九年级数学二次根式课后拓展训练题

合集下载

初中数学二次根式拓展提高综合题目含答案学习资料

初中数学二次根式拓展提高综合题目含答案学习资料

初中数学二次根式拓展提高综合题
一、单选题(共8道,每道12分)
1.设a,b,c都是实数,且满足,则的值为()
A.-5
B.11
C.5
D.3
答案:A
试题难度:三颗星知识点:二次根式的双重非负性
2.若,则的值为()
A. B.
C. D.
答案:D
试题难度:三颗星知识点:二次根式的双重非负性
3.化简的值为()
A.1
B.2
C.3
D.4
答案:D
试题难度:三颗星知识点:二次根式的双重非负性
4.已知,化简:结果为()
A.a
B.b
C.2b-a
D.a-2b
答案:A
试题难度:三颗星知识点:二次根式的化简求值
5.在如图所示的数轴上,点B和点C关于点A对称,A、B两点对应的实数分别是和-1,则点
C所对应的实数是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:数轴表示无理数
6.比较大小:()
A.大于
B.小于
C.等于
D.无法判断
答案:B
试题难度:三颗星知识点:比较大小
7.化简的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:完全平方式的应用
8.若,则代数式=()
A.2013
B.2012
C.-2013
D.-2012
答案:C
试题难度:三颗星知识点:完全平方公式的运用。

二次根式能力拓展题(提高篇)

二次根式能力拓展题(提高篇)

二次根式能力拓展题(提高篇)1、已知$m$是$2$的小数部分,求$m^2+\frac{1}{m^2}-2$的值。

2、化简:begin{enumerate}item $(1-x)^2-x^2-8x+16$item $\frac{32x^3+2x^2-x^2}{x}$item $4a-4b+(a-b)^3-a^3-a^2b$,其中$a>0$end{enumerate}3、当$x=2-\sqrt{3}$时,求$(7+4\sqrt{3})x^2+(2+3x)+3$的值。

4、先化简,再求值:$\frac{2a^3ab^3-b}{6\sqrt[3]{27a^3b^3}+2ab^4}$,其中$a=\frac{1}{9},b=3$。

5、计算:frac{1}{2+1}+\frac{1}{3+2}+\frac{1}{4+3}+\cdots+\frac{1 }{2005+2004}$$6、已知$a=2-\sqrt{3}$,先化简$\frac{a^2-2a+1}{a-2}+\frac{a^2-a}{a^2-4}$,再求值。

7、已知:$a=\frac{1}{2}+\frac{3}{2},b=\frac{1}{2}-\frac{3}{2}$,求$\frac{2-3a+2b}{1-2a+2b}$的值。

8、已知:$a=3+2,b=3-2$,求代数式$a^2-3ab+b^2$的值。

9、已知$1\leq x\leq 3$,化简$x^2+x^2-6x+9$。

10、已知$a=2-\sqrt{3}$,化简求值$\frac{1-2a+a^2}{a^2-2a+1}-\frac{a^2-a}{a-1}-\frac{a}{a^2-a}$。

