Digital transcriptome profiling using selective hexamer priming for cDNA synthesis
植物转录组国内外研究进展
植物转录组国内外研究进展摘要:植物转录组学是一门新兴学科,通过提取植物中mRNA进行逆转录,随后建立cDNA 文库并利用近几年兴起的RNA-seq 高通量测序技术进行分析,以揭示植物细胞内整体水平的基因表达状态和基因结构信息,从而深刻理解植物组织基因型和表型之间的相互关系,以及在分子水平上弄清楚基因和功能表达之间的联系,对研究生物体作用机理的分子机制具有重要意义。
本文主要介绍了植物转录组测序的技术发展历史、测序平台比较、转录组测序技术的优势以及在植物上的应用。
随着高通量测序技术和生物信息学分析工具的迅猛发展,植物转录组学将面临巨大挑战和更广阔的应用前景。
关键词:植物转录组学,RNA-seq,高通量测序技术,基因表达状态,基因结构信息The Progress on Plant Transcriptome Research in China and AbroadAbstract: As a new subject, plant transcriptome aims at the gene expression status and gene structure information within the plant cell. It needs extracting mRNA in plants for reverse transcription and establishing cDNA library to analyze High throughput sequence technology results, which rises in recent years. Thus, we could have a deep understanding of the relationship between genotype and phenotype in plant tissues, and the clear links between genes and their functional expressions at the molecular level. It is of great significance to study molecular mechanism of the actions of organisms.In this study, we illustrate the development of the technology of plant transcriptome sequencing, the comparison of the sequencing platform, the advantages of the sequencing technology and the application in plant. With the rapid development of high throughput sequencing technology and bioinformatics analyses tools, plant transcriptome researches will face great challenges and wide application prospect.Key words: plant transcription, RNA-seq, high throughput sequencing technology, gene expression status, gene structure information基因组(Genome),作为生物遗传物质的基础,由成千上万的碱基组合而成,其含有生物的所有遗传信息,通过测序可以获得这些基因组的遗传信息。
文档:细胞外渗(extravasation)
细胞外渗(extravasation)本综述由解螺旋学员史哥负责整理(2017年12月)肿瘤转移是造成肿瘤患者死亡的首要原因,90%癌症患者的死亡原因与肿瘤转移相关。
肿瘤要成功转移,要运用各种策略完成跨内皮转运(transendothelial migration,TEM):(1)脱离原肿瘤并移行(migrate)进入血液或淋巴系统——内渗(intravasation);(2)定位及辨认要移转的目标位置并转出血液或淋巴系统——外渗(extravasation);(3)建立转移基地,长成新肿瘤1。
许多配体-受体分子也参与了外渗的过程,包括选择素、整合素,钙粘素,CD44和免疫球蛋白超家族。
附着于血管内皮细胞的癌细胞与血流中的许多循环细胞相互作用,如血小板、单核细胞、中性粒细胞和自然杀伤细胞,它们都参与癌细胞外渗效率的调节2。
肿瘤有各种机制以增强运动、侵袭和转移能力,比如血管新生作用,上皮-间质转化(epitheilial-to-mesenchymal transition, EMT),细胞形态的高度可塑能力等。
研究发现,这些能力在肿瘤细胞的外渗以及转移过程中至关重要3-5。
恶性肿瘤通过分泌血管内皮生长因子(VEGF)来吸收营养和氧气,主动诱导周围组织产生新血管,肿瘤内部血管的内皮细胞排列松散,极易形成内渗。
进入血液中的肿瘤细胞会吸引血小板包裹在其外部形成癌栓,保护肿瘤细胞免受血流剪切力和自然杀伤细胞(natural killer,NK)等免疫细胞的影响6。
肿瘤细胞在外渗时会黏附于血管内皮细胞,穿过管壁而进入新的组织,其过程与血管内皮细胞(endothelial cell,EC)、血小板和白细胞以及组织微环境等因素关系密切7。
除了癌细胞的高运动性,癌细胞对内皮细胞的有效活化也对外渗起重要作用,被认为是恶性肿瘤最关键的因素之一。
外渗需要内皮细胞和它们的配体在癌细胞上的选择性粘附受体(如E-选择素)之间的相互作用。
脉红螺幼虫变态过程多组学解析及关键基因的调控作用
博士学位论文脉红螺幼虫变态过程多组学解析及关键基因的调控作用作者姓名:宋浩指导教师: 张涛研究员(博士)中国科学院海洋研究所学位类别: 理学博士学科专业: 海洋生态学研究所: 中国科学院海洋研究所2018年6 月Understanding the Metamorphosis in Veined Rapa Whelk Rapana venosa from omics insight and the regulation role of key genes on itsmetamorphosisA Dissertation Submitted toUniversity of Chinese Academy of SciencesIn partial fulfillment of the requirementFor the degree ofDoctor of philosophyByHao SongDissertation Supervisor : Professor Tao ZhangInstitute of Oceanology, Chinese Academy of SciencesJune, 2018摘要摘要脉红螺(Rapana venosa),自然分布于我国的渤海、黄海和东海以及日本海等海域,是我国重要的经济贝类,但在欧洲黑海、爱琴海、美国切萨皮克湾、阿根廷拉普拉塔河等海域为生物入侵种,对当地的双壳贝类资源造成破坏。
变态过程是贝类生活史中重要的发育阶段,变态的成功与否直接关系到贝类种群资源变动。
因此,研究脉红螺幼虫变态机理,对于促进其苗种繁育、资源恢复、生物入侵防控等工作的开展具有重要的现实和理论意义。
本研究利用RNA-seq、iTRAQ、GC-MS、Real time PCR等技术对脉红螺幼虫变态过程分子机理展开研究,从转录组水平、蛋白质组水平和代谢组水平揭示了幼虫变态过程调控特征,筛选了脉红螺变态过程中的差异表达的关键转录本/蛋白组/代谢物,并对它们在变态中发挥的潜在生物学功能进行了探讨;开展了脉红螺幼虫变态过程microRNA的响应特征研究,筛选了变态中的差异表达的microRNA并对它们潜在调控的靶基因进行预测,揭示其在变态过程中所发挥的功能;筛选了在脉红螺变态发育过程中和在不同组织中稳定表达的内参基因,为将来进一步研究关键基因在变态过程中的表达水平提供基础;获得关键基因5-HT receptor和NOS的cDNA序列,探讨了其在脉红螺变态过程中表达特点及调控机理。
sox4基因与肺癌关系的研究进展
sox4基因与肺癌关系的研究进展周永春【摘要】The incidence and mortality of lung cancer rank first among the malignant tumors, which is a serious disease threatening human health and life. But there are still existing problems like low rate of early diagnosis, poor response to treatment and poor prognosis. So, it is urgent to explore new diagnosis marker and therapeutic targets. Recent researches have revealed that sox4 gene was overexpressed in all kinds of lung cancers, which was closely related to the biological behavior of tumor, therefore in-depth study of sox4 gene has great significance in early diagnosis, prognosis judgment and treatment of lung cancer.%肺癌发病率及病死率居恶性肿瘤首位,严重威胁着人类的健康,但目前仍存在早期诊断率低、治疗效果差及预后不良等问题,开发新的肺癌标志物及治疗位点成为迫切的需要.近年的研究显示,sox4基因在各类型肺癌中均呈异常的高表达,与肿瘤的生物学行为密切相关,因此深入研究该基因与肺癌的关系对肺癌的早期诊断、预后判断和治疗具有重要意义.【期刊名称】《医学综述》【年(卷),期】2013(019)005【总页数】4页(P823-826)【关键词】sox4基因;肺癌;研究进展【作者】周永春【作者单位】云南省肿瘤医院,肿瘤研究所,昆明,650118【正文语种】中文【中图分类】R734.2sox4基因是sox家族的重要成员,通过编码转录因子参与调控胚胎的发育分化。
中国野生大豆6个基因SNP筛选的开题报告
中国野生大豆6个基因SNP筛选的开题报告题目:利用单核苷酸多态性(SNP)技术筛选中国野生大豆6个基因的遗传变异研究背景和意义:大豆是世界上最重要的经济作物之一,在中国更是占据了重要的地位。
然而,目前大豆栽培的大多数品种都来自引进或者选育,导致了大豆的遗传多样性的丧失。
而野生大豆在自然选育过程中具有其独特的适应性和遗传多样性,是保护和利用植物遗传资源的重要来源。
遗传变异是造成物种多样性的重要因素。
而单核苷酸多态性(SNP)技术是快速高效、成本低廉的基因遗传变异检测方法,被广泛应用于植物种质资源调查和遗传多样性研究中。
本研究将应用SNP技术,从遗传水平研究中国野生大豆6个基因的遗传变异情况,为野生大豆资源的保护和利用提供基础数据。
研究内容和方法:研究内容:利用SNP技术筛选中国野生大豆6个基因的遗传变异情况。
研究方法:1. 采集中国不同地理分布的野生大豆的样品,分离DNA。
2. 选择6个大豆遗传基因,设计SNP引物并进行PCR扩增。
3. 利用测序或芯片检测方法筛选6个基因中的SNP位点。
4. 根据SNP位点的结果,分析野生大豆中6个遗传基因的遗传变异情况。
5. 利用程序软件进行遗传统计分析和比较。
研究预期结果:1. 筛选得到6个大豆遗传基因的SNP位点。
2. 分析中国野生大豆6个基因的遗传变异情况。
3. 建立野生大豆的SNP遗传谱系图,揭示其遗传演化规律。
4. 为我国野生大豆资源的开发和利用提供基础数据。
参考文献:1. Wang, H. et al. (2016) Analysis of Genetic Diversity and Population Structure of Wild Soybean (Glycine soja Sieb. and Zucc.) Using SSR Markers. J Genet Genomics 43, 69-78.2. Zhang, Y. et al. (2018) Transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. Sci Rep 8, 3906.3. Liu, B. et al. (2015) Genome-wide identification and comparative analysis of NBS-LRR resistance genes in soybean. Genetica 143, 409-419.。
EASYspin 植物RNA快速提取试剂盒操作方法及步骤说明书
杭州昊鑫生物科技股份有限公司 htpp://EASYspin Plant RNA KitEASYspin植物RNA快速提取试剂盒目录号:RN09试剂盒组成、储存、稳定性:试剂盒组成保存50次(RN0902)裂解液RLT 室温50 ml去蛋白液RW1 室温40 ml漂洗液RW 室温10 ml第一次使用前按说明加指定量乙醇RNase-free H2O 室温10 mlPLANTaid 室温 5 mlRNase-free吸附柱RA和收集管室温50套本试剂盒在室温储存12个月不影响使用效果。
储存事项:1.不合适的储存于低温(4℃或者-20℃)会造成溶液沉淀,影响使用效果,因此运输和储存均在室温下(15℃-25℃)进行。
2.避免试剂长时间暴露于空气中产生挥发、氧化、PH值变化,各溶液使用后应及时盖紧盖子。
注意事项1.所有的离心步骤均在室温完成,使用转速可以达到13,000 rpm的传统台式离心机。
2.需要自备乙醇,研钵(可选)。
3.裂解液RLT和去蛋白液RW1中含有刺激性化合物,操作时戴乳胶手套,避免沾染皮肤,眼睛和衣服。
若沾染皮肤、眼睛时,要用大量清水或者生理盐水冲洗。
4.关于DNA 的微量残留:一般说来任何总RNA提取试剂在提取过程中无法完全避免DNA的微量残留,本公司的EASYspin系列RNA提取产品,由于采取了本公司独特的缓冲体系和选择了特殊吸附能力的吸附膜已经清除了绝大部分的DNA残留,在大多数RT-PCR 扩增过程中极其微量的DNA残留影响不是很大,如果要进行严格的mRNA表达量分析如荧光定量PCR,我们建议在进行模板和引物的选择时:1)选用跨内含子的引物,以穿过mRNA中的连接区,这样DNA就不能作为模板参与扩增反应。
2)选择基因组DNA和cDNA上扩增的产物大小不一样的引物对。
3)将RNA提取物用RNase-free的DNase I 处理。
本试剂盒还可以用于DNase I处理后的RNA清洁(cleanup),请联系我们索取具体操作说明书。
转录组测序以及常用算法简介
转录组测序以及常用算法简介转录组测序,也被称为“全转录组鸟枪法测序”(WTSS),由于转录组测序的高覆盖率,它也被称为深度测序。
它主要利用新一代高通量测序技术,对物种或组织的RNA反转录而成的cDNA文库进行测序,并得到相关的RNA信息。
其研究对象为特定细胞在某一功能状态下所能转录出来的所有RNA的总和,包括mRNA和非编码RNA。
它是指用新一代高通量测序技术,对物种或组织的RNA反转录而成的cDNA文库进行测序,并得到相关的RNA信息。
转录组测序根据有无基因组参考序列分为:有参考基因组的转录组测序,和无参考基因组的de novo测序。
如果有基因组参考序列,可以把转录本映射回基因组,确定转录本位置、剪切情况等更为全面的遗传信息,而这些遗传信息可以广泛应用于生物学研究、医学研究、临床研究中。
虽然转录组测序和基因组测序的步骤大体相同,但是在文库制备和分析方法上却有很大的区别。
在生物信息学领域,序列比对作为识别DNA、RNA和蛋白质相似区域的有效手段,有助于我们更好地研究其结构、功能以及进化方向的关系。
下图简要说明了转录组测序的主要流程:首先将细胞中所有的反转录产物转化为cDNA文库,再将cDNA随机剪切为小DNA片段,并在两端加上接头(Adapter),所得序列通过比对(有参考基因组)或者从头组装de novo(无参考基因组),形成全基因组范围的转录谱。
图1 转录组测序流程图常用算法简介TopHat(/software/tophat/index.shtml)TopHat是Cole Trapnell等人于2009年发表在Bioinformatics上的基于Bowtie的转录组测序比对算法,是马里兰大学生物信息和计算机生物中心,以及加利福尼亚大学伯克利分校数学系和分子细胞生物学系以及哈佛大学的干细胞与再生生物学系联合开发的结果。
它通过超快的高通量短序列比对RNA序列来识别剪切位点。
图2 TopHat流程图TopHat首先先用Bowtie将RNA序列与整个参考基因组进行比对,找到匹配的序列,再用Maq合并匹配的序列,对外显子进行选择性的拼接。
血液肿瘤基因表达和基因表达模式研究进展
• 14•【勹血病•淋巴瘤2021 年1月第 30 卷第1期Journal of Leukemia &• Lymphoma,January 2021,Vol. 30,No. 1•专题综论•血液肿瘤基因表达和基因表达模式研究进展聂代静1田文君:刘红星、'河北燕达陆道培医院检验医学科,廊坊065201 山东第一医科大学附属省立医院临床检验医学部,济南 250021;1北京陆道培血液病研究院100176通信作者:刘红星,Email:starliu@扫码阅读电子版【摘要】基因表达失调与血液肿瘤的生物学特性、治疗反应和预后密切相关。
