回溯算法解决背包问题_源代码
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
背包问题回溯法
背包问题回溯法背包问题回溯法是一种用于解决背包问题的算法。
背包问题是一个经典的组合优化问题,在许多领域都有广泛的应用。
它的基本形式是在给定一组物品和一个容量为C的背包的情况下,选择将哪些物品放入背包中,以使得放入背包中物品的总价值最大。
回溯法是一种通过搜索所有可能的解空间来求解问题的算法。
在背包问题中,回溯法通过递归地尝试将物品放入背包或不放入背包来寻找最优解。
具体而言,回溯法从问题的初始状态开始,根据问题的约束条件和目标函数的要求,逐步生成问题的解空间,并通过剪枝策略来减少搜索空间的规模,直到找到问题的最优解或无解。
在使用回溯法解决背包问题时,需要定义一个递归函数来实现搜索过程。
该函数的输入参数包括当前已选择的物品、当前已选择物品的总价值、当前已选择物品的总重量、剩余物品的可选范围、剩余背包容量等等。
在函数的实现中,首先需要判断当前选择的物品是否满足约束条件,如果满足则继续递归地对剩余的物品进行选择;如果不满足,则进行剪枝操作,即回溯到上一层递归函数继续搜索其他可能的解。
当递归函数搜索完所有可能的解空间时,返回问题的最优解或无解。
背包问题回溯法的关键是如何定义约束条件和剪枝策略。
在背包问题中,约束条件包括物品的重量不能超过背包的容量,物品的总价值不能超过已选择的物品的总价值。
而剪枝策略可以根据问题的具体情况来进行设计,例如可以根据当前已选择物品的总价值和剩余物品的可选范围来进行剪枝,减少搜索空间的规模,提高算法的效率。
背包问题回溯法的时间复杂度取决于问题的规模和剪枝策略的设计。
由于回溯法需要搜索所有可能的解空间,所以在最坏情况下,时间复杂度为指数级别。
为了提高算法的效率,可以引入一些优化技巧,例如动态规划和贪心策略,来减少搜索空间的规模并加速算法的执行速度。
总之,背包问题回溯法是一种用于解决背包问题的经典算法。
通过搜索所有可能的解空间,并根据约束条件和剪枝策略来寻找最优解,可以求解出背包问题的最优解或无解。
回溯法解决0-1背包问题
回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
回朔法实验报告
一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
0-1背包问题——回溯法求解【Python】
0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。
回溯法核⼼:能进则进,进不了则换,换不了则退。
(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。
解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。
将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。
若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。
在层数达到物品的个数时,停⽌继续扩展,开始回溯。
注:如何回溯呢?怎样得到的,怎样恢复。
放⼊背包中的重量取出,加在bagV上的价值减去。
约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。
核⼼结构:递归思路进⾏解决。
层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。
# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。
01背包问题c语言代码回溯法
以下是使用C语言实现01背包问题的回溯法代码:```c#include <stdio.h>#include <stdlib.h>// 初始化背包struct knapsack {int maxWeight; // 背包最大承重int *items; // 物品数组int n; // 物品数量};// 定义物品重量、价值和数量int weights[] = {2, 2, 6, 5, 4};int values[] = {6, 3, 5, 4, 6};int quantities[] = {3, 2, 2, 1, 1};// 初始化背包最大承重和当前承重int maxWeight = 10;int currentWeight = 0;// 初始化最大价值为0int maxValue = 0;// 遍历物品数组void traverseItems(struct knapsack *knapsack, int index) { // 对于每个物品,遍历其数量for (int i = 0; i < knapsack->quantities[index]; i++) {// 如果当前物品可以放入背包装且当前承重不超过背包最大承重,计算放入该物品后的总价值,并更新最大价值if (currentWeight + weights[index] <= knapsack->maxWeight) {int currentValue = values[index] * knapsack->quantities[index];if (currentValue > maxValue) {maxValue = currentValue;}}// 回溯,将当前物品从背包装中移除,递归地尝试下一个物品knapsack->quantities[index]--;if (index < knapsack->n - 1) {traverseItems(knapsack, index + 1);}knapsack->quantities[index]++; // 恢复物品数量,以便下次遍历尝试放入其他物品}}// 