2008年广东省中考数学试卷(Word版)(含解析)
2008广东汕头中考数学试题及答案
2008年广东省汕头市初中毕业生学业考试数 学说明:1.全卷共4页.考试时间为100分钟,满分150分.2.答题前,考生必须将自己的姓名、准考证号、学校按要求填写在答卷密封线左边的空格内;并填写答卷右上角的座位号,将姓名和准考证号用2B 铅笔写、涂在答题卡指定的位置上.3.选择题的答题必须用2B 铅笔将答题卡对应小题所选的选项涂黑.4.非选择题可用黑色或蓝色字迹的钢笔、签字笔按各题要求写在答卷上,不能用铅笔和红笔,写在试卷上的答案无效.5.必须保持答卷的清洁.考试结束时,将试题、答卷、答题卡交回.一、选择题(本大题8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑. 1.12-的值是( ) A .12-B .12C .2-D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递路线全长约40 820米,用科学计数法表示火炬传递路程是( ) A .2408.210⨯米B .340.8210⨯米C .44.08210⨯米D .50.408210⨯米3.下列式子中是完全平方式的是( ) A .22a ab b ++B .222a a ++C .222a b b -+D .221a a ++4.下列图形中是轴对称图形的是( )A .B .C .D .5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是( )A .28B .28.5C .29D .29.56.已知ABC △的三边长分别为5,13,12,则ABC △的面积为( ) A .30 B .60 C .78 D .不能确定7.水平地面上放着1个球和1个圆柱体,摆放方式如右图所示,其左视图是( )8.已知某种商品的售价为204元,即使促销降价20%仍有20%的利润,则该商品的成本价是( ) A .133 B .134 C .135 D .136二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答卷相应的位置上.9.2-的相反数是 .10.经过点(12)A ,的反比例函数解析式是 .11.已知等边三角形ABC的边长为3,则ABC △的周长是 . 12.如图1,在ABC △中,M N ,分别是AB AC ,的中点,且120A B ∠+∠=,则______ANM ∠= .13.如图2,已知AB 是O 的直径,BC 为弦,30ABC ∠=.过圆心O 作OD BC ⊥交BC于点D ,连接DC ,则_______DCB ∠= . 三、解答题(一)(本大题5小题,每小题7分,共35分) 14.(本题满分7分)计算:1cos602(2008)-++-π.15.(本题满分7分)解不等式46x x -<,并在数轴上表示出解集.图1BCMNA图2ABCOD16.(本题满分7分)如图3,在ABC △中,10AB AC ==,8BC =.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法和证明),并求AD 的长.17.(本题满分7分)已知直线1l :45y x =-+和直线2l :142y x =-,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上. 18.(本题满分7分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.四、解答题(二)(本大题3小题,每小题9分,共27分) 19.(本题满分9分)在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度. 20.(本题满分9分)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是13,你认为对吗?请你用列表或画树状图的方法说明理由.图3 图421.(本题满分9分)如图5,梯形ABCD 是拦水坝的横断面图,(图中i =的铅直高度DE 与水平宽度CE 的比),60B ∠=,6AB =,4AD =,求拦水坝的横断面ABCD 的面积.1.732=1.414=)五、解答题(三)(本大题3小题,每小题12分,共36分)22.(本题满分12分)(1)解方程求出两个解1x ,2x ,并计算两个解的和与积,填入下表:出你的结论.23.(本题满分12分)(1)如图6,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求AEB ∠的大小;图5 图6 A B CD OE图7ABCDO E(2)如图7,OAB △固定不动,保持OCD △的形状和大小不变,将OCD △绕着点O 旋转某一个角(OAB △和OCD △不能重叠),求AEB ∠的大小.24.(本题满分12分)将两块大小一样含30角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知8AB =,4BC AD ==,AC 与BD 相交于点E ,连结CD .(1)填空:如图8,AC = ,BD = ;四边形ABCD 是 梯形. (2)请写出图8中所有的相似三角形(不含全等三角形). (3)如图9,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图9的平面直角坐标系,保持ABD △不动,将ABC △向x 轴的正方向平移到FGH △的位置,FH 与BD 相交于点P ,设A F t =,FBP △面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围.2008年广东省汕头市初中毕业生学业考试数学试卷参考答案一、选择题(本大题有8小题,每小题4分,共32分)二、填空题(本大题有5小题,每小题4分,共20分) 9、2 10、y =x211、9+3 3 12、∠ANM = 60° 13、∠DCB=30°. 三、解答题(一) (本大题有7小题,共35分) 14、(本题7分) 解:原式= 12 + 12 + 1= 215、(本题7分)图8 A BD CE 图9解:移项,得 4x-x<6 合并,得 3x<6∴不等式的解集为 x<2其解集在数轴上表示如下:16、(本题7分)解:(1)作图(略)(2)在△ABC 中,AB=AC ,AD 是△ABC 的中线, ∴ AD ⊥BC ∴ 118422BD CD BC ===⨯= 在Rt △ABD 中,AB =10,BD =4,222AD BD AB +=AD ∴===17、 解:由题意得45,14.2y x y x =-+⎧⎪⎨=-⎪⎩ 解得 2,3.x y =⎧⎨=-⎩∴ 直线1l 和直线2l 的交点坐标是(2,-3)。
2008年广东省广州市数学中考真题(word版含答案)
如图10,射线AM交一圆于点BLeabharlann C,射线AN交该圆于点D、E,且 .
(1)求证:AC=AE;
(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.
24.(本小题满分14分)
如图11,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是 上异于A、B的动点.过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE.
13.函数 中自变量x的取值范围是*.
14.将线段AB平移1cm,得到线段 ,则对应点A与 的距离为*cm.
15.命题“圆的直径所对的圆周角是直角”是*命题(填“真”或“假”).
16.已知平面内的凸四边形ABCD,现从一下四个关系式①AB=CD、②AD=BC、③AB∥CD、④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率为*.
19.(本小题满分10分)
实数a、b在数轴上的位置如图7所示.
化简 .
20.(本小题满分10分)
如图8,在菱形 中, °,过点 作 且与 的延长线交于点 .
求证:四边形 是等腰梯形.
21.(本小题满分12分)
如图9,一次函数 的图象与反比例函数 的图象相交于A、B两点.
(1)根据图象,分别写出点A、B的坐标;
秘密★启用前
2008年广州市初中毕业生学业考试
数学
本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.
2008年广东省深圳市中考数学试卷及答案
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根2008年广东省深圳市中考数学试卷说明:1、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。
考试时间90分钟,满分100分。
2、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。
答题卡必须保持清洁,不能折叠。
3、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。
4、本卷选择题1—10,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题11—22,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。
5、考试结束,请将本试卷和答题卡一并交回。
第一部分 选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的)1.4的算术平方根是A.-4 B.4 C.-2 D.22.下列运算正确的是A.532a a a =+ B.532a a a =⋅ C.532)(a a = D.10a ÷52a a = 3.2008年北京奥运会全球共选拔21880名火炬手,创历史记录.将这个数据精确到千位,用科学记数法表示为A.31022⨯ B.5102.2⨯ C.4102.2⨯ D.51022.0⨯4.如图1,圆柱的左视图是图1 A B C D5.A B C D6.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是A.众数是80 B.中位数是75 C.平均数是80 D.极差是157.今年财政部将证券交易印花税税率由3‰调整为1‰(1‰表示千分之一).某人在调整后购买100000元股票,则比调整前少交证券交易印花税多少元?A.200元 B.2000元 C.100元 D.1000元8.下列命题中错误的是A.平行四边形的对边相等 B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等 D.对角线相等的四边形是矩形9.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是A.2)1(2+-=x y B.2)1(2++=x yC.2)1(2--=x y D.2)1(2-+=x y10.如图2,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于A.6π B.4π C.3π D.2π第二部分 非选择题、“迎迎”、“妮AB ⊥x 轴于 A 、4所示的平面、B 两点到奶站a +b 的值为表一 表二 表三解答题(本题共7小题,其中第16题6分,第17题7分,第18题7分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.计算:03)2008(830tan 33π---︒⋅+-17.先化简代数式⎪⎭⎫ ⎝⎛-++222a a a ÷412-a ,然后选取一个合适的a 值,代入求值.图 2F E D C B A图 5E D C B A 18.如图5,在梯形ABCD 中,AB ∥DC , DB 平分∠ADC ,过点A 作AE ∥BD ,交CD 的延长线于点E ,且∠C =2∠E . (1)求证:梯形ABCD 是等腰梯形.(2)若∠BDC =30°,AD =5,求CD 的长.19.某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图6中的条形统计图.(3)写出A 品牌粽子在图7中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货?请你提一条合理化的建议.20.如图8,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO .(1)求证:BD 是⊙O 的切线. (2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且△BEF 的面积为8,cos∠BFA=32,求△ACF 的面积.图 8C图 7图 621.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?22.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.2008年广东省深圳市中考数学试卷参考答案及评分意见第二部分 非选择题填空题(本题共5小题,每小题3分,共15分)解答题(本题共7小题,其中第16题6分,第17题7分,第18题7分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.解: 原式=123333--⋅+ …………………1+1+1+1分=1213--+ …………………………5分=1 …………………………6分(注:只写后两步也给满分.)17.解: 方法一: 原式=41)2)(2()2(2)2)(2()2(2-÷⎥⎦⎤⎢⎣⎡-+++-+-a a a a a a a a=)2)(2()2)(2(42-+-++a a a a a =42+a …………………………5分(注:分步给分,化简正确给5分.)方法二:原式=)2)(2(222-+⎪⎭⎫ ⎝⎛-++a a a a a =)2(2)2(++-a a a=42+a …………………………5分取a =1,得 …………………………6分原式=5 …………………………7分(注:答案不唯一.如果求值这一步,取a =2或-2,则不给分.)18.(1)证明:∵AE ∥BD, ∴∠E =∠BDC∵DB 平分∠ADC ∴∠ADC =2∠BDC又∵∠C =2∠E∴∠ADC =∠BCD∴梯形ABCD 是等腰梯形 …………………………3分(2)解:由第(1)问,得∠C =2∠E =2∠BDC =60°,且BC =AD =5∵ 在△BCD 中,∠C =60°, ∠BDC =30°∴∠DBC =90°∴DC =2BC =10 …………………………7分19.解: (1)C 品牌.(不带单位不扣分) …………………………2分(2)略.(B 品牌的销售量是800个,柱状图上没有标数字不扣分) ……4分(3)60°.(不带单位不扣分) …………………………6分(4)略.(合理的解释都给分) …………………………8分20.(1)证明:连接BO , …………………………1分方法一:∵ AB=AD =AO∴△ODB 是直角三角形 …………………………3分∴∠O BD =90° 即:BD⊥BO∴BD 是⊙O 的切线. …………………………4分方法二:∵AB=AD , ∴∠D=∠ABD∵AB=AO , ∴∠ABO=∠AOB又∵在△OBD 中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90° 即:BD⊥BO∴BD 是⊙O 的切线 …………………………4分(2)解:∵∠C=∠E,∠CAF=∠EBF∴△ACF∽△BEF …………………………5分∵AC 是⊙O 的直径∴∠ABC=90°在Rt△BFA 中,cos∠BFA=32=AF BF ∴942=⎪⎭⎫ ⎝⎛=∆∆AF BF S S ACF BEF …………………………7分又∵BEF S ∆=8 ∴ACF S ∆=18 …………………………8分21.