近年迅速发展的转录组测序、单细胞转录组测序等技术为发现疾病诊疗相关的标志性基因和研究基因表达模式提供了强有力的工具。
文章结合第62届美国血液学会(A SH)年会中的报道介绍相关研究进展。
【关键词】血液肿瘤;基因表达;高通量核苷酸测序基金项目:山东省自然科学基金(ZR2016HP02)DOI: 10.3760/rma.j.rnl 15356-20201211-00300Progress of gene expression and gene expression patterns in hematologica里 malignanciesI\ie Daijing1, Tian Wenjun2, Liu Hongxing11D epartment of Laboratory Medicine, Hebei Yanda Lu Daopei. Hospital, Langfang 065201, China; 2Department ofClinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021,China;3Beijing Lu Daopei Institute of Hematology, Beijing 100176, ChinaCorresponding author: Liu Hongxing, Email:***************.cn【Abstract】Disorders of gene expression are closely related to the biological characteristics,treatmentresponse, and prognosis of hematological malignancies. The rapidly-developing transcriptome sequencing andsingle-cell transcriptome sequencing technologies in recent years provide powerful tools for discovering markergenes and studying gene expression patterns related to disease diagnosis and treatment. This article reviews therelated research progress in conjunction with reports at the 62nd American Society of Hematology (ASH)Annual Meeting.【Keywords】Hematologic neoplasms; Gene expression; High-throughput nucleotide sequencingFund program: Natural Science Foundation of Shandong Province (ZR2016HP02)DOI :10.3760/ 115356-20201211 -00300基因表达是基因转录并翻译为蛋白质执行生物 学功能的中间过程。
Transcriptomeprofiling
OWS 2013Transcriptome profiling--Past, Present and FutureWei ChenBerlin Institute for Medical Systems BiologyMax-Delbrueck-Center for Molecular MedicineWhy RNA?DNA (m)RNA Protein TranslationTranscriptionSplicingLocalization…snRNARNA editingdegradationRNAi (yeast) LincRNA Promoter associated RNA enhancer associated RNA … tRNA rRNA miRNA … 5’ capping3’ poly ATranscriptome profiling• Past– Pre-genome era– Genome era• Present• Ongoing and further developmentPre-genome era (1960s)DNAProtein Fractionation technique (Count Concurrent Distribution for tRNAisolation )During his (R.Holley) 3 years of work on the structure of the alanine tRNA, Holley used a total of only 1 g of highly purified material, which he isolated from approximately 200 g of bulk yeast tRNA, which in turn was obtained by phenol extraction of approximately 140 kg of commercial bakers' yeast.RNA sequencingSpecifically, Holley, George A. Everett, James T. Madison, and Ada Zamir first used pancreatic ribonuclease to cleave the RNA chain next to pyrimidine nucleotides and then used takadiastase ribonuclease T1 to cleave the RNA chain at guanylic acid residues. They isolated the resulting fragments by ion-exchange chromatography. The components of dinucleotide fragments were then identified by chromatographic and electrophoretic properties and spectra…rRNA tRNA mRNAPre-genome era (1970s and 1980s)• Reverse transcriptase (Temin and Baltimore,1970, Nobel prize 1975)• PCR (Mullis, 1983, Nobel Prize 1993)• Sanger Sequencing (Sanger, 1977, Nobel Prize 1980)• Northern Blot (Alwine, Kemp, and Stark, 1977 )– one-shot sequencing of a clone cDNA/mRNA– Several hundred bps, 3’, 5’ or random• D iscovery of expressed (m)RNAs from different tissues• P hysical mapping of genes into chromosome• D esign of expression microarrayGenome era (1990s, 2000s)• Series Analysis of Gene expression (SAGE)Genome era (1990s, 2000s)• MicroarrayLimitationsa. Available annotationb. Cross hybridizationc. Limited dynamicrange/sensitivityMassive parallel RNA sequencing (2005-present)• S mall RNA sequencing• m iRNA, piRNA, siRNA…• R NA-seq• >200ntSmall RNA library prep (miRNA, PiRNA...)• L igation: 5’ phosphate and 3’ OH, ligation bias• R T-PCR: strong bias due to 2nd structureSmall RNA sequencing result10-40nt 40-90ntLi et.al, NAR 41(6) 3619-3634UNG treatmentRNA-seq vs ArrayWang et.al, Nature Review Genetics (10) 57-63Findings• Novel miRNAs• Novel PiRNAs• Endo-siRNAs• Novel isoforms (5’/3’ end, alternative splicing) • Promoter associated RNAs• Enhancer RNAs• LincRNAs• Circular RNAsLincRNAs• Negative definition• Not protein coding• Not overlapping with other defined transcripts• PolII transcripts– Cap, polyA, often splicing• A heterogeneous group with diverse properties and functionsLincRNA detection• FANTOM project (cDNAclone and Sanger seq)– >34000 in differentmouse tissues• Tiling array– define transcribed regionw/o transcript model• RNA-seq & de novoassembly• Chromatin map• Other supporting data– CAGE, 3-PIgor Ulitsky and David P. Bartel Cell (154) 26-46Non-coding vs codingIgor Ulitsky and David P. Bartel Cell (154) 26-46LincRNA association with RibosomeGuttman et.al. Cell (154) 240-251LincRNA genomics• Preferentially surrounding developmental TFs– Regulate gene is cis (e.g. HOTTIP)– Act in concert and benefit from co-regulation (e.g. Six3 and Six3os)– Accommodating environment for the emergence of newlincRNAs• Low expression and tissue specific (brain and testis) – median 1/10 protein-coding• Subcellular localization– both nuclear and cytoplasmeDiverse functions of lincRNAsCis-regulation• Association with PRC2, CTCF…• Direct chromatin modifying complex to DNA via nascent transcript or triplex interaction• Paring ofAlu-repeat induces STAU1 action.• miRNA sponge• Malat1 binds multiple proteins in paraspeckles• Gadd7 & TDP-43Igor Ulitsky and David P. Bartel Cell (154) 26-46Circular RNAsJeremy E. Wilusz and Phillip A. Sharp Science (340) 4401. Cocquerelle, C., et al, Mis-splicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).2. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019–1030 (1993).3. Chao, C. W., et al., The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol. Med. (1998).4. Suzuki, H. et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. (2006).5. Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF- associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. (2010).6. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).7. Salzman,J.et al. , Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).8. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 1–17 (2013).Detection of circular RNAMemczak et.al Nature. (7441):333-8Memczak et.al Nature. (7441):333-8Memczak et.al Nature. (7441):333-8Memczak et.al Nature. (7441):333-8Possible functions of circular RNAsMatthias W Hentze and Thomas Preiss Embo J (32) 923–925Ongoing and further development• Full length RNA sequencing• Single cell transcriptome profiling• Direct RNA sequencing• Discovery and Profiling of RNA modification • In situ RNA sequencingTranscriptome assembly- state-of-art State-of-Art transcriptome assembly using short readsFull length cDNA sequencingFull length cDNA sequencing—a hybridapproachYou et.al. UnpublishedSingle cell RNA-seqSingle cell RNA-seq (Fluidigm)Direct RNA-seq (Helicos)Fatih Ozsolak and Patrice M. Milos, Nature Review Genetics (12) 87-98Direct RNA-seq (Helicos)—mapping 3’ endOzsolak et.al. Nature. (461) 814-8Direct RNA-seq (PacBio)Vilfan et.al. Journal of Nanobiotechnology 11:8PacBio RNA-seq—RNA modificationVilfan et.al. Journal of Nanobiotechnology 11:8In situ RNA-seqKe et.al. Nature Methods (2013) doi:10.1038/nmeth.2563In situ RNA-seq (2)Ke et.al. Nature Methods (2013) doi:10.1038/nmeth.2563。
低温诱导的植物基因表达与调控
低温诱导的植物基因表达与调控杭州外国语学校(310023)周筱娟摘要低温是影响植物生长、发育和地理分布的重要因素。
近年来,大量研究发现低温诱导许多基因的表达,根据基因表达的蛋白产物,可分为编码功能蛋白基因和调节蛋白基因两大类。
本文对这两类低温反应基因的表达与调控及在低温胁迫中作用的最新研究进展进行介绍。
关键词:低温反应基因,低温驯化,基因表达低温是影响植物生长、发育及其地理分布的重要环境限制因素之一。
大多数热带和亚热带植物由于缺乏对低温的适应能力,当环境温度低于10℃时就会受到伤害,严重影响植物的正常生长、发育甚至造成死亡。
分布于温带地区的植物,在温暖季节对冰冻的抗性相当弱。
但是,随着季节的变化,气温的逐渐降低,植物对冰冻的抗性也逐渐增强。
在非冻的低温环境生长一段时间后,植物增强了抗冻能力,从而能耐受随即发生的冰冻温度,这个适应过程称为低温驯化(cold acclimation)。
根据植物的种类,达到最大抗冻性的低温驯化时间从数天至数周不等,不同种类植物可以耐受-10℃至-60℃以下的温度(Webb, Uemura & Steponkus 1994)。