主函数int main() {// 初始化背包装和物品数组struct knapsack knapsack = {maxWeight, weights, 5};knapsack.items = (int *)malloc(sizeof(int) * knapsack.n);for (int i = 0; i < knapsack.n; i++) {knapsack.items[i] = values[i] * quantities[i]; // 根据价值和数量计算物品价值,并存储在物品数组中}knapsack.n = quantities[4]; // 由于最后一个物品的数量为1,因此只需遍历前n-1个物品即可得到所有可能的结果// 使用回溯法求解01背包问题,返回最大价值traverseItems(&knapsack, 0);printf("The maximum value is %d.\n", maxValue);free(knapsack.items); // 释放内存空间return 0;}```希望以上信息能帮助到你。
Python基于回溯法子集树模板解决0-1背包问题实例
Python基于回溯法⼦集树模板解决0-1背包问题实例本⽂实例讲述了Python基于回溯法⼦集树模板解决0-1背包问题。
分享给⼤家供⼤家参考,具体如下:问题给定N个物品和⼀个背包。
物品i的重量是Wi,其价值位Vi ,背包的容量为C。
问应该如何选择装⼊背包的物品,使得放⼊背包的物品的总价值为最⼤?分析显然,放⼊背包的物品,是N个物品的所有⼦集的其中之⼀。
N个物品中每⼀个物品,都有选择、不选择两种状态。
因此,只需要对每⼀个物品的这两种状态进⾏遍历。
解是⼀个长度固定的N元0,1数组。
套⽤回溯法⼦集树模板,做起来不要太爽代码'''0-1背包问题'''n = 3 # 物品数量c = 30 # 包的载重量w = [20, 15, 15] # 物品重量v = [45, 25, 25] # 物品价值maxw = 0 # 合条件的能装载的最⼤重量maxv = 0 # 合条件的能装载的最⼤价值bag = [0,0,0] # ⼀个解(n元0-1数组)长度固定为nbags = [] # ⼀组解bestbag = None # 最佳解# 冲突检测def conflict(k):global bag, w, c# bag内的前k个物品已超重,则冲突if sum([y[0] for y in filter(lambda x:x[1]==1, zip(w[:k+1], bag[:k+1]))]) > c:return Truereturn False# 套⽤⼦集树模板def backpack(k): # 到达第k个物品global bag, maxv, maxw, bestbagif k==n: # 超出最后⼀个物品,判断结果是否最优cv = get_a_pack_value(bag)cw = get_a_pack_weight(bag)if cv > maxv : # 价值⼤的优先maxv = cvbestbag = bag[:]if cv == maxv and cw < maxw: # 价值相同,重量轻的优先maxw = cwbestbag = bag[:]else:for i in [1,0]: # 遍历两种状态 [选取1, 不选取0]bag[k] = i # 因为解的长度是固定的if not conflict(k): # 剪枝backpack(k+1)# 根据⼀个解bag,计算重量def get_a_pack_weight(bag):global wreturn sum([y[0] for y in filter(lambda x:x[1]==1, zip(w, bag))])# 根据⼀个解bag,计算价值def get_a_pack_value(bag):global vreturn sum([y[0] for y in filter(lambda x:x[1]==1, zip(v, bag))])# 测试backpack(0)print(bestbag, get_a_pack_value(bestbag))效果图更多关于Python相关内容感兴趣的读者可查看本站专题:《》、《》、《》及《》希望本⽂所述对⼤家Python程序设计有所帮助。
回溯法解决01背包问题
回溯法是一个既带有系统性又带有跳跃性的搜索算法。
它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。
算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
运用回溯法解题通常包含以下三个步骤:∙针对所给问题,定义问题的解空间;∙确定易于搜索的解空间结构;∙以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;在0/1背包问题中,容量为M的背包装载。
从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。
最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。
约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。
在这个表达式中,需求出Xi的值。
Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。
∙即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n)∙目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤i<n)0/1背包问题是一个自己选取问题,适合于用子集树表示0/1背包问题的解空间。
