鲁教版(五四制)七年级上册数学课件1.3探索三角形全等的条件(2)

合集下载

初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(2)

初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(2)

章节测试题1.【答题】如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是()A. AC=BDB. OD=OCC. ∠A=∠CD. OA=OB【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:A、添加AC=BD不能判定△OAB≌△COD,故此选项错误;B、添加OD=OC不能判定△OAB≌△COD,故此选项错误;C、添加∠A=∠C,可利用ASA判定△OAB≌△COD,故此选项正确;D、添加AO=BO,不能判定△OAB≌△COD,故此选项错误;选C.2.【答题】如图,下列条件中,不能证明△ABD≌△ACD的是()A. BD=DC,AB=ACB. ∠ADB=∠ADC,∠BAD=∠CADC. ∠B=∠C,BD=DCD. ∠B=∠C,∠BAD=∠CAD【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:A、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;D、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;选C.3.【答题】在△ABC和△A1B1C1中,已知∠A=∠A1,AB=A1B1,下列添加的条件中,不能判定△ABC≌△A1B1C1的是()A. BC=B1C1B. ∠C=∠C1C. AC=A1C1D. ∠B=∠B1【答案】A【分析】根据全等三角形的判定定理解答即可.【解答】解:A、不符合全等三角形的判定定理,即不能推出≌,故本选项正确;B、符合全等三角形的判定定理AAS,即能推出≌,故本选项错误;C、符合全等三角形的判定定理SAS,即能推出≌,故本选项错误;D、符合全等三角形的判定定理ASA,即能推出≌,故本选项错误;选A.4.【答题】如图,已知∠ADB=∠CBD,下列所给条件不能证明△ABD≌△CDB的是()A. ∠A=∠CB. AD=BCC. ∠ABD=∠CDBD. AB=CD【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】A.∵∠A=∠C,∠ADB=∠CBD,BD=BD,∴△ABD≌△CDB(AAS),故正确;B.∵AD=BC,∠ADB=∠CBD,BD=DB,∴△ABD≌△CDB(SAS),故正确;C.∵∠ABD=∠CDB,∠ADB=∠CBD,BD=DB,∴△ABD≌△CDB(ASA),故正确;D.∵AB=CD,BD=DB,∠ADB=∠CBD,不符合全等三角形的判定方法,故不正确;选D.5.【答题】在下列条件中,不能说明△ABC≌△A′B′C′的是()A. ∠C=∠C′,AC=A′C′,BC=B′C′B. ∠B=∠B′,∠C=∠C′,AB=A′B′C. ∠A=∠A′,AB=A′B′,BC=B′C′D. AB=A′B′,BC=B′C′,AC=A′C【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】A、∠C=∠C′,AC=A′C ′,BC=B′C′,根据SAS可以判定△ABC≌△A′B′C′;B、∠B=∠B′,∠C=∠C′,AB=A′B′,根据AAS可以判定△ABC≌△A′B′C′;C、∠A=∠A′,AB=A′B′,BC=B′C′,SSA不能判定两个三角形全等,故C选项符合题意;D、AB=A′B′,BC=B′C′,AC=A′C,根据SSS可以判定△ABC≌△A′B′C′,选C.6.【答题】如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. AB=ACB. DB=DCC. ∠ADB=∠ADCD. ∠B=∠C【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证:A、∵AB=AC,∴∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴∴△ABD≌△ACD(AAS);故此选项正确.选B.方法总结:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.7.【答题】在下列各组条件中,不能说明的是()A.B.C.D.【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;选B.方法总结:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【答题】如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,添加下列条件后,仍不能判断△ABC≌△DEF的是()A. BC=EFB. ∠A=∠EDFC. AB∥DED. ∠BCA=∠F【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】解:∵AD=CF,∴AD+CD=CF+DC,∴AC=DF,A、添加BC=EF可利用SSS定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠A=∠EDF可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;C、添加AB∥DE可证出∠A=∠EDC,可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;D、添加∠BCA=∠F不能判定△ABC≌△DEF,故此选项符合题意;选D.9.【答题】如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是()A. SASB. ASAC. AASD. SSS【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,而AC=CA,∴△ABC≌△CDA(ASA).选B.10.【答题】若AD=BC,∠A=∠B,直接能利用“SAS”证明△ADF≌△BCE的条件是()A. AE=BFB. DF=CEC. AF=BED. ∠CEB=∠DFA【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:用边角边证明两三角形全等,已知其中一个对应角相等和一条对应边相等,则还需要的条件是相等角的另外一条临边相等,即AF=BE,选C.11.【答题】如图所示,在△ABC中,BC=AC,BE=AE,则由“SSS”可以判定()A. △ACD≌△BCDB. △ADE≌△BDEC. △ACE≌△BCED. 以上都对【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:三条边对应相等,BC=AC,BE=AE,CE=CE. 所以△ACE≌△BCE,选C.12.【答题】如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A. AB=ACB. BE=CDC. ∠B=∠CD. ∠ADC=∠AEB 【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】A、∵在△ABE和△ACD中,AE=AD、∠A=∠A、AB=AC,∴△ABE≌△ACD (SAS),正确,故本选项不符合题意;B、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项符合题意;C、∵在△ABE和△ACD中,∠A=∠A、∠B=∠C、AE=AD,∴△ABE≌△ACD(AAS),正确,故本选项不符合题意;D、∵在△ABE和△ACD中,∠A=∠A、AE=AD、∠AEB=∠ADC,∴△ABE≌△ACD (ASA),正确,故本选项不符合题意,选B.13.【答题】下列四组条件中, 能使△ABC≌△DEF的条件有()①AB = DE, BC = EF, AC = DF; ②AB = DE, ∠B = ∠E, BC = EF;③∠B = ∠E, BC = EF, ∠C = ∠F; ④AB = DE, AC = DF, ∠B = ∠E.A. 1组B. 2组C. 3组D. 4组【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:①AB = DE, BC = EF, AC = DF,边边边;②AB = DE, ∠B = ∠E, BC = EF,边角边;③∠B = ∠E, BC = EF, ∠C = ∠F,角边角;选C.14.【答题】下列判断中错误的是()A. 有两角和一边对应相等的两个三角形全等B. 有两边对应相等的两个直角三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有两边和一角对应相等的两个三角形全等【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】A. 有两角和一边对应相等的两个三角形全等,正确,不符合题意;B. 有两边对应相等的两个直角三角形全等,正确,不符合题意;C. 有两边和其中一边上的中线对应相等的两个三角形全等,正确,不符合题意;D. 有两边和一角对应相等的两个三角形全等,当两边夹一角时,正确,当两边和其中一边的对角时,不正确,故D错误,符合题意,选D.15.【答题】两个三角形有两个角对应相等,正确说法是()。

