光在湍流大气中的传播 共16页

合集下载

光在湍流大气中的传播

光在湍流大气中的传播

大 气 端 流
大气的随机运动造成了大气湍流,其主要起因是地球表 面对气流拖曳造成的风速剪切、太阳辐射对地球表面不 同位置加热的差异或地表热辐射导致的热对流、包含热 量释放的相变过程造成的温度和速度场的改变等。
2.1大气折射率和湍流的影响
光波在大气中传播所呈现的一切性质的改变来 源于空气折射率的影响。空气的折射率由空气 的密度决定。空气主要的变化因素是水汽和二 氧化碳。对空气折射率的研究,目前通用的计 算空气折射率的公式是基于 Edlén 和 Ciddor 的结果.
3.1强度起伏(大气闪烁)
激光束通过有湍流的大气传输时,其强度、相 位和传输方向会受到扰动而出现相应的随机 变化,当光束截面内包含许多瑞流涡旋,引起光 束强度起伏、相位起伏和光束扩展。
3. 2激光束的漂移
湍流大气中光斑的形变特征最为常见的是光斑漂 移. 顾名思义,漂移反映了光斑空间位臵的时间 变化. 光斑漂移对激光在大气中的工程应用,如 光学跟踪系统,具有重要的影响 .
三. 激光在大气端流中的传播
激光是20 世纪最伟大的发明之一. 激光的高相 干度、高亮度、强方向性是普通光源无法比拟 的优点,它在各个学科与技术领域的应用无所 不在、与日俱增. 但当激光在大气中长距离传 播时,由于大气的影响,相干度、亮度会下降, 光束会发散、抖动,当然还有许多物理上的性 质要改变,激光的优点被大大消蚀. 因此, 要 充分发挥激光的优势,必须了解大气湍流对激 光的影响.
(l0 L L0 ) ( L L0 ) (l0 L L0 ) ( L L0 )
对平面波
对球面波
一般地,波长短,闪烁强,波长长,闪烁小。当湍流强度 增强到一定程度或传输距离增大到一定限度时,闪烁方差就不 再按上述规律继续增大,却略有减小而呈现饱和,故称之为闪 烁的饱和效应。

大气湍流中的激光传输

大气湍流中的激光传输

使用适应性强的接收器
要点一
总结词
使用适应性强的接收器可以捕获更多信号,降低噪声和干 扰。
要点二
详细描述
在湍流大气中,光束的形状和强度可能会快速变化。因此 ,使用适应性强的接收器非常重要。这种接收器能够快速 响应光束的变化,并捕获更多的信号能量。此外,接收器 还应具有较低的噪声和干扰水平,以提高信号检测的准确 性。通过结合适应性强的接收器和适当的信号处理技术, 可以进一步改善激光传输的性能,提高通信和探测系统的 可靠性。
激光遥感技术能够实现高分辨率、高精度的目标成像,为地理信 息获取、资源调查等领域提供支持。
穿透性强
激光的波长较短,能够穿透一定厚度的云层和植被,因此在气象预 报、森林防火等领域有广泛应用。
实时监测
激光遥感技术能够实现实时、动态的目标监测,为灾害预警、环境 保护等领域提供及时的信息支持。
THANK YOU
大气湍流的特性
总结词
大气湍流的特性包括随机性、非线性和尺度变化等。
详细描述
大气湍流的随机性表现在流场中各点的速度和方向都是随机的,无法预测下一个时刻的状态。非线性则是指湍流 中各种物理量之间的相互作用是非线性的,导致流场的复杂性和混沌性。此外,大气湍流还具有尺度变化的特性, 从小尺度到大气边界层,湍流的作用范围广泛。
04
大气湍流中激光传输的改善方 法
提高激光功率
总结词
提高激光功率可以增强信号强度,减少 因大气湍流引起的信号衰减。
VS
详细描述
通过使用更高功率的激光器,可以增加信 号的能量,从而提高在湍流大气中传输的 信号强度。这有助于克服湍流引起的光束 漂移和扩展,降低误码率,提高通信和探 测系统的性能。
优化光学系统设计

