圆锥曲线与方程测试(一)--学习.探究.诊断(选修2-1)

合集下载

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)(4)

一、选择题1.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( )A .25B .45C .15D .232.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D . 3.过抛物线24y x =焦点F ,斜率为k (0k >)的直线交抛物线于A ,B 两点,若3AF BF =,则k =( )A B .2 C D .1 4.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B C .14 D .45.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )A B .C .2 D .46.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=7.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .y x =B .y =C .y x =D .y =8.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥,则离心率的取值范围为( ) A.⎛ ⎝⎦ B.2] C.1⎤⎥⎝⎦D.1] 9.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( ) A.1BCD110.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫ ⎪⎝⎭ B .11,84⎡⎫⎪⎢⎣⎭ C .11,162⎛⎫ ⎪⎝⎭ D .11,82⎡⎫⎪⎢⎣⎭ 11.以下关于圆锥曲线的命题中是真命题为( )A .设,AB 是两定点,k 为非零常数,若||||PA PB k -=,则动点P 的轨迹为双曲线的一支;B .过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;C .方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;D .双曲线221925x y -=与椭圆22135y x +=有相同的焦点. 12.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .16二、填空题13.直线l 过抛物线28y x =的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点到y 轴的距离是2,则AB =______.14.12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,且1260F PF ︒∠=,则12F PF ∆的内切圆半径等于___________15.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______. 16.已知双曲线221x my +=的虚轴长是实轴长的2倍,则实数m =______.17.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______. 18.在平面直角坐标系中,已知椭圆22:12+=x E y ,直线10x y +-=与椭圆E 交于A ,B 两点,则△AOB 的外接圆圆心的坐标为______.19.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PF PA的最小值为 ________. 20.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.三、解答题21.已知椭圆()2222:10x y C a b a b+=>>的离心率e =,一条准线方程为x (1)求椭圆C 的方程;(2)设,G H 为椭圆上的两个动点,G 在第一象限,O 为坐标原点,若OG OH ⊥,GOH ,求OG 的斜率.22.已知椭圆C :22221x y a b +=(0a b >>,焦距为2. (1)求椭圆C 的标准方程;(2)点P 为椭圆C 的上顶点,过点P 作两条相互垂直的直线1l ,2l 分别与椭圆相交于M 、N 两点,若4tan 3∠=PNM ,求直线1l 的方程. 附:多项式因式分解公式()()32238642322-+-=--+t t t t t t . 23.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为8 (1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.24.已知椭圆2222:1(0)x y C a b a b +=>>经过点()2,1P ,离心率为2. (1)求椭圆C 的方程;(2)过点P 作两条互相垂直的弦PA ,PB 分别与椭圆C 交于A ,B .(i )证明直线AB 过定点;(ii )求点P 到直线AB 距离的最大值.25.我们把经过椭圆的焦点且与过焦点的轴垂直的弦称为椭圆的正焦弦.已知椭圆22221(0)x y a b a b +=>>的正焦弦长为1,且点⎛ ⎝⎭在椭圆上. (1)求椭圆的方程;(2)经过点11,28P ⎛⎫- ⎪⎝⎭作一直线交椭圆于,A B 两点如果点P 为线段AB 的中点,求直线AB 的斜率;(3)若直线l 与(2)中的直线AB 平行,且与椭圆交于M ,N 两点,试求MON △(O 为坐标原点)面积的最大值.26.在平面直角坐标系中,(10,C ,圆(222:12C x y +=,动圆P 过1C 且与圆2C 相切.(1)求动点P 的轨迹C 的标准方程; (2)若直线l 过点()0,1,且与曲线C 交于A 、B ,已知AB 的中点在直线14x =-上,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF =+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===, 设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为533,44⎛⎫- ⎪ ⎪⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+. 故选:B.【点睛】 本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.2.A解析:A【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解.【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=,点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+, 则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=, A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 3.A解析:A【分析】 将直线方程代入抛物线可得212224k x x k++=,121=x x ,由3AF BF =可得1232x x =+,联立方程即可解出k .【详解】由题可得()1,0F ,则直线方程为()1y k x =-,将直线代入抛物线可得()2222240k x k x k -++=, 设()()1122,,,A x y B x y ,则212224k x x k++=,121=x x , 由抛物线定义可得121,1AF x BF x =+=+,3AF BF =,则1232x x =+, 结合212224k x x k++=可得1222312,x x k k =+=,代入121=x x ,则223121k k⎛⎫+⋅= ⎪⎝⎭,由0k >,可解得k = 故选:A.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y ,,()22B x y ,;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式;(5)代入韦达定理求解.4.B解析:B【分析】 由曲线的对称性,以及数形结合分析得115b a =,从而求得其离心率. 【详解】 如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=, 渐近线OA 的斜率tan 15a k AOM b =∠==,所以115b a =, 所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.5.C解析:C【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a .【详解】 椭圆22183x y +=的半焦距为c ∴双曲线中215a +=,∴2a =(∵0a >).故选:C .【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.6.D解析:D【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程.【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-, ()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =, 所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=.故选:D【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法. 7.C解析:C【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b,得渐近线方程.【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c =渐近线方程为b y x a=±,其中一条为0bx ay -=,1==,1b =,∴a = ∴渐近线方程为y x =. 故选:C .【点睛】 关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b .解题时要注意椭圆中222a b c =+,双曲线中222+=a b c .两者不能混淆. 8.C解析:C【分析】 根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==,所以,四边形12PFQF 为矩形,12=QFPF ;由11QF PF ≥1m n≤<, 由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c =-②;由①②得()2222242c m n m n mn n m a c +==+-; 令=+m n t n m,令3m v n ⎫=∈⎪⎪⎣⎭,所以,12,3t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c =-②;由①②得()2222242c m n m n mn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题 9.D解析:D【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率.【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos 232ME EF c c π==⨯=,2sin 3MF c π==,∴1)2MF ME c a +==,∴1c e a ===. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.10.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())()2,0,2,0,0,0A BM -,1,22FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.11.C解析:C 【分析】①根据双曲线定义可得出判断;②不妨在单位圆x 2+y 2=1中,用代入法求得P 的轨迹方程可得判断;③求出方程22520x x -+=根,利用椭圆与双曲线的离心率的范围可得出判断; ④求出双曲线和椭圆的焦点坐标可得答案; 【详解】①设A 、B 为两个定点,k 为非零常数,当||||||PA PB k AB -==时,则动点P 的轨迹是以A 为端点的一条射线线,因此不正确; ②∵()12OP OA OB =+,∴P 为弦AB 的中点,不妨在单位圆x 2+y 2=1中,定点A (1,0),动点11(,)B x y ,设P (x ,y ),用代入法求得P 的轨迹方程是212x ⎛⎫- ⎪⎝⎭+y 2=14,∴点P 的轨迹为圆,错误;③解方程22520x x -+=可得两根12,2.因此12可以作为椭圆的离心率,2可以作为双曲线的离心率,因此方程的两根可分别作为椭圆和双曲线的离心率,正确;④由双曲线221925x y -=可得c,其焦点(,同理可得椭圆22135y x +=焦点为(0,,因此没有相同的焦点,错误; 综上可知:其中真命题的序号为 ③. 故选:C . 【点睛】本题综合考查了圆锥曲线的定义、标准方程及其性质,考查了推理能力,属于中档题.12.B解析:B 【分析】先求出双曲线的a,b,c ,再利用12Rt PF F 中三边关系求出128PF PF =,再由直角三角形面积公式即得结果. 【详解】由2214x y -=-得标准方程为2214x y -=得221,4a b ==,2145c ∴=+=c ∴= 故12Rt PF F 中,()222212121212121222=2F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=. 故选:B. 【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.二、填空题13.【分析】设再表达出的坐标再利用抛物线的弦长公式求解即可【详解】设则利用中点坐标公式知又点M 到y 轴的距离为2故即又故利用过抛物线焦点的弦长公式故答案为:8【点睛】方法点睛:本题主要考查了过抛物线焦点的解析:【分析】设()()1122,,,A x y B x y ,再表达出M 的坐标,再利用抛物线的弦长公式求解即可. 【详解】设()()1122,,,A x y B x y ,则利用中点坐标公式知1212,22x x y y M ++⎛⎫⎪⎝⎭,又点M 到y 轴的距离为2,故1222x x +=,即124x x +=, 又28,4p p ==,故利用过抛物线焦点的弦长公式12448AB x x p =++=+=. 故答案为:8 【点睛】方法点睛:本题主要考查了过抛物线焦点的弦长公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式,考查学生的运算能力与转化思想,属于一般题.14.【分析】由题意知由余弦定理可得由面积公式即可求解【详解】因为分别为椭圆的左右焦点为该椭圆上一点所以则由余弦定理得即所以故的面积设的内切圆半径为则解得故答案为:【点睛】本题主要考查了椭圆的定义椭圆的简解析:13- 【分析】由题意知12124,F P PF F F +==1243F PPF =‖,由面积公式12121211sin |)2602(S F P PF F P PF F F r ︒=⋅+⋅=‖+|即可求解.【详解】因为12F F 、分别为椭圆2214x y +=的左、右焦点,P 为该椭圆上一点,所以12124,F P PF F F +==则由余弦定理得,2221212122cos 60F F F P PF F P PF ︒=+-‖,()2121212122cos602F P PF F P PF F P PF ︒=+--,即1212163F PPF =-‖,所以1243F PPF =‖, 故12PF F ∆的面积121sin 602S F P PF ︒=⋅‖=设12F PF ∆的内切圆半径为r ,则12121|)(4122(F P PF F F r r S +⋅=+⋅==+|,解得1r =-1 【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,余弦定理,面积公式,属于中档题.15.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±16.【分析】化双曲线方程为标准方程求得的值依题意列方程解方程求得的值【详解】双曲线方程化为标准方程得故依题意可知即解得【点睛】本小题主要考查双曲线的标准方程考查双曲线的虚轴和实轴考查运算求解能力属于基础题解析:1-4【分析】化双曲线方程为标准方程,求得,a b 的值,依题意列方程,解方程求得m 的值. 【详解】双曲线方程化为标准方程得2211y x m-=-,故1,a b == 依题意可知2b a =2=,解得14m =-.【点睛】本小题主要考查双曲线的标准方程,考查双曲线的虚轴和实轴,考查运算求解能力,属于基础题.17.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b a c =-=-=,所以,32b =. 故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.18.【分析】首先联立方程求得设圆心坐标利用其到△三个顶点的距离相等列出等量关系式求得结果【详解】联立方程可得:设圆心坐标则得:故答案为:【点睛】该题考查的是有关圆的问题涉及到的知识点有求直线与椭圆的交点解析:51,62⎛⎫⎪⎝⎭【分析】首先联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩,求得()0,1A ,41,33B ⎛⎫- ⎪⎝⎭,设圆心坐标(),x y ,利用其到△AOB 三个顶点的距离相等,列出等量关系式,求得结果.【详解】联立方程221012x y x y +-=⎧⎪⎨+=⎪⎩可得:()0,1A ,41,33B ⎛⎫- ⎪⎝⎭, 设圆心坐标(),x y ,则()22222241133x y x y x y ⎛⎫-++=+=+- ⎛⎫ ⎪⎝⎭⎪⎝⎭, 得:56x =,12y =, 故答案为:51,62⎛⎫⎪⎝⎭.【点睛】该题考查的是有关圆的问题,涉及到的知识点有求直线与椭圆的交点,三角形外接圆的圆心的求法,属于简单题目.19.【分析】过P 做准线的垂线根据定义可得将所求最小转化为的最小结合图像分析出当PA 与抛物线相切时最小联立直线与抛物线方程根据判别式求出PA 斜率k 进而可得的值代入所求即可【详解】由题意可得抛物线的焦点准线【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PMPAM PA=∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。

(易错题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(包含答案解析)(1)

(易错题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(包含答案解析)(1)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =3.已知曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则实数a 的取值范围是( )A .(][),10,1-∞-B .(]1,1-C .[)1,1-D .[]()1,01,-+∞4.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 且平行于一条渐近线的直线l 与另一条渐近线交于点A ,l 与双曲线交于点B ,若2BF AB =,则双曲线的离心率为( ) A 23B 3C 2D .25.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .26.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .527.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,左、右焦点分别为1F 、2F ,A 在C 的左支上,1AF x ⊥轴,A 、B 关于原点对称,四边形12AF BF 的面积为48,则12F F =( )A .8B .4C .83D .438.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A .910+B .926+C .712612+ D .832612+ 9.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .410.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .611.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B.2C .13D二、填空题13.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.14.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别是1F ,2F,直线:(l y k x =过点2F ,且与双曲线C 在第一象限交于点P .若(22()0OP OF PF +⋅=(O 为坐标原点),且()121PF a PF +=,则双曲线C 的离心率为__________.15.设12,F F 为椭圆22:14x C y +=的两个焦点,P 为椭圆C 在第一象限内的一点且点P的横坐标为1,则12PF F △的内切圆的半径为__________.16.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.17.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.18.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.19.已知点1F ,2F 为椭圆22122:1x y C a b +=(0a b >>)和双曲线22222:1x y C a b -=''(0a '>,0b '>)的公共焦点,点P 为两曲线的一个交点,且满足01290F PF ∠=,设椭圆与双曲线的离心率分别为1e ,2e ,则221211e e +=___________. 20.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.三、解答题21.已知椭圆C :()222210x y a b a b+=>>的左、右顶点分别为A ,B 且左、右焦点分别为1F ,2F ,点P 为椭圆C 上的动点,在点P 的运动过程中,有且只有6个位置使得12PF F 为直角三角形,且12PF F 的内切圆半径的最大值为22-.(1)求椭圆C 的标准方程;(2)过点B 作两条互相垂直的直线交椭圆C 于M ,N 两点,记MN 的中点为Q ,求点A 到直线BQ 的距离的最大值.22.已知椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,上顶点B ,离心率为32,且直线AB 与圆224:5O x y +=相切. (1)求椭圆C 的方程;(2)设p 椭圆C 上位于第三象限内的动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问四边形ABNM 的面积是否为定值?若是,求出该定值;若不是,请说明理由.23.已知圆M 的方程为222260x y x y +---=,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E F ,两点,圆N 内的动点D 使得,DE DO DF ,成等比数列,求DF DE →→⋅的取值范围;(3)过点M 作两条直线分别与圆N 相交于A B ,两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行,并说明理由.24.设椭圆2222:1(0)x y C a b a b+=>>的一个顶点与抛物线2:43C x y =的焦点重合,12,F F 分别是椭圆的左、右焦点,且离心率12e =,过椭圆右焦点2F 的直线l 与椭圆交于M 、N 两点.(1)求椭圆C 的方程;(2)若2OM ON ⋅=-. 求直线l 的方程;25.已知离心率22e =的椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0-.(1)求椭圆C 的方程;(2)若斜率为1的直线l 交椭圆C 于A ,B 两点,且423AB =,求直线l 的方程. 26.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由32c e a ==,得2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+,∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.3.C解析:C 【分析】利用绝对值的几何意义,由3y x =+,可得0y ≥时,3yx ,0y <时,3y x =--,则可得曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),再无其它交点,把3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,分类讨论,可得结论 【详解】解:由3y x =+,可得0y ≥时,3y x,0y <时,3y x =--,所以曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),为了使曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则将3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,当1a =-时,3y =满足题意,因为曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点, 所以>0∆,且3是方程的根, 所以9(1)01a a-<+,即11a -<<时,方程两根异号,满足题意, 综上,a 的取值范围为[)1,1-, 故选:C 【点睛】此题考查曲线的交点问题,考查分析问题的能力,考查分类思想,属于中档题4.B解析:B 【分析】设直线l 的方程为()by x c a=--,求得点A 的坐标,由2BF AB =,可得出23FB FA =,利用平面向量的坐标运算求出点B 的坐标,将点B 的坐标代入双曲线的标准方程,可得出a 、c 齐次等式,由此可解得该双曲线的离心率. 【详解】 如下图所示:设直线l 的方程为()b y x c a=--,则直线OA 的方程为by x a =,联立()b y x a b y x c a ⎧=⎪⎪⎨⎪=--⎪⎩,解得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即点,22c bc A a ⎛⎫ ⎪⎝⎭, 设点(),B m n ,由2BF AB =可得出23FB FA =, 即()2,,,32233c bc c bc m c n a a ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,即33c m c bc n a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得233c m bc n a ⎧=⎪⎪⎨⎪=⎪⎩,则点2,33c bc B a ⎛⎫⎪⎝⎭, 将点B 的坐标代入双曲线的标准方程得222222241993c b c e a a b -==,解得e =故选:B. 【点睛】本题考查双曲线离心率的求解,利用平面向量的坐标运算求出点B 的坐标是解题的关键,考查计算能力,属于中等题.5.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方6.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.7.A解析:A 【分析】设122F F c =,求出1AF,由题意可知四边形12AF BF 为平行四边形,根据四边形12AF BF 的面积为48可得出关于a 的等式,由此可求得12F F .【详解】设122F F c =,由于双曲线的离心率为2ce a==,2c a ∴=,则b =, 所以,双曲线C 的方程为222213x y a a-=,即22233x y a -=,将x c =-即2x a =-代入双曲线C 的方程可得3y a =±,13AF a ∴=,由于A 、B 关于原点对称,1F 、2F 关于原点对称,则四边形12AF BF 是平行四边形,四边形12AF BF 的面积2341248S a a a =⨯==,解得2a =,12248F F c a ∴===.故选:A. 【点睛】关键点点睛:本题考查双曲线几何性质的应用,利用四边形的面积求双曲线的焦距,解题的关键就是利用双曲线的离心率将双曲线的方程转化为只含a 的方程,在求解相应点的坐标时,可简化运算.8.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A My y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭, 又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 9.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b, 所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以1118021802180AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(002A x px ,则002AT px k =,则直线002:x AT x x p =-,代入抛物线方程化简得0202220x px py p +=-, 则0020228x p ppx ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确. 故选:D. 【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.10.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.11.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =. 5ce a∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b --+=,因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以231c b e a a ⎛⎫==-= ⎪⎝⎭, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =, ()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为122FQ = ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=.【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.14.【分析】取的中点则根据得则设根据结合双曲线的定义得到然后在中利用勾股定理求解即可【详解】如图取的中点则因为所以即因为是的中位线所以由题意可得设则由双曲线的定义可知则即故在中由勾股定理得即整理得解得故解析:102【分析】取2PF 的中点H ,则22OP OF OH +=,根据22()0OP OF PF +⋅=,得2OH PF ⊥,则12PF PF ⊥,设2PF m =,根据()121PF a PF +=结合双曲线的定义得到2||2PF =,122PF a =+,然后在12Rt PF F 中,利用勾股定理求解即可.【详解】 如图,取2PF 的中点H ,则22OP OF OH +=, 因为22()0OP OF PF +⋅=,所以20OH PF ⋅=,即2OH PF ⊥.因为OH 是12PF F △的中位线,所以12PF PF ⊥.由题意可得10c =,设2PF m =,则()11PF a m =+, 由双曲线的定义可知12||2PF PF a -=,则2am a =,即2m =, 故2||2PF =,122PF a =+.在12Rt PF F 中,由勾股定理得2221122||||PF PF F F +=, 即()242240a ++=,整理得2280a a +-=, 解得2a =.故双曲线C 的离心率为10c a =. 10【点睛】本题主要考查双曲线的几何性质和定义的应用以及平面几何的知识,平面向量垂直问题,还考查了数形结合的思想和运算求解的能力,属于中档题.15.【分析】由点的横坐标为1代入得出点的纵坐标继而求得的面积S 再设的内切圆的半径为由可得答案【详解】因为点的横坐标为1所以点的纵坐标为所以的面积设的内切圆的半径为所以即所以故答案为:【点睛】本题考查椭圆解析:3【分析】由点P 的横坐标为1,代入得出点P 的纵坐标,继而求得12PF F △的面积S ,再设12PF F △的内切圆的半径为r ,由()(1212122S F F PF PF r r =++⨯=+,可得答案. 【详解】因为点P 的横坐标为1,所以点P 的纵坐标为P y =12PF F △的面积121322P F F y S ⋅==,设12PF F △的内切圆的半径为r ,所以()(1212122S F F PF PF r r =++⨯=+,即(322r +=,所以32r =-.故答案为:32-. 【点睛】本题考查椭圆的方程和椭圆的定义,以及焦点三角形的相关性质,属于中档题.16.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=,故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.17.【分析】由题意知可求的坐标由于轴可得利用抛物线的定义可得代入可取再利用即可得出的值【详解】解:如图所示与轴平行解得代入可取解得故答案为:【点睛】本题考查了抛物线的定义及其性质平行线的性质三角形面积计 解析:6【分析】由题意知可求F 的坐标.由于//AB x 轴,||2||AF CF =,||||AB AF =,可得13||||22CF AB p ==,1||||2CE BE =.利用抛物线的定义可得A x ,代入可取A y ,再利用13ACE ABC S S ∆∆=,即可得出p 的值.【详解】 解:如图所示,,02p F ⎛⎫ ⎪⎝⎭,3||2CF p =,||||AB AF =.AB 与x 轴平行,||2||AF CF =,13||||22CF AB p ∴==,1||||2CE BE =.32A p x p ∴+=,解得52A x p =,代入可取5A y p =,1113535332ACE ABC S S p p ∆∆∴===,解得6p =.故答案为:6.【点睛】本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出A 的坐标后,如何根据已知面积列出方程.18.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的 解析:4+61【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为4+61 故答案为:4+61 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.19.2【分析】先结合椭圆及双曲线的定义可得再结合离心率公式求解即可【详解】解:设P 为双曲线右支上的任意一点点分别为左右交点由椭圆定义有由双曲线定义有则即又则即所以即2故答案为:2【点睛】本题考查了椭圆及解析:2 【分析】先结合椭圆及双曲线的定义可得2'2a a +22c =,再结合离心率公式求解即可. 【详解】解:设P 为双曲线右支上的任意一点,点1F ,2F 分别为左、右交点, 由椭圆定义有122PF PF a +=,由双曲线定义有'122PFPF a -=,则212()PF PF +212()PF PF +-=22122()PF PF +2'24()a a =+,即2212PF PF +2'22()a a =+,又01290F PF ∠=,则222124PF PF c +=,即2'2a a +22c =,所以2'2222a a c c +=,即221211e e +=2, 故答案为:2. 【点睛】本题考查了椭圆及双曲线的定义,重点考查了离心率的求法,属中档题.20.【分析】计算得到故为正三角形计算面积得到答案【详解】抛物线的焦点准线为l :由抛物线的定义可得由直角三角形的斜边上的中线等于斜边的一半可得即有为正三角形由F 到l 的距离为则的面积是故答案为:【点睛】本题解析:【分析】计算得到AF AK =,FK AF =,故AKF ∆为正三角形,4AK =,计算面积得到答案. 【详解】抛物线24y x =的焦点()1,0F ,准线为l :1x =-,由抛物线的定义可得AF AK =, 由直角三角形的斜边上的中线等于斜边的一半,可得FK AF =, 即有AKF ∆为正三角形,由F 到l 的距离为2d =,则4AK =,AKF ∆16=.故答案为:【点睛】本题考查了抛物线中的面积问题,确定AKF ∆为正三角形是解题的关键.三、解答题21.(1) 22142x y += (2) 47【分析】(1)由条件得出当点P 位于椭圆C 的上下顶点处时,12PF F △为直角三角形,则b c =,当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值,则22cbR a c==-+22222c a b a c =-=-,可求出椭圆方程. (2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+ ,与椭圆方程联立得出韦达定理,由1212122BM BN y yk k x x ⋅=⋅=---,结合韦达定理可得n 的值,从而得出点Q 的坐标,进而求出直线BQ 的方程,由点到直线的距离公式可得出答案 【详解】点P 为椭圆C 上的动点,当1PF x ⊥或2PF x ⊥时,12PF F △为直角三角形. 此时满足条件的点P 有4个,根据满足条件的点P 有6个. 则满足条件的点P 的另2个位置位于椭圆C 的上下顶点处.当点P 位于椭圆C 的上下顶点处时,12PF F △为等腰直角三角形,即b c =12PF F △的内切圆半径我为R ,则()12121211222PF F P Sc y F F PF PF R ==++ 即()P c y a c R =+,所以Pc y R a c=+ 当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值.所以2cb R a c ==+,即22c a c=+22222c a b a c =-=-,即a =解得2,a b =,所以椭圆C 的标准方程为:22142x y +=(2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+由22142x my nx y =+⎧⎪⎨+=⎪⎩,得()2222240m y mny n +++-=所以212122224,,22mn n y y y y m m --+=⋅=++据条件直线BM ,BN 的斜率存在,由条件可得1212122BM BN y yk k x x ⋅=⋅=--- 即1212122y y my n my n ⋅=-+-+-,即()()()2212121222y y m y y m n y y n -=+-++-所以()()()()2212121220m y y m n y y n ++-++-=则()()()2222242122022n mn m m n n m m --++-+-=++化简可得()()2320n n --=,即23n =或2n = 当2n =时,直线MN 过点B ,不满足条件.所以 23n =,则()12222243232m m y y m m -⨯-+==++ 由MN 的中点为Q ,则()2232Q my m -=+所以()()2222433232Q m x m m m -=⨯+=++所以()()222232434232BQm m m k m m -+==+-+所以直线BQ 的方程为()2234m y x m =-+,即()23420m y mx m +-+= 所以点()2,0A -到直线BQ 的距离为d ==47=≤=当且仅当22169mm=,即243m=时取等号.所以点()2,0A-到直线BQ的距离的最大值为47【点睛】关键点睛:本题考查椭圆的几何性质和椭圆中的定点问题以及点到直线的距离的最值问题,解答本题的关键是由1212122BM BNy yk kx x⋅=⋅=---结合韦达定理得出n的值,进一步得出点Q的坐标()2232Qmym-=+,234BQmkm=+,得出直线BQ的方程为()2234my xm=-+,属于难题.22.(1)2214xy+=;(2)是定值,定值为2.【分析】(1)由题意可得==,a b的值,进而可得椭圆的方程;(2)设()()0000,0,0,P x y x y<<从而可表示出直线PA的方程,然后求出点M的坐标,得到BM的值,同理可得到AN的值,进而可求得四边形ABNM的面积,得到结论【详解】(1)解:由题意知直线:AB bx ay ab+=,所以⎧=⎪=2a=,1b=,所以椭圆C的方程为2214xy+=,(2)证明:设()()22000000,0,0,44P x y x y x y<<+=.因为()()2,0,0,1A B,所以直线PA的方程为()22yy xx=--,令x=,得022M y y x =--, 从而002112M y BM y x =-=+-. 直线PB 的方程为0011y y x x -=+令0y =,得001N xx y =--,从而00221N x AN x y =-=+-. 所以四边形ABNM 的面积0000211212212x y s AN BM y x ⎛⎫⎛⎫==+⋅+ ⎪ ⎪--⎝⎭⎝⎭‖ ()22000000000000000000444842244222222x y x y x y x y x y x y x y x y x y ++--+--+===--+--+.所以四边形ABNM 的面积为定值2. 【点睛】关键点点睛:解题的关键是由题意将BM ,AN 表示出来,从而可得四边形ABNM 的面积.23.(1)222x y +=;(2)[)10-,;(3)平行,理由见解析. 【分析】(1)根据圆心距与圆M 半径的大小,判断两圆的位置关系为内切,进而根据MN R r =-求得圆N 的半径,最后写出圆N 的方程;(2)设动点()D x y ,,根据,DE DO DF ,成等比数列求得动点D 的轨迹方程,又结合动点是在圆内的,求出D 点纵坐标y 的取值范围,再将DF DE →→⋅表示为221y -,最后求得DF DE →→⋅的取值范围.(3) 因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,则直线MB 的斜率为k -.接着联立直线MA 方程和圆的方程得到A 点的横坐标,同理得到B 点的横坐标,最后求得直线AB 和MN 的斜率相等,所以直线MN 和AB 是平行的. 【详解】解:1()圆M 的方程可化为()()22118x y -+-=, 故圆心()11M ,,半径R = 圆N 的圆心坐标为()00,,因为MN =<所以点N 在圆M 内,故圆N 只能内切于圆M ,设其半径为r ,因为圆N 内切于圆M ,所以有MN R r =-r =,解得r =所以圆N 的方程为222x y +=;2()由题意可知:()E,)F ,设()D x y ,,由,DE DO DF ,成等比数列,得2DO DE DF =⋅,22x y =+,整理得221x y -=,而())DE DF x y x y →→⋅=-⋅-,,())()2222x x y x y =⋅+-=+-()2221221y y y =++-=-,由于点D 在圆N 内,故有222221x y x y ⎧+<⎨-=⎩, 由此得2102y ≤<, 所以[)10DE DF →→⋅∈-,;3()因为直线MA 和直线MB 的倾斜角互补, 故直线MA 和直线MB 的斜率存在,且互为相反数, 设直线MA 的斜率为k ,则直线MB 的斜率为k -. 故直线MA 的方程为()11y k x -=-, 直线MB 的方程为()11y k x -=--, 由()22112y k x x y ⎧-=-⎨+=⎩,得()()()222121120k x k k x k ++-+--=,因为点M 在圆N 上,故其横坐标1x =一定是该方程的解,222211A k kx k -∴+=+ 可得22211A k k x k --=+, 同理可得:22211B k k x k +-=+, 所以B AAB B Ay y k x x -=-()()3232222222222421111114212111B A MNB Ak k k k k k kk k x k x k k k k k k k k k x x k k --+-++++----+++=====+--++-++, 所以直线AB 和MN 一定平行. 【点睛】直线与圆,圆与圆的位置关系是圆锥曲线中比较常考的内容之一,需要注意一下几点: (1)圆与圆的位置关系的判断就是根据圆心距和半径和差之间的大小关系进行判断; (2)求动点的轨迹方程通常采用“建设限代化”五步骤来求动点的轨迹,切记求出方程之后,看有没有不满足题意的解,需要排除掉;(3)一般联立方程组之后,方程的两个解是直线与曲线交点的横坐标或者纵坐标,在已知一个坐标的情况下,另一个坐标可以通过韦达定理求得.24.(1)22143x y +=;(2)1)y x -或1)y x =-.【分析】(1)求出抛物线的焦点坐标,可得b =.(2)先验证直线斜率不存在时的可求,然后当直线斜率存在时,设出方程与椭圆方程联立,写出韦达定理,由12122OM ON x x y y ⋅=+=-,将韦达定理代入可得答案. 【详解】解:(1)由题意得,抛物线2:C x =的焦点为 ∴椭圆的一个顶点为,∴b =又∵12c e a ==, 222231114b e a a =-=-=, 所以2a =∴椭圆的标准方程为22143x y +=.(2)由题意可知,直线l 与椭圆必相交,①当直线斜率不存在时,直线l 的方程为:1x =,则331,,1,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭则9124OM ON ⋅=-≠-,所以不合题意, ②当直线斜率存在时,设直线l 为(1)y k x =-且1122(,),(,)M x y N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, ∴221222228412,3434k k x x x x k k-+=⋅=++. ∴[]21212121212()1OM ON x x y y x x kx x x x ⋅=+=+-++2222222224124128512(1)234343434k k k k k k k k k----=+-+==-++++. ∴22k =∴k =0∆>∴直线l的方程为1)y x =-或1)y x =-. 【点睛】关键点睛:本题考查求椭圆的方程和椭圆与直线的位置关系,解得本题的关键是联立直线方程与椭圆方程结合韦达定理得到221222228412,3434k k x x x x k k -+=⋅=++,由[]21212121212()1OM ON x x y y x x k x x x x ⋅=+=+-++,然后将韦达定理代入,属于中档题.25.(1)2212x y +=;(2)1y x =+或1y x =-.【分析】(1)由离心率求出a ,再求出b ,可得椭圆方程;(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,然后代入弦长公式12AB x =-可求得参数m 值得直线方程.【详解】(1)由题意知,1c =,c e a ==,∴a = 1b =, ∴椭圆C 的方程为2212x y +=.(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,联立方程组2212x y y x m ⎧+=⎪⎨⎪=+⎩, 化简,得2234220x mx m ++-=.由已知得,()2221612228240m m m ∆=--=-+>,即23m <,∴m <<1243m x x +=-,212223m x x -=.∴213AB x =-==, 解得1m =±,符合题意,∴直线l 的方程为1y x =+或1y x =-. 【点睛】方法点睛:本题考查直线与椭圆相交弦长问题.解题方法是设而不求的思想方法,即设交。

