇偶性,排除CD ,再结合函数在()0,π的正负选出正确答案 【详解】设()sin y f x x x ==,求得()sin f x x x -=,故函数为偶函数,排除CD ,由三角函数图像特征可知在()0,π时sin 0x >,故在()0,π时()0f x >,故A 正确 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.8.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦. 故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.9.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.10.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =.令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.11.B解析:B 【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2ax =-为对称轴的抛物线, ①当22a -> 或22a-<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调, 此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当022a≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a --, 上递增,在[2]2a -, 上递减, 且22f f -<()() , 此时2322424a a M m f f a -=---=--()(),故M m - 的值与a 有关,与b 无关③当202a-≤-≤,即04a ≤≤时, 函数f x ()在区间[2]2a -,上递减,在[2]2a --,上递增, 且22f f <-()()此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.12.B解析:B【分析】由已知得函数f (x )图象关于x=1对称且在(-∞,1]上单调递减,在(1,+∞)上单调递增,从而可判断出大小关系.【详解】解:∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0,∴f (x )在(-∞,1]上单调递减,∵f (x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增,∴f (-1)=f (3)>f (2)>f (1)即f (-1)>f (2)>f (1)故选B .【点睛】本题考查函数的对称性及单调性的应用,解题的关键是函数性质的灵活应用.二、填空题13.【分析】根据函数的解析式分和两种情况讨论利用一次二次函数的性质即可求解【详解】由已知函数在上单调递增可得当时函数在上单调递减不满足题意;当时则满足解得综上所述实数的取值范围是故答案为:【点睛】本题主 解析:25⎡⎫+∞⎪⎢⎣⎭, 【分析】根据函数的解析式,分0k =和0k ≠两种情况讨论,利用一次、二次函数的性质,即可求解.【详解】由已知函数()()2325f x kx k x =+--在[)1+∞,上单调递增可得, 当0k =时,函数()25f x x =--在[)1+∞,上单调递减,不满足题意; 当0k ≠时,则满足03212k k k>⎧⎪-⎨-≤⎪⎩,解得25k ≥,综上所述,实数k 的取值范围是25⎡⎫+∞⎪⎢⎣⎭,. 故答案为:25⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题主要考查了函数单调性的应用,其中解答中熟记一次函数、二次函数的图象与性质是解答的关键,着重考查了分类讨论思想,以及推理与计算能力,属于基础题. 14.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围.【详解】 函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +, 由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥;若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去;综上得实数a 的取值范围是[)3,+∞,故答案为:[)3,+∞.【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题. 15.【解析】由对任意成立可知函数在定义域上为增函数所以:解得答案为: 解析:3[,2)2【解析】 由对任意()()121212,0f x f x x x x x -≠>-都有成立可知,函数()y f x =在定义域上为增函数,所以:20121aaa a->⎧⎪>⎨⎪≥-+⎩,解得322a≤<答案为:3,22⎡⎫⎪⎢⎣⎭.16.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x的符号去绝对值,得到()f x的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间【详解】函数22223,0()23||23,0x x xf x x xx x x⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x的单调递减区间为33(,],[0,]44-∞-故答案为:33(,],[0,]44-∞-【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题17.