鲁教版七年级数学上1.3.3探索三角形全等的条件(边角边)

鲁教版七年级数学上1.3.3探索三角形全等的条件(边角边)

鲁教版七年级数学上1.3.3探索三角形全等的条件(边角边)【学习目标】1.掌握三角形全等的“边角边”条件.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.【学习过程】一、复习1.在前两节课的讨论中,我们知道:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能出现的情况,想一想,是哪四种呢?二、探索新知,合作探究(一)自学指导1.通过自学课本第24~28页的内容.思考:小明不慎将一块三角形模具打碎成两块,他是否可以只带其中的一块碎片到商店去配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么?(二)合作探究1.大家想一想:如果已知一个三角形的两边及一角,那么有几种可能情况呢?那在每种情况下得到的三角形全等吗?我们逐一来研究.先看第一种情况下,两个三角形是否全等.2.做一做(1)如果“两边及一角”条件中的角是两边的夹角.如:三角形的两条边分别为2.5 cm,3.5 cm.它们的夹角为40°,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?(2)大家利用直尺、三角尺和量角器来画满足以上条件的三角形,然后与同伴画的来比较一下.(3)由此得到结论:我们来改变上述条件中的角度和边长,大家分组讨论,是否能得到以上结论?(4)由此我们得到了三角形全等的条件:两边和它们的夹角对应相等的两个三角形全等.简称“边角边”或“SAS”.(5)[例1]如图,已知AB与CD相交于点O,OA=OB,OD=OC,△AOD与△BOC全等吗?说明理由.3.议一议(1)如果“两边及一角”条件中角是一边的对角,如:两边长分别为2.5 cm和3.5 cm,其中2.5 cm的边所对的角为45°,画图形会得到什么情况?画一画,试一试.并与同桌比较.结论:两边分别相等且其中一组等边的对角相等的两个三角形不一定全等.即:“边边角”或“SSA”不一定成立.4.[例2]已知:△ABC≌△A1B1C1,D,D1分别是BC,B1C1上的一点,且BD=B1D1.AD与A1D1相等吗?为什么?(三)小结(四)当堂训练1.图(1)中,AB=EF,AC=ED,∠A=∠E.图(2)中,AD=CB,∠DAC=∠BCA=90°,分别找出各图中的全等三角形,并说明理由.2.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD.将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同伴进行交流.3.如图,AD是△ABC的中线,在AD及其延长线上截取DE=DF,连接CE,BF,试说明:(1)△BDF≌△CDE;(2)BF与CE有何关系?为什么?4.如图,点E,F在AC上,AB∥CD,AB=CD,AE=CF,△ABF与△CDE全等吗?请说明理由.5.(2019淄博)已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.试说明:∠E=∠C.6.如图,AD=BC,AC=BD,DE与CE相等吗?为什么?7.(2019邵阳)如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是.(不添加任何字母和辅助线)1.如图,FE=BC,DE=AB,若∠B=∠E=40°,∠F=70°,则∠A等于( )第1题图(A)40° (B)50° (C)60° (D)70°2.(2020利津期中)下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )(A)甲和乙(B)乙和丙(C)甲和丙(D)只有丙3.(2020济宁附中期中)如图,在△ABC和△DEF中,已知:AC=DF,BE=CF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)第3题图4.(2020利津期中)如图,在△A B C与△A E F中,A B=A E,B C=E F,∠B= ∠E,AB交EF于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC.其中正确的结论是(填序号).5.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:BD=CE.6.如图,AC∥EG,BC∥EF,直线GE分别交BC,BA于P,D.且AC=GE,BC=FE.试说明:∠A=∠G.7.(2020利津期中)如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形的对数是( )(A)4 (B)3(C)2 (D)18.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使得△ABC ≌△DEF的共有( )(A)1组(B)2组(C)3组(D)4组9.(2020利津期中)如图,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE与BF 交于点P.(1)试说明:CE=BF;(2)求∠BPC的度数.【提高训练】10.(探究题)如图,在△ABC中,BE,CF分别是AC,AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.试说明:(1)AD=AG;(2)AD与AG的位置关系如何?。

鲁教版七年级上册 第一章《三角形》说课课件(共26张PPT)

鲁教版七年级上册 第一章《三角形》说课课件(共26张PPT)

新教材:鲁教版内容 七年级上册第一章 1 认识三角形 5课时 2 图形的全等 1课时 3 探索三角形全等的条件4课时 4 三角形的尺规作图 1课时 5 利用三角形全等测距离 1课时
外角、HL定理
二、教材变化及意图
2.呈现形式的变化
探索三角形全等的条件
人教版
鲁教版
请大家将课本翻到第19页
二、教材变化及意图
鲁教版五·四制七年级上册
《三角形》教材解读
一、教材的第地一位部和分内容 研修篇
二、新教材变化及意图
三、案例解第读一《部三分角形》研中修观篇教学
一、教材的地位与内容
1.教材的地位
(1)三角形是研究其它图形的基础。 (2)对认识现实世界,解决实际问题 提供方法指导。
一、教材的地位与作用主要包括三角形的定义,内角和定理,
我们,还在路上……
1 6 、 业 余生 活要有 意义, 不要越 轨。20 21/8/8 2021/8 /8Augu st 8 , 2 0 21
1 7 、 一 个人 即使已 登上顶 峰,也 仍要自 强不息 。2021 /8/820 21/8/8 2021/8 /82021 /8/8
谢谢观赏
You made my day!
情感、态度与价值观
通过构建知识框架图的过程,激发学生学习的兴趣,提高学生 学好数学的信心。
No Image
《三角形》中观教学
1. 教学重点:构建三角形的知识框架 图,感悟各部分知识之间的内在联系。 2. 教学难点:在构建知识框图的过程 中,体会研究几何的思路和方法。
《三角形》中观教学
u 前置作业:我们本章的标题是《三角形》,结合 自己的理解完成关于三角形的知识框图。
2.教材的内容