解:(1)设打包成件的帐篷有x 件,则320)80(=-+x x (或80)320(=--x x ) …………………………2分 解得200=x ,12080=-x …………………………3分 答:打包成件的帐篷和食品分别为200件和120件. …………………………3分方法二:设打包成件的帐篷有x 件,食品有y 件,则⎩⎨⎧=-=+80320y x y x …………………………2分 解得⎩⎨⎧==120200y x …………………………3分答:打包成件的帐篷和食品分别为200件和120件. …………………………3分(注:用算术方法做也给满分.)(2)设租用甲种货车x 辆,则⎩⎨⎧≥-+≥-+120)8(2010200)8(2040x x x x …………………………4分 解得42≤≤x …………………………5分∴x =2或3或4,民政局安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆. …………………………6分(3)3种方案的运费分别为:①2×4000+6×3600=29600;②3×4000+5×3600=30000;③4×4000+4×3600=30400. …………………………8分 ∴方案①运费最少,最少运费是29600元. …………………………9分(注:用一次函数的性质说明方案①最少也不扣分.)22.(1)方法一:由已知得:C (0,-3),A (-1,0) …………………………1分将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a …………………………2分解得:⎪⎩⎪⎨⎧-=-==321c b a …………………………3分 所以这个二次函数的表达式为:322--=x x y …………………………3分方法二:由已知得:C (0,-3),A (-1,0) …………………………1分 设该表达式为:)3)(1(-+=x x a y …………………………2分 将C 点的坐标代入得:1=a …………………………3分 所以这个二次函数的表达式为:322--=x x y …………………………3分(注:表达式的最终结果用三种形式中的任一种都不扣分)(2)方法一:存在,F 点的坐标为(2,-3) …………………………4分理由:易得D (1,-4),所以直线CD 的解析式为:3--=x y∴E 点的坐标为(-3,0) …………………………4分由A 、C 、E 、F 四点的坐标得:AE =CF =2,AE ∥CF∴以A 、C 、E 、F 为顶点的四边形为平行四边形∴存在点F ,坐标为(2,-3) …………………………5分方法二:易得D (1,-4),所以直线CD 的解析式为:3--=x y∴E 点的坐标为(-3,0) …………………………4分∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3)代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3) …………………………5分(3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ),②当直线MN 在x 则N ∴圆的半径为2171+(4)过点P 作y 易得G (2,-3),直线AG 为1--=x y .……………8分设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x . 3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG …………………………9分 当21=x 时,△APG 的面积最大 此时P 点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆. …………………………10分卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。
2008年广东省深圳市中考数学试卷(含解析版)
2008 年广东省深圳市中考数学试卷一、选择题(共10 小题,每小题3 分,满分30 分)1.(3 分)4 的平方根是()A.±2 B.2 C.﹣2 D.162.(3分)下列运算正确的是()A.a2+a3=a5 B.a2•a3=a5 C.(a2)3=a5 D.a10÷a2=a53.(3 分)2008 年北京奥运会全球共选拔21 880 名火炬手,创历史记录.将这个数据精确到千位,用科学记数法表示为()A.22×103 B.2.2×105 C.2.2×104 D.0.22×1054.(3 分)如图,圆柱的左视图是()A.B.C.D.5.(3 分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.(3 分)某班抽取6 名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是157.(3分)今年财政部将证券交易印花税税率由3‰调整为1‰(1‰表示千分之一).某人在调整后购买100 000 元股票,则比调整前少交证券交易印花税多少元()A.200 元B.2000 元C.100 元D.1000 元8.(3分)下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形9.(3 分)把二次函数y=﹣x2 的图象先向右平移1 个单位,再向上平移2 个单位后得到一个新图象,则新图象所表示的二次函数的解析式是()A.y=﹣(x﹣1)2+2 B.y=﹣(x+1)2+2C.y=﹣(x﹣1)2﹣2 D.y=﹣(x+1)2﹣210.(3 分)如图,边长为1 的菱形ABCD 绕点A 旋转,当B、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于()A.B.C.D.二、填空题(共5 小题,每小题3 分,满分15 分)11.(3 分)有5 张质地相同的卡片,它们的背面都相同,正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图片.现将它们背面朝上,卡片洗匀后,任抽一张是“欢欢”的概率是.12.(3 分)分解因式:ax2﹣4a=.13.(3 分)如图,直线OA 与反比例函数y=(k≠0)的图象在第一象限交于A 点,AB⊥x 轴于点B,△OAB 的面积为2,则k=.14.(3 分)要在街道旁修建一个奶站,向居民区A、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短?小聪根据实际情况,以街道旁为x 轴,建立了如图所示的平面直角坐标系,测得A 点的坐标为(0,3),B 点的坐标为(6,5),则从A、B 两点到奶站距离之和的最小值是.15.(3 分)观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b 的值为.表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:表三:11 1317 b三、解答题(共7 小题,满分55 分)16.(6 分)计算:|﹣3|+•tan30°﹣﹣(2008﹣π)0.17.(7 分)先化简代数式÷,然后选取一个合适的a 值,代入求值.18.(7 分)如图,在梯形ABCD 中,AB∥DC,DB 平分∠ADC,过点A 作AE∥BD,交CD 的延长线于点E,且∠C=2∠E.(1)求证:梯形ABCD 是等腰梯形;(2)若∠BDC=30°,AD=5,求CD 的长.1114a19.(8 分)某商场对今年端午节这天销售A、B、C 三种品牌粽子的情况进行了统计,绘制如图所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全条形统计图;(3)写出A 品牌粽子在图中所对应的圆心角的度数;(4)根据上述统计信息,明年端午节期间该商场对A、B、C 三种品牌的粽子如何进货?请你提一条合理化的建议.20.(8 分)如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB=AD=AO.(1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为8,cos∠BFA=,求△ACF 的面积.21.(9 分)“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320 件,帐篷比食品多80 件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8 辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40 件和食品10 件,乙种货车最多可装帐篷和食品各20 件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000 元,乙种货车每辆需付运输费3600 元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?22.(10 分)如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO= .(1)求这个二次函数的表达式.(2)经过C、D 两点的直线,与x 轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图,若点G(2,y)是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.2008 年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(共10 小题,每小题3 分,满分30 分)1.(3 分)4 的平方根是()A.±2 B.2 C.﹣2 D.16【考点】21:平方根.【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x,使得x2=a,则x 就是a 的一个平方根.【解答】解:∵(±2 )2=4,∴4 的平方根是±2.故选:A.【点评】本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.2.(3 分)下列运算正确的是()A.a2+a3=a5 B.a2•a3=a5 C.(a2)3=a5 D.a10÷a2=a5【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、a2 与a3 不是同类项,不能合并,故本选项错误;B、a2•a3=a5,正确;C、应为(a2)3=a2×3=a6,故本选项错误;D、应为a10÷a2=a10﹣2=a8,故本选项错误.故选:B.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.3.(3 分)2008 年北京奥运会全球共选拔21 880 名火炬手,创历史记录.将这个数据精确到千位,用科学记数法表示为()A.22×103 B.2.2×105 C.2.2×104 D.0.22×105【考点】1L:科学记数法与有效数字.【专题】12:应用题.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数.确定a×10n(1≤|a|<10,n 为整数)中n 的值是易错点,由于21 880 有5 位,所以可以确定n=5﹣1=4.【解答】解:将21 880 这个数据精确到千位,用科学记数法表示为2.2×104.故选:C.【点评】把一个数M 记成a×10n(1≤|a|<10,n 为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1 时,n 的值为a 的整数位数减1;(2)当|a|<1 时,n 的值是第一个不是0 的数字前0 的个数,包括整数位上的0.注意本题精确到千位,4.(3 分)如图,圆柱的左视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【专题】16:压轴题.【分析】找到从左面看所得到的图形即可.【解答】解:从左边看时,圆柱是一个圆,故选C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3 分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.6.(3 分)某班抽取6 名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80 B.中位数是75 C.平均数是80 D.极差是15【考点】W1:算术平均数;W4:中位数;W5:众数;W6:极差.【专题】12:应用题.【分析】根据平均数,中位数,众数,极差的概念逐项分析.【解答】解:A、80 出现的次数最多,所以众数是80,A 正确;B、把数据按大小排列,中间两个数为80,80,所以中位数是80,B 错误;C、平均数是=80,C 正确;D、极差是90﹣75=15,D 正确.7.(3分)今年财政部将证券交易印花税税率由3‰调整为1‰(1‰表示千分之一).某人在调整后购买100 000 元股票,则比调整前少交证券交易印花税多少元()A.200 元B.2000 元C.100 元D.1000 元【考点】1G:有理数的混合运算.【专题】12:应用题.【分析】调整前所交证券交易印花税﹣调整后所交证券交易印花税,即为比调整前少交证券的交易印花税.【解答】解:根据题意得,调整后比调整前少交证券交易印花税100000×(3‰﹣1‰)=200 元.故选:A.【点评】本题主要考查了有理数的混合运算的实际应用.8.(3分)下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形【考点】L5:平行四边形的性质;L6:平行四边形的判定;LB:矩形的性质;LC:矩形的判定.【分析】根据平行四边形和矩形的性质和判定进行判定.【解答】解:根据平行四边形和矩形的性质和判定可知:选项A、B、C 均正确.D 中说法应为:对角线相等且互相平分的四边形是矩形.故选:D.【点评】本题利用了平行四边形和矩形的性质和判定方法求解.9.(3 分)把二次函数y=﹣x2 的图象先向右平移1 个单位,再向上平移2 个单位后得到一个新图象,则新图象所表示的二次函数的解析式是()A.y=﹣(x﹣1)+2 B.y=﹣(x+1)+22 2故选:B.【点评】此题考查学生对平均数,中位数,众数,极差的理解.C.y=﹣(x﹣1)2﹣2 D.y=﹣(x+1)2﹣2 【考点】H6:二次函数图象与几何变换.【分析】解决本题的关键是得到新抛物线的顶点坐标.【解答】解:原抛物线的顶点为(0,0),先向右平移1 个单位,再向上平移2 个单位那么新抛物线的顶点为(1,2).可设新抛物线的解析式为y=﹣(x﹣h)2+k 代入2 得:y=﹣(x﹣1)2+2.故选:A.【点评】抛物线平移不改变a 的值,利用平移规律解答.10.(3 分)如图,边长为1 的菱形ABCD 绕点A 旋转,当B、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于()A.B.C.D.【考点】L8:菱形的性质;MN:弧长的计算.【专题】16:压轴题.【分析】连接AC,根据题意可得△ABC 为等边三角形,从而可得到∠A 的度数,再根据弧长公式求得弧BC 的长度.【解答】解:连接AC,可得AB=BC=AC=1,则∠BAC=60°,根据弧长公式,可得弧BC 的长度等于=,故选C.【点评】此题主要考查菱形、等边三角形的性质以及弧长公式的理解及运用.二、填空题(共5 小题,每小题3 分,满分15 分)11.(3 分)有5 张质地相同的卡片,它们的背面都相同,正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图片.