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-,当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-,所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-,又因为(2)2()f x f x +=,可知当[4,2)x ∈--时,()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t ≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤,解得(0,1)t ∈;当0t <时,可整理为220t t +-≥,解得(,2]t ∈-∞-.故答案为(,2](0,1]-∞-⋃.【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.18.2【分析】由函数是幂函数求得或结合幂函数的性质即可求解【详解】由题意函数是幂函数可得即解得或当时函数此时在上单调递增符合题意;当时函数此时在上单调递减不符合题意故答案为:【点睛】本题主要考查了幂函数 解析:2【分析】由函数()2(1)mf x m m x =--是幂函数,求得2m =或1m =-,结合幂函数的性质,即可求解.【详解】由题意,函数()2(1)mf x m m x =--是幂函数, 可得211m m --=,即220m m --=,解得2m =或1m =-,当2m =时,函数()2f x x =,此时()f x 在(0,)+∞上单调递增,符合题意; 当1m =-时,函数()1f x x -=,此时()f x 在(0,)+∞上单调递减,不符合题意, 故答案为:2.【点睛】本题主要考查了幂函数的定义及图像与性质的应用,其中解答中熟记幂函数的定义,结合幂函数的图象与性质进行判定是解答的关键,着重考查运算能力.19.【分析】根据题意分析可得为偶函数进而分析可得结合函数的奇偶性与单调性分析可得解可得的取值范围即可得答案【详解】解:根据题意且是定义在上的偶函数则则函数为偶函数又由为偶函数且在区间上是严格增函数则解可 解析:(,2)(0,)-∞-+∞【分析】根据题意,分析可得()g x 为偶函数,进而分析可得()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,结合函数的奇偶性与单调性分析可得|1|1x +>,解可得x 的取值范围,即可得答案.【详解】解:根据题意,2()()g x f x x =-,且()f x 是定义在R 上的偶函数,则22()()()()()g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,又由()g x 为偶函数且在区间[0,)+∞上是严格增函数,则|1|1x +>,解可得:2x <-或0x >,即x 的取值范围为:(,2)(0,)-∞-+∞; 故答案为:(,2)(0,)-∞-+∞.【点睛】关键点睛:解题关键在于,把题目通过转化化归思想,转化为:()(1)1f x f +-()222(1)(1)11x x f x x f >+⇒+-+>-()(1)1g x g ⇒+>,进而分析,难度属于中档题20.【解析】∵局部奇函数∴存在实数满足即令则即在上有解再令则在上有解函数的对称轴为分类讨论:①当时∴解得;②当时解得综合①②可知点睛:新定义主要是指即时定义新概念新公式新定理新法则新运算五种然后根据此新解析:1m ≤【解析】∵()f x “局部奇函数”,∴存在实数x 满足()()f x f x -=-,即2242234223x x x x m m m m ---⨯+-=-+⨯-+,令2(0)x t t =>, 则222112()260t m t m t t+-++-=, 即2211()2()280t m t m t t +-++-=在(0,)t ∈+∞上有解, 再令1(2)h t h t=+≥,则22()2280g h h mh m =-+-=在[2,)h ∈+∞上有解, 函数的对称轴为h m =,分类讨论:①当2m ≥时,()()g h g m ≥,∴222()2280g m m m m =-+-≤,解得2m ≤≤ ②当2m <时,()()2g h g ≥,2(2)44280g m m ∴=-+-≤,解得12m -≤<. 综合①②,可知1m ≤点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、解答题21.(1)(,1)(1,5]-∞;(2)单调性证明见解析,值域为17[,1]3--. 【分析】(1)利用偶次根式和分式有意义的条件,列出不等式组,求得函数的定义域;(2)依据减函数的定义,利用取值、作差、判断符号的过程,证得函数的单调减,在区间端点取得最大最小值,得到函数在[1,3]上的值域.【详解】(1)由5010x x -≥⎧⎨-≠⎩.得5x ≤且1x ≠,故()f x 的定义域为()(]115∞-,,∪; (2)设120x x <<, 则()2112121221121212111()2()2()()(2)x x f x f x x x x x x x x x x x x x --=--+-=--+=-+, 因为120x x <<,所以和211210,0x x x x ->>.所以21121()(2)0x x x x -+>,从而()12()0f x f x ->, 故()f x 在()0,∞+上单调递减,因为()f x 在[1,3]上单调递减,且()11f -=,()1733f -=, 所以该函数在[1,3]上的值域为17[,1]3-- . 