光在湍流大气中的传播综述

光在湍流大气中的传播综述

谢谢!
3. 3 激光束的扩展
湍流大气中传播的激光光斑在时刻漂移着, 如果我们长时间观测(或观察光斑的长曝 光照片),因光斑漂移引起的累加效果会 形成比瞬时光斑(短曝光光斑)大得多的 弥散斑,这通常称为长时扩展. 而湍流大气 的影响也会使激光束的瞬时光斑扩大,通 常称为短时扩展.
四 结论
大气中的湍流对激光束的影响占突出地位, 重点介绍瑞流作用下的激光的三种物理现 象即强度起伏(大气闪烁),光束漂移和扩展。 实现激光在大气中的更好应用,这些问题 是急需解决的
2.2 大气闪烁
光束强度在时间和空间上随机起伏,光强忽大忽 小,即所谓光束强度闪烁。大气闪烁就是由湍流 漩涡引起的
大气闪烁的幅度特性 由接收平面上某点光强I的 对数强度方差来表征
I2 [ln(I / I 0 )]2 4[ln(A/ A0 )]2 4 2
2 2 式中, 可通过理论计算求得,而 I 则可由
三. 激光在大气端流中的传播
激光是20 世纪最伟大的发明之一. 激光的高相 干度、高亮度、强方向性是普通光源无法比拟 的优点,它在各个学科与技术领域的应用无所 不在、与日俱增. 但当激光在大气中长距离传 播时,由于大气的影响,相干度、亮度会下降, 光束会发散、抖动,当然还有许多物理上的性 质要改变,激光的优点被大大消蚀. 因此, 要 充分发挥激光的优势,必须了解大气湍流对激 光的影响.
2.4 湍流大气中的光传播现象
当光在湍流大气中传播时,大气湍流造成的折射率的起 伏导致激光波阵面的畸变,破坏了光的相干性. 而相干性 的退化将严重削弱光的光学质量,引起光线的随机漂移、 光能量在湍流大气中的传播光束截面上的重新分布(畸 变、展宽、破碎等)、光实际传播路径长度的起伏、一 定接收面积上光强起伏等.

湍流大气中空间部分相干奇异光波的传输

湍流大气中空间部分相干奇异光波的传输

第35卷,增刊红外与激光工程2006年10月、,01.35Su pp l e m e n t I n疳ar ed a nd Las er E ngi nee r i n卫O ct.2006湍流大气中空间部分相干奇异光波的传输张逸新1,汤敏霞2(1.江南大学理学院,江苏无锡214122;2.江南大学情报研究所,江苏无锡214122)摘要:自由空间中带有光学涡的部分相干光的传输特性是影响大气光通信系统性能的关键因子之一。

基于弱湍流大气中光波传输的R yt ov方法和部分相干光的互相干函数的交叉谱密度函数近似,研究了带有“光学涡”的空间部分相干拉盖尔一高斯光束在湍流大气中的传输特性,得出了弱湍流大气中传输的部分相干光束互相干函数和平均光强空间分布的解析关系。

研究结果表明,弱湍流大气起伏仅仅影响这类光束相干函数的幅值,不改变光束光学涡的分布特征。

关键词:湍流大气;部分相干光;交叉谱密度;中图分类号:T N929.12,n奶58.98,P407.5,P427.1+13平均光强Pr opaga t i on of par t i aU y coher ent s i ngul am y beam s i n钿r bul ent at I I l ospher eZ H A N GY i.xi I l l.TA N G M i l l.xi a2(1.S chooI of Science,Sou t hem Y抽gt ze U n i vcr s it y,W ux i214122,Ch i n a;2,I嘣岫忙of com m岫i c砒i on R cs能r ch cent他ofcon仃oI scien∞&Engineer ing,s ou恤mⅦ咖uniV哪咄wlⅨi214122,C hi岫A bst豫ct:T he pr o pagat i on pr oper t i e s of t11e pan i al l y co her en t si l l gul ar i t y be am s t hr o ugh a缸nos pher i c t I l r bul e nc e ar e ke y ef佗c t-f沁t or s of at m ospher i c t ur bul ence on行ee s pace opt i c al com m uni cat i ons s yst em s.B aS ed on t he R yt oV appr oxi m at i on锄d t he印pr oxi Il l at i on of cr oss-s pec仃a l dens i t y f or t he m ut ual coherence funct i on of m e pani al l y coh er ent f i el d,t he pr叩agat ion prope rt i e s of t he pa r t i al l y coh er ent Laguel l r e-G auss be am s w i t h opt i ca l V or t i ce s i n t ur bul e nt annospher e ar e di s cuss ed.Ex pr ess i on s f or aV erage i nt ens时and t he m ut ual coherence f ul l ct i on of pan i al l y coh er ent f i e l d w hen be锄s pr o pagat i on i11w ea k t ur bul e nt at m os pher e ar e ob t ai ned f r om t he cr o ss—s pect r al dens i t y缸nct i on.n i s s how n t ha t t he V o r t ex st nJ ct ur e of t he aV erage cr o ss—s pect r al densi够of par t i al l y coh er entL aguer r e-G aus s bea m s has廿l e s锄ehel i c oi da l l y s hape w i t h t ha t of t lle phase of m e fhl l y co her en t Laguerr e—G aussbeam,w hi ch is pr opag at i on i n f he s pace,卸d t he r el at i V e i nt ens i够of t he beam i s degr aded by opt i ca l vonex.K e y w or ds:T hr bul ent a缸nosphe r e;Pa rt i al l y coher ent be锄;C r oss s pec仃a l dens i t y;A V er age i ntens毋0引言无线大气光通信是现代通信技术的重要分支之一,而大气无线光通信系统的性能因大气湍流的干扰而受到限制。