现将它们背面朝上,卡片洗匀后,任抽一张是“欢欢”的概率是.【考点】X4:概率公式.【分析】让“欢欢”的张数除以卡片的总张数即为所求的概率.【解答】解:因为共有正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图片,所以任抽一张是“欢欢”的概率是.【点评】如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=.12.(3 分)分解因式:ax2﹣4a= a(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a,=a(x2﹣4),=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3 分)如图,直线OA 与反比例函数y=(k≠0)的图象在第一象限交于A 点,AB⊥x 轴于点B,△OAB 的面积为2,则k= 4.【考点】G5:反比例函数系数k 的几何意义.【专题】31:数形结合.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=|k|.【解答】解:由题意得:S△OAB=|k|=2;又由于反比例函数在第一象限,k>0;则k=4.故答案为:4.【点评】主要考查了反比例函数中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.14.(3 分)要在街道旁修建一个奶站,向居民区A、B 提供牛奶,奶站应建在什么地方,才能使从A、B 到它的距离之和最短?小聪根据实际情况,以街道旁为x 轴,建立了如图所示的平面直角坐标系,测得A 点的坐标为(0,3),B 点的坐标为(6,5),则从A、B 两点到奶站距离之和的最小值是 10 .【考点】PA:轴对称﹣最短路线问题.【专题】16:压轴题.【分析】本题首先要明确奶站应建在何处,点A 关于x 轴的对称点A1 的坐标是(0,﹣3),则线段A1B 与x 轴的交点就是奶站应建的位置.从A、B 两点到奶站距离之和最小时就是线段A1B 的长.通过点B 向y 轴作垂线与C,根据勾股定理就可求出.【解答】解:点A 关于x 轴的对称点A1 的坐标是(0,﹣3),过点B 向x 轴作垂线与过A1 和x 轴平行的直线交于C,则A1C=6,BC=8,∴A1B==10∴从A、B 两点到奶站距离之和的最小值是10.故填10.【点评】本题考查了轴对称的应用;正确确定奶站的位置是解题的关键,确定奶站的位置这一题在课本中有原题,因此加强课本题目的训练至关重要.15.(3 分)观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b 的值为37.表一:表二:表三:【考点】38:规律型:图形的变化类.【专题】16:压轴题;27:图表型.【分析】每一竖行相隔的数是相同的,每相邻两个横行之间相隔的数也相隔1.【解答】解:表二从竖行看,下边的数应比上面的数大3,∴a=14+3=17.表三从竖行看,下边的数比上边的数大6,那么后面那行下边的数就该比上边的数大7.∴b=13+7=20∴a+b 的值为37.【点评】关键是通过归纳与总结,得到其中的规律.三、解答题(共7 小题,满分55 分)16.(6 分)计算:|﹣3|+•tan30°﹣﹣(2008﹣π)0.【考点】15:绝对值;24:立方根;6E:零指数幂;T5:特殊角的三角函数值.【专题】11:计算题.【分析】按照实数的运算法则依次计算:|﹣3|=3,tan30°=,=2,(2008﹣π)0=1.【解答】解:原式==3+1﹣2﹣1=1.(注:只写后两步也给满分.)【点评】本题重点考查有理数的绝对值和求代数式值.涉及知识:负指数为正指数的倒数;任何非0 数的0 次幂等于1;绝对值的化简;二次根式的化简.17.(7 分)先化简代数式÷,然后选取一个合适的a 值,代入求值.【考点】6D:分式的化简求值.【专题】11:计算题;26:开放型.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.要注意的是a 的取值需使原式有意义.【解答】解:方法一:原式===a2+4;方法二:原式==a(a﹣2)+2(a+2)=a2+4;取a=1,原式=5.(注:答案不唯一.如果求值这一步,取a=2 或﹣2,则不给分.)【点评】考查学生分式运算能力.这类题也是一类创新题,有利于培养同学们的发散思维,其结论往往因所选x 值的不同而不同,但要注意所选x 的值要使a2﹣4≠0,即x≠±2.18.(7 分)如图,在梯形ABCD 中,AB∥DC,DB 平分∠ADC,过点A 作AE∥BD,交CD 的延长线于点E,且∠C=2∠E.(1)求证:梯形ABCD 是等腰梯形;(2)若∠BDC=30°,AD=5,求CD 的长.【考点】KO:含30 度角的直角三角形;LK:等腰梯形的判定.【专题】11:计算题;14:证明题.【分析】(1)证明ABCD 是等腰梯形,需证∠ADC=∠C,而∠BDC=∠E,而DB 平分∠ADC,所以∠E=∠BDC=∠ADB,所以∠ADC=2∠E=∠C,从而可证明其是等腰梯形.(2)根据已知得到∠C=2∠E=2∠BDC=60°,且BC=AD=5,所以∠DBC=90°,得到DC=2BC=10.【解答】(1)证明:∵AE∥BD,∴∠E=∠BDC.∵DB 平分∠ADC,∴∠ADC=2∠BDC.又∵∠C=2∠E,∴∠ADC=∠BCD.∴梯形ABCD 是等腰梯形.(2)解:由第(1)问,得∠C=2∠E=2∠BDC=60°,且BC=AD=5,∵在△BCD 中,∠C=60°,∠BDC=30°,∴∠DBC=90°.∴DC=2BC=10.【点评】考查了等腰梯形的判定、直角三角形性质以及推理能力.19.(8 分)某商场对今年端午节这天销售A、B、C 三种品牌粽子的情况进行了统计,绘制如图所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全条形统计图;(3)写出A 品牌粽子在图中所对应的圆心角的度数;(4)根据上述统计信息,明年端午节期间该商场对A、B、C 三种品牌的粽子如何进货?请你提一条合理化的建议.【考点】VB:扇形统计图;VC:条形统计图.【专题】27:图表型.【分析】(1)从扇形统计图中得出C 品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400 个,B 品牌的销售量=2400﹣1200﹣400=800 个,补全图形即可;(3)A 品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C 品牌的销售量最大,所以建议多进C 种.【解答】解:(1)从扇形统计图中得出C 品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400 个,B 品牌的销售量=2400﹣1200﹣400=800 个,(3)A 品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)建议:C 品牌的粽子应该多进货.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8 分)如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB=AD=AO.(1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为8,cos∠BFA=,求△ACF 的面积.【考点】KK:等边三角形的性质;M5:圆周角定理;MC:切线的性质;S9:相似三角形的判定与性质;T1:锐角三角函数的定义.【专题】15:综合题;16:压轴题.【分析】(1)利用斜边上的中线等于斜边的一半,可判断△DOB 是直角三角形,则∠OBD=90°,BD 是⊙O 的切线;(2)同弧所对的圆周角相等,可证明△ACF∽△BEF,得出一相似比,再利用三角形的面积比等于相似比的平方即可求解.【解答】(1)证明:连接BO,方法一:∵AB=AD ∴△ACF∽△BEF∵AC 是⊙O 的直径∴∠ABC=90°在Rt△BFA 中,cos∠BFA= ∴∴∠D=∠ABD ∵AB=AO 又∵S∴S△BEF=8=18.∴∠ABO=∠AOB又在△OBD 中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90°,即BD⊥BO∴BD 是⊙O 的切线;方法二:∵AB=AO,BO=AO∴AB=AO=BO∴△ABO 为等边三角形∴∠BAO=∠ABO=60°∵AB=AD∴∠D=∠ABD 又∠D+∠ABD=∠BAO=60°∴∠ABD=30°∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO∴BD 是⊙O 的切线;方法三:∵AB=AD=AO∴点O、B、D 在以OD 为直径的⊙A 上∴∠OBD=90°,即BD⊥BO∴BD 是⊙O 的切线;(2)解:∵∠C=∠E,∠CAF=∠EBF△ACF【点评】本题综合考查了圆的切线的性质、圆的性质、相似三角形的判定及性质等内容,是一个综合较强的题目,难度较大.21.(9 分)“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320 件,帐篷比食品多80 件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8 辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40 件和食品10 件,乙种货车最多可装帐篷和食品各20 件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000 元,乙种货车每辆需付运输费3600 元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?【考点】9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【分析】(1)有两个等量关系:帐篷件数+食品件数=320,帐篷件数﹣食品件数=80,直接设未知数,列出二元一次方程组,求出解;(2)先由等量关系得到一元一次不等式组,求出解集,再根据实际含义确定方案;(3)分别计算每种方案的运费,然后比较得出结果.【解答】解:(1)设该校采购了y 件小帐篷,x 件食品.根据题意,得,解得.故打包成件的帐篷有200 件,食品有120 件;(2)设甲种货车安排了z 辆,则乙种货车安排了(8﹣z)辆.则,解得2≤z≤4.则z=2 或3 或4,民政局安排甲、乙两种货车时有3 种方案.设计方案分别为:①甲车2 辆,乙车6 辆;②甲车3 辆,乙车5 辆;③甲车4 辆,乙车4 辆;(3)3 种方案的运费分别为:①2×4000+6×3600=29600(元);②3×4000+5×3600=30000(元);③4×4000+4×3600=30400(元).∵方案一的运费小于方案二的运费小于方案三的运费,∴方案①运费最少,最少运费是29600 元.【点评】考查了二元一次方程组的应用和一元一次不等式组的应用.关键是弄清题意,找出等量或者不等关系:帐篷件数+食品件数=320,帐篷件数﹣食品件数=80,甲种货车辆数+乙种货车辆数=8,得到乙种货车辆数=8﹣甲种货车辆数,代入下面两个不等关系:甲种货车装运帐篷件数+ 乙种货车装运帐篷件数≥200,甲种货车装运食品件数+乙种货车装运食品件数≥120.22.(10 分)如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB=OC,tan∠ACO= .(1)求这个二次函数的表达式.(2)经过C、D 两点的直线,与x 轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图,若点G(2,y)是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)求二次函数的表达式,需要求出A、B、C 三点坐标.已知B 点坐标,且OB=OC,可知C(0,3),tan∠ACO=,则A 坐标为(﹣1,0).将A,B,C 三点坐标代入关系式,可求得二次函数的表达式.(2)假设存在这样的点F(m,n),已知抛物线关系式,求出顶点D 坐标,今儿求出直线CD,E 是直线与x 轴交点,可得E 点坐标.四边形AECF 为平行四边形,则CE∥AF,则两直线斜率相等,可列等式(1),CE=AF,可列等式(2),F 在抛物线上,为等式(3),根据这三个等式,即可求出m、n 是否存在.(3)分情况讨论,当圆在x 轴上方时,根据题意可知,圆心必定在抛物线的对称轴上,设圆半径为r,则N 的坐标为(r+1,r),将其代入抛物线解析式,可求出r 的值.当圆在x 轴的下方时,方法同上,只是N 的坐标变为(r+1,﹣r),代入抛物线解析式即可求解.,解得:(4)G 在抛物线上,代入解析式求出 G 点坐标,设点 P 的坐标为(x ,y ),即(x ,x 2﹣2x ﹣3)已知 点 A 、G 坐标,可求出线段 AG 的长度,以及直线 AG 的解析式,再根据点到直线的距离求出 P 到直线的距离,即为三角形 AGP 的高,从而用 x 表示出三角形的面积,然后求当面积最大时 x 的值.【解答】解:(1)方法一:由已知得:C (0,﹣3),A (﹣1,0), 将 A 、B 、C 三点的坐标代入,得:,所以这个二次函数的表达式为:y=x 2﹣2x ﹣3, 方法二:由已知得:C (0,﹣3),A (﹣1,0), 设该表达式为:y=a (x +1)(x ﹣3), 将 C 点的坐标代入得:a=1, 所以这个二次函数的表达式为:y=x 2﹣2x ﹣3;(注:表达式的最终结果用三种形式中的任一种都不扣分)(2)方法一:存在,F 点的坐标为(2,﹣3), 理由:易得 D (1,﹣4),所以直线 CD 的解析式为:y=﹣x ﹣3,∴E 点的坐标为(﹣3,0),由 A 、C 、E 、F 四点的坐标得:AE=CF=2,AE ∥CF , ∴以 A 、C 、E 、F 为顶点的四边形为平行四边形, ∴存在点 F ,坐标为(2,﹣3),方法二:易得 D (1,﹣4),所以直线 CD 的解析式为:y=﹣x ﹣3, ∴E 点的坐标为(﹣3,0),∵以 A 、C 、E 、F 为顶点的四边形为平行四边形, ∴F 点的坐标为(2,﹣3)或(﹣2,﹣3)或(﹣4,3), 代入抛物线的表达式检验,只有(2,﹣3)符合, ∴存在点 F ,坐标为(2,﹣3).(3)如图,①当直线 MN 在 x 轴上方时, 设圆的半径为 R (R >0),则 N (R +1,R ), 代入抛物线的表达式,解得,②当直线 MN 在 x 轴下方时, 设圆的半径为 r (r >0),则 N (r +1,﹣r ), 代入抛物线的表达式, 解得,∴圆的半径为或.(4)过点 P 作 y 轴的平行线与 AG 交于点 Q , 易得 G (2,﹣3),直线 AG 为 y=﹣x ﹣1.设P(x,x2﹣2x﹣3),则Q(x,﹣x﹣1),PQ=﹣x2+x+2.S△APG=S△APQ+S△GPQ= (﹣x2+x+2)×3当x=时,△APG 的面积最大此时P 点的坐标为(,﹣),S△APG 的最大值为.【点评】此题考查二次函数与x 轴,y 轴坐标求法,顶点坐标公式,二次函数图象与平行四边形,圆相结合,重点考查了平行四边形,圆的性质特征.。
2008广州市九年级数学中考答案