11、begin{enumerate}item 已知$x=2-\sqrt{3},y=2+\sqrt{3}$,求$x^2+xy+y^2$的值。

item 已知$x=2+\frac{1}{x-1}$,求$x+\frac{1}{x}$的值。

专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6 二次根式易错题疑难题综合拓展题及2022中考真题集训类型一 易错题:教材易错易混题集训易错点1 考虑问题不全面典例1(2021春•+x 的取值范围是( )A .x >﹣2B .x ≥3C .x ≥3且x ≠﹣2D .x ≥﹣2思路引领:根据二次根式有意义的条件即可求出答案.解:由题意可知:x ―3≥0x +2>0,解得:x ≥3,故选:B .总结提升:本题考查二次根式以有意义的条件,解题的关键是正确理解二次根式的条件,本题属于基础题型.变式训练1.(2019•x 应满足的条件是( )A .x ≠3B .x ≤―13C .x ≥―13且x ≠3D .x >―13且x ≠3思路引领:根据二次根式有意义的条件,分式有意义的条件列出不等式,解不等式即可.解:由题意得,1+3x ≥0,x ﹣3≠0,解得,x ≥―13且x ≠3,故选:C .总结提升:本题考查的是二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.易错点2 (0)a a =³时,忽略a ≥0典例2(2022春•乐陵市期末)先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:===在上述化简过程中,第 ④ 步出现了错误,化简的正确结果为 (2思路引领:(1|a |即可进行判断;(2)把被开方数化成完全平方的形式,然后利用二次根式的性质即可化简求解.解:(1)在化简过程中④故答案是:④―(2)原式====总结提升:本题考查了二次根式的化简求值,正确把被开方数化成完全平方的形式是本题的关键.变式训练1= .思路引领:根据二次根式的性质和完全平方公式化简即可.===―1,―1.总结提升:本题考查了二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.2.对于题目:“化简并求值:1a+a =15”,甲、乙两人的解答不同.甲的解答是:1a 1a +1a ―a =2a―a =495,乙的解答是:1a 1a +a ―1a =a =15.阅读后你认为谁的解答是错误的?为什么?思路引领:已知二次根式具有双重非负性,即被开方数为非负数,二次根式的值为非负数,已知a =15,故可得1a ―a =5―15>01a―a ,再对待求式进行化简求值即可解答题目.解:乙错误,理由如下:1a +=1a +=1a +|1a―a |.∵a =15,∴1a―a =5―15=245>0,∴|1a ―a |=1a―a ,1a +1a +1a ―a =2a ―a =495.故乙的解答是错误的.总结提升:本题考查分式的化简求值,正确进行计算是解题关键.易错点3 忽视二次根式的隐含条件典例3阅读下列解答过程,判断是否正确.如果正确,请说明理由;如果不正确,请写出正确的解答过程.已知a ―a (a ﹣1思路引领:先根据二次根式有意义的条件求出a 的取值范围,再进行化简.解:不正确,∵﹣a 3>0,∴a <0,―=﹣=(﹣a+1总结提升:本题考查了二次根式有意义的条件,二次根式的化简是解题的关键.变式训练1.(2022秋•长安区期中)求代数式a+a=﹣2022.下面是小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.小芳:解:原式=a=a+1﹣a=1小亮:解:原式=a=a+a﹣1=﹣4045(1) 的解法是错误的;(2)求代数式a a=4―思路引领:(1)根据题意得到a﹣1<0,根据二次根式的性质计算即可;(2)根据二次根式的性质把原式化简,代入计算即可.解:(1)∵a=﹣2022,∴a﹣1=﹣2022﹣1=﹣2023<0,1﹣a,∴小亮的解法是错误的,故答案为:小亮;(2)∵a=4∴a﹣3=4――3=1―0,3﹣a,则a=a=a+2(3﹣a)=6﹣a,当a=4―6﹣(4―2+总结提升:=|a|是解题的关键.易错点4 成立的条件是a≥0,b≥0典例4(2022春•⋅x的取值范围是( )A.x≥1B.x≥0C.0≤x≤1D.x为任意实数思路引领:根据二次根式有意义的条件列不等式组求解.解:由题意可得x≥0x―1≥0,解得:x≥1,故选:A.总结提升:a≥0)是解题关键.变式训练1.(2021春•―(x x的取值范围是( )A.x≥﹣1B.x≥﹣2C.x≤﹣1D.﹣2≤x≤﹣1思路引领:根据二次根式化简与有意义的条件,即可求得:x+1≤0x+2≥0,解此不等式组即可求得答案.=―(x+1∴x+1≤0 x+2≥0,解得:﹣2≤x≤﹣1.故选:D.总结提升:此题考查了二次根式化简与有意义的条件.此题比较简单,注意掌握二次根式有意义的条件.易错点5 运用想当然的运算法则典例5(2021秋•÷解:原式=―①=②=(2―③=④(1)老师认为小明的解法有错,请你指出小明从第 步开始出错的;(2)请你给出正确的解题过程.思路引领:根据二次根式的运算法则即可求出答案.解:(1)③,故答案为:③.(2)原式==―=总结提升:本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则.变式训练1.(2022春•―=4.他的解答过程是否有错误?如果有错误,请写出正确的解答过程.思路引领:根据二次根式的加减法的法则进行分析即可.解:有错误,==总结提升:本题主要考查二次根式的加减法,解答的关键是对二次根式的加减法的法则的掌握.易错点6 误用乘法公式典例6(2022秋•金水区校级期中)计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.222+22+2……第一步=10……第三步任务一:填空:以上步骤中,从第 步开始出现错误,这一步错误的原因是 ;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.思路引领:任务一:利用完全平方公式进行计算即可解答;任务二:先计算二次根式的乘法,再算加减,即可解答;任务三:根据在进行二次根式运算时,结果必须化成最简二次根式,即可解答.解:任务一:填空:以上步骤中,从第一步开始出现错误,这一步错误的原因是完全平方公式运用错误,故答案为:一,完全平方公式运用错误;任务二:222+2﹣[2﹣+2]=5﹣(6﹣+5)=5﹣5=任务三:在进行二次根式运算时,结果必须化成最简二次根式.总结提升:本题考查了二次根式的混合运算,熟练掌握完全平方公式是解题的关键.易错点7 运用运算律出现符号错误典例7(2022秋•迎泽区校级月考)下面是小明同学进行实数运算的过程,认真阅读并完成相应的任务:×+1)︸①×︸②第一步―10+2……第二步―8……第三步任务一:以上化简步骤中第一步中:标①的运算依据是 ;标②的运算依据是 (运算律).任务二:第 步开始出现错误,错误原因是 ,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.解:任务一、①由②的运算依据是乘法的分配律;故答案为:二次根式的性质.乘法的分配律;任务二、从第二步开始出现错误.×+1)×1―10﹣2―12,故答案为:任务一:二次根式的性质;乘法的分配律.任务二:①12.总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.变式训练1.(2022春•12(的过程,请认真阅读并完成相应的任务.―12(―12(2第一步―12×―12×第二步第三步第四步=―第五步任务一:小明同学的解答过程从第 步开始出现错误,这一步错误的原因是  .任务二:请你写出正确的计算过程.思路引领:先计算二次根式的乘法,再算加减,即可解答.解:(1)任务一:小明同学的解答过程从第二步开始出现错误,这一步错误的原因是去括号后,括号内第二项没有变号,故答案为:二;去括号后,括号内第二项没有变号;(2―12(―12(2总结提升:本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.易错点8 滥用运算律典例8(2021秋•迎泽区校级月考)下面是小倩同学进行实数运算的过程,认真阅读并完成相应的任务:÷1 )第一步1⋯第二步+2第三步+2﹣10…第四步―8…第五步任务一:以上化简步骤中第一步化简的依据是 .任务二:第 二 步开始出现错误,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.故答案为:二次根式的性质.任务二、从第二步开始出现错误.÷1)÷1)=2+4++52总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.类型二疑难题:常考疑难问题突破疑难点1 二次根式非负性的应用1.已知实数a 满足|2019﹣a |+a ,求a ﹣20192的值.思路引领:首先由二次根式有意义的条件来去绝对值,得到a ﹣2019a ,由此得到a ﹣20192=2019.解:∵a ﹣2019≥0,∴a >2019.∴由|2019﹣a |+=a 得到a ﹣2019+a ,整理,得a ﹣2019=20192.∴a ﹣20192=2019.总结提升:a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.疑难点2 整体思想在二次根式中的应用2.(2018春•禹州市期中)已知a =+1,b ―1(a b +b a―1)的值思路引领:先由a 、b 的值计算出ab 、a +b 的值,再代入到原式=•a 2b 2abab a 2得.解:∵a =1,b =―1,∴a +b =ab 1)1)=2,则原式=•a 2b 2ab ab=总结提升:本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.3.(1)已知x =x 2﹣2x +5的值;(2)若a =2b =2,求a思路引领:(1)先把x 2﹣2x +5化简,再代入求值;(2)先把a―解:(1)由x 2+1,∴x 2﹣2x +5+1)2﹣2+1)+5=―2+5=7;(2=a =ab a b,当a =2+b =2―原式=总结提升:先化简再代入,应该是求值题的一般步骤;不化简,直接代入,虽然能求出结果,但往往导致繁琐的运算.疑难点3 判断求知问题4.(2019春•西湖区校级期中)王老师为了解学生掌握二次根式知识的情况,出了这样一道题:“根据所给”粗心的黎明同学把式子看错了,他根据条件得到2”思路引领:2,继而求出答案.解:45﹣x 2﹣(35﹣x 2)=10,2,5.总结提升:本题考查二次根式的乘除法运算,难度不大,关键是平方差公式的运用.类型三 综合拓展题:思维能力专项特训专题1 二次根式性质的应用1.(2022秋•+|2a ﹣b +1|=0,则(b ﹣a )2022=( )A .﹣1B .1C .52022D .﹣52022思路引领:因为算术平方根具有非负性,在实数范围内,任意一个数的绝对值都是非负数,若+|2a ﹣b +1|=0,则a +b +5=0,2a ﹣b +1=0,联立组成方程组,解出a 和b 的值即可解答.|2a ﹣b +1|=0,∴a+b+5=02a―b+1=0,解得a=―2 b=―3,∴(b﹣a)2022=(﹣3+2)2022=(﹣1)2022=1.故选:B.总结提升:本题考查了非负数的性质以及解二元一次方程组,根据几个非负数的和等于0,则每一个算式都等于0列出关于a、b的方程是解题的关键.2.已知x、y为实数,且y=+12,求5x﹣3y的值.思路引领:根据二次根式有意义的条件列出不等式,求出x、y的值,计算即可.