贝塞尔光束在湍流大气中传输的实验研究

贝塞尔光束在湍流大气中传输的实验研究

■ ■
c 2l 向 .s s 反 d.ss I 2l 司向
随机 位 相板 s 、 2和 C D都 放 在范 围 z 内。 1s C 一
z 由下 式决定 : 一
图2 1 阶高斯 一 贝塞尔光束在 不同湍 流环境 下的传输实验
z 南 一=

( 1 )
其中 n为轴棱锥折射率 , 为轴棱锥地面半径, a
YANG Ro g q n n -ig 【 bt c】 G us nba s as gtru hsi l h ep t adhg—re Bse ba xs ya i aa al.nte A sr t a a sa em si ho g p a p a l e n ihod r es em ai prmd vi b I i p n r s a l l e h
c a g l a fc h e s l e m r n mis n, t s h r u b e c i e u e t eB se e m o e e c . h n e wi fe tt e B s e b a ta s si a mo p e c t r u n e w l r d c h e s l a c h r n e l o i l l b
a oaoy s lb r t r i lt n o t s h rct r ue c n os u y t eB se e m n t e ta s sin c a a t r t so e t r mua i f mo p e u b ln ea d t t d h e s l a i h r n mis h r c e i i f h u — o a i b o sc t b ln t s h r . o u e n t e sr n t f t r u e c n o oo ia c a g e t r a in c a g s i h u e f ue t mo p e e F c s d o h te g h o u b ln e a d t p l gc h r e p ru b t h n e n t e n mb r o a l o B se e m r p g t n p o e t s Ex e me t h w h t t r ue c n e st n h u e r o o oo ia h r e e s l a p o a a i r p ri . p r n s s o t a u b n e i t n i a d t e n mb f tp lgc c a g b o e i l y l

第二章 光在湍流大气中传输的理论概述

第二章 光在湍流大气中传输的理论概述

2.1 大气折射率在光学频率范围内,对流层(高度<17km)中的地球大气的空气折射率表示如下:n=1+77.6(1+7.52×10-3λ-2)(p/T)×10-6 (2.1)式中,p是以mbar为单位的大气气压,T是热力学温度,λ是以μm为单位的光波波长,由于地面上温度对n1(r)的贡献<1%,故(2.1)式中忽略了与水汽压相关的项,当然这一项对水上传播光路是不可忽略的。

2. 2 大气湍流描述自然界中的流体运动存在着二种不同的形式:一种是层流,看上去平顺、清晰,没有掺混现象;另一种是湍流,看上去毫无规则,显得杂乱无章。

例如,如果流体以一定的速度流过一个管子,我们可以用带颜色的染料对它进行观察,在流体速度低的时候,流线光滑面清晰,流体处于层流状态;不断增加流体速度,当流速达到一定值时,流线就不再是光滑的了,整个流体开始作不规则的随机运动,流体处于湍流状态。

自从1883 年Reynolds 做了著名的湍流实验以来,以Monin-Obukhov 提出的相似理论、Deardorff 提出的大涡模拟、美国Kansas 州观测实验等为代表,大气湍流的研究已经取得了很大的进展和丰硕的成果,并在天气、气候研究和工程实际中获得成功地应用。

湍流对大气中声、光和其它电磁波的传播具有极为重要的影响,例如湍流风速、温度和湿度的脉动都会引起声音散射和减弱,大气小尺度光折射率的起伏(称为光学湍流),会严重影响光的传播和光学成像的质量等等。

长期以来,以Tatarskii 的工作为代表,声光电传播的湍流效应大都是按照Kolmogorov 的均匀、平稳和各向同性假设处理的,而实际的湍流经常不满足这些假设,要建立更加完善的波动传播模型就必须考虑湍流的各向异性、以及间歇性的影响。