高中数学选修2-1圆锥曲线与方程单元测试1

高中数学选修2-1圆锥曲线与方程单元测试1

高中数学选修2-1圆锥曲线与方程单元测试一、选择题1、抛物线顶点是坐标原点,焦点是椭圆1422=+y x 的一个焦点,则此抛物线的焦点到准线的距离是( ) (A )32 (B)3 (C)23 (D)432、直线1()y kx k R =+∈ 与椭圆2215x y m+=恒有公共点,则m 的取值范围是( ) (A )[1,5)∪(5,+∞) (B )(0,5) (C) [)+∞,1 (D) (1,5)3、已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 4、若双曲线18222=-b y x 的一条准线与抛物线y 2=8x 的准线重合,则双曲线的离心率为( ) (A) 2 (B) 22 (C ) 4 (D) 425、过定点P(0,2)作直线l ,使l 与曲线y 2=4(x-1)有且仅有1个公共点,这样的直线l 共有( ) (A) 1条(B) 2条(C) 3条(D) 4条6. 已知F 1、F 2为双曲线2222by a x -=1(a >0,b >0)的焦点,过F 2作垂直于x 轴的直线,它与双曲线的一个交点为P ,且∠PF 1F 2=30°,则双曲线的渐近线方程为( ) (A) y =±22x (B) y =±3x (C) y =±33x (D) y =±2x7、已知A 、B 、C 三点在曲线ABC m m x y ∆<<=当,,上,其横坐标依次为),41(41的面积最大时,m 的值为( )(A) 3 (B)25 (C) 49 (D) 238、在椭圆212,122,,12045PF F F F P yx ∆=+是椭圆的左右焦点有一点为直角三角形,则这样的点P 有( ) (A) 2个 (B) 4个 (C)6个 ( D) 8个9、已知双曲线)0,0(1122222222>>>=+=-b m a by m x b y a x 和椭圆的离心率互为倒数,那么以m b a ,,为边长的三角形是( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐或钝角三角形10、设点P 为双曲线1422=-y x 右支上除顶点外的任意一点,21F F ,为其两焦点,则M PF F 的内心21∆在( )(A)直线2=x 上 (B)直线 1=x 上 (C) 直线 x y 2= 上 (D)直线 x y = 上 二.填空题 11、已知椭圆的值为,则的焦距为a y a x a 412222=-____________ 12、双曲线的焦距为xy 1=________.13.对任意实数K ,直线:y kx b =+与椭圆:32cos (02)14sin x y θθπθ⎧=+⎪≤≤⎨=+⎪⎩ 恰有一个公共点,则b 取值范围是_____________14、设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i=1、2、3、…),F P 1,F P 2,F P 3,…组成公差为d 的等差数列,则实数d 的取值范围是 .三、解答题15、已知椭圆C 的焦点分别为F 1(-22,0)和F 2(22,0),长轴长为6,设直线y=x+2交椭圆C 于A 、B 两点,求线段AB 的中点坐标。

湖北仙桃中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)

湖北仙桃中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)

一、选择题1.已知抛物线24x y =上的一点M 到此抛物线的焦点的距离为2,则点M 的纵坐标是( ) A .0B .12C .1D .22.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为A BC D 3.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A .0,2⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .11212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭5.已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D6.设(,)P x y 8=,则点P 的轨迹方程为( )A .22+1164x y =B .22+1416x y =C .22148x y -=D .22184x y -=7.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ).A .12B .622+ C .31+ D .62+8.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=9.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91610.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34πC .(65)π-D .54π11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 C 2D 312.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-二、填空题13.已知A 、B 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右顶点,M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,始终满足()()12fk f k =,其中()ln 2x f x ⎛⎫= ⎪⎝⎭,则C 的离心率为______ .14.设F 为抛物线2:3C y x =的焦点,过F 作直线交抛物线C 于A B 、两点,O 为坐标原点,则AOB ∆面积的最小值为__________.15.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的圆上,则双曲线C 的离心率为_____________. 17.曲线412x x y y -=上的点到直线y =的距离的最大值是________.18.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.19.在平面直角坐标系xOy 中,若直线2y x =与椭圆()222210x y a b a b+=>>在第一象限内交于点P ,且以OP 为直径的圆恰好经过右焦点F ,则椭圆的离心率是______. 20.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:则2C 的虚轴长为______.三、解答题21.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 22.抛物线Γ的方程为22y px =(0p >), ()1,2A 是Γ上的一点. (1)求p 的值,并求A 点处的切线方程;(2)不过点A 且斜率为1-的直线交抛物线Γ于P 、Q 两点.证明:直线PA 、 QA 的倾斜角互补.23.如图,设圆2212x y +=与抛物线24x y =相交于A ,B 两点,F 为抛物线的焦点.(1)若过点F 且斜率为1的直线l 与抛物线和圆交于四个不同的点,从左至右依次为1P ,2P ,3P ,4P ,求1234PP P P +的值;(2)若直线m 与抛物线相交于M ,N 两点,且与圆相切,切点D 在劣弧AB 上,求MF NF +的取值范围.24.在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为12,过点(03,,且BMN ∆是椭圆C 的内接三角形.(1)若点B 为椭圆C 的上顶点,且原点O 为BMN ∆的垂心,求线段MN 的长; (2)若点B 为椭圆C 上的一动点,且原点O 为BMN ∆的重心,求原点O 到直线MN 距离的最小值.25.已知椭圆2222:1(0)x y C a b a b+=>>的短轴为2,椭圆上的点到焦点的最短距离为23.(1)求椭圆的标准方程;(2)已知椭圆的右顶点和上顶点分别为,M N ,斜率为12的直线l 与椭圆C 交于P Q 、两点,求证:直线MP 与NQ 的斜率之和为定值;(3)过右焦点2F 作相互垂直的弦,AB CD ,求||||AB CD +的最小值.26.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数;(2)若||AB =AFB △的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p 到焦点的距离与到准线的距离相等,进而推断出y p +1=2,求得y p . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=﹣1, 根据抛物线定义, ∴y p +1=2, 解得y p =1. 故选C .考点:抛物线的简单性质.2.D解析:D 【解析】由题意知,过点(4,-2)的渐近线方程为y=-b ax, ∴-2=-b a×4, ∴a=2b.设b=k,则∴e=c a .3.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y pp ⎧+⎪+⎛⎫⎪=⨯ ⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题.4.C解析:C 【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径)r a c =-,然后根据12r a >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则2c a ≥,从而11212e ≤<.故选:C 5.B解析:B 【分析】首先利用DF DA =,求点D 的坐标,再利用DF 与渐近线垂直,构造关于,a c 的齐次方程,求离心率. 【详解】由条件可知(),0F c -,(),0A a ,由对称性可设条件中的渐近线方程是by x a=,线段FA 的中垂线方程是2a c x -=,与渐近线方程by x a =联立方程,解得()2b a c y a-=,DF DA =,即(),22b a c a c D a -⎛⎫- ⎪⎝⎭, 因为DF 与渐近线b y x a =垂直,则()()22b ac a a a c b c -=----,化简为2232222b c ab a a c b c ac a c -=+⇔=+, 即22b ac a =+,即2220c ac a --=,两边同时除以2a , 得220e e --=,解得:1e =-(舍)或2e =. 故选:B 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程. 6.B解析:B 【分析】由椭圆的定义可得出点P 的轨迹是以12,F F 为焦点的椭圆,其中28a =,c =,由此可得出椭圆的标准方程. 【详解】由题意可知,点(,)P x y到点1F的距离与到点2(0,F -的距离之和为定值8,并且128F F >=,所以点P 的轨迹是以12,F F 为焦点的椭圆,所以28,4a a ==,因为c =,所以22216124b a c =-=-=, 所以点P 的轨迹方程为22+=1416x y .故选:B. 【点睛】关键点点睛:解决本题的关键在于熟悉、灵活运用椭圆的定义,求出椭圆的焦点的位置,椭圆中的,,a b c .7.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=,又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C . 【点睛】关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C的半径最小值为11225O l d -==,圆C面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b aa c ,222422ca a a c ,223c a =,3==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.12.A解析:A【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1, 所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】设出的坐标利用直线的斜率的乘积结合已知条件推出斜率乘积转化求解双曲线的离心率即可【详解】设由M 是双曲线上异于AB 的动点若直线MAMB 的斜率分别为则又则由得因为所以可得显然不成立;则所以所以故【分析】设出,,M A B 的坐标,利用直线的斜率的乘积,结合已知条件,推出斜率乘积,转化求解双曲线的离心率即可. 【详解】设()()(),,,0,,0M m n A a B a -,由M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,则21222n n n k k m a m a m a ⋅=⋅=+--, 又22221m n a b -=,则2212222n b k k m a a ==⋅-, 由()ln 2x f x ⎛⎫=⎪⎝⎭, 得()()1212ln ,ln 22k k f k f k ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,因为()()12fk f k =,所以21ln ln 22k k ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,可得2122k k=显然不成立; 则2211ln ln ln 02222k k k k ⎛⎫⎛⎫⎛⎫+=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以21211224k k k k ⋅⇒==,所以c e a ===.【点睛】方法点睛:求双曲线离心率的值的常用方法:由,a b 或,a c 的值,得e === 列出含有,,a b c 的齐次方程,借助222b c a =-消去b ,然后转化为关于e 的方程求解;14.【解析】抛物线焦点为当直线的斜率不存在时即和轴垂直时面积最小将代入解得故故答案为点睛:本题主要考查了抛物线的简单性质直线与抛物线的位置关系该题最大的难点在于确定当直线在何位置时三角形的面积最大属于中解析:98【解析】抛物线焦点为3,04⎛⎫ ⎪⎝⎭,当直线的斜率不存在时,即和x 轴垂直时,面积最小,将34x =代入23y x =,解得32y =±,故133922428OABS =⨯⨯⨯=,故答案为98. 点睛:本题主要考查了抛物线的简单性质,直线与抛物线的位置关系,该题最大的难点在于确定当直线在何位置时,三角形的面积最大,属于中档题;将AOB ∆面积分为用x 轴将其分开,即可得1212OABOFBOFA SSS OF y y =+=-,故可得当直线的斜率不存在时, 即和x 轴垂直时,12y y -的值最大,即面积最大.15.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.16.【分析】利用直线l 的斜率和点P 在以为直径的圆周上在直角三角形中求出和用定义求出代入离心率公式求解即可【详解】由题意可得则因为直线l 的斜率是3则因为点P 在以为直径的圆周上所以所以则故双曲线C 的离心率为【分析】利用直线l 的斜率和点P 在以12F F 为直径的圆周上,在直角三角形12PF F 中,求出1PF 和2PF ,用定义求出a ,代入离心率公式求解即可.【详解】由题意可得2c =,则2124F F c ==. 因为直线l 的斜率是3,则12sin PF F ∠=,12cos PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos PF F F PF F =∠=,21212sin PF F F PF F =∠=,则2125PF PF a -==,故双曲线C的离心率为2c a =.【点睛】本题考查双曲线的性质,考查双曲线定义的应用,考查学生的计算能力,属于中档题.17.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的【分析】 先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y xy x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x =的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:22y x =- 故两平行线22y x =-2y x =之间的距离为0222633d +==. 所以曲线412x x y y -=上的点到直线2y x =26. 26. 【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.18.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形, 即在椭圆中有1221122222PF PF a PF a c PF F F c ⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭.故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.19.【分析】由题意可得轴求得的坐标由在直线上结合离心率公式解方程可得所求值【详解】解:以为直径的圆恰好经过右焦点可得轴令可得不妨设由在直线上可得即为由可得解得(负的舍去)故答案为:【点睛】本题考查椭圆的1. 【分析】由题意可得PF x ⊥轴,求得P 的坐标,由P 在直线2y x =上,结合离心率公式,解方程可得所求值. 【详解】解:以OP 为直径的圆恰好经过右焦点(c,0)F ,可得PF x ⊥轴,令x c =,可得2b y a =±=±,不妨设2(,)b P c a ,由2(,)b P c a 在直线2y x =上,可得22b c a=,即为2222a c b ac -==,由ce a=可得2210e e +-=,解得1e =(负的舍去). 故答案为1. 【点睛】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出P 点的坐标.求离心率的做题思路是,根据题意求出,a c 或者列出一个关于,,a b c 的方程,由椭圆或双曲线的,,a b c 的关系,进而求解离心率.20.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a ba b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.三、解答题21.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 .(2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)2p =,1y x =+;(2)证明见解析. 【分析】(1)将()1,2A 代入可求得p ,设出切线方程,联立切线与抛物线方程,利用0∆=可求;(2)设直线PQ 方程为y x m =-+,与抛物线方程联立,根据0PA QA k k +=可证明. 【详解】解:(1)将()1,2A 代入22y px =,可得2p =,由题意知,所求切线斜率显然存在,且不为0, 设切线方程为()21y k x -=-,与24y x =联立得()2204k y y k -+-=(0k ≠), 由()120k k ∆=--=得1k =. 所以,所求切线方程为1y x =+.(2)设直线PQ 方程为y x m =-+,代入24y x =得:240y y m +-=.由16160m ∆=+>,得1m >-.又∵直线PQ 不过点A ,∴3m ≠,∴1m >-,且3m ≠. 设()11,P x y ,()22,Q x y ,则124y y +=-,124y y m =-,()()()()22122112121211121222441111PA QA y y y y y y k k x x x x ⎛⎫⎛⎫--+-- ⎪ ⎪--⎝⎭⎝⎭+=+=----()()()121441684201m m x x +-++==-, 所以,直线PA 、PQ 的斜率角互补. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)1234PP P P +=2)2,22⎡⎤⎣⎦. 【分析】(1)由题意可得直线l 的方程为1y x =+,设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则可得()()12342413PP P P x x x x +=+-+⎤⎦,然后分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组,消元后利用根与系数的关系,可得结果; (2)将圆的方程和抛物线方程联立方程组可求出A ,B 两点的坐标,设()00,D x y ,则切线00:12m x x y y +=,直线方程式与抛物线方程式联立方程组,消元后,再由根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,而02y ≤≤而可求出M N y y +的范围,进而可得MF NF +的取值范围. 【详解】解:由题意,()0,1F ,直线l 的方程为1y x =+设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则)1221PP x x -,)3443P P x x =-,∴)()()123424132413PP P P x x x x x x x x +=+--=+-+⎤⎦故分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组:22112y x x y =+⎧⎨+=⎩;214y x x y=+⎧⎨=⎩,分别消去y ,整理得:222110x x +-=;2440x x --= ∴131x x +=-,244x x +=,∴1234PP P P +=(2)由222124x y x y⎧+=⎨=⎩解得:()2A -,()2B ,设()00,D x y ,则220012x y +=;切线00:12m x x y y +=,其中02y ≤≤;设(),M M M x y ,(),N N N x y ,则002124x x y y x y +=⎧⎨=⎩,消去x ,整理得: ()2220004241440y y x y y -++=,∴22000022200004244842448244M N x y y y y y y y y y +-++===+-∵02y ≤≤∴M N y y ⎡⎤+∈⎣⎦∵2M N MF NF y y +=++,∴MF NF +的取值范围为2,22⎡⎤⎣⎦【点睛】关键点点睛:此题考查直线与圆的位置关系,考查直线与抛物线的位置关系,第2问解题的关键是将切线方程与抛物线方程联立方程组002124x x y y x y +=⎧⎨=⎩,进而利用根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,再利用抛物线的定义可求得MF NF +的取值范围,考查数学转化思想和计算能力,属于中档题 24.(12【分析】(1)根据题意,先求出椭圆的方程,由原点O 为BMN △的垂心可得BO MN ⊥,//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,根据·=0BM ON 求出线段MN 的长;(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++,当MN 斜率不存在时,则O 到直线MN 的距离为1,由斜率存在时根据()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-,由方程联立得出22443m k =+,再由点到直线的距离求出最值. 【详解】解:(1)设焦距为2c,由题意知:22212b b ac c a ⎧⎪=⎪=-⎨⎪⎪=⎩,22431a b c ⎧=⎪=⎨⎪=⎩因此,椭圆C 的方程为:22143x y +=;由题意知:BO MN ⊥,故//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,2227·403BM ON x y y =-+-=-=,解得:y =7-, B ,M不重合,故y =213249x =,故2MN x ==(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,当MN 斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处由2OB =,则1OD =,则O 到直线MN 的距离为1;当MN 斜率存在时,设MN :y kx m =+,()11,M x y ,()22,N x y , 则1212,22x x y y D ++⎛⎫⎪⎝⎭,所以()1212,A x x y y ++,所以()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=- 也即()()1212346x x kx m kx m +++=-()()221212434460kx x mk x x m +++++=223412y kx m x y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-= ()2248430k m∆=+->,x =则:122843mk x x k -+=+,212241243m x x k -=+,代入式子得: 22223286043m k m k --=+,22443m k =+设O 到直线MN 的距离为d,则d ===0k =时,min 32d =; 综上,原点O 到直线MN 距离的最小值为32.【点睛】关键点睛:本题考查椭圆的内接三角形的相关性质的应用,解答本题的关键是设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,根据点,,M N A 均在椭圆上,得出1212346x x y y +=-,由方程联立韦达定理得到22443m k =+,属于中档题.25.(1)2214x y +=;(2)证明见解析;(3)3.【分析】(1)由题知1b =,23a c -=-222a b c =+即可得椭圆的标准方程为2214x y +=; (2)由题意得(2,0),(0,1)M N ,设112211,,,22P x x m Q x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,直线l 为12y x m =+,直线与椭圆联立化简得212122,22x x m x x m +=-=-,进而0MP NQ k k =+;(3)当直线AB 斜率不存在时,22||||23b AB CD a a+=+=,当直线AB 斜率存在时,设直线AB 为3y kx k =-,直线CD 为13y x k =-,进而得2245||||54174AB CD k k+=-++,再结合基本不等式即可得答案. 【详解】(1)因为短轴为2,所以22,1b b ==,又因为椭圆上的点到焦点的最短距离为a c -,所以23a c -=-,又因为222a b c =+,解得2,1,a b c ===所以椭圆的标准方程为2214x y +=;(2)由题意得(2,0),(0,1)M N ,设直线l 为12y x m =+,与2214x y +=联立得:222220x mx m ++-=设112211,,,22P x x m Q x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则212122,22x x m x x m +=-=- 所以()12121212122111(1)222222MP NQx m x m x x m x x m k k x x x x x ++-+-+-++=+=--22222(1)(2)220222m m x m m m x -+---+==--,所以MP 与NQ 的斜率之和为定值0;(3)当直线AB 斜率不存在时,2225b AB CD a a+=+=当直线AB 斜率存在时,设直线AB为y kx =-,直线CD为1y x k k=-+, 得()2222411240k x x k +-+-=,所以223434221244141,k x x x x k k -+==++,所以()224141AB k k +==+,同理()2241||4k CD k +=+,所以()()2222224141445||||5414417k AB CD k k k kk +++=+=-++++因为22448k k +≥=,所以1635AB CD +≥>,当且仅当1k =±时取等号, 所以AB CD +的最小值为3. 【点睛】本题考查直线与椭圆的位置关系,椭圆中的最值问题,考查运算能力与化归转化思想,是中档题.本题解题的关键在于巧设点的坐标,结合韦达定理,设而不求,达到求解目标,化简运算;同时还要注意再设直线方程时,需要考虑斜率存在与否,做到周密解答.26.(1)||AB =12t;(2)7+ 【分析】(1)设点1(A x ,1)y ,2(B x ,2)y ,联立直线方程和抛物线方程,运用韦达定理和弦长公式,化简计算即可得到所求函数;(2)运用抛物线的定义和(1)的结论,结合12||||2AF BF x x +=++,进而得到AFB △的周长. 【详解】(1)224y x ty x=+⎧⎨=⎩, 整理得()224410x t x t +-+=, 则2212212163216161632044144t t t t t x x t t x x ⎧⎪∆=-+-=->⎪-⎪+==-⎨⎪⎪=⎪⎩, AB===,其中12t;(2)由||AB ==4t =-, 经检验,此时16320t ∆=->, 所以1215x x t +=-=, 由抛物线的定义,有1212||||()()52722p pAF BF x x x x p +=+++=++=+=,又||AB =,所以AFB△的周长为7+ 【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.。

上海头桥中学高中数学选修2-1第三章《圆锥曲线与方程》检测题(答案解析)

上海头桥中学高中数学选修2-1第三章《圆锥曲线与方程》检测题(答案解析)