2008年广州市初中毕业生学业考试数学试题参考答案一、选择题:本题考查基础知识和基本运算,每小题3分,满分30分.题号 1 2 3 4 5 6 7 8 9 10 答案 C A A B C B D B C D二、填空题:本题考查基础知识和基本运算,每小题3分,满分18分.题号11 12 13 14 15 16答案70 1 真0.5三、解答题:本大题考查基础知识和基本运算,及数学能力,满分102分.17.本小题主要考查代数式恒等变形中分解因式的基本运算技能.满分9分.解:.18.本小题主要考查平均数、权重、加权平均数等基本的统计概念,考查从统计表和统计图中读取有效信息的能力.满分9分.解:(1)小青该学期的平时平均成绩为:(88+70+98+86)÷4=85.5.(2)按照如图所示的权重,小青该学期的总评成绩为:85.5×10%+90×30%+87×60%=87.75.19.本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.满分10分.解:由数轴知,.∴..图21.1.51 120.本小题主要考查菱形、特殊直角三角形、等腰梯形的性质与判定等基础知识,考查空间观念和基本的逻辑推理能力.满分10分.证法1:∵四边形ABCD是菱形,∴AC平分∠DAB.∵,∴∠CAE .∵,∴∠E = 90°-∠CAE = 90°-30°= 60°.∴.∵AB//CD,∴四边形是等腰梯形.证法2:连结,∵四边形ABCD是菱形,∴,且.由,,得,△ABD 是等边三角形,即.∵且,∴.,∴四边形是平行四边形.∴.∴.∴四边形是等腰梯形.证法3:设线段和的延长线交于点.∵四边形ABCD是菱形,∴AC平分∠DAB.∵,∴∠CAE =.∵,∴∠E =∠F = 90°-30°= 60°.图1DA BCE图2DA BCE图3DA BCEF∴ △AEF 是等边三角形,且点C 是EF 的中点.,∴ 点D 是AF 的中点. ∴ .∴ 四边形是等腰梯形.21. 本小题主要考查一次函数、反比例函数的图象与性质,考查用待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,考查数形结合的数学思想.满分12分. (1)解:由图象知,点A 的坐标为(-6,-2),点B 的坐标为(4,3). (2)∵反比例函数的图象经过点B , ∴,即.∴所求的反比例函数解析式为.∵一次函数的图象经过A 、B 两点,∴解这个方程组,得∴ 所求的一次函数解析式为.(3)由图象知,一次函数的函数值大于反比例函数的函数值时,x 的取值范围为:.22. 本小题主要考查建立分式方程模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分. 解法1:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时.根据题意得:即 即∴1ABO2xy经检验,x = 40是原方程的根。
2008年广东省中考数学试卷及答案(word版)
2008年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位 数是A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°, 则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cos π-++-.12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
2008年广东省中考数学试卷及答案
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根一、选择题(本大题5小题,每小题3分,共15分)1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递路线全长约40820米,用科学计数法表示火炬传递路程是A .2102.408⨯米B .31082.40⨯米C .410082.4⨯米D .5104082.0⨯米3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是__________;8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.A M NBC OB DC A 图2三、解答题(一)(本大题5小题,每小题6分,共30分)11.(本题满分6分)计算 :01)2008(260cos π-++- .12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
2008年广州市中考数学试卷
2008年广州市中考数学试卷一、选择题(共10小题;共50分)1. 计算所得结果是B. D.2. 将图按顺时针方向旋转后得到的是A. B.C. D.3. 下列四个图形中,是三棱柱的平面展开图的是A. B.C. D.4. 若与互为相反数,则下列式子成立的是A. B. C. D.5. 方程的根是A. B. C. , D. ,6. 一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列说法正确的是A. “明天降雨的概率是”表示明天有的时间降雨B. “抛一枚硬币正面朝上的概率是”表示每抛硬币次就有次出现正面朝上C. “彩票中奖的概率是”表示买张彩票一定会中奖D. “抛一枚正方体骰子朝上面的数为奇数的概率是“表示如果这个骰子抛很多很多次,那么平均每次就有次出现朝上面的数为奇数8. 把下列每个字母都看成一个图形,那么中心对称图形有O L Y M P I CA. 个B. 个C. 个D. 个9. 如图,每个小正方形的边长为,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是A. B. C. D.10. 四个小朋友玩跷跷板,他们的体重分别为,,,,如图所示,则他们的体重大小关系是A. B. C. D.二、填空题(共6小题;共30分)11. 的倒数是.12. 如图,,若,则度.13. 函数中的自变量的取值范围是.14. 将线段平移,得到线段,则点到点的距离是.15. 命题“圆的直径所对的圆周角是直角”是命题.(填“真”或“假”)16. 对于平面内任意一个凸四边形,现从以下四个关系式①;②;③;④中任取两个作为条件,能够得出这个四边形是平行四边形的概率是.三、解答题(共9小题;共117分)17. 分解因式:18. 小青在九年级上学期的数学成绩如下表所示:(1)计算该学期平时的平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.19. 实数,在数轴上的位置如图所示,化简:.20. 如图,在菱形中,,过点作且与的延长线交于点.求证:四边形是等腰梯形.21. 如图,一次函数的图象与反比例函数的图象相交于,两点.(1)根据图象,分别写出,的坐标;(2)求出两函数的解析式;(3)根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值.22. 年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到千米远的郊区进行抢修.维修工骑摩托车先走,分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的倍,求两种车的速度.23. 如图,射线交一圆于点,,射线交该圆于点,,且.(1)求证:;(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.24. 如图,扇形的半径,圆心角,点是上异于,的动点,过点作于点,作于点,连接,点,在线段上,且.(1)求证:四边形是平行四边形;(2)当点在上运动时,在,,中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:是定值.25. 如图,在梯形中,,,,在等腰中,,底边,点,,,在同一直线上,且,两点重合,如果等腰以秒的速度沿直线箭头所示方向匀速运动,秒时梯形与等腰重合部分的面积记为平方厘米.(1)当时,求的值;(2)当,求与的函数关系式,并求出的最大值.答案第一部分1. C2. A3. B4. C5. C6. B 【解析】一次函数的图象是由正比例函数向下平移得到,所以经过第一、三、四象限.7. D8. B9. C10. D第二部分11.12.13.14.15. 真【解析】共有种等可能结果:①②,①③,①④,②③,②④,③④;其中①②,①③,③④能够证明四边形是平行四边形,其概率为第三部分17. 原式18. (1);(2).19. , ..20. 四边形是菱形,,,不平行于,四边形是梯形,四边形是菱形,,,又,,梯形是等腰梯形.21. (1)由图象得,.(2)一次函数的解析式为,();把,点的坐标代入得解得一次函数的解析式为,反比例函数的解析式为,把点坐标代入得,解得,反比例函数的解析式为.(3)当或时,一次函数的值大于反比例函数的值.22. 设摩托车的速度为千米/时,则抢修车的速度为千米 /时.根据题意得:即即经检验,是原分式方程的根且符合题意..答:摩托车的速度为千米/时,抢修车的速度为千米/ 时.23. (1)作于点,于点,连接,,,易得,,,,,,在和中,,.在和中,,.,.(2),..由于是的垂直平分线,..因此平分.24. (1)连接交于.因为,,,所以四边形为矩形,所以,.因为,所以,所以,所以四边形是平行四边形.(2)不变.在矩形中,因为,所以.(3)设,则.过作于.由得,所以.所以.所以.所以.25. (1)当时,,过点作于点,过点作于点,如图,所以,因为,,,所以,所以,在和中,所以,所以,因为,,所以,所以点与点重合,所以;(2)当时,在线段上,作于点,过点作于点,如图,因为,,所以,所以,所以,因为,,所以,所以,所以,所以同理:,所以因为,开口向下,所以有最大值,当时,最大值为;当时,在线段的延长线上,如图,因为,,所以,所以,,所以,,所以当,所以时,最大值为;综上,时,最大值为.。
2008年广东省茂名市中考数学试题及答案.doc
2008年广东省茂名市中考数学试卷全卷分第一卷(选择题,满分40分,共2页)和第二卷(非选择题,满分110分,共8页),全卷满分150分;考试时间120分钟.第一卷(选择题,满分40分,共2页)一、精心选一选(本大题共10小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的). 1.-21的相反数是( ) A.-2 B.2 C.21 D.21- 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D 3.下列运算正确的是( )A.-22=4 B.22-=-4 C. a ·a 2 = a 2D.a +2a =3a4.用平面去截下列几何体,截面的形状不可能...是圆的几何体是( ) A.球 B.圆锥 C.圆柱 D.正方体 5.任意给定一个非零数,按下列程序计算,最后输出的结果是( )A.m B.m 2C.m +1 D.m -16.在数轴上表示不等式组10240x x +>⎧⎨-⎩≤的解集,正确的是( )A B-2 -1 0 1 2 3 CD7.正方形内有一点A ,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是( ) A.10 B.20 C.24 D.25 8.一组数据3、4、5、a 、7的平均数是5,则它的方差是( )A.10 B.6 C.5 D.2 9.已知反比例函数y =xa(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过...( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( )A.91 B.92C.31 D.942008年广东省茂名市中考数学试卷二、耐心填一填(本大题共5小题,每小题4分,共20分.请你把答案 填在横线的上方).11.据最新统计,茂名市户籍人口约为7020000人,用科学记数法表示是 人. 12.分解因式:3x 2-27= . 13.如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°,则∠OAC 的度数是 .14.依法纳税是每个公民应尽的义务,新的《中华人民共和 国个人所得税法》规定,从2008年3月1日起, 公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按右表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是 元.15.有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得 (a +1)⊕b = n +1, a ⊕(b +1)= n -2 现在已知1⊕1 = 2,那么2008⊕2008 = .三、细心做一做 (本大题共3小题,每小题8分,共24分) 16.(本题满分8分)计算:OCBA(第13题图)((第10题图)(12-a a- 1+a a )· a a 12-解:17.(本题满分8分)如图,方格纸中有一条美丽可爱的小金鱼. (1)在同一方格纸中,画出将小金鱼图案绕原点O旋转180°后得到的图案;(4分)(2)在同一方格纸中,并在y 轴的右侧,将原小 金鱼图案以原点O 为位似中心放大,使它们的位似 比为1:2,画出放大后小金鱼的图案.(4分)18.(本题满分8分)不透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2分)(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.(6分) 解:四、沉着冷静,周密考虑(本大题共2小题,每小题8分,共16分)19.(本题满分8分)2008年5月12日14时28分我国四川汶川发生了8.0级大地震,地震发生后,我市某中学全体师生踊跃捐款,支援灾区,其中九年级甲班学生共捐款1800元,乙班学生共捐款1560元.已知甲班平均每人捐款金额是乙班平均每人捐款金额的1.2倍,乙班比甲班多2人,那么这两个班各有多少人? 解:20.(本题满分8分)某文具店王经理统计了2008年1月至5月A 、B 、C 这三种型号的钢笔平均每月的销售量,并绘制图1(不完整),销售这三种型号钢笔平均每月获得的总利润为600元,每种型号钢笔获得的利润分布情况如图2.已知A 、B 、C 这三种型号钢笔每支的利润分别是0.5元、0.6元、1.2元,请你结合图中的信息,解答下列问题:(1)求出C 种型号钢笔平均每月的销售量,并将图1补充完整;(4分)yx(第17题图)(2)王经理计划6月份购进A 、B 、C 这三种型号钢笔共900支,请你结合1月至5月平均每月的销售情况(不考虑其它因素),设计一个方案,使获得的利润最大,并说明理由.(4分)解:五、开动脑筋,再接再厉 (本大题共3小题,每小题10分,共30分)21.(本题满分10分)如图,某学习小组为了测量河对岸塔AB 的高度,在塔底部B 的正对岸点C 处,测得 仰角∠ACB =30°.(1)若河宽BC 是60米,求塔AB 的高(结果精确到0.1米);(4分)(参考数据:2≈1.414,3≈1.732)(2)若河宽BC 的长度无法度量,如何测量塔AB 的高度呢?小明想出了另外一种方法:从点C 出发,沿河岸CD 的方向(点B 、C 、D 在同一平面内,且CD ⊥BC )走a 米,到达D 处,测得∠BDC =60°,这样就可以求得塔AB 的高度了.请你用这种方法求出塔AB 的高.(6分) 解:(图1) (图2)(第20题图)ABD (第21题图)22.(本题满分10分)如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD .(1)求证:∠ADB =∠E ;(3分)(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由.(3分) (3)当AB =5,BC =6时,求⊙O 的半径.(4分)解:23.(本题满分10分)如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(5分)(2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明理由.(5分)解:六、充满信心,成功在望(本大题共2小题,每小题10分,共20分)24.