2. 3 折射率湍流模型在湍流大气中,折射率在不同地点、不同时刻都是变化的。

一方面,我们还不可能对这些变化作出预测;另一方面,即使已知这些变化,要对所有时刻、所有地点的值作出描述实际上也是不可能的。

光在大气中的传播

光在大气中的传播
0.72 0.82 0.93 0.94 1.13 1.38 1.46 1.87 2.66 3.15 6.26 11.7 12.6 13.5 14.3 1.4 1.6 2.05 4.3 5.2 9.4 10.4 4.7 9.6
从表不难看出,对某些特定的波长,大气呈现出极为 强烈的吸收,光波几乎无法通过。根据大气的这种选择 吸收特性,一般把近红外区分成八个区段,将透过率较 高的波段称为“大气窗口”。在这些窗口之内,大气分 子呈现弱吸收。目前常用的激光波长都处于这些窗口之 内。
二. 大气衰减
激光辐射在大气中传播时:
部分光辐射能量被吸收而转变为其他形式的能量
如热能等
部分能量被散射而偏离原来的传向
如辐射能量空间 重新分配
吸收和散射的总效果使传输光辐射 强度的衰减。
设强度为I的单色光辐射,通过厚度为dl的大 气薄层。不考虑非线性效应,光强衰减量dI正比 与I及dl,
即dI/I=(I-I)/I=dl 积分后得大气透过率:
1、 大气闪烁
光束强度在时间和空间上随机起伏,光强忽大忽 小,即所谓光束强度闪烁。
大气闪烁的幅度特性由接收平面上某点光强I的 对数强度方差来表征
I2 [ln(I / I 0 )]2 4[ln(A/ A0 )]2 4 2
2 2 式中, 可通过理论计算求得,而 I 则可由
实际测量得到。
对大气衰减的研究可归结为对上述四个基 本衰减参数的研究。 ⑴ 大气分子的吸收
大气分子在光波电场的作用下产生极化,并 以入射光的频率作受迫振动。所以为了克服大气 分子内部阻力要消耗能量,表现为大气分子的吸 收。 分子的固有吸收频率由分子内部的运动形态 决定。
吸收 分子 H2 O CO2 O2
主要吸收谱线中心波长(m)

大气湍流中光传播的数值模拟

大气湍流中光传播的数值模拟

大气湍流中光传播的数值模拟* 马保科1,2, 郭立新1 吴振森1(1.西安电子科技大学,陕西西安 710071 2.西安工程大学,陕西西安 710048 )摘 要 光在大气湍流中传播时,受大气分子、气溶胶等粒子的相互作用,将发生光束扩展、漂移和相干性退化等大气湍流效应,这些因素严重影响了光波的远场特性。

文章从大气湍流中光传播的理论研究入手,分析了如何构造较为合理的大气湍流相位屏。

进而采用McGlamery 算法,对Kolmogorov 谱下的大气湍流随机相位屏进行了数值模拟,并分析了光波从发射机经湍流大气传播到达接收机时的远场变化特性。

研究表明,大气湍流的存在对光的远场传播质量造成很大的影响,研究结果也为大气湍流中与光传播相关的工程应用及自适应光学技术的完善提供了参考。

关键词 大气湍流;McGlamery 算法;相位屏模拟; 大气结构常数;中图分类号 TP391 文献标识码 A1 引言大气湍流是一个相当复杂的随机媒质系统,虽然物理学界对湍流的研究已经历了相当漫长的历史,但因涉及的因素千头万绪,其间的相互作用和关系也错综复杂,人们对其物理本质至今未能做到较为清楚的认识。

因此,光在大气湍流中传播问题的研究仍存在理论和实验上的挑战[1,2]。

通常,当光在湍流大气中传播时,光束截面内包含着许多的大气漩涡,这些漩涡各自对照射到它的那一部分光束形成衍射作用,可导致光束的强度和相位随机变化,进而表现出光束扩展,大气闪烁和相位起伏等大气湍流效应,从而严重降低了接收机的接收效率。

目前,突破大气湍流的影响仍是光在随机介质中传播所要解决的关键问题[3]。

早在20世纪中期,苏联的Obukhov 便采用Rytov 平缓微扰法由实验反演湍流特征。

在闪烁的饱和现象被发现之后,物理学界又将Markov 近似引入求解光场的统计矩,研究大气湍流下的光场特性[1]。

然而,在中等起伏条件下,目前仍没有找到很好的解析处理方法。

由于数值模拟能够从光的传播过程出发,较为清楚地反映出所涉及问题的物理本质,因而成为研究湍流效应的主要方法[4]。

22光在大气和水中的传播详解

22光在大气和水中的传播详解
2.2 光波在大气中 的传播
大气激光通信、探测等技术应用通常以大气为信道。
大气分子:10-8cm 大气气溶胶:0.03~2000μm,尘埃、烟粒、微水滴、有机微生物
微粒在大气中的悬浮成溶胶状态
大气气体分子及气溶胶的吸收和散射会引起的光束能量衰减; 空气折射率不均匀会引起的光波的振幅和相位起伏; 当光波功率足够大、持续时间极短时, 非线性效应也会影响 光束的特性。
?1.6
对于近红外光, q ? ??1.3
? ?
0.585V
1/
3
(能见度很大时 ) (中等能见度 ) (当V ? 6km)
② 雨和雪的衰减
雨滴间隙要大得多,故能见度较雾高,光 波容易通过。加之雨滴的前向散射效应强,这 会显著地减小对直射光束的衰减。结果雨的衰 减系数比雾小两个数量级以上。
激光在雪中的、衰减系数与降雪强度有较好的对应 关系。不同波长的激光在雪中的衰减差别不大,但就同 样的含水量而言,雪的衰减比雨的大,比雾的小。
(3) 空间相位起伏
在透镜的焦平面上接收,就会发现像点抖动。这可解释为在 光束产生漂移的同时,光束在接收面上的到达角也因湍流影 响而随机起伏,即与接收孔径相当的那一部分波前相对于接 收面的倾斜产生随机起伏。
2.3 光波在水 中的传播
在水中传播的各种波中, 纵波的衰减最小。声 纳技术被广泛采用。
电磁波的衰减严重,无线电波和微波在水下几乎 无法应用。光波相对无线电波和微波而言,其衰减 较小。
单色平行光束在水中传播的衰减规律也近似服从指数规律
P ? P0e? ?l
?是包括散射和吸收在内的衰减系数。与水质传播光束的波长
有关。
衰减长度L0表示水下传播光束衰减的大小
L0=1/? (m)