解:由题意得,3x﹣4≥0,4﹣3x≥0,解得,x=4 3,∴y=1 2,则5x﹣3y=5×43―3×12=316.总结提升:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.(2022春•大连月考)已知实数a在数轴上的对应点位置如图,则化简|a―1|―( )A.2a﹣3B.﹣1C.1D.3﹣2a思路引领:根据数轴上a点的位置,判断出(a﹣1)和(a﹣2)的符号,再根据非负数的性质进行化简.解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=a﹣1﹣[﹣(a﹣2)]=a﹣1+(a﹣2)=2a﹣3.故选:A.总结提升:此题主要考查了二次根式的性质与化简,正确得出a﹣1>0,a﹣2<0是解题关键.4.当x+6有最小值,最小值为多少?思路引领:≥0,可以得出最小值.0,∴当x =―12时,6有最小值,最小值为6.总结提升:本题考查了算术平方根.解题的关键是掌握算术平方根的非负性.5.(2019秋•渠县校级期中)已知x 、y 、a 满足:+=x 、y 、a 的三条线段组成的三角形的面积.思路引领:直接利用二次根式的性质得出x +y =8,进而得出:3x ―y ―a =0x ―2y +a +3=0x +y =8,进而得出答案.解:根据二次根式的意义,得x +y ―8≥08―x ―y ≥0,解得:x +y =8,0,根据非负数得:3x ―y ―a =0x ―2y +a +3=0x +y =8,解得:x =3y =5a =4,∴可以组成直角三角形,面积为:12×3×4=6.总结提升:此题主要考查了二次根式的应用,正确应用二次根式的性质是解题关键.专题2 二次根式大小比较方法1 平方法1.(2022•思路引领:++解:2=202=∴20+故答案为:<.总结提升:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键是比较出两个数的平方的大小关系.方法2 分子有理化法2.认真阅读下列解答过程:比较2―解:∵2―(2―1,=1,又20即22的大小关系.思路引领:认真阅读题目,然后依据题目所给的方法进行比较即可.―2=21,2>0,<1.2.总结提升:1,―2=1是解题的关键.方法3 作商法3.利用作商法比较大小思路引领:根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=×=1,总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确作商法比较大小的方法.方法四定义法4思路引领:根据非负数的性质和有理数大小的比较方法即可得到结论.解:∵5﹣a≥0,∴a≤5,∴a﹣6<0,00,总结提升:本题考查的是实数的大小比较,要善于借助一个中间数作桥梁是解决问题的关键.专题3 二次根式的运算5.(2019秋•皇姑区校级月考)计算:(1)(2)―÷(3)(1―――1)2.(4―11)―20180――2|.思路引领:(1)直接化简二次根式进而合并即可;(2)直接利用二次根式的混合运算法则进而得出答案;(3)直接利用二次根式的混合运算法则计算进而得出答案;(4)直接利用负整数指数幂的性质以及零指数幂的性质分别化简进而得出答案.解:(1)原式=+=(2)原式=(=﹣1;(3)原式=+―(12+1﹣=――=﹣―(4)原式=3――1﹣2=总结提升:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.专题4 二次根式的求值6.(2022秋•宁德期中)已知:x =y =(1)填空:|x ﹣y |= ;(2)求代数式x 2+y 2﹣2xy 的值.思路引领:(1)根据二次根式的减法运算法则计算即可.(2)将代数式转化为(x ﹣y )2,再分别求出x ﹣y 和xy 的值,进而可得答案.解:(1)|x ﹣y |=||=+=故答案为:(2)x 2+y 2﹣5xy =(x ﹣y )2,∵x ﹣y =∴(x ﹣y )2﹣3xy =2=8.即代数式x 2+y 2﹣2xy 的值为8.总结提升:本题考查二次根式的化简求值,熟练掌握运算法则是解答本题的关键.7.(2020春•川汇区期末)计算题:已知x +1x x ―1x 的值.思路引领:根据平方差公式计算;∵x +1x∴(x +1x)22,∴x 2+2+1x 2=5,∴x 2﹣2+1x 2=5﹣4,∴(x ―1x)2=1,∴x―1x=±1.总结提升:本题考查的是分式的化简求值、二次根式的乘法,熟记平方差公式、完全平方公式是解题的关键.8.(2017秋•昌江区校级期末)已知正数m、n满足m4n=3,求值:思路引领:由m4n=3得出2﹣2﹣3=0,―13,代入计算即可.解:∵m4n=3,2+(2﹣23=0,2﹣2+3=0,1)+―3)=0,―1+=3,∴原式=3232012=12015.总结提升:本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.类型四中考真题:精选2022中考真题过关1.(2022•内蒙古)实数a1+|a﹣1|的化简结果是( )A.1B.2C.2a D.1﹣2a思路引领:根据数轴得:0<a<1,得到a>0,a﹣1<0=|a|和绝对值的性质化简即可.解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.总结提升:=|a|是解题的关键.2.(2022•安顺)估计(A.4和5之间B.5和6之间C.6和7之间D.7和8之间思路引领:直接利用二次根式的性质结合估算无理数的大小方法得出答案.解:原式=2∵34,∴5<2+6,故选:B.总结提升:此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.3.(2022•x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2思路引领:根据二次根式有意义的条件:被开方数是非负数即可得出答案.解:∵3x﹣6≥0,∴x≥2,故选:D.总结提升:本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.4.(2022•广州)代数式1有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1思路引领:直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.解:代数式1有意义时,x+1>0,解得:x>﹣1.故选:B.总结提升:此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.5.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=a为子弹的加速度,s 为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s思路引领:把a=5×105m/s2,s=0.64m代入公式v=解:v=8×102(m/s),故选:D.总结提升:此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2022•x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0思路引领:根据二次根式的被开方数是非负数,a﹣p=1a p(a≠0)即可得出答案.解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.总结提升:本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a﹣p=1a p(a≠0)是解题的关键.7.(2022•荆州)若3―a,小数部分为b,则代数式(2+)•b的值是 .思路引领:3―a、b的值,代入所求式子计算即可.解:∵12,∴1<3―2,∵若3―a,小数部分为b,∴a=1,b=31=2∴(2+)•b=(2+(2―2,故答案为:2.总结提升:本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.8.(2022•随州)已知m为正整数,=m有最小值3×7=21.设n1的整数,则n的最小值为 ,最大值为 .思路引领:n最小为31越小,300 n越小,则n=2时,即可求解.∴n最小为3,1的整数,越小,300n越小,则n 越大,2时,300n=4,∴n =75,故答案为:3;75.总结提升:本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.9.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简|a +1|― .思路引领:根据数轴可得:﹣1<a <0,1<b <2,然后即可得到a +1>0,b ﹣1>0,a ﹣b <0,从而可以将所求式子化简.解:由数轴可得,﹣1<a <0,1<b <2,∴a +1>0,b ﹣1>0,a ﹣b <0,∴|a +1|=a +1﹣(b ﹣1)+(b ﹣a )=a +1﹣b +1+b ﹣a=2,故答案为:2.总结提升:本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2022•内蒙古)已知x ,y 是实数,且满足y+18,则的值是 .思路引领:根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.解:∵y =18,∴x ﹣2≥0,2﹣x ≥0,∴x =2,y =18,则原式==12,故答案为:12总结提升:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.11.(2022•济宁)已知a =2+b =2―a 2b +ab 2的值.思路引领:利用因式分解,进行计算即可解答.解:∵a =2b =2∴a 2b +ab 2=ab (a +b )=(2+(2(2+2―=(4﹣5)×4=﹣1×4=﹣4.总结提升:本题考查了二次根式的混合运算,代数式求值,熟练掌握因式分解是解题的关键.12.(2022•河池)计算:|﹣3﹣1―(π﹣5)0.思路引领:先去绝对值,计算负整数指数幂,零指数幂和二次根式乘法,再合并即可.解:原式=―13―1=23.总结提升:本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.13.(2022•泰州)(1×(2)按要求填空:小王计算2x x 24―1x 2的过程如下:解:2x x 24―1x 2=2x (x 2)(x 2)―1x 2⋯⋯第一步=2x (x 2)(x 2)―x 2(x 2)(x 2)⋯⋯第二步=2x x2(x2)(x2)⋯⋯第三步=x2(x2)(x2)⋯⋯第四步=1x2.……第五步小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .思路引领:(1)原式利用二次根式乘法法则计算,合并即可得到结果;(2)观察解题的过程,分析第一步变形的依据,找出出错的步骤,计算出正确的结果即可.解:(1)原式===(2)2xx24―1x2=2x(x2)(x2)―1x2=2x(x2)(x2)―x2(x2)(x2)=2x(x2) (x2)(x2)=2x x2 (x2)(x2)=x2(x2)(x2)=1x2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1x2.故答案为:因式分解,三,1x2.总结提升:此题考查了二次根式的混合运算,因式分解﹣运用公式法,以及分式的加减法,熟练掌握运算法则是解本题的关键.。