在搜索解空间树时,只要左儿子节点是一个可行节点,搜索就进入左子树,在右子树中有可能包含最优解才进入右子树搜索,否则将右子树剪去。
程序分析:将物品个数,每个物品体积/价值输入,计算总物品体积S,输入背包体积V,如果V<0或者V>S则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。
假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件物品不合适,应将i拿出,继续从i+1及以后的物品中选取,如此重复,直到找到满足条件的解。
ACM背包问题
背包问题
如果给你一个背包,要你从许多东西里选择一些装进来,只要这个包装得下,你就可 以将包里的东西全部拿走了,那么你会如何选择物品呢?这里你需要考虑的是背包的体积 和承重限制,当然最重要的是你拿走的东西的总价值最大。这样的问题就是背包问题,许 多问题都可以转化为背包问题来考虑。背包问题是一个在运筹学领域里常见的典型 NP-C 难题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有一定的意义。
while (goods[0].flag<goods[i].flag) {
goods[i+1]=goods[i]; i--; } goods[i+1]=goods[0]; } ///////////////////////////////////////////
·78·
第 4 章 背包问题
cout<<"最优解为:"<<endl; for(i=1;i<=n;i++) {
4.3.1 〖案例 2〗0/1 背包
需对容量为 c 的背包进行装载。从 n 个物品中选取装入背包的物品,每件物品 i 的重 量为 wi,价值为 pi。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最 佳装载是指所装入的物品价值最高。限制:每个物品不能被分割,要不被装载,要不不被 装载。
第一行物品个数,接下来分别为物品价值,再接下来分别为物品的价值。再接下来分 别为物品的重量,最后为背包的容量。
数据结构与算法: 不需要特殊的数据结构 算法采用贪婪法 首先输入物品信息和背包容量,然后每次选比重最大的装载。
struct goodinfo
{ float p; float w; float X; int flag;
著名算法matlab编程 贪心算法 背包问题 递归算法 Hanoi塔问题 回溯算法 n皇后问题
10/22
在命令窗口输入:>> [n,s]=hanoi(3,1,2,3) n= 7 s= 1 2 1 3 1 2 1 1 1 3 1 2 2 1 3 2 2 3 1 3 3
1
1 2 3
2 3 3 3 1
2
3
1
2 1 2
1
1 2
2
3
3
1
2 3
1 2 3
11/22
5/22
A
B
C
1
2
n
6/22
问题分析: 把柱C作为目标柱子,设an为n块金片从其中一柱移 到另一柱的搬运次数,则把n块金片从A移到C,可 以先把前n-1片移到B,需搬an-1次;接着把第n片从 A称到C,再从B把剩下的n-1片搬到C,又需搬an-1 次。所以从A到n块金片称到柱C,共需次数为: 2an-1+1次。 显然,当n=1时,a1=1,所以Hanoi塔的移动次数相 当于一个带初值的递归关系:
有 旅 行 者 要 从 n 种 物 品 中 选 取 不 超 过 b公 斤 的 物 品 放 入 背 包 , 要 求 总 价 值 最 大 。 设 第 i 种 物 品 的 重 量 为 a i, 价 值 为 c i,i 1, 2 , n )。 定 义 向 量 [ x 1 , x 2 , , x n ], 当 选 第 i ( 种 物 品 往 背 包 放 时 取 x i 1, 否 则 取 x i 0。 于 是 所 有 选 取 的 物 品 的 总 价 值 为 : c 1 x 1 c 2 x 2 c n x n, 总 的 重 量 为 : a 1 x 1 a 2 x 2 a n x n。 问 题 可 描 述 为
0-1背包问题(回溯法)
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
0-1背包问题的递归方法
0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。
定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。
递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。
1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。
代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。
回溯算法经典例题
回溯算法经典例题回溯算法是一种解决问题的方法,其核心思想是通过深度优先搜索来寻找解决方案。
回溯算法通常用于解决需要重复操作的问题,例如迷宫问题、图论问题等。
以下是回溯算法的经典例题:1. 八皇后问题八皇后问题是一个经典的回溯算法例题,它要求在 8×8 的国际象棋棋盘上放置八个皇后,使得它们无法相互攻击。
回溯算法的核心思想是,不断尝试每个皇后的位置,直到找到合法的位置为止。
具体实现如下:```cpp#include <iostream>using namespace std;int queen_board[8][8] = {{0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0, 0}}};int main(){int n = 8;int queen = 0;for (int i = 0; i < 8; i++){for (int j = 0; j < 8; j++){if (queen_board[i][j] == 0){queen_board[i][j] = queen++;cout << "Queen placed on " << i << ", " << j << endl;}}}return 0;}```在这个实现中,我们首先初始化一个 8×8 的矩阵来表示皇后可以放置的位置,如果当前位置已经放置了一个皇后,则将该位置标记为已经放置,并重新搜索下一个位置。