(本题满分10分)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销. 经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(4分)(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(4分)(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工EC A(第22题图)F EDCB A (第23题图)相关链接 :若12,x x 是一元二次方程20ax bx c ++=(0)a ≠的两根,则1212,.b cx x x x a a+=-=艺品每天获得的利润最大?(2分)解:25(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:2008年广东省茂名市中考数学试卷答案及评分标准(第25题图)x二、填空题(本大题共5小题,每小题4分,共20分). 11、7.02×106 12、3(x +3)(x -3) 13、25° 14、2800 15、-2005三、(本大题共3小题,每小题8分,共24分)16、解:解法一:原式=12-a a · a a 12-- 1+a a · a a 12- ············ 2分=12-a a · a a a )1)(1(-+- 1+a a ·aa a )1)(1(-+ ····· 4分 =2·)1(+a -)1(-a ················ 6分 =2a +2-a +1 ····················· 7分=a +3 ······················· 8分解法二:原式=1)1()1(22---+a a a a a · a a 12- ··············· 3分 =1322-+a aa · a a 12- ··················· 5分 =aaa 32+ ······················· 6分=a +3 ··························· 8分 17、解: (说明:画图正确,每对一个给4分.)18、解:(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是31···· 2分 或P (摸到标有数字是2的球)=31·············· 2分 (2)游戏规则对双方公平. ····················· 3分树状图法: 或列表法:1 (1,1)(注:学生只用一种方法做即可) ····················· 5分 由图(或表)可知, P (小明获胜)=31, P (小东获胜)=31, ········ 7分 ∵P (小明获胜)= P (小东获胜),∴游戏规则对双方公平. ·········· 8分 19、解:设甲班有x 人,则乙班有(x +2)人,根据题意,得 ········ 1分x1800=21560x ×1.2 ·············· 4分 解这个方程,得 x =50 ············ 6分经检验,x =50是所列方程的根. ············· 7分 所以,甲班有50人,乙班有52人. ··············· 8分 20、解: (1) 600×20%=120(元) ···· 1分 120÷1.2=100(支) ······· 2分作图如右图: ·········· 4分(2)A 、B 、C 这三种型号钢笔分别进500支、300支、100支. ········ 7分理由是:利润大的应尽可能多进货,才可能获得最大利润. ········ 8分型号ECACACBA21、解:(1)在Rt△ABC 中,∵∠ACB =30°,BC =60,∴AB =BC ·tan∠ACB ······················ 1分=60×33=203 ···················· 2分 ≈34.6(米). ······················ 3分 所以,塔AB 的高约是34.6米. ················ 4分 (2)在Rt△BCD 中,∵∠BDC =60°,CD =a , ············· 5分∴BC =CD ·tan∠BDC ····················· 6分=3a . ······················· 7分 又在Rt△ABC 中,AB =BC ·tan∠ACB ··············· 8分=3a ×33=a (米). ·········· 9分 所以,塔AB 的高为a 米. ···················· 10分22、解:(1)在△ABC 中,∵AB =AC ,∴∠ABC =∠C . ············ 1分∵DE ∥BC ,∴∠ABC =∠E ,∴∠E =∠C . ············ 2分又∵∠ADB =∠C ,∴∠ADB =∠E . ············ 3分(2)当点D 是弧BC 的中点时,DE 是⊙O 的切线. ············ 4分 理由是:当点D 是弧BC 的中点时,则有AD ⊥BC ,且AD 过圆心O . ········ 5分又∵DE ∥BC ,∴ AD ⊥ED .∴ DE 是⊙O 的切线. ············ 6分 (3)连结BO 、AO ,并延长AO 交BC 于点F , 则AF ⊥BC ,且BF =21BC =3. ········ 7分 又∵AB =5,∴AF =4. ············· 8分 设⊙O 的半径为r ,在Rt△OBF 中,OF =4-r ,OB =r ,BF =3,∴ r2=32+(4-r )2······· 9分解得r =825, ∴⊙O 的半径是825. ·········· 10分23、解:(1)△CDA ≌△DCE ,△BAD ≌△DCE ; ················· 2分 ① △CDA ≌△DCE 的理由是: ∵AD ∥BC ,∴∠CDA =∠DCE . ········ 3分 又∵DA =CE ,CD =DC , ········· 4分 ∴△CDA ≌△DCE . ·········· 5分 或 ② △BAD ≌△DCE 的理由是: ∵AD ∥BC ,∴∠CDA =∠DCE . ···························· 3分 又∵四边形ABCD 是等腰梯形, ∴∠BAD =∠CDA ,∴∠BAD =∠DCE . ···························· 4分 又∵AB =CD ,AD =CE ,∴△BAD ≌△DCE . ··························· 5分 (2)当等腰梯形ABCD 的高DF =3时,对角线AC 与BD 互相垂直. ······ 6分 理由是:设AC 与BD 的交点为点G ,∵四边形ABCD 是等腰梯形,∴AC =DB .又∵AD =CE ,AD ∥BC ,∴四边形ACED 是平行四边形, ···················· 7分 ∴AC =DE ,AC ∥DE .∴DB =DE . ····························· 8分 则BF =FE ,又∵BE =BC +CE =BC +AD =4+2=6,∴BF =FE =3. ···························· 9分 ∵DF =3,∴∠BDF =∠DBF =45°,∠EDF =∠DEF =45°, ∴∠BDE =∠BDF +∠EDF =90°, 又∵AC ∥DE∴∠BGC =∠BDE =90°,即AC ⊥BD . ················· 10分 (说明:由DF =BF =FE 得∠BDE =90°,同样给满分.F EDCBA G24. 解:(1)画图如右图; ······· 1分由图可猜想y 与x 是一次函数关系, ·· 2分设这个一次函数为y = k x +b (k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴5003040040k bk b =+⎧⎨=+⎩ 解得10800k b =-⎧⎨=⎩ ··················· 3分∴函数关系式是:y =-10x +800 ···················· 4分(2)设工艺厂试销该工艺品每天获得的利润是W 元,依题意得W=(x -20)(-10x +800) ······················· 6分=-10x 2+1000x -16000=-10(x -50)2+9000 ······················· 7分∴当x =50时,W 有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元. 8分(3)对于函数 W=-10(x -50)2+9000,当x ≤45时,W 的值随着x 值的增大而增大, ····················· 9分∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大. ······ 10分25. 解:(1)解法一:∵抛物线y =-32x 2+b x +c 经过点A (0,-4),∴c =-4 ······················· 1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根,∴x 1+x 2=23b , x 1x 2=-23c =6 ················ 2分由已知得(x 2-x 1)2=25又(x 2-x 1)2=(x 2+x 1)2-4x 1x 2 =49b 2-24∴ 49b 2-24=25解得b =±314 ························· 3分 当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去. ∴b =-314. ··························· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b , ····················· 2分 ∴x 2-x 1=2969b 2-=5, 解得 b =±314 ·························· 3分 (以下与解法一相同.) (2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上,5分 又∵y =-32x 2-314x -4=-32(x +27)2+625 ········· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ··········· 7分 (3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ················· 8分 ∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4, ∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ····· 9分四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ························· 10分。
2008年广东省初中毕业生数学学业考试(word版,有答案)
2008年某某市初中毕业升学考试数学试题一、用心填一填:本大题共12小题,每小题2分,共24分1、如果向东走3米记作+3米,那么向西走5米记作米。
103、温家宝总理在十一届全国人大一次会议上的政府工作报告指出,今年中央财政用于教育投入将达到1562亿元,用科学记数法表示为亿元。
4、已知△ABC 中,BC =10CM ,D 、E 分别为AB 、AC 中点,则DE =CM 。
5数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 。
6如图,∠ACD =1550,∠B =350,则∠A =度。
7、函数x 2+的自变量x 的取值X 围是。
8、某物业公司对本小区七户居民2007年全年用电量进行统计,每户每月平均用电量(单位:度)分别是:56、58、60、56、56、68、74。
这七户居民每户每月平均用电量的众数是度 9、一元二次方程2x 2x 1=0--的根为。
10、两同心圆,大圆半径为3,小圆半径为1,则阴影部分面积为11、如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为。
12、如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是。
二、仔细选一选:本大题共8小题,每小题3分,共24分13、在下列实数中,无理数是( )A 5 22、0.1 B、 C、-4 D、 714、左图是由四个相同的小立方体组成的立体图形,它的左视图是( )15、已知下列命题:①若A >0,B >0,则AB >0; ②平行四边形的对角线互相垂直平分;③若∣x ∣=2,则x =2; ④圆的切线经过垂直于切点的直径,其中真命题是( ) A 、①④B 、①③C 、②④D 、①②16、已知圆锥的侧面积为8πCM 2, 侧面展开图的圆心角为450,则该圆锥的母线长为( ) A 、64CMB 、8CMC、 D17、2008年5月12日,某某汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S(千米)与行进时间t (小时)的函数大致图像,你认为正确的是( )A B C D第14题图18、如图,在Rt △ABC 中,∠C =900,∠A =300,E 为AB 上一点且AE :EB =4:1 ,EF ⊥AC 于F ,连结FB ,则t AN ∠CFB 的值等于( )3235353A 、 、、 、BCD19、在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
2008广东省肇庆市中考数学真题(word含答案) 精编