中考数学复习《二次根式》专项练习题-附带答案

中考数学复习《二次根式》专项练习题-附带答案

中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。

中考数学复习《二次根式》专项提升训练题-附答案

中考数学复习《二次根式》专项提升训练题-附答案

中考数学复习《二次根式》专项提升训练题-附答案学校:班级:姓名:考号:一、单选题1.如果代数式有意义,那么x的取值范围是()A.x≥0且x≠1 B.x≠1 C.x>0 D.x≥02.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列各式计算正确的是().A.B.C.D.4.估算的值应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间5.已知,则的值是()A.B.C.D.6.若,则()A.B.C.D.x为一切实数7.已知,,则代数式的值为()A.9 B.C.3 D.58.在Rt△ABC中,∠C=90°,c为斜边,a、b为直角边,则化简的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣3c D.2a二、填空题9.的倒数为.10.如果式子有意义,那么x的取值范围是.11.比较大小:.12.已知,那么,.13.符合的正整数的值有个.三、解答题14.计算:(1)(2)15.已知,求代数式的值.16.求代数式的值,其中如表是小明和小颖的解答过程:解:原式.解:原式.(1)填空:的解法是错误的;(2)求代数式的值,其中.17.(1)已知是的算术平方根,是的立方根,求的立方根;(2)若,的算术平方根是5,求的平方根.18.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求的值;(2)在数轴上还有C、D两点分别表示实数c和d,且有|2c+6|与互为相反数,求2c+3d 的平方根.参考答案:1.A2.D3.C4.B5.B6.A7.C8.B9.10.且11.<12.4;-813.314.(1)解:原式(2)解:.15.解:当,时.16.(1)小明(2)解:原式原式.17.(1)解:由题意知∴∴∴∴的立方根为;(2)解:由,解得∴.∵的算术平方根是5∴∴∴的平方根为.18.(1)解:∵AB=2∴∴∴;(2)解:∵|2c+6|与互为相反数∴∵∴2c+6=0,d−4=0∴c=−3,d=4∴∴的平方根是。

中考数学总复习《二次根式》专项提升练习题(附答案)

中考数学总复习《二次根式》专项提升练习题(附答案)