一、选择题1.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .232.已知椭圆C 的方程为22221(0,0)x y a b a b+=>>,过右焦点F 且倾斜角为4π的直线与椭圆C 交于A ,B 两点,线段AB 的垂直平分线分别交直线2a x c=和AB 于点P 和M ,若3||4||AB PM =,则椭圆C 的离心率为( )A .5B .3C .3D .23.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A .⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .1112⎫⎪⎣⎭D .11,112⎛⎫ ⎪⎝⎭5.设P 为椭圆22:1169x y C +=上的点,12,F F 分别是椭圆C 的左,右焦点,125PF PF ⋅=,则12PF F △的面积为( )A .3B .4C .5D .66.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( )A .11,164⎛⎫⎪⎝⎭B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭D .11,82⎡⎫⎪⎢⎣⎭7.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .68.已知点P 是椭圆22:110064x y C +=上一点,M ,N 分别是圆22(6)1x y -+=和圆22(6)4x y ++=上的点,那么||||PM PN +的最小值为( )A .15B .16C .17D .189.以下关于圆锥曲线的命题中是真命题为( )A .设,AB 是两定点,k 为非零常数,若||||PA PB k -=,则动点P 的轨迹为双曲线的一支;B .过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;C .方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;D .双曲线221925x y -=与椭圆22135y x +=有相同的焦点.10.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率2,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12-D .1211.已知双曲线C 的两个焦点12,F F 都在xM 在C 上,且12MF MF ⊥,M C 的方程为( )A .22148x y -=B .22148y x -=C .2212y x -=D .2212x y -=12.已知双曲线()222210,0x y a b a b-=>>的一条渐近线经过点,则该双曲线的离心率为( )A .2B C .3D 二、填空题13.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______.14.若抛物线28y x =的准线和圆2260x y x m +++=相切,则实数m 的值是__________.15.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.16.双曲线221(0)x y mn m n-=≠的离心率为2,有一个焦点与抛物线24y x =的焦点重合,则m n ⋅的值为___________17.曲线412x x y y -=上的点到直线y 的距离的最大值是________.18.动点P 在曲线221y x =+上运动,则点P 与定点(0,1)M -连线的中点N 的轨迹方程为_______.19.已知椭圆()222210x y a b a b +=>>()1,0F ,三角形ABC的三个顶点都在椭圆上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、F ,且三条边所在直线的斜率分别为()123123,,0k k k k k k ≠.若直线OD 、OE 、OF 的斜率之和为-1(O 为坐标原点),则123111k k k ++=______. 20.已知直线:10l x y -+=与椭圆221169x y+=交于,A B 两点,若椭圆上存在一点P 使得PAB ∆面积最大,则点P 的坐标为________.三、解答题21.已知抛物线E 的顶点为原点O ,焦点F 在x 轴正半轴,点()2,Q m 在抛物线E 上,且3QF =.(1)求抛物线E 的方程;(2)过点()2,0P 且斜率为()0k k >的直线l 与抛物线E 交于A ,B 两点,且线段AB 的中点横坐标为4,求ABO 的面积.22.已知抛物线C :22y px =()0p >上的点M ()1,m 到其焦点F 的距离为2. (1)求C 的方程;并求其焦点坐标;(2)过点()2,0且斜率为1的直线l 交抛物线于A ,B 两点,求弦AB 的长. 23.已知F 是抛物线()2:20C y px p =>的焦点,()1,M t 是抛物线上一点,且32MF. (1)求抛物线C 的方程;(2)已知斜率存在的直线l 与抛物线C 交于A ,B 两点,若直线AF ,BF 的倾斜角互补,则直线l 是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.24.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2. (1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF 面积.25.已知双曲线C 过点(,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.26.椭圆C :22221(0)x y a b a b+=>>的一个焦点与抛物线2y =的焦点重合,短轴的(1)求椭圆C 的方程;(2)设过点(0,4)的直线l 与椭圆C 交于,A B 两点,且坐标原点O 在以AB 为直径的圆上,求直线l 的斜率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则4MF ==,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.2.B解析:B 【分析】联立直线AB 与椭圆方程,表示出弦长AB ,求出中点M 的横坐标,即可表示出PM 的长,利用已知等量关系即可求出离心率. 【详解】设()()1122,,,A x y B x y ,易得直线AB 的方程为y x c =-,联立直线与椭圆方程22221y x c x y ab =-⎧⎪⎨+=⎪⎩,可得()()222222220a b x a cx a c b +-+-=,则212222a cx x a b +=+,()2221222a cb x x a b -=+,2224ab AB a b ∴==+, 212222M x x a cx a b +==+,直线PM 的斜率为1-, ()2222P Mb PM x xc a b ∴=-=+, 3||4||AB PM =,即()2222222434ab ba b c a b ⨯=⨯++,解得c e a ==. 故选:B. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.3.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y p p ⎧+⎪+⎛⎫⎪=⨯⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根 所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到2210100222020*******y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题. 4.C解析:C 【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径)r a c =-,然后根据r >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则c a ≥1112e ≤<.故选:C5.D解析:D 【分析】先根据椭圆的方程求得c ,进而求得12F F ,设出12,PF m PF n ==,利用余弦定理可求得mn 的值,最后利用三角形面积公式求解. 【详解】由椭圆方程有4,3a b ==,则c .设12,PF m PF n ==,由椭圆的定义有:28m n a +==.设12F PF θ∠=, 由125PF PF ⋅=,得cos 5mn θ=,由余弦定理得: 222cos 28m n mn θ+-= 解得:513,cos 13mn θ==,12sin 13θ∴=. 所以12PF F △的面积为1112sin 1362213S mn θ==⨯⨯=.故选:D 【点睛】本题考查椭圆的标准方程、椭圆的定义的应用,椭圆中求三角形的面积问题,是中档题.6.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解.【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A BM ,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫ ⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.7.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.8.C解析:C 【分析】由题意画出图形,数形结合以及椭圆的定义转化求解即可. 【详解】解:如图,椭圆22:110064x y C +=的10a =,8b =,所以6c =,圆22(6)1x y -+=和圆22(6)4x y ++=的圆心为椭圆的两个焦点,则当M ,N 为如图所示位置时,||||PM PN +的最小值为2(21)17a -+=. 故选:C . 【点睛】本题考查椭圆的简单性质,考查了椭圆定义的应用,考查数形结合的解题思想方法,属于中档题.9.C解析:C 【分析】①根据双曲线定义可得出判断;②不妨在单位圆x 2+y 2=1中,用代入法求得P 的轨迹方程可得判断;③求出方程22520x x -+=根,利用椭圆与双曲线的离心率的范围可得出判断; ④求出双曲线和椭圆的焦点坐标可得答案; 【详解】①设A 、B 为两个定点,k 为非零常数,当||||||PA PB k AB -==时,则动点P 的轨迹是以A 为端点的一条射线线,因此不正确; ②∵()12OP OA OB =+,∴P 为弦AB 的中点,不妨在单位圆x 2+y 2=1中,定点A (1,0),动点11(,)B x y ,设P (x ,y ),用代入法求得P 的轨迹方程是212x ⎛⎫- ⎪⎝⎭+y 2=14,∴点P 的轨迹为圆,错误;③解方程22520x x -+=可得两根12,2.因此12可以作为椭圆的离心率,2可以作为双曲线的离心率,因此方程的两根可分别作为椭圆和双曲线的离心率,正确;④由双曲线221925x y -=可得c,其焦点(,同理可得椭圆22135y x +=焦点为(0,,因此没有相同的焦点,错误; 综上可知:其中真命题的序号为 ③. 故选:C . 【点睛】本题综合考查了圆锥曲线的定义、标准方程及其性质,考查了推理能力,属于中档题.10.C解析:C 【分析】先根据已知得到222a b =,再利用点差法求出直线的斜率. 【详解】由题得222222242,4()2,22c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=, 所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-. 故选:C 【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.11.C解析:C 【解析】12,MF MF ⊥∴由直角三角形的性质可得1MO FO c ==,又3,c a =21,312a b ∴==-=,C ∴的方程为2212y x -=,故选C. 12.A解析:A 【分析】求出双曲线的渐近线方程,将点代入即可得ba=得离心率. 【详解】双曲线()222210,0x y a b a b-=>>的一条渐近线为b y x a =过第一象限,所以点在渐近线b y x a =b a =,所以ba=所以2c e a ==. 故选:A 【点睛】本题主要考查了求双曲线的离心率,属于中档题.二、填空题13.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题【分析】由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2bBOA BOF a∠=∠=,解方程即可求解. 【详解】由题意得FA b =,3FB b =,OA a =, 由题得tan tan b BOF AOF a∠=∠=,∴24tan tan 21()b b b a a BOA BOF b a a+∠==∠=-, 整理得222a b =,即2222()a c a =-, ∴2232a c =,232e =,即62e =. 故答案为:62【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题.14.8【解析】的圆心为半径为抛物线的准线是直线所以得解析:8 【解析】2260x y x m +++=的圆心为(3,0)-,半径为9m -,抛物线28y x =的准线是直线2,x =-所以239m -+=-,得8.m =15.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =,()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为12FQ = ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=.【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.16.【分析】由题即可求得对的正负分类即可表示出再利用双曲线离心率为2列方程即可求得问题得解【详解】由题可得:抛物线的焦点坐标为所以双曲线中方程表示双曲线所以同号当同正时则解得:则此时当同负时则解得:则此 解析:316【分析】由题即可求得1c =,对,m n 的正负分类,即可表示出22,a b ,再利用双曲线离心率为2列方程,即可求得,m n ,问题得解. 【详解】由题可得:抛物线24y x =的焦点坐标为()1,0, 所以双曲线中1c =方程()2210x y mn m n -=≠表示双曲线所以,m n 同号.当,m n 同正时,54a b =-,则2c ea ===,解得:14m = 则222314n b c a m ==-=-=,此时1334416m n ⋅=⨯=. 当,m n 同负时,22,a n b m =-=-,则2c ea ===,解得:14n =- 则222314m b c a n -==-=+=,此时1334416m n ⎛⎫⎛⎫⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭ 综上所述:316m n ⋅= 【点睛】本题主要考查了抛物线的简单性质,还考查了双曲线的简单性质及分类思想,考查双曲线标准方程的,,a b c 的识别,考查计算能力,属于中档题.17.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的 解析:263【分析】先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y xy x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x 的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:y -故两平行线y =-y =之间的距离为d ==所以曲线412x x y y -=上的点到直线y =的距离的最大值是3..【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.18.【分析】设得到代入曲线整理得到答案【详解】设则即代入曲线得到即故答案为:【点睛】本题考查了轨迹方程意在考查学生的计算能力和转化能力确定坐标的关系是解题的关键 解析:24y x =【分析】设(),N x y ,()00,P x y ,得到00221x xy y =⎧⎨=+⎩,代入曲线整理得到答案.【详解】设(),N x y ,()00,P x y ,则00212x x y y ⎧=⎪⎪⎨-⎪=⎪⎩,即00221x x y y =⎧⎨=+⎩,代入曲线得到()221221y x +=⋅+,即24y x =. 故答案为:24y x =. 【点睛】本题考查了轨迹方程,意在考查学生的计算能力和转化能力,确定,N P 坐标的关系是解题的关键.19.2【分析】求出椭圆的方程利用点差法求得直线的斜率同理即可求得【详解】由题意可得所以所以椭圆的标准方程为设由两式作差可得则而故即同理可得所以故答案为:2【点睛】本题考查三条直线的斜率的倒数和的求法考查解析:2 【分析】求出椭圆的方程,利用“点差法”求得直线AB 的斜率,同理即可求得123111k k k ++ 【详解】由题意可得1c =,2c a =,所以a =1b =, 所以椭圆的标准方程为2212x y +=,设()11,A x y ,()22,B x y ,()33,C x y ,1212,22x x y y D ++⎛⎫⎪⎝⎭, 由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 两式作差可得()()()()212121212x x x x y y y y -+=--+,则()212121212y y x x y y x x -+=-+-, 而1212OD y y k x x +=+,故1122AB OD k k k =-=-,即112OD k k =-, 同理可得212OE k k =-,312OF k k =-, 所以()12311122OD OE OF k k k k k k ++=-++=. 故答案为:2 【点睛】本题考查三条直线的斜率的倒数和的求法,考查转化思想以及计算能力,属于中档题.20.【分析】先设与直线平行的直线求出直线与圆锥曲线相切时的直线方程再求两平行线的最大距离即可根据面积公式求出面积最大值【详解】解:由题意可得弦长为定值要使面积最大则只要点到直线的距离最大当平行于直线的直解析:169,55⎛⎫- ⎪⎝⎭【分析】先设与直线:10l x y -+=平行的直线:0l x y m '-+=,求出直线与圆锥曲线相切时的直线方程,再求两平行线的最大距离,即可根据面积公式求出PAB ∆面积最大值. 【详解】解:由题意可得弦长AB 为定值,要使PAB ∆面积最大, 则只要点P 到直线:10l x y -+=的距离最大, 当平行于直线l 的直线与椭圆相切时, 对应的切点到直线l 的距离最大或最小. 设直线:0l x y m '-+=直线与椭圆联立得22:01169l x y m x y -+='⎧⎪⎨+=⎪⎩, 化简得222532161440x mx m ++-=,则()22(32)425161440m m ∆=-⨯-=,解得5m =±.当5m =时,直线l '与直线l的距离为d == 当5m =-时,直线l '与直线l的距离为d ==∴当5m =-时, 2251602560x x -+=,解得165x =, 代入直线:50l x y '--=,解得95y =- 即点P 的为坐标169,55⎛⎫- ⎪⎝⎭. 故答案为: 169,55⎛⎫- ⎪⎝⎭【点睛】本题主要考查直线与圆锥曲线的位置关系,考查了直线与椭圆交点坐标,是中档型的综合题.三、解答题21.(1)24y x =;(2) 【分析】(1)设出抛物线方程,根据抛物线定义可列式求出;(2)设直线l 的方程为2x ty =+,联立直线与抛物线,根据中点横坐标求出t ,再求出底和高即可得出面积. 【详解】解:(1)依题意设抛物线E 的方程为()220y px p =>,则准线方程为2p x =-, 由3QF =,依定义得232p+=,解得2p =, ∴抛物线E 的方程为24y x =.(2)设直线l 的方程为2x ty =+,()11,A x y ,()22,B x y ,由224x ty y x=+⎧⎨=⎩消x 得2480y ty --=,则124y y t +=,128y y =-, ∵线段AB 的中点横坐标为4,∴1242x x +=, 即128x x +=,∴12228ty ty +++=,即()124t y y +=, 可得244t =,∴21t =,12y y -===故ABO 的面积为1211222OP y y -=⨯⨯=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)抛物线C 的方程为24y x =;焦点坐标为()1,0;(2). 【分析】(1)根据已知求出p 的值即得解;(2)由题得直线l 方程为2y x =-,再联立直线和抛物线的方程,利用弦长公式求解. 【详解】(1)抛物线22y px =()0p >的标准方程为2px =-, 由抛物线的定义可知:122p MF ⎛⎫=--= ⎪⎝⎭,解得2p =, 因此,抛物线C 的方程为24y x =,焦点坐标为()1,0; (2)直线l 方程为2y x =-,由242y xy x ⎧=⎨=-⎩得2840x x -+=, 设()11,A x y ,()22,B x y ,则128x x +=,124x x =,∴12AB x =-=【点睛】方法点睛:求抛物线的弦长,一般先联立直线和抛物线的方程,再利用弦长公式12|||AB x x =-求解.23.(1)22y x =;(2)过定点,定点为1,02⎛⎫- ⎪⎝⎭. 【分析】(1)根据抛物线的定义可知3122p MF =+=,求出p 后可得抛物线方程. (2) 设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,由条件可得0AF BF k k +=,化简即得()()1212121202kx x m x x y y ++-+=,联立直线与抛物线方程,利用韦达定理代入可得2k m =,从而得出答案. 【详解】(1)根据抛物线的定义,31122p MF p =+=⇒=, 抛物线的方程为22y x =,(2)设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,直线l 与抛物线的方程联立得()22222202y kx mk x km x m y x=+⎧⇒+-+=⎨=⎩, 12222km x x k -+=,2122m x x k=,则122y y k +=,122m y y k =, 又0AF BF k k +=,即121201122y y x x --+=--, ()122112102x y x y y y +-+=,()()1212121202kx x m x x y y ++-+=, 即22222120m km k m k k k-⋅+⋅-=,整理得:2k m =,所以直线的方程为()21y m x =+, 即直线经过定点1,02⎛⎫- ⎪⎝⎭. 【点睛】关键点睛:本题考查求抛物线的方程和直线与抛物线的位置关系,考查直线过定点问题,解答本题的关键是由0AF BF k k +=,得到()()1212121202kx x m x x y y ++-+=,然后由方程联立韦达定理代入,属于中档题. 24.(1)228120x y x +-+=;(2.【分析】(1)设(,)M x y ,由已知得 ||2||OM AM =,由两点的距离公式可得= ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则 ||2||2||||OM OM AM AM =⇒=,= ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l,所以2EF == l所以 12OEF S ∆==. 【点睛】 本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题.求点的轨迹方程的常用方法之一:直译法——“四步一回头”,四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ;(2)写出适合条件的点M 的集合(){}|P P M P M =;(3)将()P M “翻译”成代数方程(),0f x y =;(4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程. 25.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=; (2)设直线l 的方程为1x my =+,设定点(,0)Q t 联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠,设()11,M x y ,()22,N x y , ∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关.∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=. 【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.26.(1)2214x y +=;(2) 【分析】(1)根据抛物线2y =的焦点为),解得c =122c b ⨯⨯=b 即可. (2)设直线l 方程为4y kx =+,与椭圆方程联立,根据坐标原点O 在以AB 为直径的圆上,由OA OB ⊥,即12120x x y y ⋅+⋅=求解.【详解】(1)因为抛物线2y =的焦点为),由题意得:c =所以122c b ⨯⨯= 解得1b =,24a =,所以椭圆C 的方程为2214x y +=; (2)由题意设过点(0,4)的直线l 方程为4y kx =+,设()()1122,,,A x y B x y ,由22414y kx x y =+⎧⎪⎨+=⎪⎩,得()221432600k x kx +++=, 则1212223260,1414k x x x x k k +=-⋅=++, ()()2232240140k k ∆=-+>,解得k >k <, 因为坐标原点O 在以AB 为直径的圆上,所以OA OB ⊥,即12120x x y y ⋅+⋅=,即()()2121214160k x x k x x +⋅+++=,所以()()2226032141601414k k k k k ++-+=++, 即219k =,解得k =适合0∆>,所以直线l 的斜率是.【点睛】易错点点睛:易错点是由坐标原点O 在以AB 为直径的圆上,转化为OA OB ⊥,由12120x x y y ⋅+⋅=,求得斜率,而忽视要满足.0∆>.。

高中数学 第3章 圆锥曲线与方程检测题A 北师大版选修2

高中数学 第3章 圆锥曲线与方程检测题A 北师大版选修2

【成才之路】2014-2015学年高中数学 第3章 圆锥曲线与方程检测题A 北师大版选修2-1时间120分钟,满分150分。

一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A .31414B .324C .32D .43[答案] C[解析] 本题考查了双曲线的标准方程、焦点和离心率问题. 由双曲线的右焦点(3,0)知c =3,即c 2=9, 又c 2=a 2+b 2,∴9=a 2+5,即a 2=4,a =2.∴离心率e =c a =32.关于双曲线标准方程的问题,首要的是判定好a 2和b 2,若所给方程为x 2a -y 25=1,很多同学易出现把a 和5分别当成实半轴长和虚半轴长的错误.2.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上.若焦距为4,则m 等于( )A .4B .5C .7D .8[答案] D[解析] 由题意,得m -2>10-m ,且10-m >0,于是6<m <10.再由(m -2)-(10-m )=22,得m =8.3.(2013·四川文,5)抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .2 3 B .2 C . 3 D .1[答案] D[解析] 由y 2=8x 可得其焦点坐标(2,0),根据点到直线的距离公式可得d =|2-3×0|12+-32=1.4.若抛物线y 2=4x 上一点P 到焦点F 的距离是10,则P 点坐标为( )A .(9,6)B .(9,±6)C .(6,9)D .(6,±9)[答案] B[解析] ∵y 2=4x ,∴抛物线的焦点为(1,0),准线为x =-1, 又∵P 到F 的距离为10,设P (x ,y ), ∴x +p2=10,即x +1=10,∴x =9.∴y 2=36,y =±6,∴P 点坐标为(9,±6).5.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点,若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )A .3B .2C . 3D . 2[答案] B[解析] 本题考查了椭圆与双曲线中离心率e 的求法.设椭圆长轴长为2a ,则双曲线实半轴长为2a 4=a 2,所以离心率的比值e 1e 2=c a2ca=2.对于圆锥曲线要熟练掌握椭圆和双曲线的异同点.6.(2014·长春市期末调研)经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率为( )A .2B . 3C . 2D . 5[答案] A[解析] 由条件知,双曲线的渐近线与此直线平行,∴b a=tan60°=3,∴b =3a ,代入a 2+b 2=c 2中得4a 2=c 2,∴e 2=4,∵e>1,∴e =2,故选A.7.若直线y =2(x -1)与椭圆x 25+y 24=1交于A ,B 两点,则|AB |=( )A .53B .53 C .553D .33[答案] C[解析] 由方程组⎩⎪⎨⎪⎧y =2x -1x 25+y24=1消去y 整理得3x 2-5x =0,∴x 1=0,x 2=53,∴y 1=-2,y 2=43.∴|AB |=x 1-x 22+y 1-y 22=535. 8.(2014·江西文)过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过A 、O 两点(O 为坐标原点),则双曲线C 的方程为( )A .x 24-y 212=1B .x 27-y 29=1C .x 28-y 28=1D .x 212-y 24=1 [答案] A[解析] 如图设双曲线的右焦点F ,右顶点B ,设渐近线OA 方程为y =b ax (也可设为y =-b ax ),由题意知,以F 的半径的圆过点O ,A , ∴|FA |=|FO |=r =4.∵AB ⊥x 轴,A 为AB 与渐近线y =b ax 的交点, ∴可求得A 点坐标为A (a ,b ).∴在Rt △ABO 中,|OA |2=OB 2+AB 2=a 2+b 2=c =|OF |=4,∴在△OAF 为等边三角形且边长为4,B 为OF 的中点,从而解得|OB |=a =2,|AB |=b=23,∴双曲线的方程为x 24-y 212=1,故选A.解答本题关键是要找出A 与O 、B 、F 连线的几何关系.9.将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n =0B .n =1C .n =2D .n ≥3[答案] C[解析] 如图所示,根据抛物线定义,另外两顶点的横坐标必定相等,故关于x 轴对称,要使三角形为正三角形,需过焦点作斜率为33和-33的直线,则△ABF 和△CDF 满足条件,综上可知n =2. 10.点P 在椭圆7x 2+4y 2=28上,则点P 到直线3x -2y -16=0的距离的最大值为( ) A .121313B .161313C .241313D .281313[答案] C[解析] 利用数形结合法,设与已知直线平行且与椭圆相切的直线为l :y =32x +b ,与椭圆方程联立消一元后,令Δ=0可求得b =±4,然后求直线l 与3x -2y -16=0的距离即得所求的最大值.二、填空题(本大题共5小题,每小题5分,共25分)11.椭圆x 24+y 23=1的两焦点为F 1、F 2,点P 在椭圆上,使∠F 1PF 2=90°的点P 有________个.[答案] 0[解析] 设a >b >0,c =a 2-b 2,以O 为圆心,以c 为半径画圆;当c <b 时,圆与椭圆无公共点,此时椭圆上无满足要求的点;当c =b 时,圆与椭圆切于短轴的两个端点,此时满足要求的点有两个,即椭圆短轴两个端点;当c >b 时,椭圆与圆有四个交点,此时满足条件的点有这四个点,这里a 2=4,b 2=3,∴c =1,b =3,因此这样的点P 不存在.12.在△ABC 中,已知|BC |=8,则满足|sin C -sin B |=12sin A 的动点A 的轨迹方程是________.[答案]x 24-y 212=1(y ≠0) [解析] 由正弦定理得:||AB |-|AC ||=4<|BC |,据定义可得.A 点的轨迹为双曲线(除掉顶点)由题意知2a =4,∴a 2=42c =8,∴c 2=16,∴b 2=c 2-a 2=12, ∴方程为x 24-y 212=1(y ≠0).13.椭圆C 1:x 24+y 23=1的左准线是l ,左、右焦点分别是F 1、F 2,抛物线C 2的准线也是l ,一个焦点为F 2,C 1与C 2的一个交点为P ,则|PF 2|的值等于________.[答案] 83[解析] P 是椭圆上的点,则|PF 2|e 1=|PF 2|12=2|PF 2|=P 到椭圆右准线的距离,P 是抛物线上的点,则|PF 2|=P 到左准线l 的距离,∴|PF 2|+2|PF 2|=2·a 2c =8,∴|PF 2|=83.14.已知抛物线y 2=4x 与直线y =2x -4交于A 、B 两点,如果在该抛物线上存在点C ,使得OA →+OB →=λOC →(O 为坐标原点),则实数λ=________.[答案] 15[解析] 把y =2x -4代入y 2=4x 中消去y 得,x 2-5x +4=0,∴x =4或1,∴两交点A (4,4),B (1,-2).设点C ⎝ ⎛⎭⎪⎫y 234,y 3,因为OA →+OB →=λOC →,所以(5,2)=λ⎝ ⎛⎭⎪⎫y 234,y 3,所以⎩⎪⎨⎪⎧λ4y 23=5λy 3=2,得λ=15.15.(2013·辽宁理,15)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e=________.[答案] 57[解析] 本题考查椭圆的几何性质,解三角形问题. 在△ABF 中,由余弦定理得,cos ∠ABF =|AB |2+|BF |2-|AF |22|AB |·|BF |,∴|BF |2-16|BF |+64=0,∴|BF |=8,设右焦点为F 1,因为直线过原点,∴|BF 1|=|AF |=6, ∴2a =|BF |+|BF 1|=14,∴a =7, ∵O 为Rt △ABF 斜边AB 的中点, ∴|OF |=12|AB |=5,∴c =5,∴e =57.三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.已知中心在坐标原点的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点. (1)求椭圆C 的方程;(2)若平行于OA 的直线l 与椭圆有公共点,求直线l 在y 轴上的截距的取值范围.[解析] (1)设椭圆方程为x 2a 2+y 2a 2-4=1,代入点A (2,3),4a 2+9a 2-4=1,解得a 2=16.∴椭圆方程为x 216+y 212=1.(2)设直线l 的方程y =32x +b ,代入x 216+y212=1,得3x 2+3bx +b 2-12=0,Δ=(3b )2-12(b 2-12)≥0, ∴-43≤b ≤4 3.17.已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程. [分析] 关键是寻找Q 点满足的几何条件,可以考虑圆的几何性质,如CQ ⊥OP ,还可考虑Q 是OP 的中点.[解析] 解法一:(直接法)如图,因为Q 是OP 的中点,所以∠OQC =90°. 设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2, 即x 2+y 2+[x 2+(y -3)2]=9, 所以x 2+(y -32)2=94(去掉原点).解法二:(定义法)如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC 为直径的圆上,故Q点的轨迹方程为x 2+(y -32)2=94(去掉原点).解法三:(代入法)设P (x 1,y 1),Q (x ,y ),由题意得,⎩⎪⎨⎪⎧x =x12,y =y 12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为x 21+(y 1-3)2=9, 所以4x 2+4(y -32)2=9,即x 2+(y -32)2=94(去掉原点).18.(2014·云南景洪市一中期末)设F 1、F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |.(2)若直线l 的斜率为1,求b 的值.[解析] (1)求椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程式为y =x +c ,其中c =1-b 2,设A (x 1,y 1),B (x 1,y 1),则A 、B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1,消去y 化简得(1+b 2)x 2+2cx +1-2b 2=0. 则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b21+b2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|, 即43=2|x 2-x 1|. 则89=(x 1+x 2)2-4x 1x 2 =41-b21+b22-41-2b21+b2=8b 41+b2, 解得b =22.19.已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上; (2)设FA →·FB →=89,求直线l 的方程.[解析] 设直线l 与C 的交点为A (x 1,y 1),B (x 2,y 2),则点D 的坐标为(x 1,-y 1),由题意得l 的方程为x =my -1(m ≠0).(1)证明:将x =my -1代入y 2=4x 并整理,得y 2-4my +4=0, 从而y 1+y 2=4m ,y 1y 2=4. ①直线BD 的方程为y -y 2=y 2+y 1x 2-x 1·(x -x 2), 即y -y 2=4y 2-y 1·(x -y 224).令y =0,得x =y 1y 24=1.所以点F (1,0)在直线BD 上. (2)由①,知x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2, x 1x 2=(my 1-1)(my 2-1)=1.因为FA →=(x 1-1,y 1),FB →=(x 2-1,y 2),所以FA →·FB →=(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+4=8-4m 2, 故8-4m 2=89,解得m =±43.所以l 的方程为3x +4y +3=0,3x -4y +3=0.20.(2014·新课标Ⅰ理)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. [解析] (1)设F (c,0), 由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2-a 2-c 2=1.故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12+0. 当Δ=16(4k 2-3)>0, 即k 2>34时,x 1,2=8k ±24k 2-34k 2+1从而|PQ |=k 2+1|x 1-x 2|=k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0. 此时S △OPQ max =1,所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 21.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.[解析] (1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x 24=1.(2)解法一:设A ,B 两点的坐标分别为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k 2,又由OB →=2OA →得x 2B =4x 2A , 即164+k 2=161+4k2, 解得k =±1,故直线AB 的方程为y =x 或y =-x .解法二:设A ,B 两点的坐标分别为(x A ,y A ),(x B ,y B ), 由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k2,由OB →=2OA →得x 2B =161+4k 2,y 2B =16k 21+4k 2,将x 2B ,y 2B 代入y 216+x 24=1中,得4+k21+4k2=1,即4+k 2=1+4k 2,解得k =±1. 故直线AB 的方程为y =x 或y =-x .。

山东师范大学附属中学高中数学选修2-1第三章《圆锥曲线与方程》检测题(答案解析)