鲁教版(五四制)七上数学第一章三角形单元综合复习课件

鲁教版(五四制)七上数学第一章三角形单元综合复习课件
所以△ NBM≌△NCM(SSS).所以∠NBM=∠NCM. 所以∠NBM+∠ABN=∠NCM+∠DCN. 所以∠ABC=∠DCB.
10.用尺规画直角的正确方法是( C ) A.用量角器 B.用三角板 C.平分平角 D.作两个锐角互余
【解析】用尺规作图时要使用没有刻度的直 尺和圆规作图.
11.已知四边形ABCD是平行四边形,如图,把△ABD 沿对角线BD翻折180°得到△A′BD.利用尺规作出 △A′BD.(要求保留作图痕迹,不写作法)
解:因为AD⊥BC,所以∠BDA=90°. 因为∠B=60°,所以∠BAD=180°-90°-60°=30°. 因为∠BAC=80°, 所以∠DAC=∠BAC-∠BAD=80°-30°=50°. 因为 AE 平分∠DAC,所以∠DAE=12∠DAC=25°.
3.下列图形中,是全等图形的有( C ) A.2组 B.3组 C.4组 D.5组
解:如图,连接AC,BD,交于点O,公共展厅应建 在O处.理由如下: 在平面上任取一点P,P与O不重合,连接 PA,PB,PC,PD,则PA+PC>AC,PB+PD>BD, 即PA+PC+PB+PD>AC+BD=AO+BO+CO+DO, 所以建在点O处,四个工艺品厂到公共展厅的距离之 和最短.
7.如图,在Rt△ABC中,∠ACB=90°,且AC= BC=4 cm.已知△BCD≌△ACE,求四边形 AECD的面积. 【解析】线段AC把四边形AECD分成 两部分,我们把△ACE移至△BCD的 位置,使之与△ACD恰好构成△ACB, 进而可求面积.
(2)以∠AEC为内角的三角形有哪些? 【解析】用字母表示一个三角形时,不要漏 写符号“△”.在复杂图形中数三角形个数 的方法:按组成三角形的图形个数去数;

鲁教版(五四制)数学七年级上册 第一章 1.3 全等三角形 复习课件 (16张PPT)

鲁教版(五四制)数学七年级上册  第一章  1.3 全等三角形 复习课件 (16张PPT)
直角三角形的
变式训练
1、若直线AE绕A点旋转到图(2)位置时(BD<CE), 其 余条件不变, 问BD与DE、CE的关系如何? 为什么?
2、若直线AE绕A点旋转到图(3)位置时(BD>CE), 其 余条件不变, 问BD与DE、CE的关系如何? 请直接 写出结果, 不需说明.
课堂小结
• 1、注意三角形全等中的对应关系,灵活运用 三角形全等的判定方法
A
E
D
2
B
1
C
变式训练
△ABC和△ECD都是等边三角形 如图1,若B、C、D三点在一条直线上,
求证:BE=AD;
多个直角型
例5、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条 直线, 且B、C在A、E的异侧, BD⊥AE 于D, CE⊥AE于E,试说明: BD=DE+CE.
• (1) ΔABC和ΔDEF全等吗?请说明理 由
• (2) AB与DE平行吗?BC与EF平行吗
?说明理由
B
F
A
C
D
E
公共角、对顶角类型
• 例3、如图所示,AE=AD, AB=AC, 求证:△EAB≌△DAC.
A
在ΔEAB和ΔDACA中
Hale Waihona Puke DEOAE=AD ∠A=∠A
B
AB=AC
C
∴ΔEAB≌ΔDAC(SA
学习目标
1.梳理全等三角形的定义、性质 、判定方法等基本知识点; 2.进一步拓展应用全等三角形的 判定方法
3.整理基本模型,解决学习疑难.
• 学习重点:掌握全等三角形的 性质与判定方法.
• 学习难点:全等三角形性质及 判定方法的运用.

2020最新鲁教版七年级数学上册(五四制)电子课本课件【全册】

2020最新鲁教版七年级数学上册(五四制)电子课本课件【全册】

2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
第二章 轴对称
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
1 轴对称现象
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
第一章 三角形
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
1 认识三角形
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
2 图形的全等
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
3 探索三角形全等的条件
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
4 三角形的尺规作图
2020最新鲁教版七年级数学上册( 五四制)电子课本课件【全册】
5 利用三角形全等测距离
2020最新鲁教版七年级数学上册( ቤተ መጻሕፍቲ ባይዱ四制)电子课本课件【全册】目

0002页 0036页 0068页 0119页 0146页 0198页 0219页 0257页 0314页 0362页 0419页 0472页 0512页 0543页 0598页 0661页
第一章 三角形 2 图形的全等 4 三角形的尺规作图 第二章 轴对称 2 探索轴对称的性质 4 利用轴对称进行设计 1 探索勾股定理 3 勾股定理的应用举例 1 无理数 3 立方根 5 用计算器开方 第五章 位置与坐标 2 平面直角坐标系 第六章 一次函数 2 一次函数 4 确定一次函数的表达式

鲁教版(五四制)数学七年级上册1

鲁教版(五四制)数学七年级上册1
3.三角形的性质:讲解三角形内角和为180°、两边之和大于第三边等基本性质,并举例说明。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论,让学生在实践中加深对三角形知识的理解。
1.画三角形:让学生使用三角板、直尺等工具,尝试画出不同类型的三角形。
2.分析性质:让学生观察所画三角形的特点,讨论并总结各类三角形的性质。
3.小组分享:每个小组汇报自己的发现,其他小组进行评价和补充。
(四)课堂练习
在这一阶段,我将设计一些练习题,帮助学生巩固所学知识,提高解决问题的能力。
1.判断题:设计一些关于三角形性质的判断题,让学生判断对错,并说明原因。
2.计算题:设计一些与三角形周长、面积相关的计算题,让学生运用所学知识解决问题。
因此,在教学过程中,教师应充分关注学生的认知水平,从学生熟悉的生活实例出发,引导学生发现三角形的特征和性质。同时,注重激发学生的学习兴趣,鼓励学生积极参与课堂讨论和实践活动,提高学生对三角形知识的理解和应用能力。
此外,学生在学习方法上可能仍需引导,教师应关注学生个体差异,因材施教,帮助学生掌握正确的学习方法和策略。通过小组合作、交流分享等方式,培养学生合作精神和团队意识,提高学生在探究中学习、在实践中成长的能力。
3.知识梳理:与学生一起总结三角形的定义、分类、性质及在实际问题中的应用,形成知识结构。
五、作业布置
为了巩固学生对三角形知识的掌握,提高学生的应用能力和创新意识,特布置以下作业:
1.基础知识巩固:
-完成课本第1.1节后的练习题1、2、3,强化对三角形定义、分类和性质的理解。
-结合生活实例,用文字和图形描述三角形的特征,培养学生将数学知识应用于生活的能力。
3.设计丰富的教学活动,如画图、测量、计算等,让学生在实际操作中掌握三角形的基本技能,培养学生动手实践的能力。

七年级数学探索三角形全等的条件2(1)