广东省肇庆市2008年初中毕业生学业考试数 学 试 题说明:全卷共4页,考试时间为100分钟,满分120分.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的.)1.一个正方体的面共有( )A .1个B .2个C .4个D .6个 2.数据1,1,2,2,3,3,3的极差是( )A .1B .2C .3D .6 3.3-的绝对值是( )A .3B .3-C .31D .31- 4.一个正方形的对称轴共有( )A .1条B .2条C .4条D .无数条 5.若3-=b a ,则a b -的值是( )A .3B .3-C .0D .6 6.如图1,AB 是⊙O 的直径,∠ABC =30°,则∠BAC =( )A .90°B .60°C .45°D .30°7.如图2,箭头表示投影线的方向,则图中圆柱体的正投影是( )A .圆B .圆柱C .梯形D .矩形 8.下列式子正确的是( )A .2a >0 B .2a ≥0 C .a+1>1 D .a ―1>19.在直角坐标系中,将点P (3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.从n 张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率为51,则n =( ) A .54 B .52 C .10 D .5二、填空题(本大题共5小题,每小题3分,共15分.)11.因式分解:122+-x x = .12.如图3,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,写出图中一对相等的线段(只需写出一对即可) .13.圆的半径为3cm ,它的内接正三角形的边长为 .14.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 . 15.已知221=,422=,32=8,42=16,25=32,…… 观察上面规律,试猜想20082的末位数是 .三、解答题(本大题共10小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分6分) 计算:102211)3(-+--.17.(本小题满分6分)在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.18.(本小题满分6分) 解不等式:)20(310x x --≥70.19.(本小题满分7分)如图4,E、F、G分别是等边△ABC的边AB、BC、AC的中点.(1)图中有多少个三角形?(2)指出图中一对全等三角形,并给出证明.20.(本小题满分7分)在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间.21.(本小题满分7分)如图5,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证AE=BF;(2)若BC=2cm,求正方形DEFG的边长.22.(本小题满分8分)已知点A(2,6)、B(3,4)在某个反比例函数的图象上.(1)求此反比例函数的解析式;y 与线段AB相交,求m的取值范围.(2)若直线mx23.(本小题满分8分)在2008北京奥林匹克运动会的射击项目选拔赛中,甲、乙两名运动员的射击成绩如下(单位:环):甲 10 10.1 9.6 9.8 10.2 8.8 10.4 9.8 10.1 9.2 乙 9.7 10.1 10 9.9 8.9 9.6 9.6 10.3 10.2 9.7 (1) 两名运动员射击成绩的平均数分别是多少? (2) 哪位运动员的发挥比较稳定?(参考数据: 0.2222222226.03.06.014.02.03.0+++++++=2.14 ,22222222221.04.05.02.02.09.01.02.03.01.0+++++++++=1.46)24.(本小题满分10分)如图6,在Rt △ABC 中,∠ABC =90°,D 是AC 的中点, ⊙O 经过A 、B 、D 三点,CB 的延长线交⊙O 于点E .(1) 求证AE =CE ;(2) EF 与⊙O 相切于点E ,交AC 的延长线于点F , 若CD =CF =2cm ,求⊙O 的直径; (3)若n CDCF= (n >0),求sin ∠CAB .25.(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.肇庆市2008年初中毕业生学业考试数学试题参考答案和评分标准一、选择题(本大题共10小题,每小题3分,共30分.)二、填空题(本大题共5小题,每小题3分,共15分.)三、解答题(本大题共10小题,共75分.) 16.(本小题满分6分)解:原式=21211+-········································································· (3分) =1 ····················································································· (6分) 17.(本小题满分6分)解:在Rt △ABC 中,c =5,a =3.∴ 22a c b -=2235-=4= ················································· (2分) ∴ 53s i n ==c a A ········································································· 4分) 43t a n ==b a A .································································ (6分) 18.(本小题满分6分)解:x x 36010+-≥70, ·································································· (2分)x 13≥130, ······························································ (4分) ∴ x ≥10. ································································· (6分)19.(本小题满分7分)解:(1)图中共有5个三角形; ······································ (2分) (2)△CGF ≌△GAE . ········································ (3分) ∵ △ABC 是等边三角形,∴ ∠=A ∠C . ················· (4分)∵ E 、F 、G 是边AB 、BC 、AC 的中点, ∴AE =AG =CG =CF =21AB . ··························································· (6分) ∴ △CGF ≌△GAE . ······························································· (7分)20.(本小题满分7分)解:设车队走西线所用的时间为x 小时,依题意得:1880800-=x x , ···································································· (3分) 解这个方程,得20=x . ·········································································· (6分) 经检验,20=x 是原方程的解.答:车队走西线所用的时间为20小时. ··············································· (7分) 21.(本小题满分7分)解:(1)∵ 等腰Rt △ABC 中,∠=C 90°,∴ ∠A =∠B , ······················································································· (1分) ∵ 四边形DEFG 是正方形,∴ DE =GF ,∠DEA =∠GFB =90°, ····················· (2分) ∴ △ADE ≌△BGF ,∴ AE =BF . ····················································· (3分) (2)∵ ∠DEA =90°,∠A=45°,∴∠ADE =45°.························································································ (4分) ∴ AE =DE . 同理BF =GF . ······························································· (5分)∴ EF =31AB=BC 231⨯=2231⨯⨯=32cm , ··········································· (6分) ∴ 正方形DEFG 的边长为2cm 3. ······························································ (7分)22.(本小题满分8分)解:(1)设所求的反比例函数为xky =, 依题意得: 6 =2k , ∴k=12. ································································································ (2分) ∴反比例函数为xy 12=. ·········································································· (4分) (2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6. ························ (6分) ∵m =xy, ∴34≤m ≤26.所以m 的取值范围是34≤m ≤3. ··································································· (8分)23. (本小题满分8分)解: (1)甲x =102.91.108.94.108.82.108.96.91.1010+++++++++=9.8. ·· (2分)乙x =107.92.103.106.96.99.89.9101.107.9+++++++++=9.8 . ············ (4分) (2)∵2甲s =101[(10-9.8)2+(10.1-9.8)2+(9.6-9.8)2+(9.8-9.8)2+(10.2-9.8)2+(8.8-9.8)2+(10.4-9.8)2+(9.8-9.8)2+(10.1-9.8)2+(9.2-9.8)2]=0.214. ······················ (6分)2乙s =101[(9.7-9.8)2+(10.1-9.8)2+(10-9.8)2+(9.9-9.8)2+(8.9-9.8)2+(9.6-9.8)2+(9.6-9.8)2+(10.3-9.8)2+(10.2-9.8)2+(9.7-9.8)2]=0.146.∴2甲s >2乙s ,∴乙运动员的发挥比较稳定. ····················································· (8分) 24. (本小题满分10分)证明:(1)连接DE ,∵∠ABC =90°∴∠ABE =90°,∴AE 是⊙O 直径. ························································ (1分) ∴∠ADE =90°,∴DE ⊥AC . ··········································· (2分) 又∵D 是AC 的中点,∴DE 是AC 的垂直平分线.∴AE =CE . ·································································· (3分) (2)在△ADE 和△EF A 中,∵∠ADE =∠AEF =90°,∠DAE =∠F AE ,∴△ADE ∽△EF A . ······················································· (4分)∴AE ADAF AE =, ∴AEAE 26=. ························································· (5分)∴AE =23cm . ····················································································· (6分) (3) ∵AE 是⊙O 直径,EF 是⊙O 的切线,∴∠ADE =∠AEF =90°, ∴Rt △ADE ∽Rt △EDF . ∴DFDEED AD =. ············································· (7分) ∵n CDCF=,AD =CD ,∴CF =nCD ,∴DF =(1+n )CD , ∴DE =n +1CD . ······ (8分) 在Rt △CDE 中,CE 2=CD 2+DE 2=CD 2+(n +1CD )2=(n +2)CD 2.∴CE =2+n CD . ················································································· (9分)∵∠CAB =∠DEC ,∴sin ∠CAB =sin ∠DEC =CE CD=21+n =22++n n . ··············· (10分)25.(本小题满分10分)解:(1)由5x x 122+=0, ········································································ (1分)得01=x ,5122-=x . ············································································ (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ······································ (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ······························· (4分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ·················································· (5分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ···································· (6分)=5(个单位面积) ···································································· (7分)(3)如:)(3123y y y -=. ···································································· (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ················ (9分)∴)(3123y y y -=. ····························································(10分)。
2008年广东省梅州市数学中考真题(word版含答案)
D.
)
图2
C,
图3
图5
90后得到
图7
图
8
18.本题满分8分.
如图8,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线
EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的延长线分别交于点G 、H .
(1)写出图中不全等的两个相似三角形(不要求证明);
(2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段,
请选出其中一对加以证明.
19.本题满分8分.
如图9所示,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),
O 是坐标系原点.
(1)求直线L 所对应的函数的表达式;
(2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.
20.本题满分8分.
已知关于x 的一元二次方程x 2-m x -2=0. ……①
(1) 若x =-1是方程①的一个根,求m 的值和方程①的另一根;
(2) 对于任意实数m ,判断方程①的根的情况,并说明理由.