中考数学总复习《二次根式》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________ 1. 已知二次根式x+1,请回答下列问题:(1)要使该二次根式有意义,则x的取值范围为__________;(2)若该二次根式能与5进行合并,则x的值可为________;(3)该二次根式为最简二次根式,则x可取的最小整数为__________.2.计算:(1)(-3)2=________;(2)(-0.2)2=________;(3)34=________;(4)18-8=________;(5)32÷2=________;(6)3×(2+8)=________.3. 北师八上P34习题改编请按要求估计下列各数的值:(1)11在相邻的整数________和________之间;(2)17-3的值在相邻的整数________和________之间;(3)与15最接近的整数为________.知识逐点过考点1 二次根式的相关概念及性质相关概念1. 二次根式定义:形如 a (a≥0)的式子;2. 有意义的条件:被开方数①________;3. 最简二次根式必须同时满足的两个条件:(1)被开方数中不含分母(即分母中不含根号);(2)被开方数中不含能开得尽方的因数或因式;4. 同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式性质1. 双重非负性: a ≥0且a≥0;2. ( a )2=a(a②________);3. a2=|a|=⎩⎪⎨⎪⎧③(a≥0)④(a<0);4. ab =⑤________(a≥0,b≥0);5.ab=⑥________(a≥0,b>0)考点2 二次根式的运算加减法先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并乘法 a ·b =⑦______(a≥0,b≥0)除法ab=ab(a≥0,b>0)考点3 无理数的估值估值确定无理数的值在哪两个相邻整数之间:1. 先对无理数平方,如(7)2=7;2. 找出与平方后所得数字相邻的两个开得尽方的整数,如4和9;3. 对以上两个整数开方,如4=2,9=3;4. 确定这个无理数的值在开方后所得的两个整数之间,即2<7<3确定无理数的整数部分和小数部分要确定a±b 的整数部分和小数部分,先对a±b 进行估值,如1+7的整数部分是3,则它的小数部分是1+7-3,即7-2【温馨提示】牢记常见的无理数的近似值:2≈1.414,3≈1.732,5≈2.236,π≈3.142,5-12≈0.618真题演练命题点1 二次根式的相关概念及性质1. 若式子2x-4在实数范围内有意义,则x的取值范围是()A. x≠2B. x≥2C. x≤2D. x≠-22. 化简42的结果是()A. -4B. 4C. ±4D. 2命题点2 二次根式的运算3. 计算:3×12=________.命题点3 无理数的估值4. 设6-10的整数部分为a,小数部分为b,则(2a+10)b的值是()A. 6B. 210C. 12D. 910基础过关1. 下列二次根式是最简二次根式的是()A. 8B. 13 C. 18 D. 72. 若a-4有意义,则a的值可以是()A. -1B. 0C. 2D. 63. 对于二次根式的乘法运算,一般地,有 a ·b =ab .该运算法则成立的条件是()A. a>0,b>0B. a<0,b<0C. a≤0,b≤0D. a≥0,b≥04.如图,数轴上表示实数7的点可能是()第4题图A. 点PB. 点QC. 点RD. 点S5. 下列计算正确的是()A. (2)0=2B. 23+33=56C. 8=42D. 3(23-2)=6-236. 墨迹覆盖了等式“9-■=1”中的一部分,则覆盖的部分可以是()A. 80B. 8C. 38 D. 237. 若a=2,b=7,则14a2b2=()A. 2B. 4C. 7D. 28. 最简二次根式m-1与33可以合并,则m=__________.9. 计算:2-8=__________.10.计算:20×5=__________.11. 已知x,y为正整数,且x<6<y,则y x的值可以是__________.12. 请写出一个正整数m的值使得8m 是整数:m=__________.13. 计算:27÷32×22-62.综合提升14. 已知k=2(5+3)(5-3),则与k最接近的整数为()A. 2B. 3C. 4D. 5二次根式(参考答案)1. (1)x ≥-1; 【解析】根据二次根式的非负性可得x +1≥0,解得x ≥-1.(2)4(答案不唯一); 【解析】∵x +1 能与5 进行合并,∴x +1的值可以为5,解得x =4(答案不唯一).(3)1.2. (1)3;(2)0.2;(3)32;(4)2 ;(5)4;(6)36 . 3. (1)3,4;(2)1,2;(3)4; 【解析】∵9<15<16,∴9 <15 <16 ,3<15 <4,∵3.52=12.25,即9<12.5<16,∴与15 最接近的整数为4. 知识逐点过①大于或等于0 ②≥0 ③a ④-a ⑤ a ·b ⑥a b⑦ab 真题演练 1. B 【解析】∵2x -4 在实数范围内有意义,∴2x -4≥0,解得x ≥2. 2. B 【解析】∵a 2 =|a |,∴42 =4. 3. 6 【解析】原式=3×12 =36=6.4. A 【解析】∵9<10<16,∴3<10 <4,∴-4<-10 <-3,∴2<6-10 <3,∴6-10 的整数部分是2,小数部分是6-10 -2=4-10 ,即a =2,b =4-10 ,∴(2a +10 )b =(2×2+10 )×(4-10 )=6.基础过关1. D2. D 【解析】 ∵二次根式a -4 有意义,∴a -4≥0,解得a ≥4,∴a 的值可以是6.3. D 【解析】 根据二次根式有意义的条件,得⎩⎪⎨⎪⎧a ≥0b ≥0ab ≥0,∴a ≥0,b ≥0. 4. B 【解析】∵4 <7 <9 ,∴7 位于2和3之间,∴数轴上表示实数7 的点可能是点Q.5. D【解析】A.(2)0=1,故该选项不正确,不符合题意;B.23+33=53,故该选项不正确,不符合题意;C.8=22,故该选项不正确,不符合题意;D.3(23-2)=6-23,故该选项正确,符合题意.6. C【解析】9-38=3-2=1.7. A【解析】∵a=2,b=7,∴14a2b2=14×(2)2(7)2=14×27=4=2.8. 4【解析】∵最简二次根式m-1与33可以合并,∴m-1=3,∴m=4.9. -2【解析】2-8=2-22=-2.10. 10【解析】原式=100=10.11. 3(答案不唯一)【解析】∵4<6<9,∴2<6<3.∵x,y为正整数,∴x=1或2,y≥3,∴y x的值不唯一,只要符合要求即可,可以是3,4,9,16等.12. 2(答案不唯一)【解析】当m=2时,则8m =16=4,符合题意,∴m的值可以为2(答案不唯一).13. 解:原式=33×23×22-62=122-62=62.14. B【解析】k=2(5+3)(5-3)=22=8,∵4<8<9,9-8<8-4,∴与8最接近的整数为3.。

九年级二次根式专题训练

九年级二次根式专题训练

九年级二次根式专题训练一、二次根式的概念1. 二次根式的定义- 形如公式的式子叫做二次根式。

其中,公式叫做被开方数。

- 例如:公式,公式都是二次根式,因为公式,公式。

而公式不是二次根式,因为公式。

2. 二次根式有意义的条件- 被开方数必须是非负数。

- 例1:求公式中公式的取值范围。

- 解析:要使二次根式有意义,则公式,解得公式。

- 例2:若公式有意义,则公式满足的条件是()- A. 公式 B. 公式 C. 公式 D. 公式- 解析:因为二次根式有意义的条件是被开方数公式,解不等式公式,公式,得公式,所以答案是B。