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下:(1)利用分式和偶次根式有意义的条件,列出不等式组,求得结果,得到函数的定义域; (2)利用函数在某个区间上单调减的定义,证得函数在给定区间上是减函数,求得函数在区间端点处取得最值,得到函数的值域.22.(1)答案见解析;(2)19. 【分析】(1)讨论2b -<和2b -≥两种情况根据二次函数性质求解;(2)讨论11a ≤,113a<<和13a ≥三种情况结合二次函数的单调性求解. 【详解】(1)1a =时,2()21f x x bx =++,对称轴为x b =-,二次函数()f x 的图象开口向上,当2b -<,即2b >-时,max ()(3)106f x f b ==+;当2b -≥,即2b ≤-时,max ()(1)22f x f b ==+.(2)2()21f x ax x =-+,对称轴为1x a=,二次函数()f x 的图象开口向上, 当11a≤,即1a ≥时,()f x 在[]1,3单调递增,()()min 114f x f a ==-=-,解得3a =-,不符合; 当113a <<,即113a <<时,2min 112()14f x f a a a a ⎛⎫⎛⎫==⋅-+=- ⎪ ⎪⎝⎭⎝⎭,解得15a =,不符合; 当13a ≥,即103a <≤时,()f x 在[]1,3单调递减,()()min 3954f x f a ==-=-,解得19a =,符合, 综上,19a =. 【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路;(1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b +的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.23.(1)()1(2)1f x x x =≥-;(2)()f x 在[)2,+∞上递减,证明见解析. 【分析】(1)令1(2)t t x =≥,则1x t=,求得()1(2)1f t t t =≥-,从而可得答案. (2)()f x 在[)2,+∞上递减,证任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,可证明()()120f x f x -<,从而可得结论.【详解】(1)令1(2)t t x =≥,则1x t = 因为11012x f x x x ⎛⎫⎛⎫=<≤ ⎪ ⎪-⎝⎭⎝⎭ 所以()111(2)11t tf t t t ==≥--, 所以()1(2)1f x x x =≥-; (2)()f x 在[)2,+∞上递减,证明如下:任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,因为()()12121111f x f x x x -=--- ()()()()21121111x x x x ---=-- ()()2112011x x x x -=<-- 所以()()12f x f x <,则()f x 在[)2,+∞上递减.【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.24.(1)函数()f x 在()1,+∞为单调递减,证明见解析;(2)21,0()1,0x x g x x -≥⎧=⎨-<⎩,图象答案见解析.【分析】(1)利用函数单调性定义:任意()12121,()f x x f x x <><成立,即可判定()f x 在()1,+∞是单调递减;(2)讨论0,0x x ><,去掉x 的绝对值即可得到函数()g x 的解析式.【详解】解:(1)函数()f x 在()1,+∞为单调递减.证明如下:任取121x x <<,则()()()()21121212111111x x f x f x x x x x --=-=----, ∵121x x <<,110x ,210x ,210x x ->.()()120f x f x ->即()()12f x f x >,所以()f x 在()1,+∞上单调递减.(2)()1g x x x =+-所以当0x <时,()111g x x x x x =+-=--=-;所以当0x ≥时,()1121g x x x x x x =+-=+-=-;21,0()1,0x x g x x -≥⎧∴=⎨-<⎩. 函数()y g x =图形如下:【点睛】确定函数单调性的四种方法:(1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.25.(1)()23f x x =+(2)2λ=-【分析】利用待定系数法求出()22f x x a =++,(1)根据所选条件,都能求出1a =,可得()23f x x =+;(2)根据对称轴与区间中点值的大小分两种情况讨论求出最大值,结合已知最大值可求得λ的值.【详解】设()f x kx b =+(0)k ≠,则(1)2k x b x a -+=+,即2kx k b x a -+=+,所以2k =,2b a ,所以()22f x x a =++,若选①,(1)由()5f a =得225a a ++=,得1a =,所以()23f x x =+.(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-, 当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选②, (1)由142a f ⎛⎫=⎪⎝⎭得14222a a =⨯++,解得1a =,所以()23f x x =+; (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选③,(1)由()()41226f f -=得4(22)2(42)6a a ++-++=,解得1a =,所以()23f x x =+;(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 【点睛】关键点点睛:第二问,讨论对称轴与区间中点值的大小求最大值是解题关键. 