90是
图7 图8
90,
90, ····
90, ····
··········。
2008年广东省广州市中考数学试卷
2008年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)32.(3分)(2008•广州)将图按顺时针方向旋转90°后得到的是().C D..C D.8.(3分)(2008•广州)把下列每个字母都看成一个图形,那么中心对称图形有()9.(3分)(2008•广州)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是().D.10.(3分)(2008•广州)四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是()二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2008•广州)的倒数是_________.12.(3分)(2008•广州)如图,∠1=70°,若m∥n,则∠2=_________度.13.(3分)(2008•广州)函数y=中的自变量x的取值范围是_________.14.(3分)(2008•广州)将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是_________cm.15.(3分)(2008•广州)命题“圆的直径所对的圆周角是直角”是_________命题.(填“真”或“假”)16.(3分)(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_________.三、解答题(共9小题,满分102分)17.(9分)(2008•广州)分解因式:a3﹣ab2.(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.19.(10分)(2008•广州)如图,实数a、b在数轴上的位置,化简:.20.(10分)(2008•广州)如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E.求证:四边形AECD是等腰梯形.21.(12分)(2008•广州)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.22.(12分)(2008•广州)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.23.(12分)(2008•广州)如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且.(1)求证:AC=AE;(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.2008年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)32.(3分)(2008•广州)将图按顺时针方向旋转90°后得到的是().C D..C D.8.(3分)(2008•广州)把下列每个字母都看成一个图形,那么中心对称图形有()9.(3分)(2008•广州)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是().D.•,答案选1+10.(3分)(2008•广州)四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如图所示,则他们的体重大小关系是(),而二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2008•广州)的倒数是.得倒数为..12.(3分)(2008•广州)如图,∠1=70°,若m∥n,则∠2=70度.13.(3分)(2008•广州)函数y=中的自变量x的取值范围是x≠1.14.(3分)(2008•广州)将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是1cm.15.(3分)(2008•广州)命题“圆的直径所对的圆周角是直角”是真命题.(填“真”或“假”)16.(3分)(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.=三、解答题(共9小题,满分102分)17.(9分)(2008•广州)分解因式:a3﹣ab2.(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.=8619.(10分)(2008•广州)如图,实数a、b在数轴上的位置,化简:.最后计算20.(10分)(2008•广州)如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E.求证:四边形AECD是等腰梯形.CAE=∠BAC=∠21.(12分)(2008•广州)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.点的坐标代入得y=y=点坐标代入得,解得.22.(12分)(2008•广州)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.,两车同时23.(12分)(2008•广州)如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且.(1)求证:AC=AE;(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.∠∠FEC=MCE=24.(14分)(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形;(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD2+3CH2是定值.CE=..))25.(14分)(2008•广州)如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.=××=2((MN=(QR BQ CR ×﹣×(﹣×﹣t10<﹣最大值为TB=BR=TR=BR=TB TR=××=t+时,开口向上,﹣=102最大值为。
2008年广东省湛江市数学中考试题及参考答案
湛江市2008年初中毕业生水平考试数 学 试 题说明:1.本试卷满分150分,考试时间90分钟.2.本试卷共4页,共5大题.3.答题前,请认真阅读答题卡上的“注意事项”,然后按要求将答案写在答题卡相应的位置上.4.请考生保持答题卡的整洁,考试结束,将试卷和答题卡一并交回. 注意:在答题卡上作图必须用黑色字迹的钢笔或签字笔.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只 有一项是符合题目要求的.1. 在2-、0、1、3这四个数中比0小的数是( )A.2-B.0C.1 D .32. 人的大脑每天能记录大约8600万条信息,数据8600用科学计数法表示为( )A . 40.8610⨯ B . 28.610⨯ C . 38.610⨯ D . 28610⨯3. 不等式组13x x >-⎧⎨<⎩的解集为( )A.1x >-B.3x <C.13x -<< D .无解4. ⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定 5. 下面的图形中,是中心对称图形的是( )A .B .C .D .6. 下列计算中,正确的是( )A . 22-=-B .=C . 325a a a ⋅=D . 22x x x -=7. 从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 8. 函数12y x =-的自变量x 的取值范围是( ) A . 2x = B . 2x ≠ C . 2x ≠- D . 2x > 9. 数据2,7,3,7,5,3,7的众数是( )A.2B.3C.5D.710.将如图1所示的Rt△ABC绕直角边BC旋转一周,所得几何体的左视图是()11.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()B.C. D .12.如图2所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011二、填空题:本大题共6小题,每小题4分,共24分.13.湛江市某天的最高气温是27℃,最低气温是17℃,那么当天的温差是℃.14.分解因式:222a ab-=.15.圆柱的底面周长为2π,高为3,则圆柱侧面展开图的面积是.16.如图3所示,请写出能判定CE∥AB的一个条件.17.图4一块陨石落在地球上,则它落在海洋中的概率是.18.将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.A BE图2CAB┅┅三、解答题:本大题共5小题,每小题7分,共35分. 19. 计算:(1-)2008-(π-3)0+4.20. 某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?21. 有五张除字不同其余都相同的卡片分别放在甲、乙两盒子中,已知甲盒子有三张,分别写有“北”、“京”、“奥”字样,乙盒子有两张,分别写有“运”、“会”字样,若依次从甲乙两盒子中各取一张卡片,求能拼成“奥运”两字的概率.22. 如图6所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高. (精确到0.1米) (供选用的数据:sin 400.64≈,cos 400.77≈,tan 40≈23. 如图7所示,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.四、解答题:本大题共3小题,每小题10分,共30分.24. 为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.(2) 求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.25. 如图9所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC .(1)求证:∠ACO =∠BCD .(2)若E B =8cm ,CD =24cm ,求⊙O 的直径.26. 某农户种植一种经济作物,总用水量y (米3)与种植时间x10所示.(1)第20天的总用水量为多少米3?(2)当x ≥20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 先观察下列等式,然后用你发现的规律解答下列问题.111122=-⨯ 6图8图10天)1112323=-⨯ 1113434=-⨯ ┅┅ (1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若 1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.28. 如图11所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似. 若存在,请求出M 点的坐标;否则,请说明理由.湛江市2008年初中毕业水平考试数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题3分,共36分.1. A 2. C 3. C 4. A 5. D 6. C 7. B 8. B 9. D 10. A 11 D 12. C 二、填空题:本大题共6小题,每小题4分,共24分.13. 10 14.2()a a b - 15. 6π 16.∠DCE =∠A 或∠ECB =∠B 或∠A +∠ACE =180︒ 17. 0.71 18.(6,5)三、解答题:本大题共5小题,每小题7分,共35分. 19. 解:原式=112-+ ·········································································· (4分)= 2 ··············································································· (7分)20. 解:设这个队胜了x 场,依题意得:3(145)19x x +--= ································································· (4分) 解得:5x = ············································································· (6分)答:这个队胜了5场. ·································································· (7分)21.························ (4分)从表中可以看出,依次从甲乙两盒子中各取一张卡片,可能出现的结果.有6个,它们出现的可能性相等,其中能拼成“奥运”两字的结果有1个. ···· (5分)所以能拼成“奥运”两字的概率为16. ··············································· (7分) 22. 解:在Rt △ADE 中,ADE =DEAE······················ (2分) ∵DE =10,∠ADE =40︒∴AE =DEADE =10tan 40︒≈100.84⨯=8.4 ········· (4分) ∴AB =AE +EB =AE +DC =8.4 1.59.9+= ················· (6分) 答:旗杆AB 的高为9.9米.····························· (7分)23. 解:∆ABC ≌∆DCB ··································· (2分) 证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB =DC ∴∠ABC =∠DCB ························· (4分) 在∆ABC 与∆DCB 中A B D CA B C D C BB C C B =⎧⎪∠=∠⎨⎪=⎩∴∆ABC ≌∆DCB ··················································· (7分)(注:答案不唯一) 四、解答题:本大题共3小题,每小题10分,共30分.24. 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩. ··················· (2分)(2)15150.256912151860==++++ ················································(5分)答:竞赛成绩在79.5~89.5这一小组的频率为0.25.························ (6分)(3)9200030069121518⨯=++++ ··············································· (9分) 答:估计全校约有300人获得奖励. ············································· (10分)25. 证明:(1)∵AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于E ,∴CE =ED , CB DB = ·························· (2分) ∴∠BCD =∠BAC ································· (3分) ∵O A =O C ∴∠O AC =∠O CA∴∠AC O=∠BCD ·································· (5分) (2)设⊙O 的半径为Rcm ,则O E =O B -EB =R -8CE =21CD =21⨯24=12 ······························ (6分) 在Rt ∆CE O 中,由勾股定理可得O C 2=O E 2+CE 2即R 2= (R -8)2+122···································· (8分) 解得 R=13 ∴2R=2⨯13=26 答:⊙O 的直径为26cm . ····························26. 解:(1)第20天的总用水量为1000米3· (3分) (2)当x ≥20时,设y kx b =+∵函数图象经过点(20,1000),(30,4000)∴⎩⎨⎧+=+=b k b k 304000201000 ························ (5分)解得⎩⎨⎧-==5000300b k∴y 与x 之间的函数关系式为:y=300x -5000 ···································· (7分)人数成绩(3)当y =7000时有7000=300x -5000 解得x =40答 :种植时间为40天时,总用水量达到7000米3 ································ (10分) 五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 解:(1)56 ··················································································· (3分) (2)1+n n··················································································· (6分)(3)1111......133557(21)(21)n n ++++⨯⨯⨯-+ =)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n =)1211(21+-n =12+n n ···························································· (9分) 由12+n n =3517 解得17=n ············································· (11分) 经检验17=n 是方程的根,∴17=n ··········································· (12分)28.解:(1)令0y =,得210x -= 解得1x =±令0x =,得1y =-∴ A (1,0)- B (1,0) C (0,1)- ··· (2分)(2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O=45∵A P ∥CB , ∴∠P AB =45过点P 作P E ⊥x 轴于E ,则∆A P E 为等腰直角三角形令O E =a ,则P E =1a + ∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=-解得12a =,21a =-(不合题意,舍去)∴P E =3 ···························································································· 4分)∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯= ······································ 6分) (3). 假设存在∵∠P AB =∠BAC =45 ∴P A ⊥AC∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90在Rt △A O C 中,O A =O C =1 ∴AC在Rt △P AE 中,AE =P E =3 ∴AP= ················································ 7分) 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当A MG ∽∆P CA 时,有AG PA =MGCA∵A G=1m --,MG=21m -2= 解得11m =-(舍去) 223m =(舍去) (ⅱ) 当M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:1m =-(舍去) 22m =-∴M (2,3)- ·········································································· (10分)② 点M 在y 轴右侧时,则1m > (ⅰ) 当A MG ∽∆P CA 时有AG PA =MGCA∵A G=1m +,MG=21m -∴2= 解得11m =-(舍去) 243m =∴M 47(,)39(ⅱ) 当M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:11m =-(舍去) 24m =∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆P CA 相似M 点的坐标为(2,3)-,47(,)39,(4,15) ·································· (13分)说明:以上各题如有其他解(证)法,请酌情给分。