二、二次根式的性质1. 公式- 例1:计算公式。

- 解析:根据性质公式,所以公式。

- 例2:若公式,则公式____。

- 解析:由公式(公式),已知公式,所以公式。

2. 公式- 例1:化简公式。

- 解析:先计算公式,然后公式。

- 例2:化简公式。

- 解析:先将公式变形为公式,则公式,因为公式,所以公式,公式。

三、二次根式的乘除1. 二次根式的乘法法则- 公式。

- 例1:计算公式。

- 解析:根据乘法法则公式。

- 例2:化简公式。

- 解析:将公式分解因数公式,则公式。

2. 二次根式的除法法则- 公式。

- 例1:计算公式。

- 解析:根据除法法则公式。

- 例2:化简公式。

- 解析:公式。

四、二次根式的加减1. 同类二次根式- 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

- 例如:公式化简为公式,公式化简为公式,公式和公式是同类二次根式,因为它们化成最简二次根式后被开方数都是公式。

2. 二次根式的加减法则- 二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式合并。

- 例1:计算公式。

- 解析:先化简公式,公式,则公式。

- 例2:计算公式。

- 解析:化简公式,公式,公式,则公式。

(完整word版)二次根式拓展专题培优

(完整word版)二次根式拓展专题培优

二次根式的专题提高一、二次根式的双重非负性例题:1、使式子xx 2-有意义的x 的取值范围是 2、无论x 取任何实数,m x x +-62都有意义,则m 的取值范围是3、已知22284x x y -+-=,求x+y 的值4、已知实数a,b ,c 满足0432=-++b a ,012442=--+c b c ,求a+b+c 的值。

练习:1、使式子11--x x 有意义的x 的取值范围是 2、若4342-=-+-b a a ,则b a 22-=3、若a a a =-+-20152014,则22014-a = 二、简单的二次根式的化简例题:1、如果式子322)1(2-=-+-x x x ,则x 的取值范围是2、把a b b a --1)(根号外的因式移到根号内的结果为 练习: 1、化简(1)a a 1- (2)22xx x --2、已知a ,b ,c 为∆ABC 的三边,化简2222)()()()(a b c c a b c b a c b a -----+--+++的结果为是3、若x x +=-11,则2)1(-x =三、二次根式的运算与规律探究例题:1、观察下列各式:1131432112+⨯+=⨯⨯⨯+,1232543212+⨯+=⨯⨯⨯+,1333654312+⨯+=⨯⨯⨯+,猜测=⨯⨯⨯+201720162015201412、计算2201612018201720162015-+⨯⨯⨯的结果为 练习:1、设n,k 为正整数,,, ,已知,则 2、小明做数学题时,发现,,,,按上述规律,第n 个等式是3、设S=++…+,求不超过S 的最大整数四、分母有理化例题:黑白双雄、纵横江湖;双剑合璧,天下无敌.这是武侠小说中常见的描述,其意是指两人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子"如:,与的积不含有根号,我们就说这两个式子互为有理化因式,其中一个是另一个的有理化因式.于是二次根式可以这样解:,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:①的有理化因式是 ,121分母有理化得 ②计算:③计算:. ④已知,,则⑤已知:,,,试比较a 、b 、c 的大小。

新思维系列九年级数学2二次根式课后拓展训练2

新思维系列九年级数学2二次根式课后拓展训练2

二次根式1.下列各式中,一定是二次根式的是 ( )2.(2022.无锡)有意义的x 取值范围是 ( ) A.13x > B. 13x >- ≥13 D. x ≥-133.a 的取值范围是 ( ) A.a ≠0 B. a >-1且a ≠0 C. a >-3且a ≠0 D. a ≥-3且a ≠04.若1m =,则m 的取值范围是 ( )>1 B. m<1 C. m ≥1 ≤15. ( )A. a ≤0B. a ≥0C.a <0 D a >06.(1) 2=a 成立的条件是 ;(2-a 成立的条件是 .7.当x 2x =-.8.x .9.若a ,b 满足2(2)0a b +-=,那么21b a -+= .10.223x x -+= .11.要使下列二次根式有意义,则x 的取值范围是什么?(1); . 12.把下列各式在实数范围内分解因式.(1)2441x x -+; (2)49a -.13.2440b b -+=,求b a 的值.14.已知x ,y ,z |1|0y -=,求200920083xy z ++的值.15.已知-2≤a ≤2.参考答案[提示:二次根式的根指数为2,且被开方数必须大于或等于0.][提示:由3x-1≥0,得x≥13 .][提示:字母a应满足,即a≥-3,且a≠0.][提示:将原式变形可得1m=,可知1-m≤0,∴m≥1.][提示:∵2(1)a x-+≥0,且2x+1﹥0∴-a≥0,∴a≤0.]6.(1)a≥0(2) a≤0[提示:(1)被开方数为非负数.(2)2a≥0,∴-a≥0,∴a≤0.]7.≤2[提示:2(2)x-0,∴2-x≥0,∴x≤2.]8.=2[提示:∵2-x≥0,∴x≤2,又x-2≥0,∴x≥2.∴x=2.][提示:由题意可得a+b-2=0,①b-2a+3=0,②①+②得2b-a+1=0.][提示:由题意可得x-1≥0,1-x≥0,∴x=1,代入原式,结果为2.]11.解:(1)1x-≥0,且≠0,∴x-1<0. (2) 22440,(2)0x x x-+≥-≥即,∴x为任意实数(3)10x-10-1x-≥≠,且,∴x-1﹤0,即x﹤1(4)x+1≥0,2,∴x≥-1,且x≠312.解:2222441(2)221(21)x x x x x-+=-⨯+=-(2)42229(3)(3)(3)(a a a a a a-=+-=++13.解:2440b b-+=;2(2)0.b-=∵≥0,2(2)b-≥0,20,20,2,2,24ba b b b a a∴-=-=∴==∴==.a+3≥0a≠014.|1|0,y -=0,|y-1|≥0≥0, ∴x+1==0,z -2=0,∴x=-1,y=1,z =2, ∴200920083200920083(1)121188.x y z ++=-++=-++=15.解:∵-2≤a ≤2, ∴-4≤2 a ≤4,0≤a+2≤4, ∴5-2a>0,52(2)52233.a a a a a =--+=---==。