七年级数学探索三角形全等的条件2(1)
的是A.虹膜角膜角B.巩膜静脉窦C.瞳孔D.泪点E.前房角 半夏厚朴汤的君药是A.半夏B.厚朴C.茯苓D.生姜E.苏叶 “设身处地”,可以帮助主持人。A.缩短与稿件所述情景的时空距离和人物的心理距离等B.拉大与稿件所述情景的时空距离和人物的心理距离等C.模糊稿件内容与现实之间的距离 木工机械周围的场地应该注意什么?A.经常洒水B.保持畅通及避免湿滑C.提供空气调节D.保持通风 一位急性白血病患者,检出染色体结构异常,t(8,21)(q22;q22)最可能是哪型白血病A.慢粒急单变B.急性淋巴细胞白血病C.急非淋白血病M5D.急性髓细胞白血病M2E.急非淋白血病M3 根据《邮政法》,因国家安全或者追查刑事犯罪的需要,邮政企业、快递企业有义务配合公安机关、国家安全机关或者检察机关,对有关邮件、快件依法。A.销毁B.退回C.公开D.检查、扣留 临边作业应做怎样的安全防护措施? 类白血病反应的特点是A.外周血白细胞&gt;50&times;109/LB.外周血出现幼稚细胞,NAP活性增高C.骨髓中幼稚粒细胞增高D.脾显著肿大E.Ph&rsquo;染色体阳性 盐酸地尔硫卓是A.钙通道阻滞剂B.&beta;-受体阻滞剂C.镇静催眠剂D.利尿剂 合理确定国民经济和社会发展战略提出的目标按其性质和功能可分为三类,其中不包括。A.导向性B.预期性C.约束性D.监督性 式曲轴箱的主轴承座孔中心线等高于曲轴箱分界面。A.龙门B.隧道C.一般D.直列 2型糖尿病发病机制是A.胰岛素拮抗激素分泌增多B.胰岛素B细胞遗传缺陷C.胰岛素抵抗和胰岛素分泌缺陷D.胰岛B细胞破坏,胰岛素绝对不足E.胰岛B细胞自身免疫反应性损伤 按相关规定医院每年应组织几次以上的应急演练A.1次B.2次C.3次D.4次E.不限 反刍动物瘤胃积食的主要临诊特征是A.瘤胃蠕动音消失B.瘤胃蠕动音增强C.瘤胃蠕动音减少D.触诊瘤胃松软E.触诊瘤胃紧张而有弹性 对溶于水的乙醇、丙醇等物质的火灾、使用水灭火是有效的.A.正确B.错误 电功率和电能的相互关系如何?电功率越大,电能就越大吗? 供电营业区内的供电营业机构,对本营业区内的用户有按照国家规定供电的义务:。 关于肥胖症的病因,叙述错误的是A.肥胖症是遗传和环境因素共同导致的B.某些心理疾病也与肥胖症的发生有关C.体力活动减少导致肥胖症风险增加D.高热量的快餐类食物可使患肥胖症风险增加E.低出生体重患儿成年后肥胖症风险小,而出生体重过重则成年后肥胖症风险增 加 各个施工过程的劳动量和作业量是指()。A.工程细目的工程数量与相应时间定额的乘积B.实际使用的工人数量与作业时间的乘积C.实际使用的工人数量D.实际使用的机械台数与作业时间的乘积E.实际使用的机械台数 口腔手术操作时乙肝病毒的传染通常是A.通过血液制品传播给患者B.医生之间相互传播C.患者之间相互传播D.由患者传播给口腔医生E.由口腔医生传播给患者 肺癌中恶性度最高的是A.鳞状上皮细胞癌B.小细胞未分化癌C.大细胞未分化癌D.腺癌E.细支气管肺泡癌 虹膜A.为血管膜的最前部,位于角膜的后方B.虹膜内有两种排列方向不同的骨骼肌C.中央有一圆形的瞳孔D.瞳孔括约肌受副交感神经支配E.呈圆盘形 左肺特点的描述正确的是。A.分上、中、下3叶B.比右肺短C.比右肺重D.前缘有心切迹E.无肺小舌 在多尘、多雾、多蒸汽的场所,当火灾探测器单独使用时,宜选用。A.感烟型探测器B.感温型探测器C.感光探测器D.特殊气体探测器 基本生产车间直接费用计划和制造费用计划在编制上有什么区别? [不定项选择]火灾自动报警系统一般由组成。A、触发器件B、火灾报警装置C、火灾警报装置D、电源 船舶碰撞事故是发生率很高的海事,由人为因素造成的比例是。A、80%B、85%C、95%以上D、以上都不正确 患者,男,67岁。支气管哮喘,护士巡视病房时,发现患者表情痛苦,烦躁不安,呼吸困难加剧,发绀明显,血气分析:氧分压为&lt;4.8kPa,二氧化碳分压&gt;9.8kPa。当动脉血氧分压低于下列何值时,应给予吸氧 ()A.9.65kPaB.8.65kPaC.7.65kPaD.6.65kPaE.5.65kPa 医学人道主义经历的三个时期不包括A.古代朴素的医学人道主义B.现代革命人道主义C.近代医学人道主义D.现代医学人道主义 《医疗机构从业人员行为规范》的执行和实施情况,应列入A.医疗机构校验管理和医务人员年度考核B.定期考核和医德考评C.医疗机构等级评审D.医务人员职称晋升、评先评优的重要依据E.以上都对 生产安全事故等级的划分指标有。A.死亡人数B.间接经济损失C.直接经济损失D.重伤人数E.轻伤人数 在钻孔桩施工质量控制中,对于嵌岩桩与摩擦粧指标要求不同的是。A.护筒埋深B.泥浆指标控制C.清孔质量D.钢筋笼接头质量 上课是整个教学工作的()。A.中心环节B.起始环节C.终止环节D.一般环节 绿色施工的“四节一环保”,环保是指环境保护,四节是指。A.节能B.节地C.节水D.节材E.节电 男性,3岁。右腹股沟可复性包块1年余,玩耍后不停哭闹伴呕吐6小时。查体:右侧阴囊肿胀,内可触及肿块,肿块呈蒂状延至腹股沟部,触痛明显,不可还纳。术中见疝内容物系小肠,颜色已成暗紫色,疝环狭小不易回纳,遂切开疝环解除压迫,此时你如何判断肠管是否失 去活力A.压迫解除后肠管的色泽、弹性、蠕动和肠系膜内动脉搏动是否恢复B.压迫解除后肠壁是否转为红色C.系膜根部注射0.25%普鲁卡因60~80ml,观察10~20分钟,肠壁是否转为红色,肠蠕动和肠系膜内动脉搏动是否恢复D.用温热等渗盐水纱布覆盖该段肠管,观察肠壁 是否转为红色,肠蠕动和肠系膜内动脉搏动是否恢复E.以上都是 信息能力的作用有___。A.信息能力是开拓创新的基础和现代人才的关键B.信息能力是工作的手段C.信息能力是创造财富的途径D.信息能力是实现现代化的手段 假设棘轮每次最小转角为6°,那么按照棘轮的转角由棘爪每次推动一齿计算,棘爪齿数应为。A、30B、40C、60D、90 共享文件夹的访问权限的类型有三种,下列不是。A.读取B.更改C.部分控制D.完全控制 [问答题,案例分析题]2002年1月,某作者Z将其旅行经历写成多篇文章,投给甲期刊社。该社自当年2月至12月连续刊登了这些作品,受到读者广泛欢迎。但是,该刊并未登载Z关于不得转载、摘编的声明。2002年3月,乙出版社将上述文章汇集成共10万字的《探险历程》一书 出版,作者署名为Z。第一次印刷的1万册投放市场后,乙出版社主动与作者Z联系,告知拟按每千字50元的标准支付基本稿酬和相应的印数稿酬。但是,作者Z对乙出版社的做法十分不满,便向法院提起著作权诉讼。 二尖瓣狭窄咯血的原因除外A.肺水肿B.支气管黏膜微血管破裂C.肺栓塞D.支气管静脉曲张破裂E.支气管动脉破裂