因此,低温驯化是植物提高抗冻性的有效途径。
低温驯化是一个十分复杂的过程。
近二十年来,世界各地的科研工作者围绕在低温驯化过程中植物发生的生理生化和分子水平的各种变化进行了大量的研究。
最新的研究表明至少有300个低温反应基因参与了低温驯化进程(Fowler & Thomashow, 2002)。
针对如此复杂的适应过程,低温驯化研究的一个基本目标是分离和鉴定对抗冻性提高起着关键作用的低温反应基因。
随着突变分析和分子遗传学方法的大量应用,以拟南芥作为模式植物,已克隆了许多低温反应基因及低温调节的转录因子基因,明确了这些基因的抗冻功能及其涉及的多种低温调控的信号传导途径。
根据低温反应基因的蛋白产物可分为两大类:一类是直接保护细胞免受胁迫伤害的功能蛋白;另一类是传递信号和调控基因表达的调节蛋白。
jstd035声学扫描
JOINT INDUSTRY STANDARDAcoustic Microscopy for Non-HermeticEncapsulatedElectronicComponents IPC/JEDEC J-STD-035APRIL1999Supersedes IPC-SM-786 Supersedes IPC-TM-650,2.6.22Notice EIA/JEDEC and IPC Standards and Publications are designed to serve thepublic interest through eliminating misunderstandings between manufacturersand purchasers,facilitating interchangeability and improvement of products,and assisting the purchaser in selecting and obtaining with minimum delaythe proper product for his particular need.Existence of such Standards andPublications shall not in any respect preclude any member or nonmember ofEIA/JEDEC or IPC from manufacturing or selling products not conformingto such Standards and Publications,nor shall the existence of such Standardsand Publications preclude their voluntary use by those other than EIA/JEDECand IPC members,whether the standard is to be used either domestically orinternationally.Recommended Standards and Publications are adopted by EIA/JEDEC andIPC without regard to whether their adoption may involve patents on articles,materials,or processes.By such action,EIA/JEDEC and IPC do not assumeany liability to any patent owner,nor do they assume any obligation whateverto parties adopting the Recommended Standard or ers are alsowholly responsible for protecting themselves against all claims of liabilities forpatent infringement.The material in this joint standard was developed by the EIA/JEDEC JC-14.1Committee on Reliability Test Methods for Packaged Devices and the IPCPlastic Chip Carrier Cracking Task Group(B-10a)The J-STD-035supersedes IPC-TM-650,Test Method2.6.22.For Technical Information Contact:Electronic Industries Alliance/ JEDEC(Joint Electron Device Engineering Council)2500Wilson Boulevard Arlington,V A22201Phone(703)907-7560Fax(703)907-7501IPC2215Sanders Road Northbrook,IL60062-6135 Phone(847)509-9700Fax(847)509-9798Please use the Standard Improvement Form shown at the end of thisdocument.©Copyright1999.The Electronic Industries Alliance,Arlington,Virginia,and IPC,Northbrook,Illinois.All rights reserved under both international and Pan-American copyright conventions.Any copying,scanning or other reproduction of these materials without the prior written consent of the copyright holder is strictly prohibited and constitutes infringement under the Copyright Law of the United States.IPC/JEDEC J-STD-035Acoustic Microscopyfor Non-Hermetic EncapsulatedElectronicComponentsA joint standard developed by the EIA/JEDEC JC-14.1Committee on Reliability Test Methods for Packaged Devices and the B-10a Plastic Chip Carrier Cracking Task Group of IPCUsers of this standard are encouraged to participate in the development of future revisions.Contact:EIA/JEDEC Engineering Department 2500Wilson Boulevard Arlington,V A22201 Phone(703)907-7500 Fax(703)907-7501IPC2215Sanders Road Northbrook,IL60062-6135 Phone(847)509-9700Fax(847)509-9798ASSOCIATION CONNECTINGELECTRONICS INDUSTRIESAcknowledgmentMembers of the Joint IPC-EIA/JEDEC Moisture Classification Task Group have worked to develop this document.We would like to thank them for their dedication to this effort.Any Standard involving a complex technology draws material from a vast number of sources.While the principal members of the Joint Moisture Classification Working Group are shown below,it is not possible to include all of those who assisted in the evolution of this Standard.To each of them,the mem-bers of the EIA/JEDEC and IPC extend their gratitude.IPC Packaged Electronic Components Committee ChairmanMartin FreedmanAMP,Inc.IPC Plastic Chip Carrier Cracking Task Group,B-10a ChairmanSteven MartellSonoscan,Inc.EIA/JEDEC JC14.1CommitteeChairmanJack McCullenIntel Corp.EIA/JEDEC JC14ChairmanNick LycoudesMotorolaJoint Working Group MembersCharlie Baker,TIChristopher Brigham,Hi/FnRalph Carbone,Hewlett Packard Co. Don Denton,TIMatt Dotty,AmkorMichele J.DiFranza,The Mitre Corp. Leo Feinstein,Allegro Microsystems Inc.Barry Fernelius,Hewlett Packard Co. Chris Fortunko,National Institute of StandardsRobert J.Gregory,CAE Electronics, Inc.Curtis Grosskopf,IBM Corp.Bill Guthrie,IBM Corp.Phil Johnson,Philips Semiconductors Nick Lycoudes,MotorolaSteven R.Martell,Sonoscan Inc. Jack McCullen,Intel Corp.Tom Moore,TIDavid Nicol,Lucent Technologies Inc.Pramod Patel,Advanced Micro Devices Inc.Ramon R.Reglos,XilinxCorazon Reglos,AdaptecGerald Servais,Delphi Delco Electronics SystemsRichard Shook,Lucent Technologies Inc.E.Lon Smith,Lucent Technologies Inc.Randy Walberg,NationalSemiconductor Corp.Charlie Wu,AdaptecEdward Masami Aoki,HewlettPackard LaboratoriesFonda B.Wu,Raytheon Systems Co.Richard W.Boerdner,EJE ResearchVictor J.Brzozowski,NorthropGrumman ES&SDMacushla Chen,Wus Printed CircuitCo.Ltd.Jeffrey C.Colish,Northrop GrummanCorp.Samuel J.Croce,Litton AeroProducts DivisionDerek D-Andrade,Surface MountTechnology CentreRao B.Dayaneni,Hewlett PackardLaboratoriesRodney Dehne,OEM WorldwideJames F.Maguire,Boeing Defense&Space GroupKim Finch,Boeing Defense&SpaceGroupAlelie Funcell,Xilinx Inc.Constantino J.Gonzalez,ACMEMunir Haq,Advanced Micro DevicesInc.Larry A.Hargreaves,DC.ScientificInc.John T.Hoback,Amoco ChemicalCo.Terence Kern,Axiom Electronics Inc.Connie M.Korth,K-Byte/HibbingManufacturingGabriele Marcantonio,NORTELCharles Martin,Hewlett PackardLaboratoriesRichard W.Max,Alcatel NetworkSystems Inc.Patrick McCluskey,University ofMarylandJames H.Moffitt,Moffitt ConsultingServicesRobert Mulligan,Motorola Inc.James E.Mumby,CibaJohn Northrup,Lockheed MartinCorp.Dominique K.Numakura,LitchfieldPrecision ComponentsNitin B.Parekh,Unisys Corp.Bella Poborets,Lucent TechnologiesInc.D.Elaine Pope,Intel Corp.Ray Prasad,Ray Prasad ConsultancyGroupAlbert Puah,Adaptec Inc.William Sepp,Technic Inc.Ralph W.Taylor,Lockheed MartinCorp.Ed R.Tidwell,DSC CommunicationsCorp.Nick Virmani,Naval Research LabKen Warren,Corlund ElectronicsCorp.Yulia B.Zaks,Lucent TechnologiesInc.IPC/JEDEC J-STD-035April1999 iiTable of Contents1SCOPE (1)2DEFINITIONS (1)2.1A-mode (1)2.2B-mode (1)2.3Back-Side Substrate View Area (1)2.4C-mode (1)2.5Through Transmission Mode (2)2.6Die Attach View Area (2)2.7Die Surface View Area (2)2.8Focal Length(FL) (2)2.9Focus Plane (2)2.10Leadframe(L/F)View Area (2)2.11Reflective Acoustic Microscope (2)2.12Through Transmission Acoustic Microscope (2)2.13Time-of-Flight(TOF) (3)2.14Top-Side Die Attach Substrate View Area (3)3APPARATUS (3)3.1Reflective Acoustic Microscope System (3)3.2Through Transmission AcousticMicroscope System (4)4PROCEDURE (4)4.1Equipment Setup (4)4.2Perform Acoustic Scans..........................................4Appendix A Acoustic Microscopy Defect CheckSheet (6)Appendix B Potential Image Pitfalls (9)Appendix C Some Limitations of AcousticMicroscopy (10)Appendix D Reference Procedure for PresentingApplicable Scanned Data (11)FiguresFigure1Example of A-mode Display (1)Figure2Example of B-mode Display (1)Figure3Example of C-mode Display (2)Figure4Example of Through Transmission Display (2)Figure5Diagram of a Reflective Acoustic MicroscopeSystem (3)Figure6Diagram of a Through Transmission AcousticMicroscope System (3)April1999IPC/JEDEC J-STD-035iiiIPC/JEDEC J-STD-035April1999This Page Intentionally Left BlankivApril1999IPC/JEDEC J-STD-035 Acoustic Microscopy for Non-Hermetic EncapsulatedElectronic Components1SCOPEThis test method defines the procedures