python回溯法代码
python回溯法代码Python回溯法代码回溯法是一种穷举搜索的算法,通常用于解决组合优化问题。
在这篇文章中,我们将介绍Python回溯法代码的实现原理和具体应用。
一、回溯法的基本原理回溯法是一种通过穷举所有可能的解来求解问题的算法。
它的基本原理是通过尝试所有可能的选择,并在每一步选择之后进行回溯,直到找到问题的解或者找遍所有可能的选择。
二、回溯法的实现步骤1. 定义问题的解空间:首先需要定义问题的解空间,也就是问题的解可能存在的所有情况。
在回溯法中,解空间通常是一个树形结构,每个节点表示一种可能的选择。
2. 编写回溯函数:回溯函数是回溯法的核心部分,它通过递归的方式遍历解空间树,并在每个节点进行选择和回溯操作。
3. 定义结束条件:在回溯函数中,需要定义结束条件,即找到问题的解或者遍历完整个解空间树。
4. 剪枝操作:为了减少无效的搜索,可以在回溯函数中进行剪枝操作,即在某些情况下提前终止搜索。
三、回溯法的具体应用回溯法广泛应用于组合优化问题,例如排列、组合、子集和背包问题等。
下面我们以排列问题为例,介绍回溯法的具体应用。
排列问题是指给定一组元素,求出所有可能的排列方式。
例如,给定元素[1, 2, 3],求出所有可能的排列方式。
代码实现如下:```def backtrack(nums, path, res):if len(nums) == 0: # 结束条件,当元素都被选择完毕时,将当前路径添加到结果中res.append(path)for i in range(len(nums)):backtrack(nums[:i] + nums[i+1:], path + [nums[i]], res) # 递归调用,选择当前元素并继续搜索def permute(nums):res = []backtrack(nums, [], res)return resnums = [1, 2, 3]print(permute(nums))```在上述代码中,backtrack函数是回溯函数,它通过递归的方式遍历解空间树。
回溯法解背包问题实验报告
实验4回溯法解0-1背包问题一、实验要求1.要求用回溯法求解0-1背包问题;2.要求交互输入背包容量,物品重量数组,物品价值数组;3.要求显示结果。
二、实验仪器和软件平台仪器:带usb接口微机软件平台:WIN-XP + VC++6.0三、实验源码#include "stdafx.h"#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;template<class ty>class Knap{public:friend void Init();friend void Knapsack();friend void Backtrack(int i);friend float Bound(int i);bool operator<(Knap<ty> a)const{if(fl<a.fl) return true;else return false;}private:ty w; //重量ty v; //价值float fl; //单位重量的价值v/wint kk; //记录第几个物品int flag; //记录是否放入包中};template<class ty>void Sort(Knap<ty> *li,int n){int i,j,k; Knap<ty> minl;for(i=1;i<n;i++){minl=li[0]; k=0;for(j=1;j<=n-i;j++){if(minl<li[j]){minl=li[j]; swap(li[j],li[k]); k=j;}}}}namespace jie //命名空间{int c=0,n=0;int *x=NULL;Knap<int> *bag=NULL;int cp=0,cw=0;int bestp=0;}using namespace jie;void Init(){int i=0;cout<<endl;cout<<"请输入物品数量n = ";cin>>n; cout<<endl;cout<<"请输入背包容量C = ";cin>>c; cout<<endl;bag=new Knap<int> [n];x=new int[n];cout<<"请依次输入"<<n<<"个物品的重量W:"<<endl;for(i=0;i<n;i++)cin>>bag[i].w;cout<<endl;cout<<"请依次输入"<<n<<"个物品的价值P:"<<endl;for(i=0;i<n;i++)cin>>bag[i].v;for(i=0;i<n;i++){bag[i].flag=0; bag[i].kk=i;bag[i].fl=1.0*bag[i].v/bag[i].w;}}void Backtrack(int i){if(i>=n) //到达叶节点{bestp=cp; //更新最优价值return;}if(cw+bag[i].w<=c) //进入左子树{bag[i].flag=1; cw+=bag[i].w;cp+=bag[i].v; Backtrack(i+1);cw-=bag[i].w; cp-=bag[i].v;}if(Bound(i+1)>bestp)//进入右子树{bag[i].flag=0; Backtrack(i+1);}}//计算当前节点处的上界float Bound(int i){int cleft = c-cw; //剩余容量float b = cp;while (i<n&&bag[i].w<=cleft){//以物品单位重量价值递减序装入cleft-=bag[i].w ;b+=bag[i].v;i++;}//装满背包if (i<n) b+=1.0*bag[i].v/bag[i].w * cleft;return b;}void Knapsack() //计算最优解和变量值{int L(0); //用L累计价值,初始价值设置为0for(int k=0;k<n;k++){x[bag[k].kk]=bag[k].flag; //x=0表示未放入背包,x=1表示放入背包L+=bag[k].flag*bag[k].v; //价值累加}cout<<endl;cout<<"当前最优价值为:"<<L<<endl;cout<<"变量值x = ";for(int i=1;i<=n;i++){cout<<x[i-1];}delete []bag; bag=NULL;delete []x; x=NULL;cout<<endl; getch();}int main(){cout<<endl;cout<<"|**********回溯法解0-1背包问题**********|"<<endl;Init();Backtrack(0);Knapsack();return 0;}四、运行结果五、实验小结通过该实验,我充分了解了回溯法与分支界限法的区别。
回溯法实验报告
一、实验目的1. 理解回溯法的概念和基本原理。
2. 掌握回溯法的应用场景和实现方法。
3. 通过具体实例,验证回溯法在解决实际问题中的有效性。
二、实验内容本次实验主要围绕回溯法进行,通过以下实例来验证回溯法在解决实际问题中的有效性:1. 八皇后问题2. 0/1背包问题3. 数独游戏三、实验步骤1. 八皇后问题(1)定义问题:在8×8的国际象棋棋盘上,放置8个皇后,使得它们不能相互攻击。
(2)设计回溯算法:① 初始化棋盘为全空状态。
② 从第一行开始,尝试将皇后放置在每一列。
③ 如果某一列放置皇后后,不会与已放置的皇后发生冲突,则继续在下一行尝试放置。
④ 如果某一列放置皇后后,与已放置的皇后发生冲突,则回溯至上一个放置皇后的行,尝试在下一列放置。
⑤ 当所有行都放置了皇后,则找到一个解。
(3)实现代码:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or \board[i] - i == col - row or \board[i] + i == col + row:return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if x == row else '.' for x in range(len(board))]))def n_queens():board = [-1] 8if solve_n_queens(board, 0):print_board(board)else:print("No solution exists")n_queens()```2. 0/1背包问题(1)定义问题:给定n个物品,每个物品有重量和价值,背包容量为W,求出能够装入背包的物品组合,使得背包内物品的总价值最大。
01背包问题枚举法python代码
01背包问题枚举法python代码01背包问题是计算机算法中的经典问题之一,其解决方法有多种,其中枚举法是最简单直接的一种方法。
下面我们来介绍一下使用Python语言实现01背包问题的枚举法。
1. 问题描述假设有一个容量为C的背包和n个物品,每个物品有自己的重量和价值。
现在需要选择一些物品放入背包中,使得背包中物品的总重量不超过C,同时物品的总价值最大。
其中n和C均为正整数。
2. 算法思路枚举法的基本思路是将所有可能的情况都枚举一遍,然后从中找出最优解。
对于01背包问题,我们可以通过枚举每个物品是否放入背包中来解决问题。
具体来说,我们可以使用一个二进制数表示物品的选择情况,其中第i位为1表示选择第i个物品,为0则表示不选择。
例如,对于3个物品,可以使用000、001、010、011、100、101、110、111这8个二进制数来表示所有可能的选择情况。
3. 代码实现下面是使用Python语言实现01背包问题的枚举法的代码:```pythondef knapsack(C, w, v):"""C: 背包容量w: 物品重量列表v: 物品价值列表"""n = len(w) # 物品数量max_value = 0 # 最大价值for i in range(2 ** n): # 枚举所有可能的选择情况weight = 0 # 当前选择的物品总重量value = 0 # 当前选择的物品总价值for j in range(n): # 遍历所有物品if (i >> j) & 1 == 1: # 判断第j个物品是否被选择 weight += w[j]value += v[j]if weight <= C and value > max_value: # 更新最大价值 max_value = valuereturn max_value```在上述代码中,我们首先定义了一个knapsack函数,用于解决01背包问题。
动态规划——背包问题python实现(01背包、完全背包、多重背包)
动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
背包问题的多种解法
一个最优解:w i X i Wi2w1X1nmaX v i X i 。