七年级下探索三角形全等的条件(二)课件

七年级下探索三角形全等的条件(二)课件

60°
45°
分析: 分析:
这里的条件与1中的条件有什 这里的条件与 中的条件有什 么相同点与不同点? 么相同点与不同点?你能将它 转化为1中的条件吗 中的条件吗? 转化为 中的条件吗?
60°
75°
两角和它们的夹边对应相 等的两个三角形全等, 等的两个三角形全等,简写 角边角” 成“角边角”或“ASA” 两角和其中一角的对边对 应相等的两个三角形全等, 应相等的两个三角形全等, 简写成“角角边” 简写成“角角边”或“AAS”
、 边角 做一做 1、角.边.角; 若三角形的两个内角分别是 60°和80°它们所夹的边为 ° °它们所夹的边为2cm, 你能画出这个三角形吗? 你能画出这个三角形吗
2cm
60°
80°
60°
80°
你画的三角形与同伴 画的一定全等吗? 画的一定全等吗
2、角.角.边 、 角边 若三角形的两个内角分别是60° 若三角形的两个内角分别是 ° 和45°,且45°所对的边为 ° °所对的边为3cm, , 你能画出这个三角形吗? 你能画出这个三角形吗?
作业: 作业: P164页:习题 页 习题 习题5.8
课后思考题: 课后思考题:
A
1、在△ABC中,AB=AC, 、 中 , AD是边BAC的角平分线。 : 是边BC上的中线 是边 上的中线,证明: AD是∠ 上的中线,证明 的角平分线。 是 的角平分线 ∠BAD=∠ 求证: ∠CAD 求证:BD=CD = C B D 证明: AD是BC边上的中线 证明:∵AD是BC边上的中线 的角平分线( ∠BAC的角平分线(已知) 的角平分线 已知) ∴∠BAD= 三角形中线的定义) ∴∠ = =∠CAD(角平分线的定义 ∴BD=CD(三角形中线的定义) ) ( (角平分线的定义) ) AB = AC(已知 ∵AB=AC(已知) = (已知) 在△ABD和△ACD中 ) = CD(已证 和CAD(中 BD ) 已证) ∠BAD=∠ = (已证 AD=AD(公共边) AD = AD(公共边 = (公共边) ) ) ∴△ABD≌△ACD(SAS) ≌ △ACD(SSS) ( ∴ △ABD≌ ≌ ( ∴BD=CD(全等三角形对应边相等) = (全等三角形对应边相等) 全等三角形对应角相等) ∴ ∠BAD=∠CAB(全等三角形对应角相等) ∠

鲁教版(五四制)七年级上册数学课件第一章1认识三角形第1课时(鲁教版七年级上·五四制)

鲁教版(五四制)七年级上册数学课件第一章1认识三角形第1课时(鲁教版七年级上·五四制)

灿若寒星
2.探究三角形三角关系 (1)在纸上任意画一个三角形,测量它的三个内角可得,三个 内角的和是__1_8_0_°_. (2)做一个三角形纸片,将其三个内角剪下拼在一起可以得到 一个_平__角. (3)做一个直角三角形的纸片,将其两个锐角剪下拼在一起可 得一个_直__角.
灿若寒星
【归纳】 ①三角形的三个内角的和是_1_8_0_°__; ②直角三角形的两锐角_互__余__. 3.三角形按角可分为:_锐__角__三角形、_直__角__三角形、_钝__角__三 角形. 【点拨】判断三角形中最大内角的度数,就可以判断这一个三角 形的形状.
灿若寒星
【解析】因为DE∥BC, 所以∠3=∠4=30°, 又∠ACB=45°, 所以∠2=15°, 又∠BAC=90°, 所以∠1=180°-90°-15°=75°. 答案:75°
灿若寒星
1.(2012·南通中考)如图,在△ABC中,∠C=70°, 沿图中虚线截去∠C,则∠1+∠2=( ) (A)360°(B)250° (C)180°(D)140° 【解析】选B.因为∠1+∠3=180°,∠2+∠4=180°, 所以∠1+∠2+∠3+∠4=360°. 又因为∠3+∠4=180°-∠C=110°, 所以∠1+∠2=360°-110°灿若=2寒5星0°.
【解析】第n个图中,三角形的个数是1+4(n-1)=4n-3,所以当
n=6时,三角形的个数是21.
答案:21
灿若寒星
知识点2三角形内角和性质的应用 【例2】(6分)如图,△ABC中,∠A=60°,∠B∶∠C=1∶5.求 ∠B的度数.
灿若寒星
【规范解答】设∠B=x°, 因为∠B∶∠C=1∶5, 所以∠C=__5_x_°.……………………………………………2分 因为三角形的三个内角的和是_1_8_0_°__, 所以_∠__A_+_∠__B_+_∠__C_=180°, 所以得方程:_6_0_+_x_+_5_x_=_1_8_0_,………………………………4分 解得x=_2_0_, 故∠B=__2_0_°_…………………………………………………6分

鲁教版(五四制)七年级数学上册 《探索勾股定理(2)》参考课件2优秀课件PPT

鲁教版(五四制)七年级数学上册 《探索勾股定理(2)》参考课件2优秀课件PPT

如图,梯形由三个直角三角形组合而
成,利用面积公式,列出代数关系式,
得 1(ab)(ba)21ab1c2.
2
22
化简,得 a2 b2 c2.
a
bc c
a b
第一种类型:
方法三 据传是当年毕达哥拉斯发现勾股定理时做出的证明。
将4个全等的直角三角形拼成边长 为 (a + b) 的 正 方 形 ABCD , 使 中 间 留 下 边长c的一个正方形洞.画出正方形 ABCD.移动三角形至图2所示的位置中,
第三种类型:
A
方法三:意大利文 艺复兴时代的著名
a
画家达·芬奇对勾
股定理进行了研究。 B
F
c
O
b
C
E
D
A
a
B
F
O
Cb D E
A′ F′
B′
E′ C′
D′