山东师范大学附属中学高中数学选修2-1第三章《圆锥曲线与方程》检测题(答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.已知椭圆22221(0)x y C a b a b+=>>:的右焦点为(c,0)F ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP ⋅=-⋅,则椭圆的离心率的取值范围为( )A .1[,1)2B .C .D . ⎛ ⎝⎦3.已知曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则实数a 的取值范围是( )A .(][),10,1-∞-B .(]1,1-C .[)1,1-D .[]()1,01,-+∞4.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .235.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠6.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D .7.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( )A .2B 1C 1D .2+8.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=9.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )AB.CD10.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥( ) A.10,2⎛⎤⎥⎝⎦B.2]C.12⎛⎤⎥⎝⎦D.1]11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 CD12.抛物线224y x x =-的焦点坐标是( ) A .F (0,18) B .F (1,-158) C .F (0,-158) D .(1,18) 二、填空题13.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______.14.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______. 15.数学中有许多形状优美、寓意美好的曲线,曲线22:4C x y x y +=+就是其中之一.曲线C 对应的图象如图所示,下列结论:①直线AB 的方程为:20x y ++=; ②曲线C 与圆228x y +=有2个交点; ③曲线C 所围成的“心形”区域的面积大于12; ④曲线C 恰好经过4个整点(即横、纵坐标均为整数的点). 其中正确的是:________.(填写所有正确结论的编号)16.设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=,则12F PF △的面积等于________.17.已知椭圆()222210x y a b a b +=>>的离心率为22,右焦点为()1,0F ,三角形ABC的三个顶点都在椭圆上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、F ,且三条边所在直线的斜率分别为()123123,,0k k k k k k ≠.若直线OD 、OE 、OF 的斜率之和为-1(O 为坐标原点),则123111k k k ++=______. 18.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:x0 426y22 2-22-则2C 的虚轴长为______.19.已知圆22:4440C x y x y +--+=,抛物线2:2(0)E y px p =>过点C ,其焦点为F ,则直线CF 被抛物线截得的弦长为________________.20.设点P 是抛物线24y x =上的一个动点,F 为抛物线的焦点,若点B 的坐标为()4,2,则PB PF +的最小值为________.三、解答题21.已知坐标平面内第一象限的点P 到两个定点()1,0M -,()1,0N 距离的比3PM PN=(1)若点P 2P 的横坐标;(2)若点N 到直线PM 的距离为1,求直线PM 的点法向式方程和直线PN 的点方向式方程.22.已知椭圆C :22221x y a b+=()0a b >>的左、右焦点分别为1F ,2F ,点A 在椭圆C上,且112AF F F ⊥,12AF F △的面积为32,点,2b B b ⎛⎫- ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)斜率存在且不为零的直线l 与椭圆C 相交于P ,Q 两点,点M 的坐标为()8,0,若直线MP ,MQ 的倾斜角互补,求证:直线l 过定点.23.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线24y x =的焦点相同,1F 、2F 分别为椭圆C 的左、右焦点,M 为C 上任意一点,12MF F S的最大值为1.(1)求椭圆C 的方程;(2)不过点F 2的直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点. ①若k 2=12,且S △AOB =22,求m 的值; ②若x 轴上任意一点到直线AF 2与BF 2距离相等,求证:直线l 过定点,并求出该定点的坐标.24.双曲线C :2213y x -=,过点()2,1P ,作一直线交双曲线于A 、B 两点,若P 为AB的中点.(1)求直线AB 的方程;(2)求弦AB 的长25.已知抛物线2:2(0)C y px p =>的准线方程为1x =-. (1)求抛物线C 的方程;(2)设点(1,2)P 关于原点O 的对称点为点Q ,过点Q 作不经过点O 的直线与C 交于两点A ,B ,直线PA ,PB 分别交x 轴于M ,N 两点,求MF NF ⋅的值.26.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2.(1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF 面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由2c e a ==,得2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.C解析:C 【分析】取AP 中点Q ,可转化()0FP FA AP +⋅=为20FQ AP ⋅=,即||||FA FP =,可求得||FA a =,2||a FP c c≥-,求解即得.【详解】取AP 中点Q ,由FP AP FA AP ⋅=-⋅得()0FP FA AP +⋅=, 故20FQ AP FQ AP ⋅=∴⊥,故三角形AFP 为等腰三角形,即||||FA FP =, 且22||FA b c a =+=,所以||FP a =,由于P 在直线2a x c =上,故2||a FP c c ≥-即2222110a a a a c e e c c c≥-∴≥-∴+-≥,解得:512e ≥或512e -≤,又01e << 故5112e ≤<, 故选:C 【点睛】本题考查了椭圆的几何性质,考查了学生综合分析、转化划归、数学运算的能力,属于中档题.3.C解析:C 【分析】利用绝对值的几何意义,由3y x =+,可得0y ≥时,3yx ,0y <时,3y x =--,则可得曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),再无其它交点,把3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,分类讨论,可得结论 【详解】解:由3y x =+,可得0y ≥时,3yx,0y <时,3y x =--,所以曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),为了使曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则将3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,当1a =-时,3y =满足题意,因为曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点, 所以>0∆,且3是方程的根, 所以9(1)01a a-<+,即11a -<<时,方程两根异号,满足题意, 综上,a 的取值范围为[)1,1-, 故选:C 【点睛】此题考查曲线的交点问题,考查分析问题的能力,考查分类思想,属于中档题4.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y =所以MQF 的周长最小时,点Q的坐标为54⎛-⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则QE QF +=614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.5.D解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x y m+=上或椭圆内,可得选项. 【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x ym +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠.故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.6.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->, 即2220c a ->,则可得2e >.故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+, 则12PF F △与12QF F 的面积之比为()121222223123323822231233PF F QF F a a S PF a t S QF a t a --+=====+---+△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k-⋅=-,所以||k =,又||1OF =,所以OPQ △的面积S=1211||||18||22OF y y k ⋅-=⨯⨯=. 故选:D .【点睛】 方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积. 10.C解析:C【分析】 根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围, 进而求得()2224232c a c <≤-,再求离心率的范围即可 【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==,所以,四边形12PFQF 为矩形,12=QFPF ;由11QF PF ≥1m n≤<, 由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c =-②;由①②得()2222242c m n m n mn n m a c +==+-; 令=+m n t n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()22211e e e -<≤-,所以,2142e <≤-1e <≤ 故选:C【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率,即由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c =-②;由①②得()2222242c m n m n mn n m a c +==+-, 然后利用换元法得出()22223113e e e -<≤-,进而求解 属于中档题 11.D解析:D【分析】 本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果.【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H ,因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c ,所以290OMF ,三角形2OMF 是直角三角形, 因为2MH OF ,所以22OF MH OM MF ⨯=⨯,ab MH c =,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭, 将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b a a c ,222422c a a a c ,223c a =,==c e a, 故选:D .【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.12.B解析:B【分析】右边配方后,利用抛物线的标准方程结合图象平移变换求解.【详解】已知抛物线方程为22(1)2y x =--,即21(1)(2)2x y -=+,它的图象是由抛物线212x y =向右平移1单位,再向下平移2个单位得到的, 抛物线212x y =中122p =,14p =,焦点坐标为1(0,)8,011+=,115288-=-, 因此所求焦点坐标为15(1,)8-, 故选:B .【点睛】 本题考查求抛物线的焦点坐标,掌握抛物线的标准方程与图象变换是解题关键.二、填空题13.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题解析:2【分析】 由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2b BOA BOF a ∠=∠=,解方程即可求解. 【详解】 由题意得FA b =,3FB b =,OA a =,由题得tan tan b BOF AOF a∠=∠=, ∴24tan tan 21()b b b a a BOA BOF b a a+∠==∠=-, 整理得222a b =,即2222()a c a =-,∴2232a c =,232e =,即62e =. 故答案为:62 【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题. 14.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值.【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b a c =-=-=,所以,32b =. 故答案为:32. 【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题. 15.②③【分析】求出点结合直线方程的知识可判断①;联立方程可求出交点坐标即可判断②;在曲线上取点由可判断③;求出整点即可判断④【详解】对于①曲线令则;令则;所以点所以直线AB 的方程为:即故①错误;对于②解析:②③【分析】求出点()2,0A ,()0,2B ,结合直线方程的知识可判断①;联立方程可求出交点坐标,即可判断②;在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,由ADEFG S 可判断③;求出整点即可判断④.【详解】对于①,曲线22:4C x y x y +=+,令0x =,则2y =±;令0y =,则2x =±; 所以点()2,0A ,()0,2B ,所以直线AB 的方程为:221x y +=即20x y +-=, 故①错误;对于②,由222248x y x y x y ⎧+=+⎨+=⎩可得22x y =⎧⎨=⎩或22x y =-⎧⎨=⎩, 所以曲线C 与圆228x y +=有2个交点()2,2,()2,2-,故②正确;对于③,在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,顺次连接各点,如图,则12442122ADEFG S =⨯+⨯⨯=, 所以曲线C 所围成的“心形”区域的面积大于12,故③正确;对于④,曲线经过的整点有:()2,0±,()0,2±,()2,2±,有6个,故④错误. 故答案为:②③.【点睛】本题考查了曲线与方程的应用,考查了运算求解能力与转化化归思想,合理转化条件是解题关键,属于中档题.16.1【分析】利用椭圆的定义与勾股定理可得再由三角形面积公式可得结果【详解】因为是椭圆的两个焦点点在椭圆上且满足所以所以则的面积等于故答案为:1【点睛】本题主要考查椭圆的定义与几何性质意在考查学生灵活应 解析:1【分析】利用椭圆的定义与勾股定理可得122PF PF ⋅=,再由三角形面积公式可得结果.【详解】因为1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=, 所以122221224412PF PF a PF PF c +==⎧⎨+==⎩ ()()222121212216124PF PF PF PF PF PF ⇒⋅=+-+=-=, 所以122PF PF ⋅=,则12F PF △的面积等于12112PF PF ⋅=, 故答案为:1.【点睛】本题主要考查椭圆的定义与几何性质,意在考查学生灵活应用所学知识解答问题的能力,属于基础题.17.2【分析】求出椭圆的方程利用点差法求得直线的斜率同理即可求得【详解】由题意可得所以所以椭圆的标准方程为设由两式作差可得则而故即同理可得所以故答案为:2【点睛】本题考查三条直线的斜率的倒数和的求法考查 解析:2【分析】求出椭圆的方程,利用“点差法”求得直线AB 的斜率,同理即可求得123111k k k ++ 【详解】由题意可得1c =,2c a =,所以a =1b =, 所以椭圆的标准方程为2212x y +=, 设()11,A x y ,()22,B x y ,()33,C x y ,1212,22x x y y D ++⎛⎫ ⎪⎝⎭, 由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 两式作差可得()()()()212121212x x x x y y y y -+=--+, 则()212121212y y x x y y x x -+=-+-, 而1212OD y y k x x +=+,故1122AB OD k k k =-=-,即112OD k k =-, 同理可得212OE k k =-,312OF k k =-, 所以()12311122OD OE OF k k k k k k ++=-++=. 故答案为:2【点睛】本题考查三条直线的斜率的倒数和的求法,考查转化思想以及计算能力,属于中档题. 18.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b-=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上, 设双曲线为22221x y a b-=, 则222216412481a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =,故答案为:4【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.19.【分析】根据圆心坐标求出抛物线方程和焦点坐标求出直线联立抛物线方程和直线方程根据弦长公式即可得解【详解】圆所以抛物线过点即其焦点为则直线联立直线与抛物线方程:整理得直线设其两根为弦长所以被抛物线截得 解析:258【分析】 根据圆心坐标求出抛物线方程和焦点坐标,求出直线42:33CF y x =-,联立抛物线方程和直线方程根据弦长公式即可得解.【详解】圆22:4440C x y x y +--+=,所以()2,2C ,抛物线2:2(0)E y px p =>过点C ,即44,1p p ==,其焦点为1,02F ⎛⎫ ⎪⎝⎭,2041322CF k -==- 则直线42:33CF y x =-, 联立直线与抛物线方程:242332y x y x ⎧=-⎪⎨⎪=⎩,整理得281720x x -+=, 直线217640∆=->,设其两根为12,x x弦长121725188x x p ++=+= 所以被抛物线截得的弦长为258. 故答案为:258 【点睛】 此题考查根据抛物线经过的点求抛物线方程和焦点坐标,根据直线与抛物线形成弦长公式求解弦长,关键在于熟练掌握直线与抛物线问题常见处理办法. 20.【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求的最小值进而可推断出当三点共线时最小则答案可得【详解】设点在准线上的射影为则根据抛物线的定义可知所以要求取得最小值即求取得最小当三 解析:5【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,进而把问题转化为求PB PD +的最小值,进而可推断出当D 、P 、B 三点共线时PB PD +最小,则答案可得. 【详解】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,所以,要求PB PF +取得最小值,即求PB PD +取得最小,当D 、P 、B 三点共线时PB PD +最小为()415--=.故答案为:5.【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D 、P 、B 三点共线时PB PD +最小是解题的关键,考查数形结合思想的应用,属于中等题.三、解答题21.(1)3±;(2))10x y ++=;111x y -=±. 【分析】(1)根据直接法,利用PM PN =(),P x y ,代入化简即可得到点P 的轨迹方程,由P(2)根据几何关系,因为点N 到直线PM 的距离为1,2MN =,所以30PMN ∠=︒,3PM k =±,求出直线方程,代入圆的方程求得P 点坐标,即可得解. 【详解】(1)设(),P x y ,因为PM PN ==化简得22610x y x +-+=,令y 2630x x -+=,解得3x =±所以点P 的横坐标为3(2)因为点N 到直线PM 的距离为1,2MN =,所以30PMN ∠=︒,PM k =,所以直线PM 的方程为)1y x =+把)1y x =+代入22610x y x +-+=, 得2410x x -+=,解得12x =22x =所以点P 的坐标为(2++或(21-或(21-或(2, 所以直线PN 的方程为1y x =-或1y x =-+,所以直线PM 的点法向式方程为)10x y ++=直线PN 的点方向式方程为111x y -=±.【点睛】本题考查了求轨迹方程,考查了直线和圆的位置关系以及直线的点法向式方程和点方向式方程,有一定的计算量,属于中档题. 本题的关键点有:(1)直接法求轨迹方程,利用条件直接列式求方程;(2)计算能力和计算技巧,计算能力和计算技巧是解决解析几何问题的关键能力,需强化训练.22.(1)22143x y +=;(2)证明见解析.【分析】(1)先求出21=b AF a,利用12AF F △的面积为32,点,2b B b ⎛⎫- ⎪⎝⎭在椭圆C 上列方程组,解出a 、b ,写出椭圆C 的标准方程;(2)设直线l 的方程为y kx m =+()0k ≠,用“设而不求法”把直线MP ,MQ 的倾斜角互补,表示为0MP MQ k k +=,求出k 、m 的关系,利用点斜式方程求出定点坐标. 【详解】(1)解:设椭圆C 的焦距为2c ,令x c =,代入椭圆C 的方程可求2by a=±.∵112AF F F ⊥,∴21=b AF a由12AF F △的面积为32,可得232b c a =,有232b c a =.将点B 的坐标代入椭圆C 的方程,可得222214b b a b +=,解得b a =.联立方程组2222,3,2b b c a a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得:2a =,b =1c =,故椭圆C 的标准方程为22143x y +=.(2)证明:设直线l 的方程为y kx m =+()0k ≠,点P ,Q 的坐标分别为()11,x y ,()22,x y ,联立方程221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 后整理为()2224384120k x kmx m +++-=.有122843km x x k +=-+,212241243m x x k -=+ 有()11111118888888MP k x k m y kx m k m k k x x x x -++++====+----, 同理:288MQ k mk k x +=+-, 所以()12128811288888MP MQ k m k m k k k k k k m x x x x ⎛⎫+++=+++=+++ ⎪----⎝⎭又()()2212222121212228162861611434126488864166445644343km k km x x k m km x x x x x x m km k k k --+++-++===-----+++++++++,由直线MP 、MQ 的倾斜角互补,有()121128088k k m x x ⎛⎫+++=⎪--⎝⎭, 有()()222288620166445k m k km k m km k +++-=+++,通分整理后可得2k m =-,可得直线l 的方程为2y mx m =-+,即122y m x ⎛⎫=-- ⎪⎝⎭,可知直线l 过定点1,02⎛⎫⎪⎝⎭. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.(3)证明直线过定点,通常有两类:①把直线方程整理为斜截式y=kx+b ,过定点(0,b ); ②把直线方程整理为点斜式y - y o =k (x- x 0),过定点(x 0,y 0) .23.(1)2212x y +=;(2)①1m =±;②直线l 恒过定点(2,0).【分析】(1)根据题意,可求得1c =,1b =,进而求得a ,由此得到椭圆方程;(2)①联立方程,得到k 与m 的不等关系,及两根的关系,表示出弦长AB 及点O 到直线AB 的距离,由此建立等式解出即可;②依题意,120k k +=,由此可得到k 与m 的等量关系,进而求得定点. 【详解】(1)由抛物线的方程24y x =得其焦点为(1,0),则1c =, 当点M为椭圆的短轴端点时,12MF F 面积最大,此时1212S c b =⨯⨯=,则1b =,∴a =2212x y +=;(2)联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩得,222(12)4220k x kmx m +++-=,∆222222164(21)(22)8(21)0k m k m k m =-+-=-+>,得2212(*)k m +>,设1(A x ,1)y ,2(B x ,2)y ,则2121222422,1212km m x x x x k k -+=-=++, ①0m ≠且212k =,代入(*)得,202m <<,12|||AB x x -,设点O 到直线AB 的距离为d,则d ==∴12||||)23AOBm SAB d ==, 21(0,2)m ∴=∈,则1m =±;②1122121122,1111y kx m y kx mk k x x x x ++====----,由题意,120k k +=, ∴1212011kx m kx m x x +++=--,即12122()()20kx x m k x x m +-+-=, ∴2222242()()201212m km k m k m k k -+---=++,解得2m k =-,∴直线l 的方程为(2)y k x =-,故直线l 恒过定点,该定点坐标为(2,0).【点睛】方法点睛:证明曲线过定点,一般有两种方法.(1)特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).(2)分离参数法:一般可以根据需要选定参数R λ∈,结合已知条件求出直线或曲线的方程,分离参数得到等式2123(,)(,)(,)0f x y f x y f x y λλ++=,(一般地,(,)(1,2,3)i f x y i =为关于,x y 的二元一次关系式)由上述原理可得方程组123(,)0{(,)0(,)0f xy f x y f x y ===,从而求得该定点.24.(1)611y x =-;(2)33. 【分析】(1)利用点差法求出直线斜率,检验直线与双曲线位置关系,得到直线的方程; (2)联立直线与双曲线方程,结合韦达定理利用弦长公式即可得解.【详解】(1)设()(),,,A m n B a b ,P 为AB 的中点4,2a m b n +=+=2213b a -=,2213n m -=,两式相减得:222203b a n m --=-,()()()()03b n b n a m a m +-+--=,所以()()2403b n a m ---= 所以直线AB 的斜率6b nk a m-==-, 直线AB 的方程()162y x -=-即611y x =-,将611y x =-代入双曲线2213yx -=,21321240,1321324331241333280x x -+=∆=⨯-⨯⨯=⨯>满足题意所以直线AB 的方程611y x =-;(2)由(1)将611y x =-代入双曲线2213yx -=,21241321240,4,3333x m a m x a -+=+==,33AB m =-==【点睛】此题考查利用点差法解决中点弦问题,求解直线方程,需要注意检验直线与双曲线的交点情况,根据韦达定理求解弦长. 25.(1)24y x =;(2)2. 【分析】(1)根据抛物线的准线求出p ,即可得出抛物线方程;(2)设点()11,A x y ,()22,B x y ,由已知得()1,2Q --,由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,与抛物线联立可得24480ky y k -+-=,利用韦达定理以及弦长公式,转化求解MF NF ⋅的值.【详解】(1)因为抛物线2:2(0)C y px p =>的准线方程为1x =-,所以12p=,则2p =, 因此抛物线C 的方程为24y x =;(2)设点()11,A x y ,()22,B x y ,由已知得()1,2Q --, 由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,由()2412y x y k x ⎧=⎪⎨=+-⎪⎩得24480ky y k -+-=, 则124y y k+=,1284y y k =-.因为点A ,B 在抛物线C 上,所以2114y x =,2224y x =,则1121112241214PA y y k y x y --===-+-,2222412PBy k x y -==-+. 因为PF x ⊥轴, 所以()()122244PAPBPA PB y y PF PF MF NF k k k k ++⋅=⋅==⋅()1212884424244y y y y k k-+++++===, 所以MF NF ⋅的值为2. 【点睛】 思路点睛:求解抛物线中的定值问题时,一般需要联立直线与抛物线方程,结合题中条件,以及韦达定理来求解;求解时,一般用韦达定理设而不求来处理. 26.(1)228120x y x +-+=;(2. 【分析】(1)设(,)M x y ,由已知得 ||2||OM AM=,由两点的距离公式可得= ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则||2||2||||OM OM AM AM =⇒=,= ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l,所以2EF == l所以 125OEF S ∆==. 【点睛】本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题. 求点的轨迹方程的常用方法之一:直译法——“四步一回头”, 四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ; (2)写出适合条件的点M 的集合(){}|P P M P M =; (3)将()P M “翻译”成代数方程(),0f x y =; (4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程.。

(北师大版)宁波市高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)