如果不是的话,设(y2,y3, , y n) 是这X i {0,1}( 2 i n) i2问题描述0/1 背包问题 :现有n种物品,对1<=i<=n ,已知第i种物品的重量为正整数 W i,价值为正整数 V i, 背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过 W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:n w i x i Wi 1i i(1)x i { 0,1}( 1 i n)nmax v i x i (2)i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的解向量X (x1, x2 ,x3, ......... , x n) 。
首先说明一下 0-1 背包问题拥有最优解。
假设(X i,X2,X3,……,Xn)是所给的问题的一个最优解,则(X2,X3,……,Xn)是下面问题的n n n个问题的一个最优解,则v i y i v i X i ,且w1X1 w i y i W 。
因此,i 2 i 2 i 2n n n物品1W2=3V2=12物品2W3=4V3=40物品3W4=5V4=25物品4V1X1 V i y i V1X1 V i V i X i,这说明(X i,y2,y3, ............................................................... ,y n)是所给的 0-1 背包问i 2 i 2 i 1题比(X i,X2,X3, ........................... , X n)更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定 n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
template<class Typew, class Typep>
class Knap//建立类knap
{
friend Typew Knapsack(Typew* ,Typew*,Typew,int );//友元函数的声明private://私有成员声明
Typew Bound(int i);
void Backtrack(int i);
Typew c;//背包容量
int n; //物品数
Typew *w;//物品重量数组
Typew *p;//物品价值数组
Typew cw;//当前重量
Typew cp;//当前价值
Typew bestp;//当前最优值
};
第二段
template<class Typew, class Typep>
void Knap<Typew, Typep>::Backtrack(int i)//友元函数的定义
{
if(i>n){//到达叶结点
bestp=cp;
return;}
if(cw+w[i]<=c) //搜索左子树
{
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子树
Backtrack(i+1);
}
第三段(重要)template<class Typew, class Typep> Typep Knap<Typew, Typep>::Bound(int i)
{// 计算上界
Typew cleft = c - cw; // 剩余容量
Typep b = cp;
// 以物品单位重量价值递减序装入物品
while (i <= n && w[i] <= cleft) {
cleft -= w[i];
b += p[i];
i++;
}
// 装满背包
if (i <= n) b += p[i]/w[i] * cleft;
return b;
}
第四段
class Object
{
friend int Knapsack(int *,int *,int ,int );
public:
int operator<=(Object a)const
{
return (d>=a.d);
}
private:
int ID;//对象好
float d;//收益密度
};
第五段:
template<class Typew, class Typep>
Typew, Knapsack(tTypew,p[],Typew, w[],Typew,c,int n) {
//为Knap::Backtrack初始化
Typew, W=0;
Typew, P=0;
Object *Q=new Object[n];
for(int i=1;i<=n;i++)
{
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];}
if(W<=c)
return P;//装入所有物品
//依物品单位重量排序
Sort(Q,n);
Knap<Typew, Typep>K
K.p = new Typep[n+1];
K.w = new Typep[n+1];
K.x = new Typep[n+1];
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
//回溯搜索
K.Backtrack(1);
delete [] Q;
delete [] K.w;
delete [] K.p;
return K.bestp;
}
补充
void main()
{
int *p;
int *w;
int c=0;
int n=0;
int i=0;
cout<<"请输入背包个数:"<<endl;
cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;
w[0]=0;
cout<<"请输入背包容量:"<<endl;
cin>>c;
cout<<"请依此输入每个物品的重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"请依此输入每个物品的价值:"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];
cout<<"所能装入背包中总价值最大为"<<Knapsack(p,w,c,n)<<endl; }。