例 我方侦察兵小王在距离东西向公路400m处侦查,发现
一辆敌方汽车在公路上疾驶。他赶紧拿出红外测距仪,测得
汽车与他相距400m。10s后,汽车与他相距500m。你能帮
小结反思
我最大的收获; 我表现较好的方面; 我学会了哪些知识; 我还有哪些疑惑……
课后作业
1.课本随堂练习 2.阅读课本“读一读 ” 3.习题 3.2
知识拓展
(1) 勾股定理是联系数学中数与形的第一定理。
(2) 勾股定理反映了自然界基本规律,有文明的宇宙“人”都 应该认识它,因而勾股定理图被建议作为与“外星人”联系 的信号。
(3)勾股定理导致不可通约量的发现,引发第一次数学危机。
(4)勾股定理公式是第一个不定方程,为不定方程的解 题程序树立了一个范式。

鲁教版(五四制)七年级数学上册教学案:1.3.3探索三角形全等的条件

鲁教版(五四制)七年级数学上册教学案:1.3.3探索三角形全等的条件
§1.3.3探索三角形全等的条件
时间:第周第课时执笔人:
教学目标:
知识与技能目标:1.知道三角形全等的判定方法“SAS”
2.能利用“SAS”判定三角形全等
过程与方法目标:1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力、有条理表达的能力
2.能利用“SAS”判定三角形全等
情感与价值目标:在学习中,不断的自我突破,体验收获知识的喜悦
求证:△ABE≌△DCF
★★☆练习2:已知,AD//BC,AD=BC,AE=CF,
求证BE=DF
四、合作探究
★★★例3:如图已知△ACE和△ECD都是等腰直角三角形,
∠ACB=∠ECD=90°,D是AB上的一点,
求证:△ACE≌△BCD
★★★练习3:
已知正方形ABCD和正方形AEFG,
求证DE=BG
方法一:已知两边,通过加减角,证明夹角相等
★☆☆例1:已知CE=CB,CD=CA,∠DCA=∠ECB
证明:DE=AB
★☆☆练习1:如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,
求证:∠D=∠E
方法二:已知一边和一角,通过加减线段,证明另一边相等
★★☆例2,:如图已知,AB//CD,AB=CD,CE=BF
训练要求:1、快速准确计算2、限时3分钟
二、预习自测(预习课本P5~P6,然后作答)
1.全等三角形的判定方法“SAS”:及其分别相等的两个三角形全等,简写成“边角如图,已知AC平分∠BAD,AB=AD,
证明:△ABC≌△ADC
三、精讲精练:“SAS”通过对应关系找出两条边及夹角
教学重点:能利用“SAS”判定三角形全等
教学难点:能利用“SAS”判定三角形全等

鲁教版(五四制)数学七年级上册1.1认识三角形(第3课时)教学设计

鲁教版(五四制)数学七年级上册1.1认识三角形(第3课时)教学设计
4.能够运用三角形的性质解决一些实际问题,例如计算三角形的面积、周长等。
(二)过程与方法
1.通过观察和动手操作,让学生在实践中发现三角形的性质,培养学生的观察能力和动手操作能力。
2.引导学生运用分类讨论的方法,分析三角形的性质,培养学生的逻辑思维能力和分类思想。
3.利用三角板进行实际操作,让学生在动手绘制三角形的过程中,理解三角形的内角和为180°,提高学生的空间想象能力。
通过展示生活中的三角形实物,如自行车三角架、衣架等,激发学生的学习兴趣,引导学生从生活中发现三角形,从而引出三角形的定义。
2.自主探究,合作交流
(1)让学生使用三角板绘制三角形,观察并思考三角形的性质,引导学生发现三角形的内角和为180°;
(2)组织学生进行小组讨论,分享各自发现,加深对三角形性质的理解;
4.通过解决实际问题,让学生将所学知识应用于实际情境,培养学生的解决问题的能力和应用意识。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生学习数学的热情,增强学生的自信心。
2.培养学生的合作意识,使学生学会在团队中分享观点、交流思想,共同解决问题。
3.培养学生勇于探索、积极思考的精神,使学生养成善于观察、发现问题的习惯。
三、教学重难点和教学设想
(一)教学重难点
1.重点:三角形的定义、分类以及内角和定理。
2.质解决相关问题;
(2)灵活运用三角形的分类,解决实际图形问题;
(3)将三角形的性质与实际问题相结合,培养学生的解决问题的能力。
(二)教学设想
1.创设情境,引入新课
鲁教版(五四制)数学七年级上册1.1认识三角形(第3课时)教学设计
一、教学目标
(一)知识与技能
1.了解三角形的定义,知道三角形是由三条线段首尾顺次连接所围成的封闭图形。

七年级数学上3.1探索勾股定理(2)(鲁教版五四制)精选教学PPT课件

七年级数学上3.1探索勾股定理(2)(鲁教版五四制)精选教学PPT课件
当我们爱自己的孩子的时候,可曾想过,我们把爱孩子的十分之一去爱母亲,她就足矣,往往这一点也做不到,说句心里话,我们欠母亲的无法补偿,更无法用语言表达。 我有这两位母亲,虽然我的人生很不幸,但我有她们给我的无私的爱,我永远是幸福的,她们对我的爱我永存心里。在美国西雅图的一所著名教堂里,有一位德高望重的牧师――戴尔·泰勒。有一天,他向教会学校一个班的学生们先讲了下面这个故事。 那年冬天,猎人带着猎狗去打猎。猎人一枪击中了一只兔子的后腿,受伤的兔子拼命地逃生,猎狗在其后穷追不舍。可是追了一阵子,兔子跑得越来越远了。猎狗知道实在是追不上了,只好悻悻地回到猎人身边。猎人气急败坏地说:“你真没用,连一只受伤的兔子都追不
2002年国际数学家大会会标
勾股定理(gou-gutheorem)
直角三角形两直角边的平方和等于斜边 的平方.
如果直角三角形两直角边分别为 a、b,斜边为c,那么
a2 b2 c2
ac
b
利用拼图来验证勾股定理:
1. 准备四个全等的直角三角形(设直角三角 形的两条直角边分别为a,b,斜边为c);
4000
C
B
4000
A
练习
1. 放学以后,小红和小颖从学校分手,分别沿着东南 方向和西南方向回家,若小红和小颖行走的速度都是
40米/分,小红用15分钟到家,小颖用20分钟到家,小
红和小颖家的距离为
( C)
A. 600米 B. 800米 C. 1000米 D 不能确定
2. 直角三角形两直角边分别为5厘米、12厘米,那么
斜边上的高是
( D)
A. 6厘米
B. 8厘米
C. 80/13厘米
D. 60/13厘米
练习
3. 等腰三角形底边上的高为8,周长为32,求这个三 角形的面积