(北师大版)宁波市高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.已知定圆222212:(3)1,:(3)49C x y C x y ++=-+=,定点(2,1)M ,动圆C 满足与1C 外切且与2C 内切,则1||CM CC +的最大值为( )A .8+B .8C .16D .163.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为[42,,则线段AB 的长度的取值范围是( )A .B .[1 , 2]C .[4 8],D .4.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直5.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B C .14D .46.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .37.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( )A .23-B .21-C .21+D .23+8.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ). A .13B .12C .2D .39.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91610.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( ) A .21B 2C 3D 3111.已知椭圆22221(0)x y a b a b+=>>的右焦点为F ,过F 点作x 轴的垂线交椭圆于A ,B 两点,若0OA OB ⋅=,则椭圆的离心率等于( )A 15-+B 13-+ C .12D 3- 12.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .6二、填空题13.已知双曲线22143x y -=的左、右焦点分别为1F ,2F ,过1F 的直线与双曲线的左支交于A ,B 两点,若∠260AF B =︒,则2AF B 的内切圆半径为______.14.如图,过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),分别过,A B 作抛物线的切线,设两切线的交点为M ,则M 的坐标为__________.15.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______.16.双曲线()222:103x y C a a -=>的一条渐近线的倾斜角为60,1F 、2F 为左、右焦点,若直线2x =与双曲线C 交于点P ,则12PF F △的周长为____________.17.过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),则以AB 为直径的圆与该抛物线准线的公共点的坐标为____________.18.如图,已知椭圆C 的中心为原点O ,(25,0)F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的标准方程为__________.19.过抛物线2:4C y x =的焦点F 的直线l 交C 于,A B 两点,设,A B 在y 轴上的投影分别为,A B '',若()32AB AA BB ''=+,则直线l 的斜率为______. 20.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.三、解答题21.已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,且经过点31,2⎛⎫ ⎪⎝⎭,点12,F F 为椭圆C 的左、右焦点.(1)求椭圆C 的方程.(2)过点1F 分别作两条互相垂直的直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与直线1x =交于点P .若11AF FB λ=,且点Q 满足QA QB λ=,求1PQF △面积的最小值. 22.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标; ②求||||AP BQ ⋅的取值范围.23.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 24.已知抛物线E 的顶点为原点O ,焦点F 在x 轴正半轴,点()2,Q m 在抛物线E 上,且3QF =.(1)求抛物线E 的方程;(2)过点()2,0P 且斜率为()0k k >的直线l 与抛物线E 交于A ,B 两点,且线段AB 的中点横坐标为4,求ABO 的面积.25.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,且过点F 的直线l 被抛物线C 所截得的弦长MN 为8. (1)求直线l 的方程;(2)当直线l 的斜率大于零时,求过点,M N 且与抛物线C 的准线相切的圆的方程.26.已知:椭圆221164x y +=,求:(1)以()2,1P -为中点的弦所在直线的方程; (2)斜率为2的平行弦中点的轨迹方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由2c e a ==,得2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.A解析:A将动圆C 的轨迹方程表示出来:221167x y +=,利用椭圆的性质将距离转化,最后利用距离关系得到最值. 【详解】定圆()221:31C x y ++=, 圆心()13,0C -,半径为1()222349C x y -+=:,圆心()23,0C ,半径为7.动圆C 满足与1C 外切且与2C 内切,设动圆半径为r ,则1212121,786CC r CC r CC CC C C =+=-⇒+=>= 所以动点C 的轨迹是以1C ,2C 为焦点,8为长轴的椭圆,设其方程为22221(0)x y a b a b+=>> 所以4a = ,2229c a b =-= ,则其方程为:221167x y +=由椭圆的定义可得12228CC CC CC a =-=- 所以128CM CC CM CC =+-+当2,,C C M 三点不共线时,有1228882CM CC CM CC MC +-+=+<=+ 当2,,C C M 三点共线时,有1228882CM CC CM CC MC +-+=+≤=+ 综上有182CM CC +≤+(当2,,C C M 三点共线且2CM CC >时取等号) 故选:A【点睛】关键点睛:本题考查了轨迹方程,椭圆的性质,解答本题的关键是利用椭圆性质变换长度关系,即12228CC CC CC a =-=-,将所求问题转化为128CM CC CM CC =+-+,再分2,,C C M三点是否共线讨论,属于中档题.3.C解析:C由题可求得2121222ABF AF F BF F cSSSAB =+=,2222ABF EABEBF EAF S SSSa =++=,即可得出22aAB c=⋅,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222c AB a∴=,22a AB c ∴=⋅, 2242c e a ⎡⎤=∈⎢⎥⎣⎦,,2,22a c ⎡⎤∴∈⎣⎦,则[]224,8ac⋅∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出2aAB c=可求解. 4.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y pp ⎧+⎪+⎛⎫⎪=⨯ ⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根 所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题. 5.B解析:B 【分析】由曲线的对称性,以及数形结合分析得b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =,所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.6.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF FF =,A 为1PF中点,21AF PF ∴⊥,圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.7.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+,则12PF F △与12QF F的面积之比为1212222122222PF F QF F S PF a t S QF a t a -=====+--△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.8.C解析:C 【分析】设点)P m ,将22()0OP OF F P+⋅=坐标化运算,可求出m =,再分别计算12||,||PF PF 的值,即可得答案; 【详解】1a =,2b=,∴c =1(F ,2F ,设点)P m ,∴2222()(1))1504m OPOF F P m m m +⋅=⋅=+-+=, ∴2165m =,5m =±,则(55P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C. 【点睛】利用坐标运算将数量积运算坐标化,再利用两点间距离公式分别求出焦半径是求解的关键.9.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值.【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=, 所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=, 由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.10.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin33MF c c π==,∴(31)2MF ME c a +=+=, ∴23131c e a ===-+. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.11.A解析:A 【分析】由0OA OB ⋅=可得OAB 是等腰直角三角形,结合椭圆的几何性质列出方程,可求解椭圆的离心率. 【详解】椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过F 作x 轴的垂线交椭圆C 于A ,B 两点,由2b xc y a=⇒=±,若0OA OB ⋅=,则OAB 是等腰直角三角形(O 为坐标原点),可得2b c a =,即22a c ac -=,可得210e e +-=且(0,1)e ∈,解得12e =. 故选:A . 【点睛】本题考查椭圆离心率的求解,考查了椭圆的几何性质,同时考查了垂直关系的向量表示,是基本知识的考查.12.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.二、填空题13.【分析】设内切圆的圆心设三边与内切圆的切点连接切点与圆心的线段由内切圆的性质可得再由双曲线定义可知:可得重合再由可得内切圆的半径的值【详解】设内切圆的圆心为设圆与三角形的边分别切于如图所示连接由内切【分析】设内切圆的圆心M ,设2AF B 三边与内切圆的切点,连接切点与圆心M 的线段,由内切圆的性质可得22AF AQ BF BQ -=-,再由双曲线定义可知:21212AF AF BF BF a -=-=,可得Q ,1F 重合,再由260AF B ∠=︒可得内切圆的半径的值. 【详解】设内切圆的圆心为(),M x y ,设圆M 与三角形的边分别切于T ,Q ,S ,如图所示连接MS ,MT ,MQ ,由内切圆的性质可得:22F T F S =,AT AQ =,BS BQ =,所以222AF AQ AF AT F T -=-=,222BF BQ BF BS F S -=-=, 所以22AF AQ BF BQ -=-,由双曲线的定义可知:21212AF AF BF BF a -=-=,所以可得Q ,1F 重合, 所以224TF a ==,所以圆的半径为2243tan 23AF B r MT TF ∠===. 故答案为:433.【点睛】本题主要考查双曲线定义的应用,熟记双曲线的定义即可,属于常考题型.14.【分析】由已知求得抛物线焦点坐标及准线方程由求得所在直线倾斜角得到斜率写出所在直线方程联立准线方程与抛物线方程求得的坐标可求利用导数求斜率写出直线的方程再求两直线的交点则的坐标可求【详解】解:由抛物解析:23⎛- ⎝⎭【分析】由已知求得抛物线焦点坐标及准线方程,由3AF FB =求得AB 所在直线倾斜角,得到斜率,写出AB 所在直线方程,联立准线方程与抛物线方程,求得A 、B 的坐标可求,利用导数求斜率,写出直线AM 、BM 的方程,再求两直线的交点,则M 的坐标可求. 【详解】解:由抛物线2:4C y x =,得焦点(1,0)F ,准线方程为1x =-. 由题意设AB 所在直线的倾斜角为θ,由3AF FB =,得2231cos 1cos θθ=-+,即1cos 2θ=.tan 3θ∴=.则AB 所在直线方程为3(1)y x =-.联立23(1)4y x y x⎧=-⎪⎨=⎪⎩,得231030x x -+=.解得:13x =或3x =, 因为点A 在x 轴上方所以(3,23)A ,123,33B ⎛⎫- ⎪ ⎪⎝⎭由2y x =,得1y x'=, 2y x=-得1y x'=-∴313|33x y ='==,131|313x y ='=-=-, 即AM 、BM 所在直线的斜率分别为33、3-. 3:23(3)3AM y x ∴-=-,231:3()33BM y x +=-- 所以323(3)32313()33y x y x ⎧-=-⎪⎪⎨⎪+=--⎪⎩解得1233x y =-⎧⎪⎨=⎪⎩M ∴的坐标为23(1,)3-. 故答案为:23(1,)3-.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.15.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±16.【分析】根据题意求得的值假设点为第一象限内的点求出点的坐标求得以及进而可求得的周长【详解】由于双曲线的一条渐近线的倾斜角为则可得所以双曲线的焦距为设点为第一象限内的点联立解得易知因此的周长为故答案为 解析:12【分析】根据题意求得a 的值,假设点P 为第一象限内的点,求出点P 的坐标,求得1PF 、2PF 以及12F F ,进而可求得12PF F △的周长. 【详解】由于双曲线()222:103x y C a a -=>的一条渐近线的倾斜角为60,则tan 603a== 可得1a =,所以,双曲线C的焦距为124F F ==,设点P 为第一象限内的点,联立22213x y x =⎧⎪⎨-=⎪⎩,0y >,解得23x y =⎧⎨=⎩,易知()12,0F -、()22,0F ,15PF ∴==,23PF ==,因此,12PF F △的周长为121253412PF PF F F ++=++=. 故答案为:12. 【点睛】本题考查双曲线焦点三角形周长的计算,同时也考查了利用双曲线渐近线的倾斜角求参数,考查计算能力,属于中等题.17.【分析】如图先利用辅助线确定公共点位置再联立方程得到其坐标即可【详解】如图所示取AB 中点M 分别过ABM 作准线的垂线垂足依次为CDN 则AC//MN//CDMN 是梯形ABDC 中位线根据抛物线定义得即N 在解析:⎛- ⎝⎭【分析】如图先利用辅助线确定公共点位置,再联立方程得到其坐标即可. 【详解】如图所示,取AB 中点M ,分别过A ,B ,M 作准线的垂线,垂足依次为C ,D ,N , 则AC //MN //CD ,MN 是梯形ABDC 中位线,根据抛物线定义得,2AB AF BF AC BD MN =+=+=,即N 在以AB 为直径的圆上, 即N 即是以AB 为直径的圆与该抛物线准线的公共点,易见直线AB 不平行x 轴,方程可设为1x my =+,设()()1122,,,A x y B x y 联立方程214x my y x=+⎧⎨=⎩得2440y my --=, 则12124,4y y m y y +==-, 又依题意3AF FB =(点A 在x 轴上方),故1120,3y y y >=-,解得122323,y y ==,故3m =易见N 点坐标为121,2y y +⎛⎫- ⎪⎝⎭,即()1,2m -,即公共点的坐标为31,3⎛- ⎝⎭. 故答案为:23⎛- ⎝⎭.【点睛】本题考查了抛物线的定义及直线与抛物线的综合应用,属于中档题.18.【分析】由已知可得而由可求出点的坐标再将点的坐标代入椭圆方程中再结合可求出的值【详解】解:由题意设椭圆的标准方程为因为为椭圆的左焦点所以因为所以设点的坐标为则解得则所以点的坐标为因为为椭圆上一点所以解析:2213616x y +=【分析】由已知可得 25c =||||25OP OF ==,||4PF =,可求出点P 的坐标,再将点P 的坐标代入椭圆方程中,再结合222a b c =+,可求出22a b ,的值.【详解】解:由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,因为(F -为椭圆C 的左焦点,所以c =,因为||||OP OF =,所以||||OP OF ==,设点P 的坐标为(,)P m n ,则11422OF n ⋅=⨯解得n =m =, 所以点P 的坐标为⎛ ⎝, 因为P 为椭圆C 上一点, 所以223664155a b += 因为22220a b c -==,所以解得2236,16a b ==,所以椭圆的标准方程为2213616x y +=,故答案为:2213616x y +=【点睛】此题考查的是椭圆的简单的几何性质,考查了运算能力,属于中档题.19.【分析】根据抛物线的定义可构造方程求得设直线的倾斜角为根据焦点弦长公式可构造方程求得进而得到的值即为结果【详解】由抛物线的定义可知:设直线的倾斜角为则即直线的斜率为故答案为:【点睛】本题考查抛物线焦解析:【分析】根据抛物线的定义可构造方程求得AB ,设直线l 的倾斜角为α,根据焦点弦长公式可构造方程求得2sin α,进而得到tan α的值即为结果. 【详解】由抛物线的定义可知:()31122AB AF BF AA BB AA BB AA BB ''''''=+=+++=++=+, 4AA BB ''∴+=,6AB ∴=.设直线l 的倾斜角为α,则246sin AB α==,22sin 3α∴=,tan α∴=即直线l 的斜率为故答案为: 【点睛】本题考查抛物线焦点弦相关问题的求解,关键是熟练掌握抛物线的焦点弦长公式:1222sin pAB x x p α=++=. 20.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.三、解答题21.(1)22143x y +=;(2)6.【分析】(1)根据椭圆的离心率为12e =,可得2234b a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程可得221914a b+=,解出22,a b 可得答案. (2)设直线1:1l x my =-,与椭圆方程联立得出韦达定理,由条件求出Q 点坐标,求出1QF 的长度,得出直线2l 的方程为:11x y m=--与直线1x =求出点P 坐标,得出1PF 长度,从而表示三角形面积,得出最值. 【详解】(1)由题意,得222221149141b e a a b ⎧=-=⎪⎪⎨⎪+=⎪⎩,解得:224,3a b ==,所以椭圆的方程为22143x y +=. (2)由(1)可得()11,0F -,若直线1l 的斜率为0,则2l 的方程为:1x =-与直线1x =无交点,不满足条件.设直线1:1l x my =-,若0m =,则1λ=则不满足QA QB λ=,所以0m ≠ 设()()()112200,,,,,A x y B x y Q x y ,由2234121x y x my ⎧+=⎨=-⎩,得:()2234690m y my +--=, 12122269,3434my y y y m m +==-++,因为11AF F B QA QBλλ⎧=⎨=⎩,即()()()()1122101020201,1,,,x y x y x x y y x x y y λλ⎧---=+⎪⎨--=--⎪⎩ 则12y y λ-=,()1020y y y y λ-=- 所以101220y y y y y y λ-=-=-,解得1201223y y y y y m==-+.于是1FQ =. 直线2l 的方程为:11x y m=-- 联立111x y mx ⎧=--⎪⎨⎪=⎩,解得(12)P m -,,所以1PF =. 所以()12113111362PQF m SFQ F P m m m +⎛⎫=⋅==+≥ ⎪ ⎪⎝⎭,当且仅当1m =±时,()1min6PQF S =.【点睛】关键点睛:本题考查求椭圆的方程和椭圆中三角形面积的最值问题,解答本题的关键是根据向量条件得出1201223y y y y y m==-+,进而求出点的坐标,得到1QF 的长度,从而表示出三角形的面积,属于中档题. 22.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.23.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 . (2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.24.(1)24y x =;(2) 【分析】(1)设出抛物线方程,根据抛物线定义可列式求出;(2)设直线l 的方程为2x ty =+,联立直线与抛物线,根据中点横坐标求出t ,再求出底和高即可得出面积. 【详解】解:(1)依题意设抛物线E 的方程为()220y px p =>,则准线方程为2px =-, 由3QF =,依定义得232p+=,解得2p =, ∴抛物线E 的方程为24y x =.(2)设直线l 的方程为2x ty =+,()11,A x y ,()22,B x y ,由224x ty y x=+⎧⎨=⎩消x 得2480y ty --=, 则124y y t +=,128y y =-, ∵线段AB 的中点横坐标为4,∴1242x x +=, 即128x x +=,∴12228ty ty +++=,即()124t y y +=, 可得244t =,∴21t =,12y y -===故ABO 的面积为1211222OP y y -=⨯⨯=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.25.(1)1y x =-或1y x =-+;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【分析】(1)由题意得2,p =(1,0)F ,24y x =,当直线l 的斜率不存在时,不合题意;当直线l 的斜率存在时,设方程为(1)(0)y k x k =-≠,与抛物线方程联立,利用韦达定理和抛物线的定义求出弦长,结合已知弦长可求得结果;(2)设所求圆的圆心坐标为00(,)x y ,根据几何方法求出圆的半径,根据直线与圆相切列式解得圆心坐标和半径,可得圆的方程. 【详解】(1)由题意得2,p =(1,0)F ,24y x =当直线l 的斜率不存在时,其方程为1x =,此时248MN p ==≠,不满足,舍去; 当直线l 的斜率存在时,设方程为(1)(0)y k x k =-≠ 由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++= 设1122(,),(,)M x y N x y ,则216160k ∆=+>,且212224k x x k ++=由抛物线定义得122222122444||||||(1)(1)22x k k MN MF NF x x x k k++=+=+++=++=+= 即22448k k+=,解得1k =± 因此l 的方程为1y x =-或1y x =-+.(2)由(1)取1,k =直线l 的方程为1y x =-,所以线段MN 的中点坐标为(3,2), 所以MN 的垂直平分线方程为2(3)y x -=--,即5y x =-+ 设所求圆的圆心坐标为00(,)x y ,该圆的圆心到直线l 的距离为d,则d ===因为该圆与准线1x =-相切,所以()()0022000511162y x y x x =-+⎧⎪⎨-++=+⎪⎩, 解得0032x y =⎧⎨=⎩或00116x y =⎧⎨=-⎩, 当圆心为(3,2)时,半径为4,当圆心为(11,6)-时,半径为12, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【点睛】关键点点睛:第(1)问,利用韦达定理和抛物线的定义求出抛物线的弦长是关键;第(2)问,根据几何方法求出圆的半径,利用直线与圆相切列式是解题关键.26.(1)240x y --=;(2)18y x x ⎛=-<< ⎝⎭. 【分析】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=,22221164x y +=,相减化简再利用中点坐标公式、斜率计算公式即可得出;(2)设直线方程为:2y x m =+,弦的端点坐标及中点(),M x y ,与椭圆方程联立化为:2217164160x mx m ++-=,由0>,化为:268m <,再利用根与系数的关系、中点坐标公式即可得出. 【详解】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=, 22221164x y +=,相减可得:12121212()()()()0164x x x x y y y y +-+-+=,把1222x x +=,1212y y +=-, 1212y y k x x -=-代入可得: 12k =.∴以()2,1P -为中点的弦所在直线的方程为:()1122y x +=-,化为: 240x y --=. (2)设直线方程为:2y x m =+,弦的端点()11,A x y , ()22,B x y ,中点(),M x y .联立2221164y x m x y =+⎧⎪⎨+=⎪⎩,化为 2217164160x mx m ++-=,()22256684160m m =-->,化为: 268m <,∴1216227m x x x +=-=,化为: 882171717m m m x y m ⎛⎫=-=⨯-+= ⎪⎝⎭,.得x <<,∴181717y x x ⎛⎫=--<< ⎪ ⎪⎝⎭【点睛】 关键点点睛:(1)涉及直线与圆锥曲线相交中点弦问题时,利用点差法; (2)由直线与椭圆的位置关系得出m 的范围.。

(北师大版)天津市高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)

(北师大版)天津市高中数学选修2-1第三章《圆锥曲线与方程》测试(答案解析)

一、选择题1.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠ 2.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .25 3.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( ) ABC .14D .44.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .525.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A.9B.9C.7112+D.83126.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=7.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .48.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫⎪⎝⎭B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭D .11,82⎡⎫⎪⎢⎣⎭9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 C 2D 310.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F 、2F ,过原点的直线与双曲线C 交于A ,B 两点,若260AF B ∠=︒,2ABF 23a ,则双曲线的渐近线方程为( ) A .12y x =±B .2y x =±C .33y x =±D .3y x =±11.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-12.已知双曲线C 的两个焦点12,F F 都在x 轴上,对称中心为原点,离心率为3,若点M 在C 上,且12MF MF ⊥,M 到原点的距离为3,则C 的方程为( )A .22148x y -=B .22148y x -=C .2212y x -=D .2212x y -=二、填空题13.点()8,1P 平分双曲线2244x y -=的一条弦,则这条弦所在直线的方程一般式为_________________.14.已知椭圆()222210x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>具有相同的焦点1F ,2F ,且在第一象限交于点P ,设椭圆和双曲线的离心率分别为1e ,2e ,若123F PF π∠=,则2212e e +的最小值为_______.15.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.16.已知椭圆2222:1(0)x y C a b a b +=>>上有一点22(,)22M a b ,F 为右焦点,B 为上顶点,O 为坐标原点,且2BFO BFMS S∆=,则椭圆C 的离心率为________17.我们知道:用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于__________.18.设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=,则12F PF △的面积等于________.19.若椭圆2222:1(0)y x E a b a b +=>>的上、下焦点分别为1F 、2F ,双曲线222211615x y -=的一条渐近线与椭圆E 在第一象限交于点P ,线段2PF 中点的纵坐标为0,则椭圆E 的离心率为________.20.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.三、解答题21.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,且椭圆C 经过点21,2M ⎛⎫ ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.22.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.23.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 24.已知抛物线2:2(0)C x py p =>的焦点为F ,点()0,3P x 为抛物线C 上一点,且4PF =,过点(),0A a 作抛物线C 的切线AN (斜率不为0),设切点为N .(1)求抛物线C 的标准方程; (2)求证:以FN 为直径的圆过点A .25.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2. (1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF 面积. 26.已知抛物线y 2=2px (p >0)上的点T (3,t )到焦点F 的距离为4. (1)求t ,p 的值;(2)设抛物线的准线与x 轴的交点为M ,是否存在过点M 的直线l 交抛物线于A ,B 两点(点B 在点A 的右侧),使得直线AF 与直线OB 垂直?若存在,求出△AFB 的面积,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x ym+=上或椭圆内,可得选项. 【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x ym +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠.故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.2.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.3.B解析:B 【分析】由曲线的对称性,以及数形结合分析得b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan ak AOMb =∠==,所以b a =所以c e a ===, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.4.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.5.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+;(2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 6.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.7.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b,所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以11180********AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(002A x px ,则002AT px k =,则直线002:x AT x x p =-,代入抛物线方程化简得0202220x px py p +=-, 则0020228x p ppx ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确.故选:D.【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.8.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A BM,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫ ⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭, 所以221||2m MF m +=+,又()()()22212122222811||(1)24m AB y y y y k m ++⎡⎤=+=⎣⎦+-⋅, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则弦长为()()222212121212()(1)4AB x x y y k x x x x ⎡⎤=-+-=+-⋅⎣+⎦()1221221(41)y y y y k+-⋅⎡⎤=+⎣⎦ (k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.9.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b aa c ,222422ca a a c ,223c a =,==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.10.D解析:D 【分析】结合双曲线的定义、2ABF 的面积、余弦定理列方程,化简求得ba,进而求得双曲线的渐近线方程. 【详解】连接11,AF BF ,根据双曲线的对称性可知四边形12AF BF 是平行四边形, 由于260AF B ∠=︒,所以12120F AF ∠=︒,212ABF AF F SS=,12AF BF =,设12,AF n AF m ==,结合双曲线的定义有2m n a -=,所以()2222222cos1201sin1202m n a c m n mn mn ⎧-=⎪⎪=+-︒⎨⎪⎪︒=⎩,即2222244m n a c m n mn mn a -=⎧⎪=++⎨⎪=⎩,由()22m n a -=得22222224,12m n mn a m n a +-=+=, 所以22416,2c a c a ==,而222c a b =+,所以2224,3ba ab a=+=, 所以双曲线的渐近线方程为3y x =±. 故选:D【点睛】本小题主要考查双曲线的渐近线方程的求法,属于中档题.11.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=,两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.12.C解析:C 【解析】12,MF MF ⊥∴由直角三角形的性质可得1MO FO c ==,又3,c a =21,312a b ∴==-=,C ∴的方程为2212y x -=,故选C. 二、填空题13.【分析】设弦的两端点分别为A (x1y1)B (x2y2)由AB 的中点是P (81)知x1+x2=16y1+y2=2利用点差法能求出这条弦所在的直线方程【详解】设弦的两个端点分别为则两式相减得因为线段的中 解析:2150x y --=【分析】设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),由AB 的中点是P (8,1),知x 1+x 2=16,y 1+y 2=2,利用点差法能求出这条弦所在的直线方程. 【详解】设弦的两个端点分别为()11,A x y ,()22,B x y ,则221144x y -=,222244x y -=, 两式相减得()()()()1212121240x x x x y y y y +--+-=,因为线段AB 的中点为()8,1P ,所以1216x x +=,122y y +=,所以()1212121224y y x xx x y y -+==-+, 所以直线AB 的方程为()128y x -=-代入2244x y -=满足0∆>,即直线方程为2150x y --=.故答案为:2150x y --=. 【点睛】本题考查弦的中点问题及直线方程的求法,解题时要认真审题,仔细解答,注意点差法的合理运用.14.【分析】由题意设焦距为椭圆长轴长为双曲线实轴为令在双曲线的右支上由已知条件结合双曲线和椭圆的定义推出由此能求出的最小值【详解】由题意设焦距为椭圆长轴长为双曲线实轴为令在双曲线的右支上由双曲线的定义由解析:22+ 【分析】由题意设焦距为2c ,椭圆长轴长为2a ,双曲线实轴为2m ,令P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出2222a m c +=,由此能求出2212e e +的最小值.【详解】由题意设焦距为2c ,椭圆长轴长为2a ,双曲线实轴为2m , 令P 在双曲线的右支上,由双曲线的定义12||||2PF PF m -=, 由椭圆定义12||||2PF PF a +=, 可得1PF m a =+,2PF a m =-, 又123F PF π∠=,2221212||?4PF PF PF PF c +-=,可得222()()()()4m a a m m a a m c ++--+-=, 得22234a m c +=,即222234a m c c+=, 可得2212134e e +=, 则222212122212113()()4e e e e e e +=++ 2221221231(13)4e e e e =+++1(424+=当且仅当21e =,上式取得等号,可得2212e e +.故答案为:22+. 【点睛】本题考查椭圆和双曲线的性质,主要是离心率,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用.15.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.16.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解 解析:22【分析】由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率. 【详解】由题意可得直线BF 的方程为:1x yc b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d ab c +---==+,因为22||BF b c a =+=, 所以12||[(21)]24BFMS BF d b a c ==--, 而12BFOSbc =, 因为2BFOBFMSS=,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--, 整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.17.【分析】如图所示过点作垂足为由于是母线的中点圆锥的底面半径和高均为2可得在平面内建立直角坐标系设抛物线的方程为为抛物线的焦点可得代入解出即可【详解】解:如图所示过点作垂足为是母线的中点圆锥的底面半径 解析:2【分析】如图所示,过点E 作EM AB ⊥,垂足为M .由于E 是母线PB 的中点,圆锥的底面半径和高均为2,可得1OM EM ==.2OE =.在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>,F 为抛物线的焦点.可得()2,2C ,代入解出即可.【详解】解:如图所示,过点E 作EM AB ⊥,垂足为M .E 是母线PB 的中点,圆锥的底面半径和高均为2,1OM EM ∴==.2OE ∴=在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>,F 为抛物线的焦点. 因为)2,2C,422∴=,解得2p .2F ⎫⎪⎪⎝⎭.即点F 为OE 的中点, ∴22【点睛】本题考查了圆锥的性质、抛物线的标准方程,考查了转变角度解决问题的能力,考查了推理能力与计算能力,属于中档题.18.1【分析】利用椭圆的定义与勾股定理可得再由三角形面积公式可得结果【详解】因为是椭圆的两个焦点点在椭圆上且满足所以所以则的面积等于故答案为:1【点睛】本题主要考查椭圆的定义与几何性质意在考查学生灵活应解析:1 【分析】利用椭圆的定义与勾股定理可得122PF PF ⋅=,再由三角形面积公式可得结果. 【详解】因为1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=, 所以122221224412PF PF a PF PF c +==⎧⎨+==⎩ ()()222121212216124PF PF PF PF PF PF ⇒⋅=+-+=-=,所以122PF PF ⋅=, 则12F PF △的面积等于12112PF PF ⋅=, 故答案为:1. 【点睛】本题主要考查椭圆的定义与几何性质,意在考查学生灵活应用所学知识解答问题的能力,属于基础题.19.【分析】求出椭圆的焦点坐标利用已知条件求解点坐标再代入双曲线的渐近线方程转化求解椭圆的离心率即得【详解】由题可得点由线段中点的纵坐标为0得点的纵坐标为又点在椭圆上且在第一象限则有解得点的横坐标为由双解析:35【分析】求出椭圆的焦点坐标,利用已知条件,求解P 点坐标,再代入双曲线222211615x y -=的渐近线方程,转化求解椭圆的离心率即得. 【详解】由题可得点2(0,)F c -,由线段2PF 中点的纵坐标为0,得点P 的纵坐标为c ,又点P 在椭圆上且在第一象限,则有22221c x a b +=,解得点P 的横坐标为2b a ,由双曲线222211615x y -=,得渐近线1516y x =与椭圆交于点2(,)P b c a ,则有21516b c a =,整理得2215()160a c ac --=,即215(1)160e e --=,由01e <<,得35e =.故答案为:35e = 【点睛】本题考查椭圆和双曲线的性质,属于中档题.20.【分析】计算得到故为正三角形计算面积得到答案【详解】抛物线的焦点准线为l :由抛物线的定义可得由直角三角形的斜边上的中线等于斜边的一半可得即有为正三角形由F 到l 的距离为则的面积是故答案为:【点睛】本题解析:【分析】计算得到AF AK =,FK AF =,故AKF ∆为正三角形,4AK =,计算面积得到答案. 【详解】抛物线24y x =的焦点()1,0F ,准线为l :1x =-,由抛物线的定义可得AF AK =, 由直角三角形的斜边上的中线等于斜边的一半,可得FK AF =, 即有AKF ∆为正三角形,由F 到l 的距离为2d =,则4AK =,AKF ∆16=.故答案为:【点睛】本题考查了抛物线中的面积问题,确定AKF ∆为正三角形是解题的关键.三、解答题21.(1)2212x y +=(2)一定经过定点,定点为(0,3).【分析】(1)根据离心率求出2212b a =,代入21,2M ⎛ ⎝⎭可得22a =,从而可得椭圆方程; (2)设直线AB 的斜率为k ,则直线AC 的斜率为14k,联立直线与椭圆方程求出B 、C 的坐标,求出直线BC 的方程,令0x =,得3y =,由此可得答案. 【详解】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>,由2c e a ==得2c =,所以2222221122b a c a a a =-=-=, 所以222221x y a a +=,因为椭圆C 经过点21,2M ⎛ ⎝⎭, 所以2212121aa⨯+=,得22a =, 所以椭圆C 的方程为2212x y +=.(2)由椭圆的方程得(0,1)A ,设直线AB 的斜率为k ,则直线AC 的斜率为14k,所以直线AB 、AC 的方程分别为:1y kx =+,114y x k=+, 联立22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得22(12)40k x kx ++=, 解得0x =或2412k x k =-+,所以2412B k x k =-+,221212B k y k-=+, 所以222412(,)1212k k B k k --++,同理可得222881(,)1881k k C k k --++, 所以22222281128112841812BCk k k k k k k k k---++==-+++2412k k +, 所以直线BC 的方程为:222212414()12212k k ky x k k k-+-=+++, 令0x =,得3y =,所以直线BC 一定经过一定点(0,3). 【点睛】关键点点睛:求出直线BC 的斜率和方程是解题关键.22.(1) 2; (2) 2214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF中,有BF a ==,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以e ==== (2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0.设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my nx y b=+⎧⎨+=⎩,得()22224240m y mny n b +++-= 所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t=m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题. 23.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 .(2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.24.(1)24x y =;(2)证明见解析. 【分析】(1)由4PF =,利用焦半径公式可求出p 的值,从而可得抛物线C 的标准方程; (2)设切线AN 的方程为()y k x a =-,0k ≠,联立直线方程与抛物线方程,利用判别式为零可得a k =,求得切点2(2,)N a a ,由0AF AN ⋅=即可判定以FN 为直径的圆过点A .【详解】(1)因为()0,3P x 为抛物线上一点, 所以PF 的长等于P 到抛物线准线2py =-的距离, 即||3422P p pPF y =+=+=,解得2p =, 所以抛物线C 的标准方程为:24x y =.(2)直线斜率不存在时,直线x a =不是抛物线的切线, 所以可设切线AN 的方程为:()y k x a =-, 0k ≠,联立直线与抛物线方程得24()x yy k x a ⎧=⎨=-⎩,消去y 可得2440x kx ka -+=,因为直线与抛物线相切,∴216160ka ka ∆=-=,解得a k =.224402x ax a x a -+=⇒=,所以切点()22,N a a ,(0,1)F ,(,0)A a ,∴(,1)AF a =-,()2,AN a a =,∴220AF AN a a ⋅=-+=.∴90FAN ∠=︒,以FN 为直径的圆过点A . 【点睛】方法点睛:解得与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.25.(1)228120x y x +-+=;(2)5. 【分析】(1)设(,)M x y ,由已知得 ||2||OM AM =,由两点的距离公式可得= ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则||2||2||||OM OM AM AM =⇒=,= ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l,所以2EF == l所以 125OEF S ∆==. 【点睛】本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题. 求点的轨迹方程的常用方法之一:直译法——“四步一回头”, 四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ; (2)写出适合条件的点M 的集合(){}|P P M P M =; (3)将()P M “翻译”成代数方程(),0f x y =; (4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程.26.(1)t =±,p =2;(2)存在,△AFB . 【分析】(1)根据抛物线的定义求得方程即可.(2)由(1)易得M (-1,0),F (1,0),假设存在直线l ,设其方程为x =my -1(m ≠0),将其代入24y x =,根据直线AF 与直线OB 垂直,由k AF ·k OB =-1,结合韦达定理求得m ,再分别求得弦长AB 和点F 到直线l 的距离,代入面积公式求解. 【详解】(1)由题意及抛物线的定义得342p+=,则p =2, ∴抛物线的方程为24y x =, 又∵点T 在抛物线上, 故243t =⨯,解得t =±. (2)由(1)易得M (-1,0),F (1,0).设A (x 1,y 1),B (x 2,y 2),假设存在直线l 满足题意,设其方程为x =my -1(m ≠0), 将其代入24y x =得24+4?=?0y my -,121244y y m y y +=⎧⎨=⎩所以由Δ=16m 2-16>0,得m >1或m <-1. 又直线AF 与直线OB 垂直,易知直线AF 与直线OB 的斜率都存在, 所以k AF ·k OB =-1, 即121211y y x x ⋅=--, 所以1221212441(1)(1)(2)2y y x x my my my ===-----, 解得1226,3m y y m==. 又2224+4?=?0y my -,解得m =Δ>0, 所以满足条件的直线l的方程为550x ±=.此时AB ==12y y -,263555m m =-==, 又点F 到直线l的距离d ==, 所以△AFB的面积11||2255S AB d =⋅=⨯=. 【点睛】。

达州市高中数学选修2-1第三章《圆锥曲线与方程》测试题(答案解析)

达州市高中数学选修2-1第三章《圆锥曲线与方程》测试题(答案解析)