for performing acoustic microscopy on non-hermetic encapsulated electronic com-ponents.This method provides users with an acoustic microscopy processflow for detecting defects non-destructively in plastic packages while achieving reproducibility.2DEFINITIONS2.1A-mode Acoustic data collected at the smallest X-Y-Z region defined by the limitations of the given acoustic micro-scope.An A-mode display contains amplitude and phase/polarity information as a function of time offlight at a single point in the X-Y plane.See Figure1-Example of A-mode Display.IPC-035-1 Figure1Example of A-mode Display2.2B-mode Acoustic data collected along an X-Z or Y-Z plane versus depth using a reflective acoustic microscope.A B-mode scan contains amplitude and phase/polarity information as a function of time offlight at each point along the scan line.A B-mode scan furnishes a two-dimensional(cross-sectional)description along a scan line(X or Y).See Figure2-Example of B-mode Display.IPC-035-2 Figure2Example of B-mode Display(bottom half of picture on left)2.3Back-Side Substrate View Area(Refer to Appendix A,Type IV)The interface between the encapsulant and the back of the substrate within the outer edges of the substrate surface.2.4C-mode Acoustic data collected in an X-Y plane at depth(Z)using a reflective acoustic microscope.A C-mode scan contains amplitude and phase/polarity information at each point in the scan plane.A C-mode scan furnishes a two-dimensional(area)image of echoes arising from reflections at a particular depth(Z).See Figure3-Example of C-mode Display.1IPC/JEDEC J-STD-035April1999IPC-035-3 Figure3Example of C-mode Display2.5Through Transmission Mode Acoustic data collected in an X-Y plane throughout the depth(Z)using a through trans-mission acoustic microscope.A Through Transmission mode scan contains only amplitude information at each point in the scan plane.A Through Transmission scan furnishes a two-dimensional(area)image of transmitted ultrasound through the complete thickness/depth(Z)of the sample/component.See Figure4-Example of Through Transmission Display.IPC-035-4 Figure4Example of Through Transmission Display2.6Die Attach View Area(Refer to Appendix A,Type II)The interface between the die and the die attach adhesive and/or the die attach adhesive and the die attach substrate.2.7Die Surface View Area(Refer to Appendix A,Type I)The interface between the encapsulant and the active side of the die.2.8Focal Length(FL)The distance in water at which a transducer’s spot size is at a minimum.2.9Focus Plane The X-Y plane at a depth(Z),which the amplitude of the acoustic signal is maximized.2.10Leadframe(L/F)View Area(Refer to Appendix A,Type V)The imaged area which extends from the outer L/F edges of the package to the L/F‘‘tips’’(wedge bond/stitch bond region of the innermost portion of the L/F.)2.11Reflective Acoustic Microscope An acoustic microscope that uses one transducer as both the pulser and receiver. (This is also known as a pulse/echo system.)See Figure5-Diagram of a Reflective Acoustic Microscope System.2.12Through Transmission Acoustic Microscope An acoustic microscope that transmits ultrasound completely through the sample from a sending transducer to a receiver on the opposite side.See Figure6-Diagram of a Through Transmis-sion Acoustic Microscope System.2April1999IPC/JEDEC J-STD-0353IPC/JEDEC J-STD-035April1999 3.1.6A broad band acoustic transducer with a center frequency in the range of10to200MHz for subsurface imaging.3.2Through Transmission Acoustic Microscope System(see Figure6)comprised of:3.2.1Items3.1.1to3.1.6above3.2.2Ultrasonic pulser(can be a pulser/receiver as in3.1.1)3.2.3Separate receiving transducer or ultrasonic detection system3.3Reference packages or standards,including packages with delamination and packages without delamination,for use during equipment setup.3.4Sample holder for pre-positioning samples.The holder should keep the samples from moving during the scan and maintain planarity.4PROCEDUREThis procedure is generic to all acoustic microscopes.For operational details related to this procedure that apply to a spe-cific model of acoustic microscope,consult the manufacturer’s operational manual.4.1Equipment Setup4.1.1Select the transducer with the highest useable ultrasonic frequency,subject to the limitations imposed by the media thickness and acoustic characteristics,package configuration,and transducer availability,to analyze the interfaces of inter-est.The transducer selected should have a low enough frequency to provide a clear signal from the interface of interest.The transducer should have a high enough frequency to delineate the interface of interest.Note:Through transmission mode may require a lower frequency and/or longer focal length than reflective mode.Through transmission is effective for the initial inspection of components to determine if defects are present.4.1.2Verify setup with the reference packages or standards(see3.3above)and settings that are appropriate for the trans-ducer chosen in4.1.1to ensure that the critical parameters at the interface of interest correlate to the reference standard uti-lized.4.1.3Place units in the sample holder in the coupling medium such that the upper surface of each unit is parallel with the scanning plane of the acoustic transducer.Sweep air bubbles away from the unit surface and from the bottom of the trans-ducer head.4.1.4At afixed distance(Z),align the transducer and/or stage for the maximum reflected amplitude from the top surface of the sample.The transducer must be perpendicular to the sample surface.4.1.5Focus by maximizing the amplitude,in the A-mode display,of the reflection from the interface designated for imag-ing.This is done by adjusting the Z-axis distance between the transducer and the sample.4.2Perform Acoustic Scans4.2.1Inspect the acoustic image(s)for any anomalies,verify that the anomaly is a package defect or an artifact of the imaging process,and record the results.(See Appendix A for an example of a check sheet that may be used.)To determine if an anomaly is a package defect or an artifact of the imaging process it is recommended to analyze the A-mode display at the location of the anomaly.4.2.2Consider potential pitfalls in image interpretation listed in,but not limited to,Appendix B and some of the limita-tions of acoustic microscopy listed in,but not limited to,Appendix C.If necessary,make adjustments to the equipment setup to optimize the results and rescan.4April1999IPC/JEDEC J-STD-035 4.2.3Evaluate the acoustic images using the failure criteria specified in other appropriate documents,such as J-STD-020.4.2.4Record the images and thefinal instrument setup parameters for documentation purposes.An example checklist is shown in Appendix D.5IPC/JEDEC J-STD-035April19996April1999IPC/JEDEC J-STD-035Appendix AAcoustic Microscopy Defect Check Sheet(continued)CIRCUIT SIDE SCANImage File Name/PathDelamination(Type I)Die Circuit Surface/Encapsulant Number Affected:Average%Location:Corner Edge Center (Type II)Die/Die Attach Number Affected:Average%Location:Corner Edge Center (Type III)Encapsulant/Substrate Number Affected:Average%Location:Corner Edge Center (Type V)Interconnect tip Number Affected:Average%Interconnect Number Affected:Max.