初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(6)

初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(6)

章节测试题1.【答题】如图:∠DBC=∠ACB,添加一个______条件,不能判定△BCD≌△CBA.【答案】AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理填空即可.【解答】解:已知∠DBC=∠ACB,BC=CB,∴添加AB=DC,根据SSA不能判定△BCD≌△CBA.故答案是:AB=DC.2.【答题】如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:______.(答案不唯一,写一个即可)【答案】∠CBE=∠DBE【分析】△ABC和△ABD已经满足一条边相等(公共边AB)和一对对应角相等(∠CAB=∠DAB),只要再添加一边(SAS)或一角(ASA、AAS)即可得出结论.【解答】解:根据判定方法,可填AC=AD(SAS);或∠CBA=∠DBA(ASA);或∠C=∠D(AAS);∠CBE=∠DBE(ASA).3.【答题】如图,已知AD=BC,根据"SAS",还需要一个条件______,可证明△ABC≌△BAD.【答案】∠DAB=∠CBA【分析】要使△ABC≌△BAD,已知AD=BC,AB=AB,具备了两组边对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:需添加的条件是∠DAB=∠CBA;证明:∵AD=BC,∠DAB=∠CBA,AB=BA,∴△ABC≌△BAD.(SAS)故填∠DAB=∠CBA.4.【答题】如图,D在AB上,E在AC上,且∠B=∠C,补充一个条件______后,可用"AAS"判断△ABE≌△ACD.【答案】BE=CD【分析】本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:条件为:BE=CD,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(AAS),故答案为:BE=CD.5.【答题】如图,点B,E,C,F在同一条直线上,AB=DE,∠B=∠DEF.要使△ABC≌△DEF,则需要再添加的一个条件是______.(写出一个即可)【答案】∠A=∠D(或BC=EF或∠ACB=∠F)【分析】若添加条件∠A=∠D,可利用ASA定理证明△ABC≌△DEF.若添加条件BC =EF,则利用SAS定理证明△ABC≌△DEF.若添加条件∠ACB=∠F,则利用AAS定理证明△ABC≌△DEF.【解答】解:可添加条件∠A=∠D,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);可添加条件∠ACB=∠F,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);故答案为:∠A=∠D(或BC=EF或∠ACB=∠F).6.【答题】如图,∠B=∠DEF,AB=DE,若要以"ASA"证明△ABC≌△DEF,则还缺条件______.【答案】∠A=∠D【分析】利用全等三角形的判定方法结合ASA得出即可.【解答】解:当添加∠A=∠D时,可证明△ABC≌△DEF;理由:在△ABC和△DEF中,∴△ABC≌△DEF(ASA).故答案为:∠A=∠D.7.【答题】如图,∠1=∠2,如果添加一个条件,即可得到△ABE≌△ACE,那么这个条件可以是______(要求:不添加其他辅助线,写出一个条件即可)【答案】∠B=∠C(答案不唯一)【分析】根据题意,易得∠AEB=∠AEC,又AE公共,∴根据全等三角形的判定方法容易寻找添加条件【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又∵AE=AE,∴当∠B=∠C时,△ABE≌△ACE(AAS);或当BE=CE时,△ABE≌△ACE(SAS);或当∠BAE=∠CAE时,△ABE≌△ACE(ASA).故答案为:∠B=∠C(答案不唯一).8.【答题】如图:已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是______(填一个即可).【答案】AD=BC【分析】由于已知条件有两个,分别是∠1=∠2,AB=BA,那么再增加一个条件AD=BC,利用SAS可证两个三角形全等.【解答】证明:所填条件为:AD=BC,∵AB=BA,∠1=∠2,AD=BC,∴△ABC≌△BAD.故填AD=BC.9.【答题】如图,已知∠1=∠2,要说明△ABC≌△BAD,(1)若以"SAS"为依据,则需添加一个条件是______;(2)若以"AAS"为依据,则需添加一个条件是______;(3)若以"ASA"为依据,则需添加一个条件是______.【答案】AC=BD∠C=∠D∠ABC=∠BAD【分析】本题要判定△ABC≌△BAD,已知∠1=∠2,AB是公共边,具备了一边、一角对应相等,故添加AC=BD、∠C=∠D、∠ABC=∠BAD,可分别根据SAS、AAS、ASA判定全等.【解答】解:(1)若以"SAS"为依据,则需添加一个条件是AC=BD;(2)若以"AAS"为依据,则需添加一个条件是∠C=∠D;(3)若以"ASA"为依据,则需添加一个条件是∠ABC=∠BAD.故答案为:(1)AC=BD;(2)∠C=∠D;(3)∠ABC=∠BAD.10.【答题】如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件______使得△ABC≌△DEF.【答案】∠A=∠D【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.11.【答题】如图,AB=AD,∠1=∠2,如果增加一个条件______,那么△ABC≌△ADE.【答案】AC=AE【分析】根据全等三角形的判定定理解答即可.【解答】解:添加的条件为:AC=AE,∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△ABC与△ADE中,∴△ABC≌△ADE,故答案为:AC=AE12.【答题】如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是______(只写一个即可,不添加辅助线).【答案】∠APO=∠BPO【分析】首先添加∠APO=∠BPO,利用ASA判断得出△AOP≌△BOP.【解答】解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO等.13.【答题】如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件______,使△ABC≌△DBE.(只需添加一个即可)【答案】∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(写出一个即可)【分析】根据∠ABD=∠CBE可以证明得到∠ABC=∠DBE,然后根据利用的证明方法,"角边角""边角边""角角边"分别写出第三个条件即可.【解答】解:∵∠ABD=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,∵AB=DB,∴①用"角边角",需添加∠BDE=∠BAC,②用"边角边",需添加BE=BC,③用"角角边",需添加∠ACB=∠DEB.14.【答题】如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是______.(只需写一个,不添加辅助线)【答案】AC=DF【分析】求出BC=EF,∠ACB=∠DFE,根据SAS推出两三角形全等即可.【解答】解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:AC=DF.15.【答题】如图,AC与BD相交于点O,且AB=CD,请添加一个条件______,使得△ABO≌△CDO.【答案】∠A=∠C.(答案不唯一)【分析】首先根据对顶角相等,可得∠AOB=∠COD;然后根据两角及其中一个角的对边对应相等的两个三角形全等,要使得△ABO≌△CDO,则只需∠A=∠C即可.【解答】解:∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.(答案不唯一)故答案为:∠A=∠C.(答案不唯一)16.【答题】如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是______.(只需填一个即可)【答案】∠A=∠F或AC∥EF或BC=DE(答案不唯一).【分析】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).17.【答题】如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件______,则有△AOC≌△BOD.【答案】AC=BD【分析】补充条件:AC=BD,可利用AAS定理判定△AOC≌△BOD.【解答】解:补充条件:AC=BD,∵在△AOC和△DOB中,∴△AOC≌△BOD(AAS).故答案为:AC=BD.18.【答题】如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是______.【答案】∠B=∠C【分析】本题要判定△ABD≌△ACD,已知∠1=∠2,AD是公共边,具备了一边一角对应相等,注意"AAS"的条件:两角和其中一角的对边对应相等,只能选∠B=∠C.【解答】解:由图可知,只能是∠B=∠C,才能组成"AAS".故填∠B=∠C.19.【答题】如图,AC⊥BC,AD⊥BD,垂足分别是C、D,若要用"HL"得到Rt△ABC≌Rt△BAD,则你添加的条件是______.(写一种即可)【答案】AC=BD【分析】根据"HL"添加AC=BD或BC=AD均可.【解答】解:可添加AC=BD,∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD.20.【答题】如图,△ABC和△ABD中,∠C=∠D=90°,要证明△ABC≌△ABD,还需要的条件是______.(只需填一个即可)【答案】AD=AC【分析】根据∠C=∠D=90°利用HL定理推出两三角形全等即可.【解答】解:添加的条件是AC=AD,理由是:∵∠C=∠D=90°,∴在Rt△ACB和Rt△ADB中,∴Rt△ACB≌Rt△ADB(HL).故答案为:AD=AC.。