2008年广州市数学中考试题
2008年广州市数学中考试题一、选择题(每小题3分,共30分) 1、(2008广州)计算3(2)-所得结果是( ) A 6- B 6 C 8- D 82、(2008广州)将图1按顺时针方向旋转90°后得到的是( )3、(2008广州)下面四个图形中,是三棱柱的平面展开图的是( ) 4、(2008广州)若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A0a b -=B 0a b +=C 1ab =D 1ab =- 5、(2008广州)方程(2)0x x +=的根是( )A 2x =B 0x =C 120,2x x ==-D 120,2x x == 6、(2008广州)一次函数34y x =-的图象不经过( )A 第一象限B 第二象限C 第三象限D 第四象限 7、(2008广州)下列说法正确的是( )A “明天降雨的概率是80%”表示明天有80%的时间降雨B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C “彩票中奖的概率是1%”表示买100张彩票一定会中奖D “抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数8、(2008广州)把下列每个字母都看成一个图形,那么中心对成图形有( )O L Y M P I CA 1个B 2个C 3个D 4个 9、(2008广州)如图2,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) AB 2CD 10、(2008广州)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>二、填空题(每小题3分,共18分) 11、(2008的倒数是12、(2008广州)如图4,∠1=70°,若m ∥n ,则∠2= 13、(2008广州)函数1xy x =-自变量x 的取值范围是 14、(2008广州)将线段AB 平移1cm ,得到线段A ’B ’,则点A 到点A ’的距离是 15、(2008广州)命题“圆的直径所对的圆周角是直角”是 命题(填“真”或“假”) 16、(2008广州)对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB ∥CD ;④∠A =∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是三、解答题(共102分)17、(2008广州)(9分)分解因式32a ab -18、(2008广州)(9分)小青在九年级上学期的数学成绩如下表所示图2图3图4(1)计算该学期的平时平均成绩;(2)如果学期的总评成绩是根据图5所示的权重计算, 请计算出小青该学期的总评成绩。
2008年广州市数学中考答案及试卷分析
2008年广州市数学中考答案一、选择题1-10 CAABC BDBCD二、填空题11.33, 12.700, 13.1≠x , 14.1cm, 15.真命题,16.31三、解答题17.))((b a b a a -+ 18..(1)5.85486987088=+++(2)75.87%6087%3090%105.85=⨯+⨯+⨯19.222()()2a b a b a b a b a b b a b---=---=----=-20.证明:,60,==30//=+=60=30=60=//=.ABCD DAB AC CAB ACB AD BC CD AB CBE CBE CAB ACB CE AC CAB CEB BCE CE BC CE ADCD AE AD CE CE AD AECB ∠=∴∠∠=∠∆∴∠∠∠⊥∠∴∠∴∆∴=∴∴菱形为对角线,,而是ABC 的一个外角又,而为等边三角形,与不平行,且四边形是等腰梯形21.解:(1)根据图像可知(6,2),(1,3)A B --(2)一次函数与反比例函数都过A,B 两点,由待定系数法可解得y =0.5x +1,y =x12 (3)由图像可得-6<x <0或x >422.解:/ 1.5/303015v 1.56040/40/60/.vkm h v km h v v km hkm h km h =+=设摩托车的速度是,则抢修车速度为由题意得:解得所以摩托车的速度是,抢修车速度为23.(1)作O P ⊥AM ,OQ ⊥AN 证AQO APO ∆≅∆由BC =CD ,得EQ CP =得证 (2)同AC =AE 得CEN ECM ∠=∠,由CE =EF 得CEN MCE FEC FCE ∠=∠=∠=∠2121得证 24.(1)连结OC 交DE 于M ,由矩形得OM =CG ,EM =DM因为DG=HE 所以EM -EH =DM -DG 得HM =DG(2)DG 不变,在矩形ODCE 中,DE =OC =3,所以DG =1(3)设CD =x ,则CE =29x -,由EC CD CG DE ⋅=⋅得CG =392x x -所以3)39(222x x x x DG =--=2所以HG =3-1-36322x x -= 所以3CH 2=2222212))39()36((3x x x x -=-+- 所以121232222=-+=+x x CH CD25.(1)t =4时,Q 与B 重合,P 与D 重合, 重合部分是BDC ∆=3232221=⋅⋅试卷分析:一级考点二级考点三级考点分值比例数与式有理数相反数 3 2.00%有理数的乘方 3 2.00% 无理数与实数实数的性质 3 2.00%因式分解提公因式法与公式法的综合运用9 6.00%二次根式二次根式的性质与化简10 6.67% 方程与不等式一元二次方程解一元二次方程-因式分解法 3 2.00% 分式方程分式方程的应用12 8.00%不等式与不等式组一元一次不等式组的应用 3 2.00% 函数函数基础知识函数自变量的取值范围 3 2.00% 一次函数一次函数的性质 3 2.00%反比例函数反比例函数与一次函数的交点问题12 8.00% 图形的性质图形认识初步几何体的展开图 3 2.00% 相交线与平行线平行线的性质 3 2.00%四边形矩形的性质14 9.33%正方形的性质 3 2.00%等腰梯形的性质14 9.33%等腰梯形的判定10 6.67% 圆圆心角、弧、弦的关系12 8.00%圆周角定理 3 2.00% 图形的变化图形的平移平移的性质 3 2.00% 图形的旋转生活中的旋转现象 3 2.00%中心对称图形 3 2.00% 统计与概率数据分析加权平均数9 6.00% 概率概率的意义 3 2.00%概率公式 3 2.00%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★机密·启用前2008年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑.1.(2008•广东•1•3′)||的值是()A.B.C.﹣2 D.22.(2008•广东•2•3′)2008年5月7日北京奥运会火炬接力传递活动在广州举行,整个火炬传递路线全长约40 820米,用科学记数法表示火炬传递路程是()A.408.2×102米B.40.82×103米C.4.082×104米D.0.4082×105米3.(2008•广东•3•3′)下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2 C.a2﹣2b+b2D.a2+2a+14.(2008•广东•4•3′)下列图形中是轴对称图形的是()A.B.C.D.5.(2008•广东•5•3′)下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A.28 B.28.5 C.29 D.29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答卷相应的位置上.6.(2008•广东•6•4′)-2的相反数是.7.(2008•广东•7•4′)经过点A(1,2)的反比例函数解析式是.8.(2008•广东•8•4′)已知等边三角形ABC的边长为3+,则△ABC的周长是.9.(2008•广东•9•4′)如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,则∠ANM= °.10.(2008•广东•10•4′)如图,已知AB是⊙O的直径,BC为弦,∠ABC=30度.过圆心O作OD⊥BC交BC于点D,连接DC,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(2008•广东•11•6′)计算:cos60°+2-1+(2008﹣π)0.12.(2008•广东•12•6′)解不等式4x﹣6<x,并在数轴上表示出解集.13.(2008•广东•13•6′)如图,在△ABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法和证明),并求AD的长.14.(2008•广东•14•6′)已知直线l1:y=﹣4x+5和直线l2:y=x﹣4,求两条直线l1和l2的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(2008•广东•15•6′)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2008•广东•16•7′)在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.17.(2008•广东•17•7′)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是,你认为对吗?请你用列表或画树状图的方法说明理由.18.(2008•广东•18•7′)如图.在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F,点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为6,求△ABD的面积.19.(2008•广东•19•7′)如图,梯形ABCD是拦水坝的横断面图,(图中i=1:是指坡面的铅直高度DE与水平宽度CE的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD的面积.(结果保留三位有效数字.参考数据:≈1.732,≈1.414)五、解答题(三)(本大题3小题,每小题9分,共27分)2021.(2008•广东•21•9′)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.22.(2008•广东•22•9′)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.(1)填空:如图1,AC= ,BD= ;四边形ABCD是梯形;(2)请写出图1中所有的相似三角形;(不含全等三角形)(3)如图2,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图2的平面直角坐标系,保持△ABD 不动,将△ABC向x轴的正方向平移到△FGH的位置,FH与BD相交于点P,设AF=t,△FBP面积为S,求S与t之间的函数关系式,并写出t的取值范围.★机密·启用前2008年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑.1.(2008•广东•1•3′)||的值是()A.B.C.﹣2 D.2考点:绝对值。
分析:绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解答:解:根据负数的绝对值是它的相反数,得||=.故选B.点评:本题考查了绝对值的性质.2.(2008•广东•2•3′)2008年5月7日北京奥运会火炬接力传递活动在广州举行,整个火炬传递路线全长约40 820米,用科学记数法表示火炬传递路程是()A.408.2×102米B.40.82×103米C.4.082×104米D.0.4082×105米考点:科学记数法—表示较大的数。
分析:根据科学记数法的定义,写成a×10n的形式.在a×10n中,a的整数部分只能取一位整数,且n的数值比原数的位数少1.40 820的数位是5,则n的值为4.解答:解:40 820=4.082×104米.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2008•广东•3•3′)下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2 C.a2﹣2b+b2D.a2+2a+1考点:完全平方式。
分析:完全平方公式:(a±b)2=a2±2ab+b2.看哪个式子整理后符合即可.解答:解:符合的只有a2+2a+1.故选D.点评:本题主要考的是完全平方公式结构特点,有两项是两个数的平方,另一项是加或减去这两个数的积的2倍.4.(2008•广东•4•3′)下列图形中是轴对称图形的是()A.B.C.D.考点:轴对称图形。
分析:根据轴对称图形的概念求解.解答:解:根据轴对称图形的概念,只有C是轴对称图形.故选C.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.5.(2008•广东•5•3′)下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是()A.28 B.28.5 C.29 D.29.5考点:中位数。
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:题目中数据共有10个,故中位数是按从小到大排列后第5,第6两个数的平均数作为中位数,故这组数据的中位数是(28+29)=28.5.故选B.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答卷相应的位置上.6.(2008•广东•6•4′)﹣2的相反数是2.考点:相反数。
专题:推理填空题。
分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解答:解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(2008•广东•7•4′)经过点A(1,2)的反比例函数解析式是y=.考点:待定系数法求反比例函数解析式。
专题:待定系数法。
分析:先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.解答:解:设反比例函数的解析式为y=.把点(1,2)代入解析式y=,得k=2,所以y=.故答案为:y=.点评:本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.8.(2008•广东•8•4′)已知等边三角形ABC的边长为3+,则△ABC的周长是9+3.考点:等边三角形的性质。
专题:计算题。
分析:在等边三角形中,三条边长相等,所以周长为三条边长的和.解答:解:在等边三角形中,三条边长相等,所以周长为三条边长的和,即:3(3+)=9+3.故答案为9+3.点评:此题主要考查了等边三角形的性质及周长的求法,属于基础题.9.(2008•广东•9•4′)如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,则∠ANM=60°.考点:勾股定理的应用;三角形内角和定理;三角形中位线定理。
分析:易得∠C度数,MN是△ABC的中位线,那么所求角的度数等于∠C度数.解答:解:在△ABC中,∵∠A+∠B=120°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣120°=60°,∵△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,∴MN∥BC,∠ANM=∠ACB=60°.故答案为60.点评:本题考查了三角形中位线的性质及三角形内角和定理,中位线定理为证明两条直线平行提供了依据,进而为证明角的相等奠定了基础.10.(2008•广东•10•4′)如图,已知AB是⊙O的直径,BC为弦,∠ABC=30度.过圆心O作OD⊥BC交BC于点D,连接DC,则∠DCB=30°.考点:垂线;圆周角定理。