%Length(Type VI)Intra-Laminate Number Affected:Average%Location:Corner Edge Center Comments:CracksAre cracks present:Yes NoIf yes:Do any cracks intersect:bond wire ball bond wedge bond tab bump tab leadDoes crack extend from leadfinger to any other internal feature:Yes NoDoes crack extend more than two-thirds the distance from any internal feature to the external surfaceof the package:Yes NoAdditional verification required:Yes NoComments:Mold Compound VoidsAre voids present:Yes NoIf yes:Approx.size Location(if multiple voids,use comment section)Do any voids intersect:bond wire ball bond wedge bond tab bump tab lead Additional verification required:Yes NoComments:7IPC/JEDEC J-STD-035April1999Appendix AAcoustic Microscopy Defect Check Sheet(continued)NON-CIRCUIT SIDE SCANImage File Name/PathDelamination(Type IV)Encapsulant/Substrate Number Affected:Average%Location:Corner Edge Center (Type II)Substrate/Die Attach Number Affected:Average%Location:Corner Edge Center (Type V)Interconnect Number Affected:Max.%LengthLocation:Corner Edge Center (Type VI)Intra-Laminate Number Affected:Average%Location:Corner Edge Center (Type VII)Heat Spreader Number Affected:Average%Location:Corner Edge Center Additional verification required:Yes NoComments:CracksAre cracks present:Yes NoIf yes:Does crack extend more than two-thirds the distance from any internal feature to the external surfaceof the package:Yes NoAdditional verification required:Yes NoComments:Mold Compound VoidsAre voids present:Yes NoIf yes:Approx.size Location(if multiple voids,use comment section)Additional verification required:Yes NoComments:8Appendix BPotential Image PitfallsOBSERV ATIONS CAUSES/COMMENTSUnexplained loss of front surface signal Gain setting too lowSymbolization on package surfaceEjector pin knockoutsPin1and other mold marksDust,air bubbles,fingerprints,residueScratches,scribe marks,pencil marksCambered package edgeUnexplained loss of subsurface signal Gain setting too lowTransducer frequency too highAcoustically absorbent(rubbery)fillerLarge mold compound voidsPorosity/high concentration of small voidsAngled cracks in package‘‘Dark line boundary’’(phase cancellation)Burned molding compound(ESD/EOS damage)False or spotty indication of delamination Low acoustic impedance coating(polyimide,gel)Focus errorIncorrect delamination gate setupMultilayer interference effectsFalse indication of adhesion Gain set too high(saturation)Incorrect delamination gate setupFocus errorOverlap of front surface and subsurface echoes(transducerfrequency too low)Fluidfilling delamination areasApparent voiding around die edge Reflection from wire loopsIncorrect setting of void gateGraded intensity Die tilt or lead frame deformation Sample tiltApril1999IPC/JEDEC J-STD-0359Appendix CSome Limitations of Acoustic MicroscopyAcoustic microscopy is an analytical technique that provides a non-destructive method for examining plastic encapsulated components for the existence of delaminations,cracks,and voids.This technique has limitations that include the following: LIMITATION REASONAcoustic microscopy has difficulty infinding small defects if the package is too thick.The ultrasonic signal becomes more attenuated as a function of two factors:the depth into the package and the transducer fre-quency.The greater the depth,the greater the attenuation.Simi-larly,the higher the transducer frequency,the greater the attenu-ation as a function of depth.There are limitations on the Z-axis(axial)resolu-tion.This is a function of the transducer frequency.The higher the transducer frequency,the better the resolution.However,the higher frequency signal becomes attenuated more quickly as a function of depth.There are limitations on the X-Y(lateral)resolu-tion.The X-Y(lateral)resolution is a function of a number of differ-ent variables including:•Transducer characteristics,including frequency,element diam-eter,and focal length•Absorption and scattering of acoustic waves as a function of the sample material•Electromechanical properties of the X-Y stageIrregularly shaped packages are difficult to analyze.The technique requires some kind offlat reference surface.Typically,the upper surface of the package or the die surfacecan be used as references.In some packages,cambered packageedges can cause difficulty in analyzing defects near the edgesand below their surfaces.Edge Effect The edges cause difficulty in analyzing defects near the edge ofany internal features.IPC/JEDEC J-STD-035April1999 10April1999IPC/JEDEC J-STD-035Appendix DReference Procedure for Presenting Applicable Scanned DataMost of the settings described may be captured as a default for the particular supplier/product with specific changes recorded on a sample or lot basis.Setup Configuration(Digital Setup File Name and Contents)Calibration Procedure and Calibration/Reference Standards usedTransducerManufacturerModelCenter frequencySerial numberElement diameterFocal length in waterScan SetupScan area(X-Y dimensions)Scan step sizeHorizontalVerticalDisplayed resolutionHorizontalVerticalScan speedPulser/Receiver SettingsGainBandwidthPulseEnergyRepetition rateReceiver attenuationDampingFilterEcho amplitudePulse Analyzer SettingsFront surface gate delay relative to trigger pulseSubsurface gate(if used)High passfilterDetection threshold for positive oscillation,negative oscillationA/D settingsSampling rateOffset settingPer Sample SettingsSample orientation(top or bottom(flipped)view and location of pin1or some other distinguishing characteristic) Focus(point,depth,interface)Reference planeNon-default parametersSample identification information to uniquely distinguish it from others in the same group11IPC/JEDEC J-STD-035April1999Appendix DReference Procedure for Presenting Applicable Scanned Data(continued) Reference Procedure for Presenting Scanned DataImagefile types and namesGray scale and color image legend definitionsSignificance of colorsIndications or definition of delaminationImage dimensionsDepth scale of TOFDeviation from true aspect ratioImage type:A-mode,B-mode,C-mode,TOF,Through TransmissionA-mode waveforms should be provided for points of interest,such as delaminated areas.In addition,an A-mode image should be provided for a bonded area as a control.12Standard Improvement FormIPC/JEDEC J-STD-035The purpose of this form is to provide the Technical Committee of IPC with input from the industry regarding usage of the subject standard.Individuals or companies are invited to submit comments to IPC.All comments will be collected and dispersed to the appropriate committee(s).If you can provide input,please complete this form and return to:IPC2215Sanders RoadNorthbrook,IL 60062-6135Fax 847509.97981.I recommend changes to the following:Requirement,paragraph number Test Method number,paragraph numberThe referenced paragraph number has proven to be:Unclear Too RigidInErrorOther2.Recommendations forcorrection:3.Other suggestions for document improvement:Submitted by:Name Telephone Company E-mailAddress City/State/ZipDate ASSOCIATION CONNECTING ELECTRONICS INDUSTRIESASSOCIATION CONNECTINGELECTRONICS INDUSTRIESISBN#1-580982-28-X2215 Sanders Road, Northbrook, IL 60062-6135Tel. 847.509.9700 Fax 847.509.9798。
阿尔茨海默病的生信文章
阿尔茨海默病的生信文章阿尔茨海默病是一种以失忆、认知和行为障碍为主要表现的神经系统退行性疾病。
生信技术在阿尔茨海默病的研究中发挥着重要作用。
以下是一些相关的生信文章:1. “Identifying the Genetic Risk Factors forAlzheimer's Disease through Genome-Wide Association Studies”. 该文章介绍了基因组关联研究(GWAS)在阿尔茨海默病研究中的应用,了解了遗传因素对该疾病的风险的贡献。
2. “RNA sequencing-based transcriptome profiling of Alzheimer's disease patients”. 该文章介绍了RNA测序技术在阿尔茨海默病研究中的应用,通过对病人和正常人脑组织中RNA表达谱的比较和分析,揭示了该疾病的复杂机制。
3. “Proteomics in Alzheimer's disease: insights into potential biomarkers and therapeutic targets”. 该文章介绍了蛋白质组学在阿尔茨海默病研究中的应用,以期寻找潜在的生物标志物和治疗靶点。
4. “Machine learning approaches for predictingAlzheimer's disease: a review”. 该文章介绍了机器学习技术在阿尔茨海默病的预测方面的应用,探讨该技术在该疾病早期诊断和治疗方面的潜力。
5. “Single-cell analysis of Alzheimer's disease”. 该文章利用单细胞分析技术探讨了阿尔茨海默病中不同细胞类型和亚型的转录组和表观遗传表达差异,以期深入了解该疾病的发病机制和治疗方式。
总之,生信技术在阿尔茨海默病研究中的应用将为我们更好地理解该疾病的发病机制,开发更有效的治疗方法提供有力保障。
深度测序技术简介
Brain
118 162 85 73 91 48 266 217 91 10
0 46 41 0 8 0 240 51 716 132
UHR