探索三角形全等的条件(SAS)课件鲁教版(五四制)数学七年级上册

探索三角形全等的条件(SAS)课件鲁教版(五四制)数学七年级上册
D
E
H
ED FD

EDH FDH
F
DH DH
EDH ≌ FDH ( SAS )
EH FH
1、点E在AB上,AD=AC∠CAB=∠DAB
问:△ACE与△ADE全等吗?△ACB与
△ADB呢?
C
A
E
D
B
3、如图,∠B=∠E,AB=EF,BD=EC,那么△ABC
与△FED全等吗?为什么?
F
AC∥FD吗?为什么?
解:全等。
B
∵BD=EC
∴BD-CD=EC-CD。即BC=ED
在△ABC与△FED中
AB=FE(已知)

B=E(已知)
BC =ED (已证)

∴△ABC≌△FED(SAS)
C
1 3
A
4 2
D
∴∠1=∠2
∴∠3=∠4
∴AC∥FD
E
1、如图,AB=DB,∠1=∠2,请你添加一个
B
D
O
C
2、已知AE=AD,AB=AC,证明两个三角形全等
A
在△AEC和△ADB中
AB
= AC
(已知)
∠A=∠A(公共角)
AD
=
AE
∴△AEC≌△ADB (
E
B
D
C
SAS).
注意:SAS中的角必须是两边的夹角,
“A”必须在中间。
探究二边边角
两边及其中一边的对角对应相等的两个三角形全等吗?
已知:AC=10cm,BC=8cm, ∠A=45 °.
适当的条件使△ABC≌△DBE,则需添加的
条件是
。并说明理由。
D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
灿若寒星
课内小结
(1) 两角及其夹边分别相等的两个三角形全等. 简写成“角边角”或“ASA”.
(2) 两角分别相等且其中一组等角的对边相等的两个三角 形全等.简写成“角角边”或“AAS”.
(3)探索三角形全等是证明线段相等(对应边相等), 角相等(对应角相等)等问题的基本途径.
数学思想:
要学会用分类的思想,转化的思 想解决问题.
剪下来,与同伴进行比较,
C
它们能否互相重合?
小结:方法2:两角及其夹边
分别相等的两个三角形全等,
600
A
3cm
450
B 简写成“角边角”或“ASA”
灿若寒星
想一想
问题3:做一做:按要求画三角形,并与同 伴交流
已知:∠A=600,∠B=450,BC=3cm. 剪下来,与同伴进行比较,
A
它们能否互相重合?
600
450
B
3cm
小结:方法3:两角分别相 等且其中一组等角的对边相 C 等的两个三角形全等,简写 成“角角边”或“AAS”
灿若寒星
A
D
B
C
E
F
方法2:因为∠B=∠E,BC=EF,∠C=∠F
所以△ABC≌△DEF(ASA)
方法3:因为 ∠B=∠E ,∠C=∠F,AC=DF 所以△ ABC≌△DEF (AAS)
A
D
B
E C
F
灿若寒星
例: 如图,AB与CD相交于点O,O是AB的中点,∠A=
∠B, △AOC与△BOD全等吗?为什么?
C
两角和夹边
小明
对应相等
A
O
B
解:△AOC≌△BOD.理由如下: D 在△AOC与△BOD中,
因为点O是AB的中点,所以OA=OB. 又已知∠A= ∠B,且∠AOC= ∠BOD,
A
B D
因为AB=DE,AC=DF,
BC=EF,
C 所以△ABC≌△DEF (SSS).
E
F
灿若寒星
想一想
问题1:如果已知一个三角形的两角及一边,那 么有几种可能的情况呢?
答:角边角(ASA),角角边(AAS)
问题2: 做一做:按要求画出三角形,并与同伴 交流 .已知:∠A=600,∠B=450,AB=3cm,
1.3 探索三角形全等 的条件(2)
灿若寒星
问题提出 小明不小心将一块三角形模具打碎了,他 是否可以只带其中的一块碎片到商店去, 就能配一块与原来一样的三角形模具呢? 如果可以,带哪块去合适?
2 1
灿若寒星
复习回顾
判断三角形全等至少要有几个条件? 答:至少要有三个条件
小结:方法1: 如果给出一个三角形的三条边的长 度,那么由此得到的三角形都是全等的.
根据ASA,所以△AOC≌△BOD.
灿若寒星
例: 如图,AB与CD相交于点O,O是AB的中点,∠C=
∠D, △AOC与△BOD全等吗?为什组等
角的对边相 等
A
O
B
解:△AOC≌△BOD.理由如下: 在△AOC与△BOD中,
D
因为点O是AB的中点,所以OA=OB.
又已知∠C= ∠D,且∠AOC= ∠BOD,
根据AAS,所以△AOC≌△BOD.
灿若寒星
练一练
图中的两个三角形全等吗? 请说明理由.
全等.因为两角相等且其中一组等 角的对边相等的两个三角形全等.
解:在DABC和DDBC中
A
ABC DBC
A D
110
35 B 35
C
110
BC BC
所以D ABC D DBC (AAS)
灿若寒星
灿若寒星
课内练习
1、如图∠ACB=∠DFE,BC=EF,根据ASA或AAS, 那么应补充一个直接条件 ---------∠----B---=--∠----E--或--,∠(A写=∠出D一 个即可),才能使△ABC≌△DEF
A
A
F
E
B
C
D
E
1
2
D
B
C
2、如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?
相关文档
最新文档