一、选择题1.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 在双曲线C 的右支上,点N 在线段12F F 上(不与12,F F 重合),且1230F MN F MN ︒∠=∠=,若2132MN MF MF -=,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±2.已知F 1、F 2分别为双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,点A 在双曲线上,且∠F 1AF 2=60°,若∠F 1AF 2的角平分线经过线段OF 2(O 为坐标原点)的中点,则双曲线的离心率为( )A B C D 3.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±4.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 且平行于一条渐近线的直线l 与另一条渐近线交于点A ,l 与双曲线交于点B ,若2BF AB =,则双曲线的离心率为( )A B C D .25.设AB 是过抛物线24y x =的焦点F 的一条弦(与x 轴不垂直),其垂直平分线交x 轴于点G ,设||||AB m FG =,则m =( ) A .23B .2C .34D .36.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直7.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .258.设抛物线24y x =的焦点为F ,以F 为端点的射线与抛物线相交于A ,与抛物线的准线相交于B ,若4FB FA =,则FA FB ⋅=( ) A .9B .8C .6D .49.已知1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,若在右支上存在点A 使得点2F 到直线1AF 的距离为3a ,则离心率e 的取值范围是( )A .51,2⎛⎫⎪ ⎪⎝⎭B .5,2⎛⎫+∞ ⎪ ⎪⎝⎭C .71,2⎛⎫⎪ ⎪⎝⎭D .7,2⎛⎫+∞ ⎪ ⎪⎝⎭10.无论θ为何值,方程223cos 1x y θ+⋅=所表示的曲线不可能为( )A .双曲线B .抛物线C .椭圆D .圆11.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-12.已知双曲线()222210,0x y a b a b-=>>的一条渐近线经过点()2,6,则该双曲线的离心率为( )A .2B .2C .3D .3二、填空题13.如图,过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),分别过,A B 作抛物线的切线,设两切线的交点为M ,则M 的坐标为__________.14.已知P 是双曲线221168x y -=右支上一点,12,F F 分别是双曲线的左、右焦点,O 为坐标原点,点,M N 满足()21220,,0PF PM F P PM PN PN F N PM PF λλμ⎛⎫⎪=>=+= ⎪⎝⎭⋅,若24PF =.则以O 为圆心,ON 为半径的圆的面积为________.15.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点与抛物线24y x =的焦点重合,且焦点到渐近线的距离为2________ 16.曲线412x x y y -=上的点到直线y的距离的最大值是________.17.已知椭圆2222:1(0)x y C a ba b +=>>上有一点)M ,F 为右焦点,B 为上顶点,O 为坐标原点,且BFO BFMS ∆=,则椭圆C 的离心率为________18.已知抛物线2:4C x y =的焦点为F ,过C 上一点A 作C 的准线l 的垂线,垂足为B ,连接FB 交x 轴于点D ,若||5AF =,则||AD =_________.19.过抛物线2:4C y x =的焦点F 的直线l 交C 于,A B 两点,设,A B 在y 轴上的投影分别为,A B '',若()32AB AA BB ''=+,则直线l 的斜率为______. 20.已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆221259x y +=的焦点重合,左准线方程为1x =-,设1F 、2F 分别为双曲线C 的左、右两个焦点,P 为右支上任意一点,则212PF PF 的最小值为_____________.三、解答题21.已知椭圆C :()222210x y a b ab+=>>的左、右顶点分别为A ,B 且左、右焦点分别为1F ,2F ,点P 为椭圆C 上的动点,在点P 的运动过程中,有且只有6个位置使得12PF F 为直角三角形,且12PF F 的内切圆半径的最大值为2(1)求椭圆C 的标准方程;(2)过点B 作两条互相垂直的直线交椭圆C 于M ,N 两点,记MN 的中点为Q ,求点A 到直线BQ 的距离的最大值.22.已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程; (2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足||53||4AB CD =,求直线l 的方程. 23.已知抛物线C :2y x =,过点1,0A 的直线交抛物线C 于()11,P x y ,()22,Q x y 两点,O 为坐标原点. (1)证明:OP OQ ⊥;(2)点()3,0B -,设直线PB ,QB 分别与抛物线C 交于另一点M ,N ,过点O 向直线MN 作垂线,垂足为D .是否存在定点E ,使得DE 为定值?若存在,求出点E 的坐标及DE ;若不存在,请说明理由.24.如图,椭圆1C :22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率为32,过抛物线2C :24x by =焦点F 的直线交抛物线于,M N 两点,当7||4MF =时,M 点在x 轴上的射影为1F ,连接,NO MO 并延长分别交1C 于,A B 两点,连接AB ,OMN 与OAB 的面积分别记为OMN S △,OAB S ,设λ=OMNOABS S .(1)求椭圆1C 和抛物线2C 的方程;(2)设ON ,OM 所在直线的斜率为,OM ON k k ,求证OM ON k k ⋅为定值; (3)求λ的取值范围.25.如图,抛物线2:2(0)C y px p =>的焦点为F ,直线11:2l y x =+与C 相切.(1)求抛物线C 的方程;(2)设过F 的直线2l 交C 于M ,N 两点(M 在x 轴上方),若MF FN =3,求直线2l 的方程.26.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据2132MN MF MF -=可得122F N F N =,所以112MF NMF NS S=,然后用面积公式将两个三角形面积表示出来,可得122MF MF =,再结合122MF MF a -=,余弦定理,可得a 、c 的关系,再利用222c a b =+ ,即可求出ba的值,进而可得渐近线方程. 【详解】∵2132MN MF MF -=,∴2122MN MF MF MN -=-,∴212F N NF =, ∴122F N F N =,∴122MF NMF NSS=.∵111||sin 302MF NSMF MN ︒=⋅⋅⋅,221||sin 302MF NS MF MN ︒=⋅⋅⋅, ∴122MF MF =,又122MF MF a -=,∴ 则124,2MF a MF a ==.在12MF F △中,由余弦定理得,222224164812c a a a a =+-=,故223c a =,∴222b a =, ∴2ba=, 故所求渐近线方程为2y x =±, 故选:B 【点睛】本题主要考查了双曲线离心率的求解,涉及了三角形面积公式、向量的线性运算、余弦定理,属于中档题.2.B解析:B 【分析】首先根据角平分线定理和双曲线的定义求得1AF 和2AF 的值,再结合余弦定理计算离心率. 【详解】不妨设点A 在第一象限,12F AF ∠的角平分线交x 轴于点M ,因为点M 是线段2OF 的中点,所以12:3:1FM MF =,根据角平分线定理可知1231AF AF =,又因为122AF AF a -=,所以13AF a =,2AF a =,由余弦定理可得22221492372c a a a a a =+-⨯⨯⨯=,所以2274c a =,所以72c e a ==.故选:B 【点睛】本题考查双曲线的离心率,双曲线的定义,三角形角平分线定理,重点考查转化思想,计算能力,属于中档题型.3.A解析:A 【分析】结合直线和圆的位置关系以及双曲线的定义求得,a b 的关系式,由此求得双曲线的渐近线方程. 【详解】设直线2PF 与圆222x y a +=相切于点M ,则2,OM a OM PF =⊥, 取线段2PF 的中点N ,连接1NF , 由于1122PF F F c ==, 则122,NF PF NP NF ⊥=,由于O 是12F F 的中点,所以122NF OM a ==,则2NP b ==,即有24PF b =,由双曲线的定义可得212PF PF a -=, 即422b c a -=, 即2,2b c a c b a =+=-,所以()2222b a a b -=+,化简得2434,34,3b b ab b a a ===, 所以双曲线的渐近线方程为43y x =±. 故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.4.B解析:B 【分析】设直线l 的方程为()by x c a=--,求得点A 的坐标,由2BF AB =,可得出23FB FA =,利用平面向量的坐标运算求出点B 的坐标,将点B 的坐标代入双曲线的标准方程,可得出a 、c 齐次等式,由此可解得该双曲线的离心率. 【详解】 如下图所示:设直线l 的方程为()b y x c a=--,则直线OA 的方程为by x a =,联立()b y x a b y x c a ⎧=⎪⎪⎨⎪=--⎪⎩,解得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即点,22c bc A a ⎛⎫ ⎪⎝⎭, 设点(),B m n ,由2BF AB =可得出23FB FA =, 即()2,,,32233c bc c bc m c n a a ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,即33c m c bc n a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得233c m bc n a ⎧=⎪⎪⎨⎪=⎪⎩,则点2,33c bc B a ⎛⎫⎪⎝⎭, 将点B 的坐标代入双曲线的标准方程得222222241993c b c e a a b -==,解得e =故选:B. 【点睛】本题考查双曲线离心率的求解,利用平面向量的坐标运算求出点B 的坐标是解题的关键,考查计算能力,属于中等题.5.B解析:B 【分析】联立直线AB 与抛物线方程,求出E 点坐标以及直线EG 的方程,可得||FG ,利用定义求出弦长||AB ,可得m 的值. 【详解】设:1AB x ty =+,()11,A x y ,()22,B x y ,AB 的中点为()00,E x y ,联立方程组214x ty y x=+⎧⎨=⎩,消去x 得2440y ty --=,所以124y y t +=,12022y y y t +==,2021x t =+,即()221,2E t t +,所以EG 的方程为()2221y t t x t -=---.令0y =,得223x t =+,因此()2||21FG t =+.又12||2AB x x =++=()()2122241t y y t +++=+,所以1||||2FG AB =,从而2m =. 故选:B 【点睛】本题考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.6.A解析:A【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y p p ⎧+⎪+⎛⎫⎪=⨯⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根 所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题. 7.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则()()22222127·771616k PF PF x y x y x ==-+⋅-+=-, 又2016x ≤≤.∴max min 16,9k k ==.故max min +16+925k k ==.所以k 的最大值与最小值的和为25.故选:D.【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.8.A解析:A【分析】根据平行关系可证明N 点,A 点分别是线段BF ,NF 的中点,再根据比列关系求A 点横坐标即可求解.【详解】设FB 交y 轴于N 点,如图,由准线与y 轴平行,且O 为中点,所以N 是BF 中点,因为4FB FA =,所以A 是NF 的中点,设A 的横坐标为m ,则由抛物线的定义,||||(1)1AF AC m m ==--=+,由AC 与x 轴平行,可得1342m +=, 解得12m =∴334622FA FB ==⨯=,, ∴⋅=FA FB |FA ||FB |=9,故选:A【点睛】关键点点睛:利用抛物线的定义及平行关系,建立比列关系求出||AF 的长,是解题的关键所在,属于中档题.9.D解析:D【分析】设直线1AF 的方程,利用点2F 到直线的距离建立等式,解出斜率k ,因为0b k a <<,从而求出,a c 的不等关系,进而解出离心率的范围.【详解】设1AF :()y k x c =+,因为点A 在右支上,则0b k a<<,,所以222222343a b k c a a =<-,即2247c a >,解得:2e > 故选:D .【点睛】本题考查双曲线求离心率,属于中档题.方法点睛:(1)利用点到直线的距离建立等量关系;(2)解出斜率k 与,a b 的关系;(3)由点在右支和左焦点的位置关系,求出斜率k 的范围;(4)利用斜率k 的范围,建立,a c 的不等式,求出离心率的范围.10.B解析:B【分析】因为1cos θ1,所以当cos 0θ=时,方程表示直线;当10cos 3θ<<或1cos 13θ<≤时,方程表示椭圆;当1cos 3θ=时,方程表示圆;当1cos 0θ-≤<时,方程表示双曲线.【详解】因为1cos θ1,所以当cos 0θ=,即2k πθπ=+,k Z ∈时,方程化为1x =±,表示两条直线;当10cos 3θ<<时,方程化为22113cos y x θ+=表示焦点在y 轴上的椭圆; 当1cos 3θ=时,方程化为221x y +=表示圆; 当1cos 13θ<≤时,方程化为22113cos y x θ+=表示焦点在x 轴上的椭圆; 当1cos 0θ-≤<时,方程化为22113cos y x θ-=-表示焦点在x 轴上的双曲线. 故选:B【点睛】关键点点睛:本题考查方程223cos 1x y θ+⋅=所表示的曲线的判断,解题关键是判断3cos θ的符号以及与1的大小关系的判断,按照五种情况分类讨论即可得解.11.A解析:A【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解.【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=, 设 ()()()112233,,,,,A x y B x y C x y , 则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.12.A解析:A【分析】求出双曲线的渐近线方程,将点代入即可得b a=得离心率.【详解】 双曲线()222210,0x y a b a b-=>>的一条渐近线为b y x a =过第一象限,所以点在渐近线b y x a =b a =,所以b a=所以2c e a ==. 故选:A【点睛】本题主要考查了求双曲线的离心率,属于中档题.二、填空题13.【分析】由已知求得抛物线焦点坐标及准线方程由求得所在直线倾斜角得到斜率写出所在直线方程联立准线方程与抛物线方程求得的坐标可求利用导数求斜率写出直线的方程再求两直线的交点则的坐标可求【详解】解:由抛物解析:1,3⎛⎫- ⎪ ⎪⎝⎭【分析】由已知求得抛物线焦点坐标及准线方程,由3AF FB =求得AB 所在直线倾斜角,得到斜率,写出AB 所在直线方程,联立准线方程与抛物线方程,求得A 、B 的坐标可求,利用导数求斜率,写出直线AM 、BM 的方程,再求两直线的交点,则M 的坐标可求.【详解】解:由抛物线2:4C y x =,得焦点(1,0)F ,准线方程为1x =-.由题意设AB 所在直线的倾斜角为θ,由3AF FB =,得2231cos 1cos θθ=-+,即1cos 2θ=. tan 3θ∴=.则AB 所在直线方程为3(1)y x =-.联立23(1)4y x y x⎧=-⎪⎨=⎪⎩,得231030x x -+=. 解得:13x =或3x =, 因为点A 在x 轴上方所以(3,23)A ,123,33B ⎛⎫- ⎪ ⎪⎝⎭由2y x =,得1y x '=, 2y x =-得1y x '=- ∴313|33x y ='==,131|313x y ='=-=-, 即AM 、BM 所在直线的斜率分别为33、3-. 3:23(3)3AM y x ∴-=-,231:3()33BM y x +=-- 所以323(3)32313()33y x y x ⎧-=-⎪⎪⎨⎪+=--⎪⎩解得1233x y =-⎧⎪⎨=⎪⎩ M ∴的坐标为23(1,)3-. 故答案为:23(1,)3-.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.14.【分析】延长交于点由向量数量积和线性运算可知为线段的垂直平分线结合双曲线定义可求得利用中位线性质可求得进而得到结果【详解】延长交于点如下图所示:为的角平分线又为线段的垂直平分线由双曲线定义知:分别为 解析:64π【分析】延长2F N 交PM 于点Q ,由向量数量积和线性运算可知PN 为线段2F Q 的垂直平分线,结合双曲线定义可求得1FQ ,利用中位线性质可求得ON ,进而得到结果. 【详解】延长2F N ,交PM 于点Q ,如下图所示: 22PF PM PN PM PF μ⎛⎫ ⎪=+ ⎪⎝⎭,PN ∴为2QPF ∠的角平分线, 又20PN F N ⋅=,2PN NF ∴⊥,PN ∴为线段2F Q 的垂直平分线,24PQ PF ∴==.由双曲线定义知:12248PF PF -=⨯=,18412PF ∴=+=,141216FQ ∴=+=, ,O N 分别为122,F F QF 中点,1182ON F Q ∴==, ∴以O 为圆心,ON 为半径的圆的面积64S π=.故答案为:64π.【点睛】本题考查双曲线性质和定义的综合应用,涉及到平面向量数量积和线性运算的应用;解题关键是能够通过平面向量的线性运算和数量积运算确定垂直和平分关系.15.【分析】由题意画出图形再由抛物线方程求出焦点坐标得到双曲线的焦点坐标由焦点到双曲线一条渐近线的距离列式求解离心率即可【详解】如图由抛物线方程得抛物线的焦点坐标即双曲线的右焦点坐标为双曲线的渐近线方程 解析:2【分析】由题意画出图形,再由抛物线方程求出焦点坐标,得到双曲线的焦点坐标,由焦点到双曲线一条渐近线的距离列式,求解离心率即可.【详解】如图,由抛物线方程24y x =,得抛物线的焦点坐标(1,0)F , 即双曲线22221(0,0)x y a b a b-=>>的右焦点坐标为(1,0)F , 双曲线的渐近线方程为b y x a =±. 不妨取b y x a =,化为一般式:0bx ay -=. 223a b =+,即222433b a b =+, 又221a b =-,联立解得:214a =,12a ∴=. 则双曲线的离心率为:1212c e a === 故答案为:2.【点睛】 本题考查双曲线及抛物线的几何性质,考查双曲线的离心率与渐近线,还考查了点到直线的距离公式的应用,是基础题.16.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的 26【分析】先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可.【详解】解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y x y x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程, 所以曲线412x xy y-=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x 的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =- 所以切线为:222y x - 故两平行线222y x =-2y x =之间的距离为022263d +== 所以曲线412x xy y-=上的点到直线2y x =的距离的最大值是263. 故答案为:263.【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题. 17.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解 解析:22 【分析】 由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率.【详解】由题意可得直线BF 的方程为:1x y c b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d a b c +---==+, 因为22||BF b c a =+=,所以12||[(21)]24BFM SBF d b a c ==--, 而12BFO S bc =, 因为2BFO BFM S S =,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--,整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.18.【分析】设根据利用抛物线的定义得到解得代入中得到AB 的坐标直线的方程令得D 的坐标用两点间的距离公式求解【详解】设因为所以得代入中得当时则直线为令得所以当时同理得故答案为:【点睛】本题主要考查抛物线的解析:【分析】设()00,A x y ,根据||5AF =,利用抛物线的定义得到0||15AB y =+=,解得04y =,代入24x y =中,得到A ,B 的坐标,直线BF 的方程,令0y =,得D 的坐标,用两点间的距离公式求解.【详解】设()00,A x y ,因为||5AF =,所以0||15AB y =+=,得04y =,代入24x y =中,得04x =±,当(4,4)A 时,(4,1)B -,则直线BF 为112y x =-+, 令0y =,得(2,0)D ,所以||AD =当(4,4)A -时,同理得||AD =故答案为:【点睛】本题主要考查抛物线的定义和几何性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 19.【分析】根据抛物线的定义可构造方程求得设直线的倾斜角为根据焦点弦长公式可构造方程求得进而得到的值即为结果【详解】由抛物线的定义可知:设直线的倾斜角为则即直线的斜率为故答案为:【点睛】本题考查抛物线焦解析:【分析】 根据抛物线的定义可构造方程求得AB ,设直线l 的倾斜角为α,根据焦点弦长公式可构造方程求得2sin α,进而得到tan α的值即为结果.【详解】由抛物线的定义可知:()31122AB AF BF AA BB AA BB AA BB ''''''=+=+++=++=+, 4AA BB ''∴+=,6AB ∴=.设直线l 的倾斜角为α,则246sin AB α==,22sin 3α∴=,tan α∴= 即直线l的斜率为故答案为: 【点睛】本题考查抛物线焦点弦相关问题的求解,关键是熟练掌握抛物线的焦点弦长公式:1222sin p AB x x p α=++=. 20.【分析】由焦点重合可知由左准线方程可知从而可求设根据双曲线的定义可知则结合基本不等式可求其最值【详解】解:由焦点重合可知;由左准线方程可知又由双曲线的定义可知从而可求出因为为右支上任意一点所以设则则解析:【分析】由焦点重合可知2216a b +=,由左准线方程可知21a c-=-,从而可求2,4a b c ===,设2PF t =,根据双曲线的定义可知,14PF t =+,则212168PF t PF t=++,结合基本不等式可求其最值. 【详解】解:由焦点重合可知,2225916a b +=-=;由左准线方程可知,21a c-=-,又由双曲线的定义可知,222c a b =+,从而可求出2,4a b c ===. 因为P 为右支上任意一点,所以1224PF PF a -==.设2,2PFt t c a =≥-=, 则14PF t =+,则()22124168816t PF t PF t t +==++≥+= 当且仅当16t t =,即4t =时等号成立.即21216PF PF ≥. 故答案为:16. 【点睛】本题考查了双曲线的定义,考查了双曲线的准线方程,考查了椭圆的焦点求解,考查了基本不等式.本题的关键是由双曲线的定义,将所求的式子用一个变量来表示.利用基本不等式求最值时,一定要注意,一正二定三相等缺一不可.三、解答题21.(1) 22142x y += (2) 47 【分析】(1)由条件得出当点P 位于椭圆C 的上下顶点处时,12PF F △为直角三角形,则b c =,当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值,则2cbR a c==-+22222c a b a c =-=-,可求出椭圆方程. (2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+ ,与椭圆方程联立得出韦达定理,由1212122BM BN y yk k x x ⋅=⋅=---,结合韦达定理可得n 的值,从而得出点Q 的坐标,进而求出直线BQ 的方程,由点到直线的距离公式可得出答案 【详解】点P 为椭圆C 上的动点,当1PF x ⊥或2PF x ⊥时,12PF F △为直角三角形. 此时满足条件的点P 有4个,根据满足条件的点P 有6个. 则满足条件的点P 的另2个位置位于椭圆C 的上下顶点处.当点P 位于椭圆C 的上下顶点处时,12PF F △为等腰直角三角形,即b c =12PF F △的内切圆半径我为R ,则()12121211222PF F P Sc y F F PF PF R ==++ 即()P c y a c R =+,所以Pc y R a c=+ 当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值.所以2cb R a c ==+,即22c a c=+22222c a b a c =-=-,即a =解得2,a b =,所以椭圆C 的标准方程为:22142x y +=(2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+由22142x my nx y =+⎧⎪⎨+=⎪⎩,得()2222240m y mny n +++-=所以212122224,,22mn n y y y y m m --+=⋅=++据条件直线BM ,BN 的斜率存在,由条件可得1212122BM BN y yk k x x ⋅=⋅=--- 即1212122y y my n my n ⋅=-+-+-,即()()()2212121222y y m y y m n y y n -=+-++- 所以()()()()2212121220m y y m n y y n ++-++-=则()()()2222242122022n mn m m n n m m --++-+-=++化简可得()()2320n n --=,即23n =或2n = 当2n =时,直线MN 过点B ,不满足条件.所以 23n =,则()12222243232m m y y m m -⨯-+==++ 由MN 的中点为Q ,则()2232Q my m -=+所以()()2222433232Q m x m m m -=⨯+=++所以()()222232434232BQm m m k m m -+==+-+所以直线BQ 的方程为()2234my x m =-+,即()23420m y mx m +-+= 所以点()2,0A -到直线BQ 的距离为d ==47=≤=当且仅当22169m m =,即243m =时取等号. 所以点()2,0A -到直线BQ 的距离的最大值为47【点睛】关键点睛:本题考查椭圆的几何性质和椭圆中的定点问题以及点到直线的距离的最值问题,解答本题的关键是由1212122BM BN y yk k x x ⋅=⋅=---结合韦达定理得出n 的值,进一步得出点Q 的坐标()2232Q m y m -=+,234BQmk m =+,得出直线BQ 的方程为()2234my x m =-+,属于难题.22.(1)22143x y +=;(2)12y x =-或12y x =-- 【分析】(1)根据题设条件列方程解得,a b 可得椭圆方程;(2)利用几何方法求出弦长||CD ,利用弦长公式求出弦长||AB,再根据||||AB CD =可求出m ,代入直线l :y =-12x +m ,可求得结果. 【详解】(1)由题设知22212b c a b a c ⎧=⎪⎪=⎨⎪=-⎪⎩,解得a =2,bc =1,∴椭圆的方程为22143x y +=.(2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l :220x y m +-=的距离d =,由d <1,得||m <||CD ∴===设A (x 1,y 1),B (x 2,y 2),由221,21,43y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 并整理得x 2-mx +m 2-3=0, 由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3.||AB =∴==由||||AB CD =1,解得m =,满足(*). ∴直线l的方程为12y x =-+或12y x =-. 【点睛】关键点点睛:掌握几何方法求弦长和弦长公式求弦长是解题关键. 23.(1)证明见解析;(2)存在,满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【分析】(1)设直线:1PQ x my =+,联立方程组得到121y y =-,结合0OP OQ ⋅=,即可求解;(2)设过定点(),0a 的直线x ty a =+,联立方程组,根据根与系数的关系,得到34y y a =-与t 无关,得出对于抛物线2y x =上的两点的直线RS 过定点(),0a ,进而得到9M N y y =-,再结合Rt ODG ,即可求解.【详解】(1)设直线PQ :1x my =+, 联立方程组21x my y x=+⎧⎨=⎩,整理得210y my --=,所以121y y =-, 又由22121212120OP OQ x x y y y y y y ⋅=+=+=,所以OP OQ ⊥.(2)设过定点(),0a 的直线x ty a =+与抛物线有两个不同交点()33,x y ,()44,x y ,联立方程组2x ty a y x=+⎧⎨=⎩,整理得20y ty a --=,可得34y y a =-与t 无关,即对于抛物线2y x =上的两点R ,S ,直线RS 过定点(),0a R ⇔,S 的纵坐标之积为a -,由此可得13M y y =,23N y y =,从而1299M N y y y y ==-, 于是可得直线MN 过点()9,0,记为G ,则OD DG ⊥, 取OG 中点为E ,则Rt ODG 中1922ED OG ==, 故存在满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【点睛】解答圆锥曲线的定点、定值问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.24.(1)曲线1C 的方程为2214x y +=,曲线2C 的方程为24x y =;(2)证明见解析;(3)[)2,+∞. 【分析】(1)根据抛物线的定义,以及双曲线的离心率公式可求出答案;(2)设直线MN 的方程为1y kx =+,与抛物线方程联立,设11,)Mx y (,()2,2N x y ,根据韦达定理可得答案;(3)根据弦长公式求出|OM |,|ON |,|OA |,|OB |的长,再根据三角形的面积公式和基本不等式即可求出λ的取值范围. 【详解】(1)由抛物线定义可得7,4M c b ⎛⎫-- ⎪⎝⎭, M 在抛物线24x by =上,∴2744c b b ⎛⎫=- ⎪⎝⎭,即2274c b b =-①又由2c a =,得223c b =将上式代入①,得277b b =解得1,b =∴2c a =∴=,所以曲线1C 的方程为2214x y +=,曲线2C 的方程为24x y =;(2)设直线MN 的方程为1y kx =+,由214y kx x y=+⎧⎨=⎩消去y 整理得2440x kx --=, 设11,)Mx y (,()22,N x y , 则124x x =-, 设221212121221111144164ON OMx xy y kkx x x x x x =⋅=⋅==-; (3)设,ON OM k k m m '==,则有14m m'=-,② 设直线ON 的方程为(0)y mx m =>,由24y mxx y=⎧⎨=⎩,解得4N x m =,所以4N ON ==由②可知,用14m -代替m,可得M OM ==, 由2214y mx x y =⎧⎪⎨+=⎪⎩,解得A x =,所以A OA == 用14m-代替m,可得B OB ==所以=OMNOABON OMSS OA OBλ⋅====⋅1222mm=+≥,当且仅当1m=时等号成立.所以λ的取值范围为[)2,+∞.【点睛】圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.25.(1)22y x=;(2)630x--=【分析】(1)联立直线方程与抛物线方程,利用判别式为0求出p的值,从而可得答案;(2)设21:2l x my=+,联立2212y xx my⎧=⎪⎨=+⎪⎩可得2210y my--=,利用韦达定理以及平面向量的线性运算列方程组求解m的值即可.【详解】(1)联立222212y pxy py py x⎧=⎪⇒=-⎨=+⎪⎩,可得220y py p-+=,因为直线11:2l y x=+与2:2(0)C y px p=>相切所以24401p p p=-=⇒=,抛物线方程为22y x=,(2)由(1)可知1,02F⎛⎫⎪⎝⎭,设21:2l x my=+,联立2212y xx my⎧=⎪⎨=+⎪⎩可得2210y my--=,设()()11221,,,,0M x y N x y y>,结合MF FN=3,可得12121212,3y y y y m m y y=-⎧⎪+=⇒=⎨⎪=-⎩,21:2l x y =+,即630x --=. 【点睛】 求抛物线标准方程的方法一般为待定系数法,根据条件确定关于p 的方程,解出p ,从而写出抛物线的标准方程.解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.26.(1)2212x y +=;(2)存在;1)y x =-.【分析】(1)由余弦定理可得12d d +=.(2)设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=,先假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,与椭圆方程联立,韦达定理代入求出k 的值,再检验斜率不存在的情况.【详解】(1)当0θ≠时,在ABM 中,由余弦定理得:22121242cos2d d d d θ=+-. 又212cos1d d θ=,整理得,12d d +=所以点M 的轨迹E 是以(1,0)A -和(1,0)B为焦点,长轴长为个端点)又当点M 为该椭圆的长轴的两个端点时,0θ=,也满足212cos1d d θ=.所以点M 的轨迹E 的方程是2212x y +=.(2)假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222124220k x k x k +-+-= 设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,由韦达定理得,2122412k x x k +=+,21222212k x x k-=+. 由题意以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=.又()()()212121212111y y k x k x k x x x x =--=-++⎡⎤⎣⎦, 整理得:()212121210x k x x x x x =⎡-+⎤⎣⎦++.。

上海上海外国语大学附属大境初级中学高中数学选修2-1第三章《圆锥曲线与方程》检测(包含答案解析)

上海上海外国语大学附属大境初级中学高中数学选修2-1第三章《圆锥曲线与方程》检测(包含答案解析)