第四章 光在湍流大气中的传输时光强起伏分析

第四章 光在湍流大气中的传输时光强起伏分析

4.1 光强起伏(光闪烁)的定义及基本描述光强起伏(光闪烁)是大气湍流导致的最常见且最明显的光传输效应之一,激光在湍流大气中传输时其光强随时间变化而产生随机起伏的现象被称作为光强起伏(光闪烁),其原因是大气折射率起伏在导致传输激光相位变化的同时,也导致了传输激光的振幅起伏,进而产生散射强度起伏现象,更进一步的原因可认为是由同一光源发出的通过略微不同路径的光线之间的随机干涉所造成。

经典理论认为:光闪烁由尺寸比光束直径小的大气湍流引起,它与湍流的内尺度、外尺度、结构常数及传输距离等因素有关,其幅度特性由接受平面上光强的对数强度方差σI2来表征:σI2=I2−I2I2(4.1)光束在湍流大气中传输时,对数振幅满足正态分布,振幅对数满足χ定义为:χ≡ln(A/A0),其中,A为在湍流中传播时实际的光波振幅,A0为未经过湍流扰动的振幅。

设一对数正态分布为高斯随机变量(对数正态分布密度函数具有三个相对读了的参数:χ、σx、I0),其中对数振幅χ的均值为χ,标准偏差为σx,则其概率密度分布函数为:pχΧ=2πσ −χ−χ2σχ(4.2)其振幅A=A0 expχ。

引入概率变换:p A A=pχΧ=ln A dχdA ,dχdA=1A(4.3)则振幅的概率密度函数为:p A A=2πσA exp −12σχ2ln AA0−χ2,A≥0(4.4)闪烁起伏概率分布满足对数正态分布的物理意义是:光场u=u0expχ+jsδ中χ是大量独立前向散射元的和,由中心极限定理可知χ服从正态分布。

4.2 光强闪烁的日变化大气的湍流运动导致信道上折射率的不均匀起伏,引起光强起伏,表征光强起伏强弱程度的主要特征量是对数光强起伏方差。

它的定义:σln I2=ln I I0−ln I I02(4.5)其中ln I为瞬时光强的对数值:ln I为平均光强的对数值。

在较好的天气下,光强起伏值从太阳出来后开始上升,到中午达到最强,视观察距离的不同起伏值也不同,如果距离很长,起伏值趋于一条直线,达到“饱和”。

光的传播ppt

光的传播ppt
以分析物质的化学成 分和结构。
05
光传播的未来发展趋势
高精度光刻技术的研究与发展
总结词
随着科技的不断发展,高精度光刻技术的 研究与发展已成为光传播领域的重要研究 方向之一。
VS
详细描述
高精度光刻技术是指利用光学、微电子学 和纳米技术等手段,将微小的图形或信息 转移到光刻胶片或半导体芯片等材料表面 上的技术。未来,高精度光刻技术的研究 与发展将更加注重光源的波长、相干性、 稳定性和曝光分辨率等关键因素,以提高 光刻的精度和效率。
光的传播速度
光在不同介质中的速度
光在不同介质中的传播速度不同,一般情况下,光在真空中的传播速度最快 。
光速的恒定
光速是一个恒定的值,不会因为光源、观察者或者观察者的位置不同而改变 。
02
光的传播介质
真空中的光传播
1
光的速度在真空中是恒定的,约为每秒 299,792,458米。
2
真空中的光速不受介质种类和介质密度的影响 。
光子量子计算的研究与发展
总结词
随着量子计算理论的不断发展,光子量子 计算的研究与发展已成为光传播领域的前 沿研究方向之一。
详细描述
光子量子计算是一种基于量子力学原理的 计算方式,利用光子作为量子比特实现并 行计算和加密通信等应用。未来,光子量 子计算的研究与发展将更加注重量子纠缠 、量子比特编址、量子门操作和量子算法 设计等方面,以实现更高精度和更高效的 光子量子计算。
光的传播ppt
xx年xx月xx日
目录
• 光的传播概述 • 光的传播介质 • 光传播的定律和效应 • 光传播在现实生活中的应用 • 光传播的未来发展趋势 • 研究光传播的意义和价值
01
光的传播概述