861 163 35
0 96 0 271 1538 0 10 113 799 12 42 346 59 81 0 0 69
Symbol Gene Description
SNV: Single Nucleotide Substitution Variant
DIGITAL EXPRESSION PROFILING(1): 人大脑组织与UHR(UNIVERSAL HUMAN REFERENCE)的表达差异
Tag Sequence GATCAAACCAAGGCCCAGGC GATCACTGTTAATGATTTGC GATCAGTGTCTTTTCAGCAC GATCATCATGACCAATGAAA GATCATGCTGGCTGCAAAGA GATCCAAACCCAAGTCTTGA GATCCAAGATAAAGAAGGCA GATCCCAGACTGGTTCTTGA GATCCCCAATTGACTCAGAG GATCCGGGGCTGCAGGCTTG GATCCTACAGAAGTGGAGCT GATCCTAGTAATTGCCTAGA GATCCTGCGGGAGTCTCCCG GATCCTGTGAAGGCCTGGAA GATCGAGACACGTGATGGGA GATCGAGGACAGTGCAACCA GATCTCAATGCCAATCCTCC GATCTGCACGCCGCTGACCC GATCTGTGCCCAGAGATGGG GATCTGTGGAGAATGTACAC
UBB Ubiquitin B RING1 Ring finger protein 1 DIRAS2 DIRAS family, GTP-binding RAS-like 2 PHF20 PHD finger protein 20
转录组综述11 - 副本
转录组综述一. 引言:基因的表达分为转录和翻译过程,对同一生物体而言,虽然每个细胞具有相同的基因,但不同的细胞在特定的时空条件下表达不同的基因,转录出不同的RNA分子。
例如,人类基因组包含有30亿个碱基对,大约有5万个基因转录成mRNA分子,转录后的mRNA能被翻译生成蛋白质只占整个转录组的40%左右,通过转录组谱数据研究可以得到什么条件下什么基因表达的信息[1],这是基因功能及结构研究的基本出发点,随着生物学研究已经跨入后基因组时代,高通量测序技术的出现,大规模的基因表达水平研究的序幕已经拉开,转录组学作为一门新技术开始在生物学前沿研究中绽露头角,已经成为生命科学研究的热点,并逐渐走向应用。
二. 转录组概念:转录组学(transcriptomics),是一门在整体水平上研究细胞中基因转录的情况及转录调控机制的学科,主要从RNA水平研究基因表达的情况。
一般来说,把转录组学分为广义和狭义转录组学[2],广义转录组指从一种细胞或者组织的基因组所转录出来的RNA的总和,包括编码蛋白质的mRNA和各种非编码RNA (rRNA, tRNA, snoRNA, snRNA,microRNA和其他非编码RNA等),狭义转录组是特定组织或细胞在某一发育阶段或功能状态下转录出来的所有RNA的总和[3]。
三. 转录组研究内容:转录组学的研究内容包括:对所有的转录产物进行分类,确定基因的转录结构,通过对转录谱的分析,推断相应某一基因的功能,揭示特定调节基因的作用机制,辨别细胞的表型归属等[4]。
四. 棉花转录组研究的意义棉花纤维转录组研究起步较晚,但近年来大量高质量棉花胚珠、纤维cDNA文库的构建,EST数据库的丰富,以及高通量基因芯片的应用和转录组测序工作的开展,在涉及纤维起始分化、伸长及次生壁加厚等的各个发育阶段均取得了不小的成果。
从整体的转录组水平上对棉纤维复杂的多基因遗传机制进行深入研究以及了解整个纤维发育的分子调控机制,结合分子标记技术定位的大量与纤维产量和纤维品质相关的QTLs,非常有助于分子标记辅助选择(MAS )育种和纤维品质的改良。
short-read sequencing短读测序
short-read sequencing短读测序Short-read sequencing, also known as next-generation sequencing (NGS), is a high-throughput sequencing method that enables rapid and cost-effective analysis of DNA or RNA sequences. It involves breaking the DNA or RNA into short fragments and then simultaneously sequencing millions of these fragments in parallel.Short-read sequencing technologies, such as Illumina sequencing, use reversible terminators to sequentially add nucleotides to the fragments, with each nucleotide being labeled with a fluorescent dye. The emitted fluorescence is captured by a detector and converted into a nucleotide sequence by a computer.Short-read sequencing is widely used in various applications, such as genome sequencing, transcriptome profiling, metagenomics, and epigenetics research. It has revolutionized the field of genomics by enabling the generation of large amounts of sequence data quickly and at a low cost. However, it has limitations in accurately assembling large genomes and identifying complex genomic variations, such as structural variations and repetitive sequences, due to the short read length. To overcome these limitations, long-read sequencing technologies, such as Pacific Biosciences (PacBio) and Oxford Nanopore sequencing, have been developed, which can generate much longer sequencing reads.。
拟南芥植物反应抗旱逆境真菌感染冷却处理
拟南芥植物反应抗旱逆境真菌感染冷却处理拟南芥(Arabidopsis thaliana)是一种广泛应用于植物研究领域的模式植物。
它具有短的生命周期、小型体型以及易于种植和管理的特点。
因此,拟南芥被广泛用于研究各种植物逆境响应,包括抗旱、真菌感染等。
本文将针对拟南芥植物在抗旱逆境和真菌感染方面的冷却处理进行综述。
抗旱逆境是植物生长发育过程中的一种重要逆境。
干旱会引起植物水分胁迫,导致细胞脱水和生理代谢的紊乱。
拟南芥作为一种适应于各种环境的植物,其适应干旱的机制引起了科研人员广泛的兴趣。
研究表明,拟南芥在干旱逆境中通过启动一系列信号转导途径和调控基因表达来实现抗旱适应。
其中,与调节植物顶端生长相关的蛋白质DREB(dehydration-responsive element-binding protein)在抗旱逆境中起着关键作用。
DREB通常通过结合抗旱反应相关的启动子元件,如DRE/CRT(dehydration-responsive element/C-repeat)来调节抗旱基因的表达。
除此之外,一些拟南芥植物激素和信号分子也参与了抗旱逆境下的调节,如脱落酸、脱落酸反应基因及MYB转录因子等。
在面临真菌感染逆境时,拟南芥植物也会采取一系列防御机制来抵抗真菌感染。
拟南芥通过产生抗菌蛋白和调节关键防御基因表达来对抗真菌的侵袭。
例如,拟南芥可产生一种名为PR蛋白(pathogenesis-related proteins)的抗菌蛋白。
这些抗菌蛋白可以直接杀死真菌,或通过增强植物自身防御系统来抗击真菌感染。
此外,一些与拟南芥植物免疫反应相关的信号分子也在对抗真菌感染中发挥重要作用。
其中,植物激素茉莉酸和乙烯增加了拟南芥植物对抗真菌感染的抵抗力。
茉莉酸通过激活一系列抗真菌基因的表达来增强植物抗真菌能力,而乙烯则参与了拟南芥植物对真菌感染的信号传导过程。
冷却处理是一种常用的实验手段,用于模拟植物在低温环境中的逆境响应。
多院区POCT同质化管理模式
生对知识的理解和熟悉情况,以及对教学模式的适应情况㊂与之配套的考核方式应将相当的比重放置在过程性考核上,关注学生在分组中的表现,注重检验学生能力提升情况㊂量化教学评价,培养德才兼备的高素质创新型人才㊂(5)在课程设置时应注重挖掘课程的思想政治元素,结合医学基础课程的特点,利用学习思维方法引领价值观,增强职业认同感,使学生更好地肩负起维护和促进人民群众身体健康的重要使命㊂通过本文中这一系列课程设置,让学生回顾本专业知识点的同时进一步扩大知识面,了解国际前沿的新发现㊁新理论㊂同时培养学生发现问题㊁分析问题和解决问题的能力㊂再通过相关生物信息学方法的讲解㊁分析示范和结果解读,让学生在学习过程中了解生物信息学分析的一般方法㊁掌握对分析结果的解读,将临床与科研相结合,提高学生综合能力㊂参考文献[1]杨建滨,尚世强.分子生物学技术在出生缺陷三级预防中的临床应用及思考[J ].中华预防医学杂志,2021,55(9):1028-1032.[2]杜函芮.以学生为中心构建高校科研育人网络的研究[J ].高教探索,2022,38(6):34-39.[3]卢威,梁凤霞,刘建民,等.以学生为中心的教学理念在‘针灸学“教学中的应用[J ].时珍国医国药,2022,33(10):2519-2520.[4]龚广伟,黄春琳,许可,等. 以学生为中心 的融合式培育实践研究[J ].工业和信息化教育,2022,10(11):1-16.[5]王庭槐.生理学[M ].9版.北京:人民卫生出版社,2018:78-81.[6]F E R N A N D E Z A ,K A R A V I T A K I N ,WA S S J A H.P r e v -a l e n c e o f p i t u i t a r y a d e n o m a s :a c o mm u n i t y-b a s e d ,c r o s s -s e c t i o n a l s t u d y i n B a n b u r y (O x f o r d s h i r e ,U K )[J ].C l i n E n d o c r i n o l (O x f ),2010,72(3):377-382.[7]Z HA N G Q ,Y A O B ,L O N G X ,e t a l .S i n g l e -c e l l s e qu e n -c i n gi d e n t i f i e s d i f f e r e n t i a t i o n -r e l a t e d m a r k e r s f o r m o l e c u -l a r c l a s s i f i c a t i o n a n d r e c u r r e n c e p r e d i c t i o n o f P i t N E T [J ].C e l l R e po r t s M e d i c i n e ,2023,4(2):100934.[8]A S A S L ,M E T E O ,P E R R Y A ,e t a l .O v e r v i e w o f t h e2022WHO c l a s s i f i c a t i o n o f p i t u i t a r y tu m o r s [J ].E n d o c r P a t h o l ,2022,33(1):6-26.[9]T A N G F C ,B A R B A C I O R U C ,WA N G Y Z ,e t a l .m R -N A -S e q w h o l e -t r a n s c r i p t o m e a n a l y s i s o f a s i n g l e c e l l [J ].N a t M e t h o d s ,2009,6(5):377-382.[10]P O T T E R S S .S i n g l e -c e l l R N A s e q u e n c i n g f o r t h e s t u d yo f d e v e l o p m e n t ,p h y s i o l o g y an d d i s e a s e [J ].N a t R e v N e ph r o l ,2018,14(8):479-492.[11]B A S L A N T ,H I C K S J .U n r a v e l l i n g b i o l o g y a n d s h i f t i n gp a r a d i g m s i n c a n c e r w i t h s i n g l e -c e l l s e q u e n c i n g [J ].N a t R e v C a n c e r ,2017,17(9):557-569.[12]Z H E N G G X Y ,T E R R Y J M ,B E L G R A D E R P ,e t a l .M a s s i v e l y p a r a l l e l d i g i t a l t r a n s c r i p t i o n a l p r o f i l i n g of s i n -gl e c e l l s [J ].N a t C o mm u n ,2017,8:14049.[13]S T U A R T T ,B U T L E R A ,HO F F MA N P ,e t a l .C o m pr e -h e n s i v e i n t e g r a t i o n o f S i n gl e -C e l l d a t a [J ].C e l l ,2019,177(7):1888-1902.[14]K O R S U N S K Y I ,M I L L A R D N ,F A N J ,e t a l .F a s t ,s e n s i -t i v e a n d a c c u r a t e i n t e g r a t i o n o f s i n gl e -c e l l d a t a w i t h H a r -m o n y[J ].N a t M e t h o d s ,2019,16(12):1289-1296.[15]Z HA N G X X ,L A N Y J ,X U J Y ,e t a l .C e l l M a r k e r :am a n u a l l y c u r a t e d r e s o u r c e o f c e l l m a r k e r s i n h u m a n a n d m o u s e [J ].N u c l e i c A c i d s R e s ,2019,47(D 1):D 721-D 728.(收稿日期:2023-07-10 修回日期:2023-12-12)ә通信作者,E -m a i l :b a o d e C h e n @z ju .e d u .c n ㊂教学㊃管理D O I :10.3969/j.i s s n .1672-9455.2024.04.033多院区P O C T 同质化管理模式阮 帅1,陈保德1ә,金建敏2,徐 剑3浙江大学医学院附属第一医院:1.检验科;2.质量管理部;3.