九年级数学第三章 二次根式拓展训练 试题

九年级数学第三章 二次根式拓展训练 试题

卜人入州八九几市潮王学校二次根式拓展训练一、选择题〔每一小题3分,一共20分〕1、在、、、、中,最简二次根式的个数是〔〕A、1B、2C、3D、42、设的小数局部为,那么的值是〔〕A、1B、是一个无理数C、3D、无法确定3、假设,那么的值是〔〕A、B、C、2D、4、假设1≤≤,那么的值是〔〕A、B、C、D、15、式子成立的条件是〔〕A、≥3B、≤1C、1≤≤3D、1<≤36、以下等式不成立的是〔〕A、B、C、D、7、式子〔>0〕化简的结果是〔〕A、B、C、D、8、以下运算正确的选项是〔〕A、B、C、D、9、假设最简根式与是同类二次根式,那么使有意义的x的范围是〔〕A、x≤10B、x≥10C、x<10D、x>1010、假设实数x、y满足x2+y2-4x-2y+5=0,那么的值是〔〕A、1B、+C、3+2D、3-2二、填空题〔每一小题2分,一共20分〕11、当时,无意义;有意义的条件是。

12、最简二次根式与是同类二次根式,那么=,=。

13、假设,那么、应满足。

14、把根号外的因式移到根号内:当>0时,=;=。

15、假设,那么=16、假设<0,化简:=。

17、比较大小:;。

18、4、假设y=++,那么(x+y)2021=。

19、xy=3,那么的值_________.20、=2,=3,=4,…请你用含n的式子将其中蕴涵的规律表示出来:.三、计算题〔每一小题3分,一共24分〕21、22、(2+4-3)23、·〔-4〕÷24、25、〕26、27、28、四、解答题〔一共36分〕30、假设的整数局部为x,小数局部为y,求的值.〔4分〕31、实数a在数轴上的位置如下列图,化简:。

〔4分〕32:求值:〔4分〕1 2-1第18题33、化简〔4分〕34、。

〔4分〕35、如图,直线表示草原上一条河,在附近有A、B两个村庄,A、B到的距离分别为AC=30km,BD=40km,A、B两个村庄之间的间隔为50km.有一牧民骑马从A村出发到B村,途中要到河边给马饮一次水。

九年级数学二次根式课后作业 试题

九年级数学二次根式课后作业  试题

卜人入州八九几市潮王学校蠡园九年级数学二次根式课后作业苏科一、选择题.(每一小题2分,一共20分)1.以下式子一定是二次根式的是〔〕 A.2--x B.x C.22+x D.22-xb b -=-3)3(2,那么〔〕A.b >3B.b <3C.b ≥3D.b ≤313-m 有意义,那么m 能取的最小整数值是〔〕A.m =0B.m =1C.m =2D.m =3)22(28+-得〔〕A.—2B.22-C.2D.224-5.以下根式中,最简二次根式是() A.a 25 B.22b a + C.2a D.5.0)6(6-=-⋅x x x x ,那么〔〕A.x ≥0B.x ≥≤x ≤6D.x 为一实在数x <2,化简x x -+-3)2(2的正确结果是〔〕ab a 1,322=-=,那么a 、b 大小关系是() A.a =b B.a >b C.a <b D.a >-ba a 241-+与是同类二次根式,那么a 的值是〔〕A.43-=aB.34=a C.1=a D.1-=a 10.1018222=++x x x x ,那么x 等于〔〕 A.4B.±2C.2D.±4二、填空题.(每空1分,一共20分)1.指出以下各式中x 的取值范围:〔1〕__________;〔2〕-____________;2.化简:〔1〕=_______;〔2〕=________;〔3〕=_________〔y >0,z >0〕;〔4〕=________;〔5〕=_________;〔6〕=_____________.3.计算:〔1〕×=__________;〔2〕=___________;〔3〕·3=_____________;〔4〕=____________;4.写出的两个同类二次根式.5.在实数范内分解因式:a 2-5=___________________. 6.假设的整数局部为x ,小数局部为y ,那么x -y 的值是___________.7.〔1〕当x _________时,+2x -5=0.〔2〕当-2≤x <1时,化简-得_____________.8.假设与是同类二次根式,那么x =_________.9.化简:a =___________.10.对于两个正数a 和b ,①假设a +b =2,那么≤1;②假设a +b =3,那么≤;③假设a +b =4,那么≤2,根据上面三个结论所提供的规律可猜想得一般结论为:____________________.二、解答题.1.计算.(每一小题3分,一共30分)〔1〕×÷;〔2〕2(-2)〔3〕-6++2;〔4〕(-2)(+).〔5〕×2×(-)〔6〕(3-2+)÷2〔7〕9-7+2×3(8)-x +6x(9)·÷;(10)2a [-(-b )](b ≥0)2.(5分)某同学作业本上做了这么一道题:“当a =●时,试求a +的值.〞其中“●〞是被墨水弄污的.该同学所求得之答案是,请你判断该同学答案是否正确,说出你的道理.3.(5分)假设是最简根式且与是同类二次根式,求+的值.4.(5分):132-=x ,求12+-x x 的值.5.(5分):.22,211881的值求代数式-+-+++-+-=x y y x xy y x x x y 6.(5分)x 为奇数,且18721,969622+-+⋅++--=--x x x x x xx x x 求的值. 7.(5分)甲、乙两人对题目“化简并求值:21122-++a a a ,其中51=a 〞有不同的解答,甲的解答是:549211)1(1211222=-=-+=-+=-++a a a a a a a a a aa ,乙的解答是:5111)1(1211222==-+=-+=-++a a a a a a a a a a ,谁的解答是错误的?为什么?。