经圆孔衍射的轴对称偏振光束在湍流大气中的平均光强分布和偏振特性

经圆孔衍射的轴对称偏振光束在湍流大气中的平均光强分布和偏振特性

p r e s s 1 6 ,7 6 6 5 -7 6 7 3( 2 0 0 8 ) .
[ 3 ] H .L i n . a n d J . P u , “ P r o p a g a t i o n p i a l l y
√ 卜
3数值计 算 和分析
( 2 )
其中 , D 和T r 分别表示了光束 的相干一 偏振矩阵 J ( r , r , z ) 的行
列式值 和迹。 ( 1 ) 和( 2 ) 式可用于描述经 圆孔衍射 的轴对称偏 振光 束 4结语 在湍 流大 气中的平均光强分布和偏振特性 。
图1 和 图2 显 示 了经 圆 孔 衍 射 的轴 对 称 偏 振 光 束在 湍 流 大气 中 对于不 同的结 构常数 和截断参数 的平均光强分布 。 由图1 可 知, 经 圆孔衍射的轴对称偏 振光束受到 了大气湍流的影响, 随着 结 构常数 的增大 , 平均光 强的峰值会减弱。 同时 , 光强分布会 由中 空环状分布转 变为高斯分布 , 这与在 自由空间里的情况是不 同的 。 同时 , 在此转变的过程 中光束会变成平顶光束 , 如 图2 ( b ) 所示 。 图2 描绘 了截断参数对 经圆孔衍射 的轴对称偏振光束在湍 流大气 中传
r e e -s p a c e l a s e r c o m m u n i c a t i o n 。 ”J .O p t .S o c . A m. A 1 9 ,1 7 9 4 - 输 的影响 , 无孔情 况下( m) 的平均光 强分 布如 图2 ( c ) 所示 。 由图 f 8 0 2( 2 0 0 2 ) . 2 可以发现 , 圆孑 L 光 阑的存在加强 了轴对称偏 振光 束的相干性 同时 1 2 ] Y .C a i ,Q .L i n ,H .T.E y y u b o ? l u ,a n d Y .B a y k a l 。 “ A v e r a g e 也减弱了湍流大气对 其的影响。 由于圆孔光阑的限制 , 轴对称偏 振 [

2.1 光波在大气中的传播PPT精品文档26页

2.1 光波在大气中的传播PPT精品文档26页
大气分子→极化→受迫振动→吸收。 分子的固有吸收频率由分子内部的运动形态决定。
极性分子→电子运动\原子振动\转动。 相应的共振吸收频率分别与光波的紫外和可见光、 近红外和中红外以及远红外区相对应。 因此,分子的吸收特性强烈的依赖于光波的频率。
UP
DOWN
BACK
大气中N2、O2 →可见光和红外区几乎不表现吸收 →远红外和微波吸收。
大气中He,Ar,Xe,O3,Ne等→可见光和近红 外有吸收谱线→大气中的含量甚微→不考虑吸收→在 高空处,其余衰减因素都已很弱→吸收作用。
UP
DOWN
BACK
大气中H2O和CO2分子,特别是H2O分子在近红外 区有宽广的振动-转动及纯振动结构,因此是可见光和近 红外区最重要的吸收分子
表1: 可见光和近红外区主要吸收谱线
UPLeabharlann DOWNBACK(3)大气气溶胶的衰减
大气气溶胶:大气中有大量的粒度在 0.03 m到2000 m之间 的固态和液态微粒,它们大致是尘埃、烟粒、微水滴、盐粒以 及有机微生物等。由于这些微粒在大气中的悬浮呈胶溶状态, 所以通常又称为大气气溶胶。
气溶胶对光波的衰减包括气溶胶的散射和吸收。
当光的波长相当于或小于散射粒子尺 寸时,即产生米-德拜散射。米-德拜散射 则主要依赖于散射粒子的尺寸、密度分 布以及折射率特性,与波长的关系远不 如瑞利散射强烈(可以近似认为与波长 无关)。
m0.82 N 7A 3/4
波长越长(短),散射越弱(强)
UP
DOWN
BACK
由于分子散射波长的四次方成反比。波长越长,
散射越弱;波长越短,散射越强烈。故可见光比红 外光散射强烈,蓝光又比红光散射强烈。在晴朗天 空,其他微粒很少,因此瑞利散射是主要的,又因 为蓝光散射最强烈,故明朗的天空呈现蓝色。