一、选择题1.设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦分别是1F ,2F ,过1F 的直线交双曲线C 的左支于M ,N 两点若212=MF F F ,且112MF NF =,则双曲线C 的离心率是( ) A .2B .32C .54D .532.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为A BC D3.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .234.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .25.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D .6.过原点O 的直线交双曲线E :22221x y a b-=(0,0a b >>)于A ,C 两点,A 在第一象限,12,F F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若222,23OA OF CF BF ==,则双曲线E 的离心率为( )A B C D 7.设抛物线24y x =的焦点为F ,以F 为端点的射线与抛物线相交于A ,与抛物线的准线相交于B ,若4FB FA =,则FA FB ⋅=( ) A .9B .8C .6D .48.已知双曲线2222:1(0,0),,x y C a b A B a b-=>>是双曲线C 上关于原点对称的两点,P是双曲线C 上异于,A B 的一点,若直线PA 与直线PB 的斜率都存在且两直线的斜率之积为定值2,则双曲线的离心率是( ) ABC .2D9.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .5210.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( ) A.2B1 C1D.2+11.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=12.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫-⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( ) A.B. CD二、填空题13.设A 是双曲线()22210x y a a-=>上在第一象限内的点,F 为其右焦点,点A 关于原点O 的对称点为B ,若AF BF ⊥,设ABF θ∠=,且,126ππθ⎡⎤∈⎢⎥⎣⎦,则2a 的取值范围是______.14.已知双曲线2222:1(0,0)x yC a ba b-=>>)的左,右焦点分别是1F,2F,直线:(l y k x=过点2F,且与双曲线C在第一象限交于点P.若(22()0OP OF PF+⋅=(O为坐标原点),且()121PF a PF+=,则双曲线C的离心率为__________.15.已知双曲线22221(0,0)x ya ba b-=>>的一个焦点与抛物线24y x=的焦点重合,且焦点________16.已知抛物线24y x=的焦点为F,P为抛物线上一动点,定点()1,1A,则PAF△周长最小值为______.17.点(,)P x y是曲线22:143x yC+=上一个动点,则2x的取值范围为______.18.曲线412x x y y-=上的点到直线y的距离的最大值是________.19.已知抛物线21:8C y x=的焦点是F,点M是其准线l上一点,线段MF交抛物线C于点N.当23MN MF→→=时,NOF的面积是______20.已知双曲线C:()222210,0x ya ba b-=>>的右焦点2F到渐近线的距离为4,且在双曲线C上到2F的距离为2的点有且仅有1个,则这个点到双曲线C的左焦点1F的距离为______.三、解答题21.已知A,B分别为椭圆()222:11xC y aa+=>的左、右顶点,P为C的上顶点,8AP PB⋅=.(1)求椭圆C的方程;(2)过点()6,0作关于x轴对称的两条不同直线1l,2l分别交椭圆于()11,M x y与()22,N x y,且12x x≠,证明:直线MN过定点,并求出该定点坐标.22.点M是椭圆223:11616x yC+=上一点,点A是椭圆C的左顶点,MO的延长线交椭圆C 于点B,AMB是以M为直角顶点的三角形.若存在不同于点A,B的点C,D,使得MC MDOAMC MD⎛⎫⎪⋅+=⎪⎝⎭,试探究直线AB与CD的位置关系,并说明理由.23.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为8,椭圆的离心率为32. (1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.24.已知椭圆的焦点在x 轴上,一个顶点为()0,1,离心率255e =,过椭圆的右焦点F 的直线l 与坐标轴不垂直,且交椭圆于A ,B 两点 (1)求椭圆的标准方程 (2)当直线l 的斜率为12时,求弦长AB 的值. 25.已知椭圆C :22221bx y a +=(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆C 上的任意一点,已知12PF PF →→⋅的最大值为3,最小值为2.(1)求椭圆C 的标准方程;(2)若直线y kx m =+与椭圆C 交于M 、N 两点(M 、N 不是左、右顶点),点D (-6,4)关于直线6y x =+的对称点为A ,且以MN 为直径的圆过点A ,问直线是否过定点,如果过定点,求出该定点坐标;如果不过定点,请说明理由.26.已知椭圆C :()222210x y a b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(1)求椭圆C 的方程;(2)过点()1,0Q 的直线l 与椭圆C 相交于,A B 两点.点()4,3P ,记直线PA ,PB 的斜率分别为12,k k ,当12k k ⋅最大时,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意画出图形,结合图形建立关于c 、a 的关系式,再求离心率ce a=的值. 【详解】 解:如图所示,取1F M 的中点P ,则2122MF FF c ==,MP c a =-,1F P c a =-;又112NF MF =,则()14NF c a =-,242NF c a =-; 在2Rt NPF △中,22222NP PF NF +=, 在2Rt MPF △中,22222MP PF MF +=,得()()()()22224252c a c a c c a ---=--⎡⎤⎣⎦, 化简得223850c ac a -+=, 即()()350c a c a --=, 解得c a =或35c a =; 又1e >, ∴离心率53c e a ==. 故选:D .【点睛】本题考查求双曲线的离心率,解题关键是建立,a c 的等量关系,结合等腰三角形的性质与双曲线的定义可得.2.D解析:D 【解析】由题意知,过点(4,-2)的渐近线方程为y=-b ax, ∴-2=-b a×4, ∴a=2b.设b=k,则a=2k,c=5k, ∴e=c a =52k k =52. 3.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y =所以MQF 的周长最小时,点Q的坐标为54⎛-⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则QE QF +=614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.4.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.D解析:D 【分析】根据题意得1F A AB ⊥,设22BF m =,则23CF m =,13AF m =,再结合双曲线的定义得1222,32BF a m AF m a =+-=,故在1Rt FAB 中由勾股定理得1514m a =,在12Rt F AF △中结合勾股定理和1514m a =,得222553c a =,进而得答案..【详解】设1F 为双曲线E 的左焦点,连接112,,AF BF CF ,取2AF 的中点M ,由2=OA OF ,得OM AB ⊥,又O 为12F F 的中点,故1F A AB ⊥,设22BF m =,则23CF m =,由1211||||||22OM AF CF ==得13AF m =. 根据双曲线的定义得1222,32BF a m AF m a =+-=, 在1Rt F AB 中,有()()()22235222=m m a m a -++, 化简得1514m a =,在12Rt F AF △中,有()()()2223322m m a c +-=, 结合1514m a =,得222553c a =,所以535e =. 故选:D. 【点睛】本题考查双曲线的离心率的求解,解题的关键在于根据已知得1F A AB ⊥,同时注意到该题构成了焦点三角形,故借助定义,利用三角形的边角关系即可222553c a =,进而求解.考查运算求解能力,是中档题.7.A解析:A 【分析】根据平行关系可证明N 点,A 点分别是线段BF ,NF 的中点,再根据比列关系求A 点横坐标即可求解. 【详解】设FB 交y 轴于N 点,如图,由准线与y 轴平行,且O 为中点, 所以N 是BF 中点, 因为4FB FA =, 所以A 是NF 的中点,设A 的横坐标为m ,则由抛物线的定义,||||(1)1AF AC m m ==--=+,由AC 与x 轴平行, 可得1342m +=, 解得12m = ∴334622FA FB ==⨯=,, ∴⋅=FA FB |FA ||FB |=9, 故选:A 【点睛】关键点点睛:利用抛物线的定义及平行关系,建立比列关系求出||AF 的长,是解题的关键所在,属于中档题.8.B解析:B 【分析】设点(,),(,),(,)A m n B m n P k t --,PA PB k k 求得,利用点,P A 在双曲线上,及已知定值2可求得22b a,从而可得离心率c e a =.【详解】根据题意,设点(,),(,),(,)A m n B m n P k t --,则222222221,1m n k ta b a b-=-=,,PA PB t n t nk k k m k m-+==-+, 所以2222PA PB t n t n t nk k k m k m k m-+-⋅=⋅==-+-22222222222(1)(1)t n b t n aa ab b-==+-+,所以双曲线的离心率c e a === 故选:B. 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的等式.解题方法是设出,,P A B 坐标,代入双曲线方程,然后把等式2PA PB k k =用坐标表示出来后,可者所要的关系式,从而求得离心率.9.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.10.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+, 则12PF F △与12QF F 的面积之比为()121222223123323822231233PF F QF F a a S PF a t S QF a t a --+=====+---+△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.11.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.12.B解析:B 【分析】令2MA MC =,则12MA MC=,所以12MAMC==,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n,则12MAMC==,整理得:22222421333m n m n x y x y ++-+++=, 比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -,当点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小,最小为210.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.二、填空题13.【分析】设双曲线的左焦点为设则由已知条件可得进而得从而得而所以可得再由可求得结果【详解】设双曲线的左焦点为设则因为点关于原点的对称点为且所以所以所以即所以因为所以所以因为所以所以所以所以所以故答案为解析:231,1⎡⎤⎢⎥⎣⎦【分析】设双曲线的左焦点为'F ,设',AF m AF n ==,则2n m a -=,由已知条件可得2224m n c +=,进而得2222()21mn c a b =-==,从而得12AOFS =,而21sin 22AOFSc θ=,所以可得211sin 2a θ=-,再由,126ππθ⎡⎤∈⎢⎥⎣⎦可求得结果 【详解】设双曲线的左焦点为'F ,设',AF m AF n ==,则2n m a -=,因为点A 关于原点O 的对称点为B ,且AF BF ⊥,ABF θ∠= 所以'21OA OB OF OF c a =====+2AOF θ∠=所以2224m n c +=,所以22()24m n mn c -+=,即2222()21mn c a b =-==, 所以12AOFS =, 因为21sin 22AOFSc θ=,所以21sin 2c θ=,所以211sin 2a θ=-, 因为,126ππθ⎡⎤∈⎢⎥⎣⎦,所以632,ππθ⎡⎤∈⎢⎥⎣⎦, 所以13sin 222θ≤≤,所以23123sin 2θ≤≤,所以2311113sin 2θ-≤-≤,所以223113a -≤≤, 故答案为:231,13⎡⎤-⎢⎥⎣⎦【点睛】此题考查双曲线定义的应用,考查三角形面积公式的应用,考查了三角函数,属于中档题14.【分析】取的中点则根据得则设根据结合双曲线的定义得到然后在中利用勾股定理求解即可【详解】如图取的中点则因为所以即因为是的中位线所以由题意可得设则由双曲线的定义可知则即故在中由勾股定理得即整理得解得故 解析:102【分析】取2PF 的中点H ,则22OP OF OH +=,根据22()0OP OF PF +⋅=,得2OH PF ⊥,则12PF PF ⊥,设2PF m =,根据()121PF a PF +=结合双曲线的定义得到2||2PF =,122PF a =+,然后在12Rt PF F 中,利用勾股定理求解即可.【详解】 如图,取2PF 的中点H ,则22OP OF OH +=, 因为22()0OP OF PF +⋅=,所以20OH PF ⋅=,即2OH PF ⊥.因为OH 是12PF F △的中位线,所以12PF PF ⊥.由题意可得10c =,设2PF m =,则()11PF a m =+, 由双曲线的定义可知12||2PF PF a -=,则2am a =,即2m =,故2||2PF =,122PF a =+.在12Rt PF F 中,由勾股定理得2221122||||PF PF F F +=, 即()242240a ++=,整理得2280a a +-=, 解得2a =.故双曲线C 的离心率为102c a =. 故答案为:102【点睛】本题主要考查双曲线的几何性质和定义的应用以及平面几何的知识,平面向量垂直问题,还考查了数形结合的思想和运算求解的能力,属于中档题.15.【分析】由题意画出图形再由抛物线方程求出焦点坐标得到双曲线的焦点坐标由焦点到双曲线一条渐近线的距离列式求解离心率即可【详解】如图由抛物线方程得抛物线的焦点坐标即双曲线的右焦点坐标为双曲线的渐近线方程 解析:2【分析】由题意画出图形,再由抛物线方程求出焦点坐标,得到双曲线的焦点坐标,由焦点到双曲线一条渐近线的距离列式,求解离心率即可. 【详解】 如图,由抛物线方程24y x =,得抛物线的焦点坐标(1,0)F ,即双曲线22221(0,0)x y a b a b-=>>的右焦点坐标为(1,0)F ,双曲线的渐近线方程为by x a=±. 不妨取by x a=,化为一般式:0bx ay -=. 223a b =+,即222433b a b =+,又221a b =-,联立解得:214a =,12a ∴=.则双曲线的离心率为:1212c e a === 故答案为:2. 【点睛】本题考查双曲线及抛物线的几何性质,考查双曲线的离心率与渐近线,还考查了点到直线的距离公式的应用,是基础题.16.3【分析】求周长的最小值即求的最小值设点在准线上的射影为则根据抛物线的定义可知因此问题转化为求的最小值根据平面几何知识当三点共线时最小从而可得结果【详解】求周长的最小值即求的最小值设点在准线上的射影解析:3 【分析】求PAF ∆周长的最小值,即求||||PA PF +的最小值.设点P 在准线上的射影为D ,则根据抛物线的定义,可知||||PF PD =.因此问题转化为求||||PA PD +的最小值,根据平面几何知识,当D 、P 、A 三点共线时||||PA PD +最小,从而可得结果 【详解】求PAF ∆周长的最小值,即求||||PA PF +的最小值, 设点P 在准线上的射影为D , 根据抛物线的定义,可知||||PF PD =因此,||||PA PF +的最小值,即||||PA PD +的最小值根据平面几何知识,可得当D ,P ,A 三点共线时||||PA PD +最小, 因此的最小值为(1)112A x --=+=, ||1AF =,所以PAF ∆周长的最小值为213+=, 故答案为:3.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,P ,A 三点共线时||||PA PD +最小,是解题的关键.17.【分析】可设则其中可得的取值范围【详解】由点是曲线上一个动点可设则其中又则故答案为:【点睛】本题考查了椭圆参数方程的应用辅助角公式三角函数的值域属于中档题 解析:[5,5]-【分析】可设2cos ,x y θθ==,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,可得2x 的取值范围. 【详解】由点(,)P x y 是曲线22:143x yC +=上一个动点,可设2cos ,x y θθ==,[0,2)θπ∈,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=, 又5sin()θα+[5,5]∈-,则2x [5,5]∈-. 故答案为:[5,5]-. 【点睛】本题考查了椭圆参数方程的应用,辅助角公式,三角函数的值域,属于中档题.18.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的解析:3【分析】先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y x y x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x 的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:222y x -故两平行线222y x =-2y x =之间的距离为0222633d +==. 所以曲线412x x y y -=上的点到直线2y x =的距离的最大值是263.故答案为:263.【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.19.【分析】由抛物线的方程可得焦点坐标及准线方程因为可得在之间设垂直于准线交于由抛物线的性质可得可得求出直线的方程代入抛物线的方程求出的横坐标进而求出的面积【详解】由题意抛物线的标准方程为:所以焦点准线 43【分析】由抛物线的方程可得焦点F 坐标及准线方程,因为23MN MF →→=,可得N 在M ,F 之间,设NN '垂直于准线交于N ',由抛物线的性质可得NN NF '=,可得3tan 3FMN '∠=,求出直线MF 的方程,代入抛物线的方程求出N 的横坐标,进而求出NOF ∆的面积.【详解】由题意抛物线的标准方程为:28x y =,所以焦点(0,2)F ,准线方程为2y =-, 设NN '垂直于准线交于N ',如图,由抛物线的性质可得NN NF '=,因为23MN MF →→=,可得N 在M ,F 之间,所以22MN NF NN '==,所以1sin 2NN FMN MN ''∠==, 所以3tan FMN '∠=, 即直线MF 3,所以直线MF 的方程为32y x =+,将直线MF 的方程代入抛物线的方程可得:283160x --=,解得3x =或43x(舍), 所以114343||||222NOF N S OF x ∆=⋅=⨯ 43【点睛】本题主要考查抛物线的几何性质,抛物线的定义,三角形的面积公式,属于中档题. 20.8【分析】双曲线:的右焦点到渐近线的距离为4可得的值由条件以为圆心2为半径的圆与双曲线仅有1个交点由双曲线和该圆都是关于轴对称的所以这个点只能是双曲线的右顶点即根据可求得答案【详解】由题意可得双曲线 解析:8【分析】双曲线C :()222210,0x y a b a b-=>>的右焦点2F 到渐近线的距离为4,可得b 的值,由条件以2F 为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于x 轴对称的,所以这个点只能是双曲线的右顶点.即2c a -=,根据2222++16c a b a ==可求得答案.【详解】 由题意可得双曲线的一条渐近线方程为b y x a =, 由焦点2F 到渐近线的距离为44=,即4b =.双曲线C 上到2F 的距离为2的点有且仅有1个,即以2F 为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于x 轴对称的,所以这个点只能是双曲线的右顶点.所以2c a -=,又2222++16c a b a ==即2216c a -=,即()()16c a c a -+=,所以8c a +=.所以双曲线的右顶点到左焦点1F 的距离为8c a +=.所以这个点到双曲线C 的左焦点1F 的距离为8.故答案为:8【点睛】本题考查双曲线的性质,属于中档题.三、解答题21.(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭. 【分析】(1)根据向量数量积坐标运算公式求解即可得结果;(2)设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y y x x +=--,通过计算化简即可求得定点.【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a =所以椭圆C 的方程为2219x y += (2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my n x y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>, ∴12229mn y y m -+=+,212299n y y m -=+, 因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0, ∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n = 直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫ ⎪⎝⎭. 【点睛】求定点问题常见的方法有两种:(1)从特殊入手,求出定点,再证明这个点与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定点.22.//AB CD ,理由见解析.【分析】利用AM MO ⊥得M 是以OA 为直径的圆与椭圆的交点,解方程组求得M 点坐标.可求得AB k ,由数量积为0得CMD ∠的角平分线垂直于OA ,从而0MC MD k k +=,设直线:CD y kx m =+,()11,C x y ,()22,D x y ,直线方程代入椭圆方程后应用韦达定理得1212,x x x x +,代入0MC MD k k +=可求得参数关系以13k =-或22m k =+(过点M ,舍),由此可得两直线的位置关系.【详解】解:由题意(4,0)A -,因为AMB 是以M 为直角顶点的三角形,所以以AO 为直径的圆()2224x y ++=与椭圆223:11616x y C +=交于点M ,联立2222(2)4311616x y x y ⎧++=⎪⎨+=⎪⎩,解得:22x y =-⎧⎨=⎩或22x y =-⎧⎨=-⎩或40x y =-⎧⎨=⎩(舍), 不妨设()2,2M -,则(2,2)B -,2012(4)3AB k --==---. 由0MC MD OA MC MD ⎛⎫ ⎪⋅+= ⎪⎝⎭可得:CMD ∠的角平分线垂直于OA , 所以0MC MD k k +=,易知直线CD 斜率存在,设直线:CD y kx m =+,()11,C x y ,()22,D x y ,联立22311616y kx m x y =+⎧⎪⎨+=⎪⎩,得:()2221363160k x kmx m +++-=, 即122613km x x k -+=+,212231613m x x k-=+, 所以121222022MC MD y y k k x x --+=+=++, 即()12122(22)480kx x k m x x m ++-++-=,代入韦达定理可得:()()()4318311k m k k +=++, 所以13k =-或22m k =+(过点M ,舍)因为13AB k =-,所以//AB CD . 【点睛】关键点点睛:本题考查直线与椭圆相交问题,解题方法是“设而不求”的思想方法,即设交点坐标为1122(,),(,)x y x y ,设直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +(需要根据方便性,可能得1212,y y y y +),由题意中条件得出0MC MD k k +=,代入1212,x x x x +后可求得参数关系或参数值.从而判断出结论.23.(1)2214x y +=;(2)存在圆心在原点的圆2245x y +=满足条件. 【分析】(1)先利用椭圆定义得到48a =,结合离心率求得参数a ,c ,再解得b ,即得到方程;(2)先假设圆存在,设方程)(22201x y r r +=<<,讨论直线PQ 斜率存在时与椭圆有两个交点满足题意,结合直线PQ 是圆的切线,解得半径,再验证斜率不存在该圆也满足题意,即得结果.【详解】解:(1)结合椭圆的定义可知,1AF B △的周长为4a,故48a c a=⎧⎪⎨=⎪⎩,解得2a c =⎧⎪⎨=⎪⎩ ∴2221b a c =-=,故椭圆C 的方程为2214x y +=; (2)假设满足条件的圆存在,其方程为)(22201x y r r +=<<, 当直线PQ 的斜率存在时,设其方程为y kx t =+, 由2214y kx t x y =+⎧⎪⎨+=⎪⎩,消去y 整理得)(222148440k x ktx t +++-=. 设)(11,P x y ,)(22,Q x y ,则())()(2228414440kt k t ∆=-+->,即2214<+t k , 122814kt x x k +=-+,21224414t x x k-=+.① ∵OP OQ ⊥,∴12120x x y y +=.又11y kx t =+,22y kx t =+.∴)()(12120x x kx t kx t +++=,即)()(22121210k x x kt x x t ++++=.② 将①代入②得)()(2222222144801414k t k t t k k +--+=++,即)(2224115t k k =+<+. ∵直线PQ 与圆222x y r +=相切,∴圆心()0,0到直线y kx t =+的距离d 等于半径r ,即)(0,15r d ====, ∴存在圆2245x y +=满足条件. 当直线PQ 的斜率不存在时,圆2245x y +=也满足条件. 综上所述,存在圆心在原点的圆2245x y +=使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥.【点睛】思路点睛:圆锥曲线中求与直线相关的问题,通常需要联立方程,得到二次方程后利用韦达定理、结合题中条件(比如斜率关系,向量关系,距离关系,面积等)直接计算,即可求出结果,运算量较大.24.(1)2215x y +=(2【分析】(1)根据顶点坐标得到1b =,根据离心率c e a ==,结合222a b c =+得到25a =,则可得椭圆的标准方程;(2)联立直线与椭圆,利用弦长公式可求得结果.【详解】 (1)依题意设椭圆的标准方程为22221x y a b+=(0)a b >>, 则1b =,c a =,所以22221a b c ⎫=+=+⎪⎪⎝⎭,解得25a =, 所以椭圆的标准方程为2215x y +=. (2)由(1)知(2,0)F ,则直线:l 1(2)2y x =-, 联立221(2)215y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y 并整理得22009x x -=, 设1122(,),(,)A x y B x y , 则12209x x +=,120x x =,所以||AB ==20299==. 【点睛】结论点睛:斜率为k 的直线l 与圆锥曲线交于11(,)A x y 、22(,)B x y两点,则弦长||AB =25.(1)22143x y +=;(2)2(7-,0). 【分析】(1)由椭圆的定义可得12||||2PF PF a +=,则1||PF的范围[a c -,]a c +,由数量积及1||PF 的范围可得数量积的最值,由题意可得a ,c 的值,由a ,b ,c 之间的关系求出b 的值,进而求出椭圆的方程;(2)设M ,N 的坐标,直线MN 的方程与椭圆的方程联立求出两根之和及两根之积,由题意求出A 的坐标,由以MN 为直径的圆过点A ,可得·0AM AN =,着力可得m ,k的关系,进而可得直线恒过定点.【详解】(1)因为P 是椭圆任意一点,所以12||||2PF PF a +=, 且1a c PF a c -+,所以222121212121·cos (||4)2y PF PF PF PF F PF PF PF c ==∠=+- 2222221111[||(2)4]()22PF a PF c PF a a c =+--=-+-, 当1PF a =时,y 有最小值222a c -,当1PF a c =-或a c +时,y 有最大值22a c -,由题意可得2222322a c a c ⎧-=⎨-=⎩,解得21c =,24a =,所以2223b ac =-=, 所以椭圆的方程为:22143x y +=; (2)设1(M x ,1)y ,2(N x ,2)y ,将直线y kx m =+与椭圆联立22143y kx m x y =+⎧⎪⎨+=⎪⎩,整理可得222(34)84120k x kmx m +++-=,∆2222644(34)(412)0k m k m =-+->,可得2234m k <+, 122834km x x k -+=+,212241234m x x k -=+,2222222222221212122222412834312()34343434k m k k m m m k m k y y k x x km x x m k k k k -+-=+++=-+=++++,因为点(6,4)D -关于直线6y x =+的对称点为A ,设(,)A x y , 则46622416y x y x +-⎧=+⎪⎪⎨-⎪=-⎪+⎩,解得:2x =-,0y =, 所以(2,0)A -,即椭圆的左顶点,因为以MN 为直径的圆过点A ,所以·0AN AM =,所以1(2x +,12)?(2y x +,2)0y =,整理可得:1212122()40x x x x y y ++++=,所以2222224121631240343434m km m k k k k---++=+++,整理可得:2271640m km k -+=,可得27m k =或2m k =都满足判别式大于0, 若27m k =时,直线l 的方程为:2()7y k x =+,则直线恒过定点2(7-,0); 若2m k =时,直线l 的方程为:(2)y k x =+,则直线恒过定点(2,0)-.为左顶点(舍去).【点睛】关键点点睛:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查定点定值问题,解决本题的关键点是将以MN 为直径的圆过点A ,转化为向量·0AN AM =,再利用坐标代入计算,考查了学生逻辑推理能力和计算能力,属于中档题.26.(1)22142x y +=;(2)10x y --=. 【分析】(1)已知条件得2b c ==,再求得a ,可得椭圆标准方程;(2)当直线l 的斜率为0时,12k k 的值,当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,代入椭圆方程整理后应用韦达定理得1212,y y y y +,计算12k k ,化为m 的函数,然后换元,设41t m =+,求出12k k 的最大值,及m 的值得直线方程.【详解】(1)由已知得2b c ==.又2224a b c =+=, 所以椭圆的方程为22142x y +=. (2)①当直线l 的斜率为0时,则12k k ⋅=33342424⨯=-+; ②当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,将1x my =+代入22142x y +=,整理得22(2)230m y my ++-=. 则12222m y y m -+=+,12232y y m -=+. 又111x my =+,221x my =+, 所以,112134y k k x -⋅=-2234y x -⋅-1212(3)(3)(3)(3)y y my my --=-- 12122121293()93()y y y y m y y m y y -++=-++=2232546m m m ++=+23414812m m +=++.。

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。

人教版高中数学选修2-1圆锥曲线测试1

人教版高中数学选修2-1圆锥曲线测试1

圆锥曲线-章末检测一、选择题1.双曲线3x 2-y 2=9的实轴长是( ) A .2 3B .2 2C .4 3D .4 22.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为 ( ) A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 3.对抛物线y =4x 2,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为⎝⎛⎭⎫0,116 C .开口向右,焦点为(1,0)D .开口向右,焦点为⎝⎛⎭⎫0,116 4.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 5.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px (p >0)的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 26.设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为 ( )A .4B .3C .2D .17.过抛物线y =ax 2 (a >0)的焦点F 的一条直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则1p +1q等于 ( ) A .2aB.12a C .4a D.4a 8.已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝⎛⎭⎫14,-1 B.⎝⎛⎭⎫14,1 C.⎝⎛⎭⎫12,-1 D.⎝⎛⎭⎫12,1 9.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ) A.22 B. 2 C.322 D .2 2 10.已知a >b >0,e 1与e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b2=1的离心率,则lg e 1+lg e 2的值( ) A .一定是正值B .一定是零C .一定是负值D .符号不确定11.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( ) A. 2 B .2 2 C .4 D .8 12.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左,右焦点分别为F 1,F 2,若在双曲线的右支上存在一点P ,使得|PF 1|=3|PF 2|,则双曲线的离心率e 的取值范围为( ) A .[2,+∞)B .[2,+∞)C .(1,2]D .(1,2] 二、填空题13.已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为______.14.椭圆x 24+y 2=1的两个焦点F 1,F 2,过点F 1作垂直于x 轴的直线与椭圆相交,其中一个交点为P ,则|PF 2|=______.15.双曲线8kx 2-ky 2=8的一个焦点为(0,3),那么k =________.16.若椭圆mx 2+ny 2=1 (m >0,n >0)与直线y =1-x 交于A 、B 两点,过原点与线段AB 的中点的连线斜率为22,则n m 的值为________.17.已知双曲线与椭圆x 236+y 249=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为37,求双曲线的方程.18.已知双曲线x 29-y 216=1的左、右焦点分别为F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=90°,求△F 1PF 2的面积.19.如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.20.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M为PD 上一点,且|MD |=45|PD |. (1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.21.已知椭圆G :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△P AB 的面积.22.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →. (1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.答案1.A 2.D 3.B 4.A 5.C 6.C 7.C 8.A 9.C 10.C 11.C 12.C 13.12 14.72 15.-1 16. 217.解 椭圆x 236+y 249=1的焦点为(0,±13),离心率为e 1=137.由题意可知双曲线的焦点为(0,±13),离心率e 2=133,∴双曲线的实轴长为6. ∴双曲线的方程为y 29-x 24=1. 18.解 由双曲线方程x 29-y 216=1, 可知a =3,b =4,c =a 2+b 2=5.由双曲线的定义,得|PF 1|-|PF 2|=±2a =±6,将此式两边平方,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|.又∵∠F 1PF 2=90°,∴|PF 1|2+|PF 2|2=100=36+2|PF 1|·|PF 2|,∴|PF 1|·|PF 2|=32,∴S △F 1PF 2=12|PF 1|·|PF 2| =12×32=16. 19.解 (1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y 得x 2-4x -4b =0,(*)因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b )=0,解得b =-1.(2)由(1)可知b =-1,故方程(*)即为x 2-4x +4=0,解得x =2,代入x 2=4y ,得y =1.故点A (2,1),因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-1)|=2, 所以圆A 的方程为(x -2)2+(y -1)2=4.20.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y , ∵P 在圆上, ∴x 2+(54y )2=25,即轨迹C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x -3), 设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程, 得x 225+(x -3)225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+1625)(x 1-x 2)2=4125×41=415. 21.解 (1)由已知得c =22,c a =63. 解得a =23,又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m x 212+y 24=1,得4x 2+6mx +3m 2-12=0.① 设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2) (x 1<x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4; 因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m 4-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322, 所以△P AB 的面积S =12|AB |·d =92. 22.解 直线l 的方程为x =2y -4.由⎩⎪⎨⎪⎧x 2=2py x =2y -4,得2y 2-(8+p )y +8=0, ∴⎩⎪⎨⎪⎧ y 1y 2=4 ①y 1+y 2=8+p 2 ②, 又∵AC →=4AB →,∴y 2=4y 1,③由①,②,③及p >0得:y 1=1,y 2=4,p =2,则抛物线G 的方程为x 2=4y .(2)设l :y =k (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y y =k (x +4)得x 2-4kx -16k =0,④ ∴x 0=x C +x B 2=2k ,y 0=k (x 0+4)=2k 2+4k . ∴线段BC 的中垂线方程为 y -2k 2-4k =-1k(x -2k ), ∴线段BC 的中垂线在y 轴上的截距为b =2k 2+4k +2=2(k +1)2,对于方程④,由Δ=16k 2+64k >0得:k >0或k <-4.∴b ∈(2,+∞).。