26.(1)单调递增,证明见解析;(2){}1-. 【分析】(1)根据函数单调性定义,判断当123x x <<时,()()120,0?f x f x -><即可; (2)法一:根据函数()()90f x x x x=+≠得到()()233f x f x +解析式,解关于x 的二次型不等式即可.法二:根据函数为奇函数,和定义域内的单调性,将()()2330f xf x +≤转化为解()()233f x f x ≤-,分0x >,1x =-,1x <-,10x -<<讨论使得()()233f x f x ≤-成立x 时的范围为其解集. 【详解】解:(1)设123x x <<, 则()()()()121212121212999x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎝⎭+⎭ 因为12120,90x x x x -<->, 所以()()120f x f x -<, 所以()f x 在(3,)+∞上单调递增. (2)法一:原不等式可化为2233330x x x x+++, 即21120x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,所以121x x -+, 当0x >时,12x x+,不合题意,舍去; 当0x <时,只需解12x x-+,可化为2(1)0x +,所以1x =-. 综上所述,不等式的解集为{}1-.法二:由(1)的解答过程知()f x 在(0,3)上单调递减,在()3,+∞上单调递增, 又()f x 为奇函数,()()2330f x f x +≤,所以()()()2333f xf x f x ≤-=-,当0x >时,2(3)0,(3)0f x f x >-<,与上式矛盾,故舍去; 当1x =-时,上式成立;当1x <-时,2333x x >->,则()()233f x f x >-,与上式矛盾,故舍去;当10x -<<时,20333x x <<-<,则()()233f x f x >-,与上式矛盾,故舍去;综上所述,不等式的解集为{}1-. 【点睛】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1第二章函数学业水平测试复习(二)一、选择题(本大题共12小题,每小题3分,共36分,) 1.下列各组表示同一函数的是( ) A .2y x =与2()y x = B . 2lg y x =与2lg y x =C .1()1()y x x R y x x N =-∈=-∈与D .vu x y 1111+=+=与 2.下列函数中是奇函数的是( )A.2()f x x =B.3()f x x =-C. ()=f x xD.()+1f x x = 3.设函数(1)23f x x +=+,则(2)f 的值为 A. 1 B. 3 C.5 D. 6 4.函数()34log 21-=x y 的定义域为 ( )A.(43,∞-) B.(1,∞-] C.(43,1] D.(43,1) 5.设集合{}|1A x y x ==-,{}|lg ,1100B y y x x ==≤≤则A B =( )A 、[]1,100B 、[]1,2C 、[]0,2D 、[)0,106.设函数121()3(0)2(),(0)xx f x x x ⎧-≤⎪=⎨⎪>⎩已知()1f a >,则实数a 的取值范围是( )A.(2,1)- B.(,2)(1,)-∞-+∞ C.(1,)+∞D.(,1)(0,)-∞-+∞7.函数f(x)=12x x-的零点所在的区间是( ) A .(0,21) B .(21,1) C .(1,23) D .(23,2)8.已知函数2()45f x x mx =-+在区间[2,)-+∞上是增函数,则m 的范围是 A. 16m ≤- B. 16m =- C. 16m ≥- D. 16m <-9.已知()y f x =是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则在R 上()f x 的表达式为A .(2)x x -- B.(||2)x x - C.||(2)x x - D. ||(||2)x x -10.函数)0(322≤++=x x x y 的值域为 ( )A RB ),3[+∞C ),0[+∞D ),2[+∞11.如图,可表示函数()y f x =的函数图像的是12.已知函数3log ,(0)()1,(0)2x x x f x x >⎧⎪=⎨⎛⎫≤ ⎪⎪⎝⎭⎩,则1()27f f ⎛⎫ ⎪⎝⎭=( ) A 、 18- B 、18 C 、 8- D 、8二、填空题(本大题共4小题,每小题3分,共12分,把答案填在题中的横线上) 13.若函数()()212+-+=x k kx x f 是偶函数,则()x f 的递减区间是 .14.若2(1)2f x x x +=-,则()f x =______ 15.函数1()ln x f x x+=的定义域为 (答案用区间表示). 16.函数⎩⎨⎧≥<+=-2,22),2()(x x x f x f x,则)1(-f 的值为三、解答题(本大题共5小题,共52分,解答应写出文字说明或演算步骤)17.(12分)若二次函数2()(0)f x ax bx c a =++≠满足(1)()2f x f x x +-=,且(0)1f =.