光在大气和水中的传播概要课件

光在大气和水中的传播概要课件

水的清澈度和有机物含量也会影响光 的吸收。清澈的水体透射能力较强, 而含有较多有机物的水体透射能力较 弱。
吸收特性
水对紫外线的吸收较强,而对红光和 红外线的吸收较弱。因此,随着深度 的增加,水体对不同波长光的透射能 力逐渐降低。
Hale Waihona Puke 水对光的散射散射机制
水分子和悬浮颗粒对光的散射作 用导致光在水中传播时发生散射。 散射强度与波长、颗粒大小和形
大气散射
由于大气中存在各种 微小颗粒和气体分子, 光在传播过程中可能 会发生散射,导致天 空呈蓝色或白色。
大气吸收
大气中的某些气体分 子会吸收特定波长的 光,导致光的能量减少。
大气中的气溶胶
大气中的气溶胶颗粒 会对光的传播产生影 响,如云、雾和霾等。
光在大气中的传播
光的散射
光在传播过程中遇到大气中的微小颗粒,如空气分子、 水滴、尘埃等,会发生散射现象。
光的折射
光在传播过程中遇到不同介质时,其传播方向会发生改变, 这种现象称为折射。
当光线从一种介质传播到另一种介质时,由于介质对光的折 射率不同,光线的传播方向会发生偏转。这种现象在日常生 活中非常常见,例如当光线从空气进入水或其他透明介质时, 光线的方向会发生改变。
光的反射
光在传播过程中遇到光滑表面时,会按照一定的规律反射回去,这种现象称为光 的反射。
散射是指光线在遇到微小颗粒时,会向各个方向反射, 导致天空呈现蓝色或白色。这种现象在早晨和黄昏时尤 为明显,因为此时太阳光需要穿越的大气层更厚,散射 作用更强。
光的吸收
光在传播过程中会被大气中的某些成分所吸收,导致光的能量减弱。
大气中的某些气体分子,如二氧化碳和水蒸气,能够吸收特定波长的光线,导致这些波长的光 线在大气中传播时能量逐渐减弱。这种现象对于地球上的生命至关重要,因为它决定了哪些波 长的光线能够到达地球表面,从而影响生物的生存和演化。

《光的传播》光现象课件演示文稿

《光的传播》光现象课件演示文稿

03
光折射现象
当光从一种介质斜射入另 一种介质时,传播方向会 发生改变,形成折射现象 。
光折射率
不同介质对光的折射率不 同,光速越慢折射率越大 。
光折射的应用
可用来解释许多光学现象 ,如透镜成像、全反射等 。
光反射
光反射现象
当光遇到反射表面时,会按照 反射定律返回原介质中。
光反射的类型
分为镜面反射和漫反射,镜面反射 是指光线遇到光滑表面发生的反射 ,漫反射是指光线遇到粗糙表面发 生的反射。
折射率可能不同。
06
光干涉与衍射的应用
制作光学仪器
总结词
利用光干涉和衍射原理,可以制作各种 高精度的光学仪器。

VS
详细描述
光学仪器如显微镜、望远镜、光谱仪等在 科学研究和日常生活中具有广泛应用。这 些仪器利用光的干涉和衍射现象来提高成 像质量和分辨率,进而实现对微观世界和 遥远天体的精确观测。例如,光谱仪可以 分析物质发出的光谱,从而确定其化学成 分和结构。
光学仪器应用
列举一些常见的光学仪器 及应用,如显微镜、望远 镜、照相机等。
测量介质折射率
测量方法
介绍测量介质折射率的方法,如 使用阿贝折射仪等仪器进行测量

折射率的意义
阐述折射率在光学应用中的意义 ,如影响透镜的效果、光学元件
的制造等。
折射率与波长关系
说明折射率与波长之间的关系, 即不同波长的光在相同介质中的
学的发展提供了重要支持。
07
光在科学技术中的应 用
激光技术
要点一
激光的原理
激光是单频光,具有高亮度、高纯度、高方向性的特 点。通过受激发射,使粒子数反转,实现光的放大。
要点二