2019-2020学年九年级数学上册 21.2二次根式的乘除 二次根式的拓展练习 新人教版.doc

2019-2020学年九年级数学上册 21.2二次根式的乘除 二次根式的拓展练习 新人教版.doc

2019-2020学年九年级数学上册 21.2二次根式的乘除 二次根式的拓展练习 新人教版在教学中,根据学生的实际情况,在学有余力的情况下,可用以下的例题和练习题进行知识的拓展:内容:例:已知042=++-y x ,求x y 的值. 解:因为 2-x 和4+y 都是非负数,并且042=++-y x ,所以 02=-x ,04=+y ,解得x =2,y = -4,所以16)4(2=-=x y .意图:加深对算术平方根概念中两层含义的认识,会用算术平方根的概念来解决有关的问题. 效果:达到能灵活运用算术平方根的概念和性质的目的.课后还可以布置相应的拓展性习题:内容:1.已知()0232212=++++-z y x ,求x+y+z 的值. 2.若x ,y 满足52112=+-+-y x x ,求xy 的值.3.求55=-+x x 中的x .4.若115+的小数部分为a ,115-的小数部分为b ,求a +b 的值.5.△ABC 的三边长分别为a ,b ,c ,且a ,b 满足04412=+-+-b b a ,求c 的取值范围. 解:1.因为21-x ≥0,()22+y ≥0,23+z ≥0,且()0232212=++++-z y x , 所以21-x =0,()22+y =0,23+z =0,解得21=x ,2-=y ,23-=z ,所以x +y +z = 3-. 2.因为2x -1≥0,1-2x ≥0,所以 2x -1=0,解得 x =21 ,当 x =21时,y =5,所以 x y =21×5=25. 3.解:因为x -5≥0,x x -=-55≥0 ,所以 x =5 .4.解:因为4113<< ,所以115+的整数部分为8,115-的整数部分为1,所以115+的小数部分3118115-=-+=a ,115-的小数部分1141115-=--=b ,所以1114311=-+-=+b a .5.解:由04412=+-+-b b a ,可得0)2(12=-+-b a ,因为 1-a ≥0,2)2(-b ≥0, 所以1-a =0,2)2(-b =0,所以a = 1,b = 2,由三角形三边关系定理有:b- a < c < b +a ,即1 < c < 3.。

九年级数学上册 2二次根式的乘除 二次根式的拓展练习 试题

九年级数学上册 2二次根式的乘除 二次根式的拓展练习  试题

轧东卡州北占业市传业学校二次根式的拓展练习 在教学中,根据学生的实际情况,在学有余力的情况下,可用以下的例题和练习题进行知识的拓展: 内容:例:042=++-y x ,求x y 的值. 解:因为 2-x 和4+y 都是非负数,并且042=++-y x ,所以 02=-x ,04=+y ,解得x =2,y = -4,所以16)4(2=-=x y .意图:加深对算术平方根概念中两层含义的认识,会用算术平方根的概念来解决有关的问题. 效果:到达能灵活运用算术平方根的概念和性质的目的.课后还可以布置相应的拓展性习题:内容:1.()0232212=++++-z y x ,求x+y+z 的值. 2.假设x ,y 满足52112=+-+-y x x ,求xy 的值. 3.求55=-+x x 中的x . 4.假设115+的小数局部为a ,115-的小数局部为b ,求a +b 的值.5.△ABC 的三边长分别为a ,b ,c ,且a ,b 满足04412=+-+-b b a ,求c 的取值范围.解:1.因为21-x ≥0,()22+y ≥0,23+z ≥0,且()0232212=++++-z y x , 所以21-x =0,()22+y =0,23+z =0,解得21=x ,2-=y ,23-=z ,所以x +y +z = 3-. 2.因为2x -1≥0,1-2x ≥0,所以 2x -1=0,解得 x =21 ,当 x =21时,y =5,所以 x y =21×5=25. 3.解:因为x -5≥0,x x -=-55≥0 ,所以 x =5 . 4.解:因为4113<<,所以115+的整数局部为8,115-的整数局部为1,所以115+的小数局部3118115-=-+=a ,115-的小数局部1141115-=--=b ,所以1114311=-+-=+b a .5.解:由04412=+-+-b b a ,可得0)2(12=-+-b a ,因为 1-a ≥0,2)2(-b ≥0, 所以1-a =0,2)2(-b =0,所以a = 1,b = 2,由三角形三边关系定理有:b- a < c < b +a ,即1 < c < 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.1 二次根式
1.下列各式中,是二次根式的有( )
3)x ≥2)3
x ≥
)a b >. A.2个 B.3个 C. 4个
D.5个
2. )A.a ≥0,且b ≥0 B. a ≥0,且b >0 C. a
b >0 D. a b ≥0
3.当a <0,b >0 )
A.a +b
B.-a -b
C.a -b
D.-a +b
4.x 的取值范围是( ) A. x ≠1 B. x ≠0 C. x >-1且x ≠0
D. x ≥-1且x ≠0
5.的值是( )
A.-3
B.3或-3
C.9
D.3
6.3a =-,则a 与3的大小关系是( )
A.a <3
B.a ≤3
C.a >3
D.a ≥3
7.下列函数中,自变量x 取值范围是x ≥3的是( ) A. 1
3y x =- B. y = C.y =x -3
D. y =8.
2()x y =+,则x -y 的值为( )
A.-1
B.1
C.2
D.3
9.已知a )
A.a
B.-a
C.-1
D.0
10.已知10a +=,则a -b = .
11.当x =-2的值是 .
12.把下列各式的实数范围内分解因式.
(1)4a 2-11;
(2)4x 2-x -1;
(3)a 4-7a 2+10.
13.已知-2≤m
14.已知x <-8,化简4
参考答案
1.B[提示:根据二次根式的概念可知①④⑤是二次根式.要想判
断一个式子是否为二次根式,必须满足以下两点:①根指数为2;②被开方数大于或等于零.]
2.D[
0.a b ≥] 3.D[
.b a b a b =+=-+]
4.D[提示:10,10.0,
x x x x +⎧-⎨⎩≥∴≥且≠≠] 5.D[
3.==]
6.B[
33,3a a a =-=--∴≥0,∴≤3.a ] 7.D[提示:A ,B 选项中,x 不能等于3.C 选项中,x 为任意实数.]
8.C[提示:由二次根式的意义知1-x ≥0且x -1≥0,∴x =1,∴(x +y )2=0,∴y =-1,∴x -y =2.]
9.D[提示:由:-a 2≥0,得a 2≤0,∴a =0
0.=]
10.-9[提示:
由1a ++,得10,80,1,8,9.a b a b a b +=-==-=-=-∴∴] 11.5[提示:当x =-2
时,
= 5.]
12.解:(1)4a 2-11=(2a )2
-=2(2a (2)
22141416
x x x x --=-+-
2217111(2)(216444x x x =--=-- (3)a 4-7a 2+10=(a 2-2)(a 2-5
)=(
.a a a a
13.解:∵-2≤m ≤2,∴5-2m >0,m +4>0,
∴524(52)(4)13.m m m m m --+=--+=-14.解:
∵x<-8,4+x<0,∴[]
x x x
=-+=--+=++=
4444(4)44∵<∴<∴原式
+-+=-+=--
x x x x x
8,8,80,(8)8.。

相关文档
最新文档