(1)求()f x 的解析式;(2)若在区间[1,1]-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.18(1)若)(x f 的定义域为R ,求实数a 的取值范围. (2)若)(x f 的定义域为[-2,1],求实数a 的值19: (1)写出此函数的定义域和值域;(2)证明函数在()0,+∞为单调递减函数; (3)试判断并证明函数(3)()y x f x =-的奇偶性.20 是定义域为)(1,1-上的奇函数,且 (1)求()f x 的解析式,(2)用定义证明:)(x f 在)(1,1-上是增函数,(3)若实数t 满足0)1()12(<-+-t f t f ,求实数t 的范围.21.(12分)某车间生产一种仪器的固定成本是10000元,每生产一台该仪器需要增加投入100元,已知总收入满足函数:⎩⎨⎧>≤≤-=200,400002000,400)(2x x x x x H ,其中x 是仪器的月产量.(1)将利润表示为月产量的函数(用)(x f 表示);(2)当月产量为何值时,车间所获利润最大?最大利润是多少元?(总收入=总成本+利润);必修1第二章函数学业水平测试复习答案(二)1 、D2 、B3 、C 、4 C 、5、B 6 、B 7 、B 8 、A 9、B 10 、D D12 、D 13 、]0,(-∞ 14 、243x x -+ 15、(0,1)(1,)+∞ 16 17、(1)有题可知:(0)1f =,解得:1c =由(1)()2f x f x x +-=.可知:22[(1)(1)1](1)2a x b x ax bx x ++++-++= 化简得:22ax a b x ++=所以:1,1a b ==-.∴2()1f x x x =-+(2)(2)原不等式()2f x x m >+可化简为212x x x m -+>+,即:2min (31)m x x <-+,然后令2()31g x x x =-+求其在工间[-1,1]上的最小值即可.(2)不等式()2f x x m >+可化简为212x x x m -+>+ 即:2310x x m -+-> 设2()31g x x x m =-+-,则其对称轴为,∴()g x 在[-1,1]上是单调递减函数. 因此只需()g x 的最小值大于零即可,∴(1)0g > 代入得:1310m -+-> 解得:1m < 所以实数m 的取值范围是:1m <18【答案】(1(2)a 的值为a =2. (1))(x f 的定义域为R ,即22(1)3(1)60a x a x -+-+≥恒成立,讨论210,a -=与210a -≠,按照一次函数与二次函数恒大于等于0需满足的条件求解;(2))(x f 的定义域为[-2,1]等价于不等式06)1(3)1(22≥+-+-x a x a 的解集为[-2,1],利用一元二次不等式的解集与一元二次方程的根的关系解得a =2. (1)①若1,012±==-a a 即,1)当a =1R ,适合;2)当a =-1R ,不合;-----2分②若6)1(3)1()(,01222+-+-=≠-x a x a x g a 为二次函数,)(x f 定义域为R ,R x x g ∈≥∴对0)(恒成立,②得a(2)命题等价于不等式06)1(3)1(22≥+-+-x a x a 的解集为[-2,1],显然012≠-a20112-=<-∴x a 且、12=x 是方程06)1(3)1(22=+-+-x a x a 的两根,解得a 的值为a =2. 19(1)显然定义域为{}|0x x ≠.(1){}|0x x ≠(2)见解析(3)奇函数∴值域为{}|1y y ≠ (2)设120x x <<, 则120x x ≤< ∴120x x >,120x x -<,1212)x x x -, ∴21()()0f x fx -<, ∴函数在()0,+∞为单调递减函数. (3)显然函数定义域关于原点对称,∴此函数为奇函数20、(1;(2)见解析;(3) 0<t <试题分析:(1)先根据f(x)为奇函数,知f(0)=0,可得b=0,求出a 值.从而确定f(x)的解析式.(2)用单调性定义证明函数单调性的步骤有三:一是取值.二是作差变形,判断符号;三是得出结论.(3)解此类抽象不等式关键是0)1()12(<-+-t f t f ∴)12(-t f <-)1(-t f ,再根据奇函数转化为)12(-t f <)1(t f -,再利用单调性脱掉法则符号f,从而转化为自变量之间的大小关系即可解决.(1)是定义域为)(1,1-上的奇函数 ∴0)0(=f ∴0b =又(2)任取12,(1,1)x x ∈-且12x x <6 ∵1211x x -<<< ∴120x x -< 1210x x -> 2110x +> 2210x +>∴12()()0f x f x -< 即12()()f x f x <∴ )(x f 在)(1,1-上是增函数 (3)0)1()12(<-+-t f t f ∴)12(-t f <-)1(-t f上的奇函数∴)12(-t f <)1(t f -2111211111t t t t -<-⎧⎪-<-<⎨⎪-<-<⎩—— ∴0<t21、(1)设月产量为x 台,则总成本为x t 10010000+=,又t x H x f -=)()(∴ 利润⎩⎨⎧>+-≤≤-+-=200,300001002000,10000300)(2x x x x x x f (6)(2)当2000≤≤x 时,12500)150()(2+--=x x f ∴ 12500)150()(max ==f x f当200>x 时,30000100)(+-=x x f 在()+∞,200上是减函数 ∴1250010000)200()(max <=<f x f∴当月产量为150台时,该车间所获利润最大,最大利润是12500元. ……。

相关文档
最新文档