光在湍流大气中的传播

光在湍流大气中的传播

三. 激光在大气端流中的传播
激光是20 世纪最伟大的发明之一. 激光的高相 干度、高亮度、强方向性是普通光源无法比拟 的优点,它在各个学科与技术领域的应用无所 不在、与日俱增. 但当激光在大气中长距离传 播时,由于大气的影响,相干度、亮度会下降, 光束会发散、抖动,当然还有许多物理上的性 质要改变,激光的优点被大大消蚀. 因此, 要 充分发挥激光的优势,必须了解大气湍流对激 光的影响.
光束漂移在接收平面上光束中心的投射点即光斑位臵以某个统计平均位臵为中心发生快大气中传播时大气湍流造成的折射率的起伏导致激光波阵面的畸变破坏了光的相干性
光在湍流大气中的传播
姓 名:
XX
专业班级:2015级 xxxx
一.前言
大气湍流引起的折射率随机起伏 将导致激光束光场的随机变化, 它会严重限制不同光学工程系统 的使用性能,甚至决定光学工程 系统的技术可行性。因此,研究 光在大气传输湍流效应具有重要 的理论和应用意义。
大气闪烁的幅度特性 由接收平面上某点光强I的 对数强度方差来表征
I2 [ln(I / I 0 )]2 4[ln(A/ A0 )]2 4 2
2 2 式中, 可通过理论计算求得,而 I 则可由
实际测量得到。
在弱湍流且湍流强度均匀的条件下:
2 1.23Cn (2 )6/7 L11/6 2 6/7 11/6 12.8 C (2 ) L n 2 2 I 4 2 6/7 11/6 0.496Cn (2 ) L 2 6/7 11/6 1.28 C (2 ) L n
谢谢!
(l0 L L0 ) ( L L0 ) (l0 L L0 ) ( L L0 )
对平面波
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 3 激光束的扩展
湍流大气中传播的激光光斑在时刻漂移着, 如果我们长时间观测(或观察光斑的长曝 光照片),因光斑漂移引起的累加效果会 形成比瞬时光斑(短曝光光斑)大得多的 弥散斑,这通常称为长时扩展. 而湍流大气 的影响也会使激光束的瞬时光斑扩大,通 常称为短时扩展.
四 结论
大气中的湍流对激光束的影响占突出地位, 重点介绍瑞流作用下的激光的三种物理现 象即强度起伏(大气闪烁),光束漂移和扩展。 实现激光在大气中的更好应用,这些问题 是急需解决的
光在湍流大气中的传播
姓 名: XX 专业班级:2015级 xxxx
一.前言
大气湍流引起的折射率随机起伏 将导致激光束光场的随机变化, 它会严重限制不同光学工程系统 的使用性能,甚至决定光学工程 系统的技术可行性。因此,研究 光在大气传输湍流效应具有重要 的理论和应用意义。
二. 大气端流
大气层中空气密度规则起伏称为大气湍流。 湍流对光束传输的影的影响称为湍流效应。 如在地球表面,热空气上升,冷空气下沉,形 成空气对流。
大 气 端 流
大气的随机运动造成了大气湍流,其主要起因是地球表 面对气流拖曳造成的风速剪切、太阳辐射对地球表面不 同位置加热的差异或地表热辐射导致的热对流、包含热
量释放的相变过程造成的温度和速度场的改变等。
2.1大气折射率和湍流的影响
光波在大气中传播所呈现的一切性质的改变来 源于空气折射率的影响。空气的折射率由空气 的密度决定。空气主要的变化因素是水汽和二 氧化碳。对空气折射率的研究,目前通用的计 算空气折射率的公式是基于 Edlén 和 Ciddor 的结果.
2.2 大气闪烁
光束强度在时间和空间上随机起伏,光强忽大忽 小,即所谓光束强度闪烁。大气闪烁就是由湍流 漩涡引起的 大气闪烁的幅度特性 由接收平面上某点光强I的 对数强度方差来表征
I 2 [lI/n I0 )2 (] 4 [lA / n A 0 )( 2] 42
式中, 2
可通过理论计算求得,而
光束弯曲
若将光束视为一体,经过若干分钟会发现,其 平均方向明显变化,这种慢漂移亦称为。
光束弯曲漂移现象亦称天文折射,主要受制于大 气折射率的起伏。弯曲表现为光束统计位置的慢变化, 漂移则是光束围绕其平均位置的快速跳动。
2.4 湍流大气中的光传播现象
当光在湍流大气中传播时,大气湍流造成的折射率的起 伏导致激光波阵面的畸变,破坏了光的相干性. 而相干性 的退化将严重削弱光的光学质量,引起光线的随机漂移、 光能量在湍流大气中的传播光束截面上的重新分布(畸 变、展宽、破碎等)、光实际传播路径长度的起伏、一 定接收面积上光强起伏等.
(l0 LL0)

对 球 面 波
( LL0)
一般地,波长短,闪烁强,波长长,闪烁小。当湍流强度 增强到一定程度或传输距离增大到一定限度时,闪烁方差就不 再按饱和效应。
2.3光束的弯曲和漂移
光束漂移
在接收平面上,光束中心的投射点(即光斑 位置)以某个统计平均位置为中心,发生快 速的随机性跳动(其频率可由数赫到数十赫)
3.1强度起伏(大气闪烁)
激光束通过有湍流的大气传输时,其强度、相 位和传输方向会受到扰动而出现相应的随机 变化,当光束截面内包含许多瑞流涡旋,引起光 束强度起伏、相位起伏和光束扩展。
3. 2激光束的漂移
湍流大气中光斑的形变特征最为常见的是光斑漂 移. 顾名思义,漂移反映了光斑空间位置的时间 变化. 光斑漂移对激光在大气中的工程应用,如 光学跟踪系统,具有重要的影响 .
2 I
则可由
实际测量得到。
在弱湍流且湍流强度均匀的条件下:
1.23Cn2(2)6/7L11/6 I242 102.4.89C 6C n2(n22(2)6)/76/L71L 1/161/6
1.28Cn2(2)6/7L11/6
(l0 LL0) 对 平 面 波 ( LL0)
谢谢!
谢谢!
三. 激光在大气端流中的传播
激光是20 世纪最伟大的发明之一. 激光的高相 干度、高亮度、强方向性是普通光源无法比拟 的优点,它在各个学科与技术领域的应用无所 不在、与日俱增. 但当激光在大气中长距离传 播时,由于大气的影响,相干度、亮度会下降, 光束会发散、抖动,当然还有许多物理上的性 质要改变,激光的优点被大大消蚀. 因此, 要 充分发挥激光的优势,必须了解大气湍流对激 光的影响.
相关文档
最新文档