信息中心,浙江杭州311100摘 要:目的 探讨多院区的即时检测(P O C T )质量管理体系,实现多院区之间同质化管理㊂方法 全面了解各院区的P O C T 仪器分布㊁厂家品牌㊁开展项目等情况,完善多院区P O C T 质量管理架构及职责,利用信息化手段搭建P O C T 平台打通各院区数据流,规范多院区P O C T 体系文件,统一室内质控㊁室间质评㊁院间比对,以及检测人员的培训考核㊁资格认证等内容㊂结果 在多院区同质化管理运行半年后,P O C T 仪器室内质控执行率已达到100%;室内质控(血气分析)不精密度(C V )明显降低,且符合目标C V ;院内比对(便携式血糖仪)通过率提高至100%;室间质评(便携式血糖仪)偏倚结果逐年变小,确保检测结果的准确性㊂结论 利用信息化解决方案助力P O C T 管理的规范化,解决许多P O C T 质量管理的问题,实现多院区P O C T 统一协调的质量管理㊂关键词:即时检测; 多院区; 同质化管理; 质量控制; 质量管理中图法分类号:R 194文献标志码:B文章编号:1672-9455(2024)04-0572-05近年来随着医疗体系深入变革,公立医院进入高速发展的时期,许多大型医院通过一院多区扩大规模㊃275㊃检验医学与临床2024年2月第21卷第4期 L a b M e d C l i n ,F e b r u a r y 2024,V o l .21,N o .4整合医疗资源,均衡区域医疗服务水平,更好地满足人民群众对医疗健康服务的需求㊂然而不同院区之间存在地理位置㊁文化理念㊁服务人群的差异,因此,对多院区同质化管理也提出了更高的要求㊂依托核心院区的品牌㊁技术㊁管理等资源,以相同的组织架构㊁信息网络㊁集成业务发展等辐射到各院区,各院区通过完善智慧医院的顶层设计,以信息化建设为支撑,提供与核心院区同质化的医疗服务[1]㊂即时检测(P O C T)在欧美国家发展较早,而中国的P O C T行业起步较晚,我国在2006年成立 中国医院协会临床检验管理专业委员会P O C T分委员会 ,初步拟定了关于P O C T的相关文件,2014年国家标准化管理委员会正式实施‘G B/T29790-2013即时检测质量和能力的要求“,将即时检测定为P O C T的中文名字,同时对中国P O C T产品的质量保证能力提出了明确的要求[2]㊂近20年来,P O C T在中国的发展已走上有中国特色应用场景的道路,越来越多的体外诊断产品(I V D)厂家不断创新,出现了生物传感器㊁生物芯片㊁微流控等新型技术,使得仪器设备更加小型化㊂5G 互联网+时代整合人工智能的大背景下,提出新一代智慧P O C T(i P O C T)方案,可为受检者提供检测建议和结果解读,对受检者的临床症状㊁病史情况㊁医技检查等综合分析后建立个体化决策树[3]㊂然而随着P O C T技术的高速发展,其在医院内的监督管理体系相对滞后,目前仍然存在着P O C T质量控制体系不完善㊁检测单元(科室)分散且未进行统一管理㊁操作者重视程度不够㊁未形成统一的规范流程㊁院内信息化不足㊁检验科监管缺失等问题㊂在最新版I S O/15189:2022中也明确阐述 在实验室管理范围内的P O C T ,这就意味着实验室要全面监管P O C T 提供的检验㊂此外,随着多院区的发展,单院区P O C T管理模式已经不能满足临床和检验的需求,本研究提出多院区P O C T同质化管理模式,现报道如下㊂1材料与方法1.1仪器设备全面摸排各院区的P O C T仪器分布㊁厂家品牌㊁开展项目及质控执行情况㊂本院共有P O C T设备298台(具体院区分布情况㊁品牌及数量见表1),涉及科室82个(3个院区),开展检测项目11项:葡萄糖(G l u)㊁B型利钠肽前体(N T-p r o B N P)㊁肌钙蛋白T(c T n T)㊁酸碱度(p H)㊁二氧化碳分压(P C O2)㊁氧分压(P O2)㊁钾(K)㊁钠(N a)㊁离子钙(i C a)㊁氯(C l)㊁乳酸(L a c)㊂便携式血糖仪院内比对实验使用的大型检验仪器为罗氏C o b a s c701生化分析仪,及其配套试剂与校准品㊂1.2方法1.2.1完善多院区质量管理架构及职责(1)成立P O C T管理委员会,由院长牵头,医务部㊁护理部㊁检验科㊁医工信息部等多部门共同参与管理,各自承担相应的职责㊂委员会全面管理各院区P O C T项目的质量控制,审议相关制度与流程,定期召开多院区管理会议,讨论重大问题并做出决定㊂审核全院P O C T 相关设备的增设申请㊁人员资质认定与授权,监督各院区P O C T工作开展情况㊂各院区成立P O C T管理小组,设置P O C T协调员,原则上由本院区检验科负责人兼任,主要负责协调处理本院区的相关问题㊂(2)检验科定期监管P O C T项目的室内质控(I Q A)执行情况,组织参加室间质评(E Q A)㊁定期进行院内比对,保证P O C T检测结果的稳定性和准确性㊂定期组织P O C T操作人员培训,培训内容常包括P O C T项目检验分析前㊁中㊁后全过程,P O C T仪器的操作方法,以及结果分析㊂培训结束后进行考核,通过后由P O C T管理委员会统一授权,保证操作人员有能力胜任不同仪器的检测工作㊂(3)医工物资部负责完善全院所有P O C T仪器的档案,对各院区所有P O C T仪器(包括库房备用机)进行初始性能验证和校准,并保存相应记录,保证每一台仪器在投入临床使用前性能稳定,结果可靠㊂在使用过程中应根据仪器厂商的要求制订仪器使用及维护的方案㊂信息中心负责P O C T仪器网络环境的搭建与P O C T数据平台的建设及维护㊂(4)P O C T协调员,主要负责检验科㊁护理部㊁临床科室3方的沟通协调工作,定期宣讲和培训,加强监督和管理㊂各科室设立P O C T专员,搜集本科室P O C T相关问题,及时反馈P O C T协调员解决;监督I Q A执行情况,定期整理及回顾性分析㊂1.2.2搭建院内P O C T数据信息化管理平台(1)建立多院区P O C T数据管理平台,首先保证P O C T 设备联入医院网络,能够采集到所有的P O C T数据并上传至L I S系统㊂各院区P O C T设备种类品牌多,仅以血糖检测设备为例,就分为多个品牌厂家,每个厂家又各自具备仅适合各自品牌设备的数据查看界面,不同品牌设备之间显示的内容差异大,不方便检验科管理部门统一监管㊂本院抓住医院信息化升级建设的契机,根据P O C T管理委员会提供的关于P O C T 质控指标的意见,由医院管理信息系统(H I S系统)出具适配所有厂家的统一P O C T质控数据接口文档,避免由于厂家间设备差异导致上传内容不一致的情况发生,再由各个设备厂家依据本院P O C T质控数据接口文档进行定制化改造,统一字段内容及上传信息㊂(2)多院区之间实现信息互联互通,单个院区设置应用服务器连接相对应院区P O C T设备,数据在多院区之间互相备份,当某院区应用服务器异常时,可随时切换服务器地址,保障P O C T设备上传实现无感切换,不影响P O C T设备数据实时上传功能,确保数据不丢失㊂(3)通过各种传输手段将采集数据记录至本院质控数据中心平台,按照国家电子病历分级要求,将P O C T数据融入医院数字化管理平台,共享医疗数据库信息,打破原有的信息孤岛,保证各院区㊁多科室㊃375㊃检验医学与临床2024年2月第21卷第4期 L a b M e d C l i n,F e b r u a r y2024,V o l.21,N o.4统一操作规范㊁统一工作界面㊁多级管理权限,实现P O C T数据信息互联互通,检验科通过数据管理平台查看全院P O C T设备的运行情况及I Q A执行情况,并且针对质控数据异常结果进行特殊标识,满足医院各部门对患者诊疗信息的收集㊁分析㊁交换及提取等需求,实现数据的智慧化管理[4]㊂见图1㊂图1多院区网络拓扑结构展示1.2.3规范多院区体系文件在院使用的各类P O C T设备根据实际情况制订并完善仪器和项目的标准操作程序(S O P)文件,同时,医院P O C T管理委员会可参照检验科专业组文件管理模式,组织编写适用于本院P O C T管理的体系文件,参考等级医院评审或I S O15189条款对应到质量手册㊁程序文件㊁S O P㊁记录4个层次的文件中,其中S O P文件包含P O C T 管理㊁仪器㊁项目㊂各类S O P文件可上传至P O C T数据平台,各院区操作人员能够随时查阅获得,按文件要求落实各项操作是多院区同质化管理的基础和标志㊂1.2.4I Q A管理(1)制订I Q A频率㊂P O C T的I Q A要求目前在国内除便携式血糖仪有行业标准指南外,其他项目并无明确规定,有关质量保证参照‘即时检验质量和能力的要求“(G B/T29790-2020)执行㊂P O C T的I Q A不能照搬检验科的质量控制模式,应根据P O C T设备性能㊁应用场景㊁检测数量等情况量身制订个性化的质控方案[5],使之能够监测分析全过程,既节约成本,又能保证检测结果的准确性㊂(2)制订靶值㊁标准差及质控规则㊂为保证P O C T检测结果和检验科一致,或者与检验科相比较偏差在合理范围内,根据不同项目㊁不同仪器设置合适的靶值和标准差,一般累积新批次质控品前20次数据,剔除离群值后计算得到新批号的靶值和标准差㊂本院P O C T项目参考检验科的W e s t g a r d质控规则,但并不严格按照其规则,不同项目根据S i g m a值设置个性化的质控规则[6]㊂(3)质控数据整理㊂所有项目的I Q A数据自动上传至P O C T I Q A平台,根据质控规则自动分析数据,如有失控结果,需要记录失控原因及处理结果,并形成失控报告㊂根据每日质控数据,平台自动绘制L-J质控图,各科室可在实验室信息管理系统中汇总查看项目I Q A趋势变化,分析总结每月质控结果,控制检测系统的不精密度,保证检测系统的稳定性㊂检验科负责查看全院所有P O C T项目的I Q A数据及质控图,一般两周左右会定期督查各科室执行情况,每半年统计I Q A失控率(失控次数/开展质控次数ˑ100%)㊁不精密度(C V,质控图中自动计算)等数据,如发现有质控数据异常或偏移情况,及时联系科室P O C T专员处理[7]㊂见图2㊂图2检验科监管流程1.2.5 E Q A与院内比对管理 P O C T项目可参加国家卫生健康委员会㊁各省(市)临检中心或其他第三方的E Q A㊂参加E Q A可以帮助了解各医疗机构之间P O C T结果的差异㊁相互校正结果的准确性,也有助于推动医疗机构间检验结果互认工作的开展㊂如有未开展E Q A的项目,需每年定期进行院内(院区间)比对,一般快速血糖半年比对一次,其他项目如血气分析一年比对一次,参考国家和行业标准,统计并计算其偏倚结果,对于比对结果不合格设备,应立即停用,并及时发现原因并纠正㊂所有E Q A及比对结㊃475㊃检验医学与临床2024年2月第21卷第4期 L a b M e d C l i n,F e b r u a r y2024,V o l.21,N o.4果形成总结报告由P O C T管理委员会在院内网进行公示㊂1.2.6操作人员培训与资质认证(1)医院P O C T 管理委员会应根据实际情况,制订P O C T操作人员培训计划㊂检验科联合厂家应用工程师定期进行P O C T操作培训,内容包括仪器操作㊁基本原理㊁I Q A㊁日常保养维护㊁生物安全等;院内P O C T管理专家需增加培训内容如I Q A失控处理㊁检测结果误差分析及项目临床意义解释等内容,培训过程中结合实际情况,深入浅出地进行讲解,使不同类型(如医生㊁护士㊁检验人员等)和不同层次(如护士长㊁护士㊁见习学生等)的人员都能理解和重视㊂此外,操作人员在科内定期学习P O C T相关内容,形成阶段性认证㊁持续性轮训的管理方案㊂培训可采用P P T授课㊁工作坊等多种形式开展,培训材料或培训视频通过院内知识库分享,每年更新㊂(2)参加培训且考试合格者由医务部颁发相应P O C T资质认证证书,有效周期为1年㊂对考核不合格者或发生重大错误者应重新培训㊁考核通过后才能通过资质认证㊂如果有仪器更新或者方法学改变等情况时,须重新进行培训,并做好相关记录[8]㊂获得资质认证人员名单上报P O C T管理委员会讨论通过后授权上岗㊂1.3统计学处理采用E x c e l2020软件进行数据处理及统计分析,计算C V㊁偏倚(%)㊁百分率(%)等㊂2结果2.1数据全流程闭环管理每次使用P O C T仪器检测项目前,仪器和L I S系统能够自动判断I Q A状态,如有项目发生失控或超时未执行质控,仪器会有相应提示或锁死检测系统,需执行质控且通过后才能继续检测㊂在标本采集前,标本采集人员通过P D A设备扫描患者腕带(或就诊码)信息与检验条码核对确保标本准确;在标本检测前仪器扫描检验条码,自动获取检验信息,保证患者-标本-结果相对应;检测结束后,结果在P O C T仪器上自动显示,同时自动上传至L I S系统及电子病历系统,检验结果纳入全院统一数据管理系统㊂在审核报告时,可以比对近期相同项目(包括实验室检测项目)的历史结果或查看一体化电子病历,综合分析检验结果㊂当出现危急值时,仪器会有相应提示,同时L I S系统也能根据设定的危急值范围自动识别,报告审核人员会第一时间确认危急值结果并审核,系统自动发送医生及护士工作站弹窗(门诊开单医生有短信提醒),确保危急值能够及时处理,实现数据闭环管理[9]㊂2.2多院区统一操作流程 P O C T检验项目全部通过L I S系统进行标本接收㊁登记㊁审核,改变了以往口头报告或人工输入系统的流程,减少了错报漏报的差错,也便于对标本进行全流程追踪管理,在工作流程上与检验科一致㊂最终展示的P O C T检验报告模板要素与检验科 同质化 ,但在标题中会显示 P O C T 字样加以区别㊂在报告单上标明 检验者 审核者双签名,可以明确操作者及审核者的责任,进一步保证检验报告质量㊂同时,操作人员在依据S O P规范化操作后可以降低试剂及耗材的浪费,大大减少了由于人为原因造成的错误率,提高了对认证和监管标准的合规性[10-11]㊂2.3规范室内及室间控制通过培训和考核认证机制,P O C T操作人员越来越重视P O C T I Q A㊂自2021年同质化管理后,检验科的监管模式从现场督查转变为线上管理,方便高效㊂临床科室的I Q A执行率(执行I Q A仪器数/临床使用仪器数ˑ100%)明显上升,目前已达到100%P O C T仪器执行I Q A㊂通过对质控数据平台改造,将所有P O C T项目的I Q A数据全部电子化管理,系统自动生成质控图,靶值㊁质控规则的设置与检验科一致,P O C T项目I Q A的失控率从2020年的7.50%降低至2022年的4.10%,进一步提高检验质量㊂同质化管理后某院区抢救室6个月的血气I Q A数据,C V值较管理前均降低,且已达到目标C V(1/3T E a),见表2㊂分析2020-2023年P O C T血糖仪院内比对通过率,在2022年初同质化管理后院内比对仪器合格率提高至100%,保证各院区检测结果的一致性,见表3㊂统计2020-2023年某院区P O C T血糖参加的国家卫生健康委员会E Q A 结果偏倚,显示逐年降低,见表4㊂表1各院区P O C T仪器分布情况及I Q A执行率(初始)仪器型号院区1(台)院区2(台)院区3(台)I Q A执行率(%)便携式血糖仪罗氏A C C U-C H E KI n f o r mⅡ39272097.67罗氏A C C U-C H E Kp e r f o r m a41123598.86强生O n e T o u c h V e-r i o V u e45282195.74血气分析仪雷度A B L90876100.00沃芬G E M3500211100.00免疫荧光分析仪雷度A Q T9012280.00表2同质化管理前后某院区抢救室血气I Q A C V(%)项目目标C V时间C V质控水平1质控水平2质控水平3 p H0.18同质化管理前1.632.081.23同质化管理后0.110.150.13 P C O22.67同质化管理前4.023.892.98同质化管理后2.322.162.29 P O22.67同质化管理前3.825.233.23同质化管理后2.322.591.68㊃575㊃检验医学与临床2024年2月第21卷第4期 L a b M e d C l i n,F e b r u a r y2024,V o l.21,N o.4表3 2020-2023年P O C T 血糖仪院内比对通过率时间次数(次)比对仪器数量(台)不合格数量(台)通过率(%)2020年第1次150298.67第2次197199.492021年第1次233697.42第2次240398.752022年第1次250199.60第2次2620100.002023年第1次245100.00表4 2020-2023年某院区P O C T 血糖E Q A 偏倚(%)时间样本1样本2样本3样本4样本52020年-0.424.1-1.40.531.072021年2.08-1.45-2.343.172.192022年-0.952.012.29-0.372.222023年2.520.79-1.221.230.183 讨 论随着医院现代化发展,信息化解决方案助力P O C T 管理的规范化越来越受到重视[12],帮助克服许多P O C T 质量管理的瓶颈和难题,实现多院区P O C T统一协调的质量管理㊂建议将P O C T 管理纳入医院质量改进项目,引入P D C A (P l a n ,计划;D o,执行;C h e c k ,检查;A c t,处理)循环,能更及时发现日常工作中的不足,并进行有效的整改,持续不断提高医疗质量㊂建设新院区时可以提前布局网络系统,充分考虑不同厂家接口的兼容性,同时也建议将备用仪器㊁试剂㊁耗材等进行多院区统筹管理,更加合理分配资源,控制P O C T 项目的检测成本㊂本院在探索多院区P O C T 同质化管理过程中,通过对单院区开展规范化管理试点工作,对现有问题进行分析,推进多院区同质化管理,从而制订本院中长期管理体系总体规划㊂随着社会经济的发展㊁人类科技的进步,P O C T 与各行业相互融合,近年来尤其是人工智能发展迅速,P O C T 的检验结果在大数据的加持下,整合云端医疗数据,为患者提供个性化的治疗服务,构建真正的健康保障体系[13-15],但是其前提是需要建立科学规范㊁可靠有效的质量管理体系,保障检测结果的准确性㊂各级医疗机构应该积极探索适合自己医院的质量控制体系,多部门共同推进P O C T 标准化㊁同质化管理㊂参考文献[1]张义丹,胡豫,许栋,等.基于文献计量分析的公立医院多院区建设与管理焦点问题研究[J ].中华医院管理杂志,2021,37(3):211-215.[2]徐建新,顾敏晔,龚倩,等.浅谈国内外P O C T 智能技术的发展[J ].中华检验医学杂志,2017,40(12):983-984.[3]李新军,王成彬.P O C T 技术的现状与发展前景[J /C D ].临床检验杂志(电子版),2015,4(2):844-849.[4]朱人杰,邱骏,吴伟华,等.P O C T 设备网络化实时在线管理系统的建设及应用[J ].临床检验杂志,2018,36(6):459-461.[5]I L A R D O C ,R E Y N A U D C ,B O N N E T O N R ,e t a l .Q u a l i -t y p l a n n i n g a n d c o n t r o l s t r a t e g yf o r A Q T 90f l e x R a d i o m -e t e r i n p o i n t o f c a r e t e s t i ng [J ].S c a n d J C l i n L a b I n v e s t ,2020,80(5):427-432.[6]费阳,王薇,王治国.临床检验室内质量控制规则设计新工具-W e s t ga r d 西格玛规则[J ].现代检验医学杂志,2015,30(1):149-152.[7]中华医学会检验医学分会,中国医学装备协会检验医学分会.即时检测(P O C T )信息化质量管理中国专家共识[J ].中华检验医学杂志,2020,43(5):562-566.[8]Y E N I C E S .T r a i n i n g a n d c o m p e t e n c y s t r a t e g i e s f o r p o i n t -o f -c a r e t e s t i n g[J ].E J I F C C ,2021,32(2):167-178.[9]郗晓婧,钟华,杨圆圆.P O C T 质量管理体系建设方案与成效分析[J ].中国卫生质量管理,2021,28(7):29-32.[10]C HO I S ,C HO I S J ,J E O N B R ,e t a l .W h a t w e s h o u l dc o n s ide r i n p o i n t of c a r e b l o o dg l u c o s e t e s t ;C u r r e n t q u a l i -t y m a n a g e m e n t s t a t u s o f a s i n g l e i n s t i t u t i o n [J ].M e d i c i -n a ,2021,57(3):238.[11]王晟,段小勇,刘兴态,等.临床P O C T 检测项目质量管理体系的建立与实践[J ].现代检验医学杂志,2019,34(2):147-152.[12]F U N G A W.U t i l i z i n g c o n n e c t i v i t y a n d d a t a m a n a ge m e n t s y s t e mf o r e f f e c t i v e q u a l i t y m a n ag e m e n t a n d r e g u l a t o r yc o m p l i a n c e i n p o i n t o f c a r e t e s t i n g [J ].P r a c t L a b M ed ,2020,22:e 00187.[13]康可人,王华梁.即时检测的临床应用与未来展望[J ].中华检验医学杂志,2021,44(9):794-798.[14]郭凡.应用P O C T 血糖仪实施血糖信息化管理的效果分析[J ].中国医疗器械信息,2020,26(13):162-163.[15]白振翰,裴文溪,张子禹.基于人工智能技术的云端家居医疗系统[J ].信息与电脑(理论版),2021,33(16):154-157.(收稿日期:2023-06-12 修回日期:2023-12-05)㊃675㊃检验医学与临床2024年2月第21卷第4期 L a b M e d C l i n ,F e b r u a r y 2024,V o l .21,N o .4。
椰子落果的矿质元素、可溶性糖及生长调节剂含量分析
椰子(Cocos nucifera L.)是热带地区重要的木本油料和能源作物,广泛种植于93个热带国家和地区[1]。
海南是我国椰子主产区,占全国种植面积的99%,2018年海南椰子种植面积为3.36万公顷,总产量2.26亿个,单株产量不到40个[2]。
椰子雌雄异花同序,一年抽生10~15个花序,每个花序有20~30个花枝,每个花枝基部着生雌花3~38朵,雌花花量大,但生理落果严重,一般是在授粉后2个月内发生,尤其是花后28d 内最多,只有20%左右能长成果实[3]。
器官脱落是果树中常见的生理现象,脱落发生的位置称为离区,离区的形成受到多种基因精细而复杂的调控[4]。
水分、温度胁迫、光照不足、养分亏缺、植物内源生长调节剂失衡等因素都是引起果树器官脱落的主要原因[5-7]。
已有研究表明,高温、寒害都会引起椰子花果脱落[8-9]。
目前,造成落果的内在生理变化及其机制还不明确。
本研究以文椰3号的正常幼果和刚脱落幼果为材料,对其矿质元素、可溶性糖、内源生长调节剂等生理生化指标进行分析,以期探明椰子落果的生理机制,为指导科学追肥、减少生理落果、提高椰子产量提供参考依据。
1材料与方法1.1试验材料试验材料采自中国热带农业科学院椰子研究所国家热带棕榈种质资源圃(东经110°47′,北纬19°33′,海拔32.5m ),供试品种为文椰3号。
在正常管理的植株上分别采集花后1个月左右的正常幼果和一碰即落的脱落幼果(横径30mm 左右),样品分成3份,一部分鲜样用于可溶性糖含量测定,一部分用液氮冻存后收稿日期:2021-09-01基金项目:海南省重大科技计划项目“水果型椰子标准化生产与高值化加工技术研究与示范”(zdkj201902)。
作者简介:尹欣幸(1991—),女,浙江衢州人,硕士,研究实习员,主要从事热带油料作物栽培及品质调控研究。
E-mail:*****************。
*为通信作者,E-mail:*******************。
tcga数据处理r语言代码
tcga数据处理r语言代码处理The Cancer Genome Atlas (TCGA) 数据的R 语言代码通常涉及到数据下载、预处理、分析等步骤。
以下是一个简化的例子,用于演示如何下载并处理TCGA 数据。
请注意,这只是一个简单的示例,实际情况可能更为复杂,具体取决于你感兴趣的数据类型和分析目标。
```R# 安装和加载所需的包install.packages("TCGAbiolinks")install.packages("SummarizedExperiment")library(TCGAbiolinks)library(SummarizedExperiment)# 设置数据存储目录setwd("/your/data/directory")# 下载TCGA数据query <- GDCquery(project = "TCGA-BRCA",data.category = "Transcriptome Profiling",data.type = "Gene Expression Quantification",workflow.type = "HTSeq - Counts")GDCdownload(query)# 数据预处理# 读取基因表达数据counts_data <- GDCprepare(query)# 可选:进行一些基本的数据探索和处理# 例如,去除低表达的基因filtered_data <- counts_data[rowSums(counts_data) > 10, ]# 进行差异基因表达分析等其他分析# 创建SummarizedExperiment 对象se <- SummarizedExperiment(assays = list(counts = filtered_data))# 可以继续进行更多的分析,例如聚类、可视化等# 保存处理后的数据saveRDS(se, file = "processed_data.rds")```请注意:1. 代码中的`project = "TCGA-BRCA"` 表示你正在下载和处理乳腺癌(BRCA)的数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Christopher D Armour1, John C Castle1, Ronghua Chen1, Tomas Babak1, Patrick Loerch1, Stuart Jackson2, Jyoti K Shah1, John Dey2, Carol A Rohl1, Jason M Johnson1 & Christopher K Raymond1
1Departments of
would allow generation of high-complexity rRNA-depleted cDNA libraries directly from small amounts of total RNA. This method is based on the empirical observation that heptamer and hexamer sequences are capable of sequence-specific priming of cDNA synthesis, whereas pentamers are not5. We reasoned that the template discrimination of these short oligonucleotides could be exploited for the selective enrichment of non-rRNA targets by computationally subtracting rRNA priming sequences from a random hexamer library. To design such a primer set, referred to here as ‘not-so-random’ (NSR) primers, we aligned the full repertoire of possible hexamer sequences to human cytoplasmic 18S and 28S rRNA and mitochondrial 12S and 16S rRNA transcripts. Of 4,096 input sequences, we identified 3,347 hexamers with perfect sequence matches to at least one of the rRNA filter sequences, leaving 749 hexamers to comprise the NSR primer collection. Subsequent alignment to RefSeq mRNA transcripts6 and a sampling of short noncoding RNAs indicated that NSR hexamers encompassed sufficient sequence complexity to obtain high-density coverage of potential target sequences, with one matching start site for every six bases of template sequence on average (Supplementary Fig. 1). We then devised a simple PCR-based cDNA library construction scheme to enable short read sequencing using the Illumina GA2 platform (Fig. 1a). The addition of heterologous 5′ tail sequences to NSR hexamers (Supplementary Tables 1 and 2) during oligonucleotide synthesis allowed PCR amplification and directional sequencing without an intervening adaptor ligation step (Online Methods). After optimization of reaction conditions by diagnostic quantitative PCR (QPCR) analysis, we sequenced two cDNA libraries generated from 1 µg of universal human reference (UHR) RNA using either NSR hexamer or random primer oligonucleotide pools. Analysis of over 7 million short read sequences revealed substantial enrichment of non-rRNA transcripts in the NSR-primed library when compared to the control (Fig. 1b). Moreover, the abundance of each rRNA transcript targeted for depletion was specifically reduced, with cumulative rRNA amounts dropping from 78% in the control to 13% in the NSR library. To further evaluate NSR performance, we analyzed non-rRNA tag sequences obtained from one UHR library and two independently prepared libraries generated from whole brain RNA. Of 54 million 32 nucleotide (nt) reads aligning to the genome, 77% mapped unambiguously to single genomic sites. We determined mRNA representation by mapping NSR reads to ~21,000 RefSeq transcripts. Over 92% of transcripts were represented by ten or more reads in at least one of the samples queried, and 75% were represented by ten or more reads in all three libraries. Comparison of transcript levels across libraries revealed high reproducibility among
Large-scale transcriptome analysis has been energized in recent years by stunning technological advances in DNA sequencing. Although these new technologies obviate the need for clonal separation of cDNA fragments, library construction remains a critical component of transcriptome sequencing strategies. With an overwhelming fraction of RNA transcripts coding for structural subunits of ribosomes in prokaryotic and eukaryotic species alike, molecular techniques that enrich for more informative low-copy transcripts have been developed to maximize seห้องสมุดไป่ตู้uencing efficiency. In eukaryotic cells, mRNA selection has been a central feature of the most widely used methods for ultrahigh-throughput sequencing1,2. Strategies that monitor both polyadenylated and nonpolyadenylated RNA species provide an unbiased account of whole transcriptome content. The most commonly used techniques rely on affinity-based counterselection schemes to deplete ribosomal RNA (rRNA) before random-primed cDNA synthesis. Although the utility of this approach has been demonstrated for various sequencing applications in prokaryotic and eukaryotic systems3,4, rRNA depletion involves cumbersome laboratory procedures and high sample inputs. To facilitate high-throughput whole transcriptome analysis, we developed a simple procedure that