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(含答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(含答案解析)(4)

一、选择题1.若圆锥曲线C :221x my +=的离心率为2,则m =( )A .BC .13-D .132.已知抛物线24x y =上的一点M 到此抛物线的焦点的距离为2,则点M 的纵坐标是( ) A .0B .12C .1D .23.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 且平行于一条渐近线的直线l 与另一条渐近线交于点A ,l 与双曲线交于点B ,若2BF AB =,则双曲线的离心率为( )A .3B C D .24.若点)0到双曲线C :22221x y a b-=(0a >,0b >)的离心率为( )A B .2C 2D 5.过抛物线24y x =焦点F ,斜率为k (0k >)的直线交抛物线于A ,B 两点,若3AF BF =,则k =( )A B .2C .2D .16.过原点O 的直线交双曲线E :22221x y a b-=(0,0a b >>)于A ,C 两点,A 在第一象限,12,F F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若222,23OA OF CF BF ==,则双曲线E 的离心率为( )A .5B .4C .5D .57.已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D8.设(,)P x y 8=,则点P 的轨迹方程为( )A .22+1164x y =B .22+1416x y =C .22148x y -=D .22184x y -=9.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ). A .312+ B .622+ C .31+ D .62+10.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91611.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A 3B .23C .33D .43312.已知点P 是椭圆22:110064x y C +=上一点,M ,N 分别是圆22(6)1x y -+=和圆22(6)4x y ++=上的点,那么||||PM PN +的最小值为( )A .15B .16C .17D .18二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______.15.已知椭圆()222210x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>具有相同的焦点1F ,2F ,且在第一象限交于点P ,设椭圆和双曲线的离心率分别为1e ,2e ,若123F PF π∠=,则2212e e +的最小值为_______.16.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______. 17.曲线C 是平面内与两个定点()11,0F -和()21,0F 的距离的积等于常数()21aa >的点的轨.给出下列四个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则122PF PF a +<;④若点P 在曲线C 上,则12FPF △的面积212S a ≤.其中,所有正确的序号是______.18.点(,)P x y 是曲线22:143x y C +=上一个动点,则2x 的取值范围为______.19.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为 ________. 20.设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左右焦点,过2F 的直线交椭圆于两点P ,Q ,若160F PQ ∠=︒,1PF PQ =,则椭圆的离心率为______.三、解答题21.已知椭圆1C :22221(0)x y a b a b +=>>1C 的一个短轴端点恰好是抛物线2C :24x y =的焦点F . (1)求椭圆1C 的方程;(2)过点F 的直线交抛物线2C 于,M N 两点,连接NO ,MO ,线段NO ,MO 的延长线分别交椭圆1C 于A ,B 两点,记OMN 与OAB 的面积分别为OMN S △、OAB S,设OMNOAB SSλ=-,求λ的取值范围.22.已知椭圆C :()222210x y a b a b+=>>的左、右顶点分别为A ,B 且左、右焦点分别为1F ,2F ,点P 为椭圆C 上的动点,在点P 的运动过程中,有且只有6个位置使得12PF F 为直角三角形,且12PF F 的内切圆半径的最大值为22-.(1)求椭圆C 的标准方程;(2)过点B 作两条互相垂直的直线交椭圆C 于M ,N 两点,记MN 的中点为Q ,求点A 到直线BQ 的距离的最大值.23.已知坐标平面内第一象限的点P 到两个定点()1,0M -,()1,0N 距离的比3PM PN=.(1)若点P 的纵坐标为2,求点P 的横坐标;(2)若点N 到直线PM 的距离为1,求直线PM 的点法向式方程和直线PN 的点方向式方程.24.已知直线1:1l y x =+与抛物线2:2(0)C y px p =>相切于点P . (1)求抛物线C 的方程及点P 的坐标; (2)设直线2l 过点11,22Q ⎛⎫--⎪⎝⎭,且与抛物线C 交于(异于点P)两个不同的点A 、B ,直线PA ,PB 的斜率分别为1k 、2k ,那么是否存在实数λ,使得12k k λ+=?若存在,求出λ的值;若不存在,请说明理由.25.如图,A 为椭圆2212x y +=的下顶点,过点A 的直线l 交抛物线22(0)x py p =>于,B C 两点,C 是AB 的中点.(1) 求证:点C 的纵坐标是定值;(2)过点C 作与直线l 倾斜角互补的直线l '交椭圆于,M N 两点.问:p 为何值时,BMN △的面积最大?并求面积的最大值.26.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫⎪⎝⎭,求直线PA 的斜率;(2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-,123m =⇒=-, 故选C.2.C解析:C 【解析】试题分析:先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p 到焦点的距离与到准线的距离相等,进而推断出y p +1=2,求得y p . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=﹣1, 根据抛物线定义, ∴y p +1=2, 解得y p =1. 故选C .考点:抛物线的简单性质.3.B解析:B 【分析】设直线l 的方程为()by x c a=--,求得点A 的坐标,由2BF AB =,可得出23FB FA =,利用平面向量的坐标运算求出点B 的坐标,将点B 的坐标代入双曲线的标准方程,可得出a 、c 齐次等式,由此可解得该双曲线的离心率. 【详解】 如下图所示:设直线l 的方程为()b y x c a=--,则直线OA 的方程为by x a =,联立()b y x a b y x c a ⎧=⎪⎪⎨⎪=--⎪⎩,解得22c x bcy a ⎧=⎪⎪⎨⎪=⎪⎩,即点,22c bc A a ⎛⎫ ⎪⎝⎭, 设点(),B m n ,由2BF AB =可得出23FB FA =, 即()2,,,32233c bc c bc m c n a a ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,即33c m c bc n a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得233c m bc n a ⎧=⎪⎪⎨⎪=⎪⎩,则点2,33c bc B a ⎛⎫⎪⎝⎭, 将点B 的坐标代入双曲线的标准方程得222222241993c b c e a a b -==,解得3e =3 故选:B. 【点睛】本题考查双曲线离心率的求解,利用平面向量的坐标运算求出点B 的坐标是解题的关键,考查计算能力,属于中等题.4.A解析:A 【分析】先求得双曲线C 的其中一条渐近线方程0bx ay -=,根据点)30,到双曲线C 的渐近线2223c a =,即可求得双曲线的离心率. 【详解】由题意,双曲线C :22221x y a b-=的其中一条渐近线方程为b y x a =,即0bx ay -=,因为点)0到双曲线C==2232b c =,即222332c a c -=,即223c a =,所以==ce a故选:A. 【点睛】本题考查了双曲线的标准方程及几何性质,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).5.A解析:A 【分析】将直线方程代入抛物线可得212224k x x k++=,121=x x ,由3AF BF =可得1232x x =+,联立方程即可解出k .【详解】由题可得()1,0F ,则直线方程为()1y k x =-,将直线代入抛物线可得()2222240k x k x k -++=,设()()1122,,,A x y B x y ,则212224k x x k++=,121=x x , 由抛物线定义可得121,1AF x BF x =+=+,3AF BF =,则1232x x =+,结合212224k x x k++=可得1222312,x x k k =+=,代入121=x x , 则223121k k⎛⎫+⋅=⎪⎝⎭,由0k >,可解得k = 故选:A. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.6.D解析:D 【分析】根据题意得1F A AB ⊥,设22BF m =,则23CF m =,13AF m =,再结合双曲线的定义得1222,32BF a m AF m a =+-=,故在1Rt FAB 中由勾股定理得1514m a =,在12Rt F AF △中结合勾股定理和1514m a =,得222553c a =,进而得答案..【详解】设1F 为双曲线E 的左焦点,连接112,,AFBF CF , 取2AF 的中点M ,由2=OA OF ,得OM AB ⊥,又O 为12F F 的中点,故1F A AB ⊥,设22BF m =,则23CF m =,由1211||||||22OM AF CF ==得13AF m =. 根据双曲线的定义得1222,32BF a m AF m a =+-=, 在1Rt F AB 中,有()()()22235222=m m a m a -++, 化简得1514m a =,在12Rt F AF △中,有()()()2223322m m a c +-=, 结合1514m a =,得222553c a =,所以53e = 故选:D. 【点睛】本题考查双曲线的离心率的求解,解题的关键在于根据已知得1F A AB ⊥,同时注意到该题构成了焦点三角形,故借助定义,利用三角形的边角关系即可222553c a =,进而求解.考查运算求解能力,是中档题.7.B解析:B 【分析】首先利用DF DA =,求点D 的坐标,再利用DF 与渐近线垂直,构造关于,a c 的齐次方程,求离心率. 【详解】由条件可知(),0F c -,(),0A a ,由对称性可设条件中的渐近线方程是by x a=,线段FA 的中垂线方程是2a c x -=,与渐近线方程by x a =联立方程,解得()2b a c y a-=,DF DA =,即(),22b a c a c D a -⎛⎫- ⎪⎝⎭,因为DF 与渐近线b y x a =垂直,则()()22b ac a a a c b c -=----,化简为2232222b c ab a a c b c ac a c -=+⇔=+, 即22b ac a =+,即2220c ac a --=,两边同时除以2a , 得220e e --=,解得:1e =-(舍)或2e =. 故选:B 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:c e a ===,3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.8.B解析:B 【分析】由椭圆的定义可得出点P 的轨迹是以12,F F 为焦点的椭圆,其中28a =,c =可得出椭圆的标准方程. 【详解】由题意可知,点(,)P x y到点1F的距离与到点2(0,F -的距离之和为定值8,并且128F F >=,所以点P 的轨迹是以12,F F 为焦点的椭圆,所以28,4a a ==,因为c =22216124b a c =-=-=,所以点P 的轨迹方程为22+=1416x y .故选:B. 【点睛】关键点点睛:解决本题的关键在于熟悉、灵活运用椭圆的定义,求出椭圆的焦点的位置,椭圆中的,,a b c .9.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=,又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C . 【点睛】关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.10.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=, 由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.11.D解析:D设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440y ky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k -⋅=-,所以3||3k =, 又||1OF =,所以OPQ △的面积S =121143||||18||223OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.12.C解析:C 【分析】由题意画出图形,数形结合以及椭圆的定义转化求解即可. 【详解】解:如图,椭圆22:110064x y C +=的10a =,8b =,所以6c =,圆22(6)1x y -+=和圆22(6)4x y ++=的圆心为椭圆的两个焦点,则当M ,N 为如图所示位置时,||||PM PN +的最小值为2(21)17a -+=. 故选:C . 【点睛】本题考查椭圆的简单性质,考查了椭圆定义的应用,考查数形结合的解题思想方法,属于二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB 方程为3)4y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±15.【分析】由题意设焦距为椭圆长轴长为双曲线实轴为令在双曲线的右支上由已知条件结合双曲线和椭圆的定义推出由此能求出的最小值【详解】由题意设焦距为椭圆长轴长为双曲线实轴为令在双曲线的右支上由双曲线的定义由【分析】由题意设焦距为2c ,椭圆长轴长为2a ,双曲线实轴为2m ,令P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出2222a m c +=,由此能求出2212e e +的最小值.【详解】由题意设焦距为2c ,椭圆长轴长为2a ,双曲线实轴为2m , 令P 在双曲线的右支上,由双曲线的定义12||||2PF PF m -=, 由椭圆定义12||||2PF PF a +=, 可得1PF m a =+,2PF a m =-, 又123F PF π∠=,2221212||?4PF PF PF PF c +-=,可得222()()()()4m a a m m a a m c ++--+-=,得22234a m c +=,即222234a m c c+=, 可得2212134e e +=, 则222212122212113()()4e e e e e e +=++ 2221221231(13)4e e e e =+++ 123(423)42++=, 当且仅当213e e =,上式取得等号,可得2212e e +的最小值为223+. 故答案为:223+. 【点睛】本题考查椭圆和双曲线的性质,主要是离心率,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用.16.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b a c =-=-=,所以,32b =. 故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.17.②④【分析】由题意曲线是平面内与两个定点和的距离的积等于常数利用直接法设动点坐标为及可得到动点的轨迹方程然后由方程特点即可加以判断【详解】解:对于①由题意设动点坐标为则利用题意及两点间的距离公式的得解析:②④ 【分析】由题意曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2(1)a a >,利用直接法,设动点坐标为(,)x y ,及可得到动点的轨迹方程,然后由方程特点即可加以判断. 【详解】解:对于①,由题意设动点坐标为(,)x y ,则利用题意及两点间的距离公式的得:22224[(1)][(1)]x y x y a ++-+=,将原点代入验证,此方程不过原点,所以①错;对于②,把方程中的x 被x -代换,y 被y - 代换,方程不变,故此曲线关于原点对称,故②正确;对于③,221y x =--,224211y x a ∴+=--,P ∴到原点的距离不,当P 在y 轴时取等号,此时12PF PF a ==,122PF PF a +=故③错误;对于④,由题意知点P 在曲线C 上,则△12F PF 的面积12122F PF Sy y =⨯⨯=,由①知221y x =--或221y x =--t ,则2424t a x -=,24442211(2)4444t a a a y t t -∴=--+=--+,1222212F PF S y a ∴=,故④正确.故答案为:②④. 【点睛】本题考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性及利用解析式选择换元法求出值域.18.【分析】可设则其中可得的取值范围【详解】由点是曲线上一个动点可设则其中又则故答案为:【点睛】本题考查了椭圆参数方程的应用辅助角公式三角函数的值域属于中档题 解析:[5,5]-【分析】可设2cos ,x y θθ==,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,可得2x 的取值范围. 【详解】由点(,)P x y 是曲线22:143x yC +=上一个动点,可设2cos ,x y θθ==,[0,2)θπ∈,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,又5sin()θα+[5,5]∈-,则2x [5,5]∈-. 故答案为:[5,5]-. 【点睛】本题考查了椭圆参数方程的应用,辅助角公式,三角函数的值域,属于中档题.19.【分析】过P 做准线的垂线根据定义可得将所求最小转化为的最小结合图像分析出当PA 与抛物线相切时最小联立直线与抛物线方程根据判别式求出PA 斜率k 进而可得的值代入所求即可【详解】由题意可得抛物线的焦点准线解析:2【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PMPAM PA=∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。

上海大同中学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(有答案解析)

上海大同中学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(有答案解析)

一、选择题1.设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦分别是1F ,2F ,过1F 的直线交双曲线C 的左支于M ,N 两点若212=MF F F ,且112MF NF =,则双曲线C 的离心率是( ) A .2B .32C .54D .532.双曲线222:19x y C b-=的左、右焦点分别为1F 、2,F P 在双曲线C 上,且12PF F ∆是等腰三角形,其周长为22,则双曲线C 的离心率为( )A .89B .83C .149D .1433.已知过抛物线()220y px p =>的焦点F 的直线交抛物线于A ,B 两点,线段AB 的延长线交抛物线的准线于点M .若2BM =,3AF =,则AB =( ) A .4B .5C .6D .74.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .25.(),0F c 是椭圆22221x y a b+=(0a b >>)的右焦点,过原点作一条倾斜角为60︒的直线交椭圆于P 、Q 两点,若2PQ c =,则椭圆的离心率为( )A .12B 1C D 6.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A .⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .1112⎫⎪⎣⎭ D .11,112⎛⎫⎪⎝⎭7.已知1F 、2F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过1F 作垂直于x 轴的直线交双曲线于A 、B 两点,若260AF B ∠<,则双曲线的离心率的范围是( )A. B.)+∞C.⎛ ⎝ D.8.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( ) A.2B1 C1D.2+9.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=10.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥( )A.⎛ ⎝⎦B.2]C.1⎤⎥⎝⎦D.1]11.以下关于圆锥曲线的命题中是真命题为( )A .设,AB 是两定点,k 为非零常数,若||||PA PB k -=,则动点P 的轨迹为双曲线的一支;B .过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;C .方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;D .双曲线221925x y -=与椭圆22135y x +=有相同的焦点.12.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D二、填空题13.已知双曲线()222210,0x y a b a b-=>>与圆222x y b +=在第二、四象限分别相交于两点A 、C ,点F 是该双曲线的右焦点,且2AF CF =,则该双曲线的离心率为______. 14.双曲线M 的焦点是12,F F ,若双曲线M 上存在点P ,使12PF F ∆是有一个内角为23π的等腰三角形,则M 的离心率是______;15.椭圆2214924x y +=上一点P 与椭圆的两个焦点12,F F 的连线相互垂直,则12PF F △的面积为______.16.已知直线1y x =-+与椭圆22221(0)x y a b a b+=>>相交于,A B 两点,且线段AB 的中点M 在直线20x y -=上,则椭圆的离心率为_______.17.已知双曲线C :()222210,0x y a b a b-=>>的右焦点2F 到渐近线的距离为4,且在双曲线C 上到2F 的距离为2的点有且仅有1个,则这个点到双曲线C 的左焦点1F 的距离为______.18.已知直线:10l x y -+=与椭圆221169x y+=交于,A B 两点,若椭圆上存在一点P 使得PAB ∆面积最大,则点P 的坐标为________.19.若椭圆2222:1(0)y x E a b a b +=>>的上、下焦点分别为1F 、2F ,双曲线222211615x y -=的一条渐近线与椭圆E 在第一象限交于点P ,线段2PF 中点的纵坐标为0,则椭圆E 的离心率为________.20.设点P 是抛物线24y x =上的一个动点,F 为抛物线的焦点,若点B 的坐标为()4,2,则PB PF +的最小值为________.三、解答题21.已知双曲线22:145x y C 的左、右顶点分别为A ,B ,过右焦点F 的直线l 与双曲线C 的右支交于P ,Q 两点(点P 在x 轴上方). (1)若3PF FQ =,求直线l 的方程; (2)设直线,AP BQ 的斜率分别为12,k k ,证明:12k k 为定值. 22.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为8(1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.23.如图,已知抛物线22(0)y px p =>上一点(4,)(0)M a a >到抛物线焦点F 的距离为5.(1)求抛物线的方程及实数a 的值;(2)过点M 作抛物线的两条弦MA ,MB ,若MA ,MB 的斜率分别为1k ,2k ,且123k k +=,求证:直线AB 过定点,并求出这个定点的坐标.24.已知双曲线C 过点()4,3,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.25.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由. 26.求下列曲线的标准方程.(1)求焦点在x 轴上,焦距为2,过点31,2P ⎛⎫⎪⎝⎭的椭圆的标准方程;(2)求与双曲线2212x y -=有公共焦点,且过点的双曲线标准方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意画出图形,结合图形建立关于c 、a 的关系式,再求离心率ce a=的值. 【详解】 解:如图所示,取1F M 的中点P ,则2122MF FF c ==,MP c a =-,1F P c a =-;又112NF MF =,则()14NF c a =-,242NF c a =-; 在2Rt NPF △中,22222NP PF NF +=, 在2Rt MPF △中,22222MP PF MF +=,得()()()()22224252c a c a c c a ---=--⎡⎤⎣⎦, 化简得223850c ac a -+=, 即()()350c a c a --=, 解得c a =或35c a =; 又1e >, ∴离心率53c e a ==. 故选:D .【点睛】本题考查求双曲线的离心率,解题关键是建立,a c 的等量关系,结合等腰三角形的性质与双曲线的定义可得.2.C解析:C 【分析】由题意画出图形,分类由三角形周长列式求得b ,进一步求得c ,则双曲线的离心率可求. 【详解】如图,由22219x y b-=,得229c b =+,29c b =+.设1||PF m =,2||PF n =, 由题意,6m n -=, 若2229n c b ==+26629m n b =+=++则2266922m n c b ++=++,解得b ∈∅; 若2229m c b ==+26296n m b =-=+.则2269622m n c b ++=+=,解得21159b =.∴222115196999c a b =+=+=,143c =. 1414339c e a ∴===.【点睛】本题考查了双曲线的简单性质,考查了运算求解能力和推理论证能力,属于中档题.3.A解析:A 【分析】设A 、B 在准线上的射影分别为为C 、N ,通过三角形相似,求|BF |,再求出||AB 即可. 【详解】解:设A 、B 在准线上的射影分别为为C 、N ,过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点, 线段AB 的延长线交抛物线的准线l 于点M ,准线与x 轴的交点为H , ||2BM =,||3AF =,∴由BNM AMC ∽,可得||23||5BF BF =+, ||1BF ∴=,||||||4AB AF FB ∴=+=,故选:A .【点睛】本题考查抛物线的定义及其应用,抛物线的几何性质,转化化归的思想方法,属于中档题.4.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2222c a b =+. 【详解】由题意,渐近线方程为by x a=±,∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =, ∴222242224c a b a a=+=+≥当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】设椭圆的左焦点为1F ,连接1,PF PF ,由题 可得1PF PF ⊥且POF 是等边三角形,表示出1,PF PF ,利用勾股定理建立关系即可求出. 【详解】如图所示,设椭圆的左焦点为1F ,连接1,PFPF , 2PQ c =,则PO c =,则1PF PF ⊥,又60POF ∠=,则POF 是等边三角形,即PF c =,12PF PF a +=,12PF a c ∴=-,又22211PF PFF F +=,即()()22222a c c c -+=,整理可得22220c ac a +-=,即2220e e +-=,解得31e =-. 故选:B.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.C解析:C 【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径)r a c =-,然后根据r >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则2c a ≥,从而11212e ≤<.故选:C7.A解析:A 【分析】求出||AB ,根据212||2tan 2||AB AF B F F ∠=tan 30<可得2330e --<,再结合1e >可解得结果. 【详解】因为1(,0)F c -,由22221x c x y a b =-⎧⎪⎨-=⎪⎩解得2b y a =±,所以22||b AB a =,因为260AF B ∠<,所以212||2tan 2||AB AF B F F ∠=tan 30<,所以2323b ac <,所以22323c a ac -<,所以21323e e -<,即232330e e --<, 解得333e -<<,又1e >,所以13e <<. 故选:A 【点睛】关键点点睛:求离心率的取值范围的关键是得到,,a b c 的不等式,根据212||2tan 2||AB AF B F F ∠=tan 30<可得所要的不等式.8.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+, 则12PF F △与12QF F 的面积之比为1212222122222PF F QF F S PF a t S QF a t a -=====+--△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.9.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.10.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围,进而求得()222422c a c <≤-,再求离心率的范围即可【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由113QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()222422c a c <≤-,所以,()222223a c c a c -<≤-,所以,()222113e e e-<≤-,所以,2142e <≤-解得12e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题11.C解析:C 【分析】①根据双曲线定义可得出判断;②不妨在单位圆x 2+y 2=1中,用代入法求得P 的轨迹方程可得判断;③求出方程22520x x -+=根,利用椭圆与双曲线的离心率的范围可得出判断; ④求出双曲线和椭圆的焦点坐标可得答案;【详解】①设A 、B 为两个定点,k 为非零常数,当||||||PA PB k AB -==时,则动点P 的轨迹是以A 为端点的一条射线线,因此不正确; ②∵()12OP OA OB =+,∴P 为弦AB 的中点,不妨在单位圆x 2+y 2=1中,定点A (1,0),动点11(,)B x y ,设P (x ,y ),用代入法求得P 的轨迹方程是212x ⎛⎫- ⎪⎝⎭+y 2=14,∴点P 的轨迹为圆,错误;③解方程22520x x -+=可得两根12,2.因此12可以作为椭圆的离心率,2可以作为双曲线的离心率,因此方程的两根可分别作为椭圆和双曲线的离心率,正确;④由双曲线221925x y -=可得c ,其焦点(,同理可得椭圆22135y x +=焦点为(0,,因此没有相同的焦点,错误; 综上可知:其中真命题的序号为 ③. 故选:C . 【点睛】本题综合考查了圆锥曲线的定义、标准方程及其性质,考查了推理能力,属于中档题.12.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =. 5ce a∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.二、填空题13.【分析】画出图形结合双曲线的性质判断四边形的形状结合双曲线的定义求出三角形的边长通过勾股定理转化求解双曲线的离心率即可【详解】解:双曲线的右焦点为左焦点为根据对称性可知是平行四边形所以又点在双曲线上 解析:222【分析】画出图形,结合双曲线的性质判断四边形的形状,结合双曲线的定义求出三角形的边长,通过勾股定理转化求解双曲线的离心率即可. 【详解】解:双曲线的右焦点为F ,左焦点为E ,根据对称性可知AFCE 是平行四边形,所以 ||2||2||AF CF AE ==,又点A 在双曲线上,所以||||2AF AE a -=,因为||2||AF CF =,所以||||2||||2AF AE CF CF a -=-=,所以||2CF a =,在三角形OFC 中,||2FC a =,||OC b =,||OF c =,||4AF a =, 可得222162cos a b c bc AOF =+-∠, 22242cos a b c bc COF =+-∠,可得22222202242a b c c a =+=-, 即:22112a c =,所以双曲线的离心率为:22e =. 故答案为:222.【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,属于中档题.14.【分析】根据双曲线的对称性可知等腰三角形的腰应该为与或与不妨设等腰三角形的腰为与故可得到的值再根据等腰三角形的内角为求出的值利用双曲线的定义可得双曲线的离心率【详解】解:根据双曲线的对称性可知等腰三 31+ 【分析】根据双曲线的对称性可知,等腰三角形的腰应该为2PF 与12F F 或1PF 与12F F ,不妨设等腰三角形的腰为2PF 与12F F ,故可得到2PF 的值,再根据等腰三角形的内角为23π,求出1PF 的值,利用双曲线的定义可得双曲线的离心率.【详解】解:根据双曲线的对称性可知,等腰三角形的两个腰应为2PF 与12F F 或1PF 与12F F , 不妨设等腰三角形的腰为2PF 与12F F ,且点P 在第一象限, 故22PF c =, 等腰12PF F ∆有一内角为23π, 即2123PF F π∠=, 由余弦定理可得,()()cos2212PF 2c 2c 22c 2c 23c 3π=+-•••=, 由双曲线的定义可得,||12PF PF 23c 2c 2a -=-=,即(31)c a =,解得:e = 【点睛】本题考查了双曲线的定义、性质等知识,解题的关键是要能准确判断出等腰三角形的腰所在的位置.15.24【分析】设由结合椭圆定义可求得从而易得三角形面积【详解】椭圆中设由则又∴∴故答案为:24【点睛】本题考查椭圆的焦点三角形面积问题考查椭圆的定义属于基础题解析:24 【分析】设12,PF m PF n ==,由12PFPF ⊥结合椭圆定义可求得mn ,从而易得三角形面积. 【详解】椭圆2214924x y +=中7a =,b =5c =,设12,PF m PF n ==,由12PFPF ⊥,则()2222100m n c +==,又214m n a +==, 2224100214m n c m n a ⎧+==⎨+==⎩,∴2222()()141004822m n m n mn +-+-===, ∴121242PF F S mn ==△. 故答案为:24. 【点睛】本题考查椭圆的焦点三角形面积问题,考查椭圆的定义,属于基础题.16.【分析】设联立直线与椭圆的方程利用韦达定理求得线段的中点M 的坐标根据点M 在直线上求解【详解】设由得由韦达定理得所以线段的中点M 又M 在直线上所以即所以解得故答案为:【点睛】本题主要考查直线与椭圆的位置解析:2【分析】设()()1122,,,A x y B x y ,联立直线与椭圆的方程,利用韦达定理求得线段AB 的中点M 的坐标,根据点M 在直线20x y -=上求解. 【详解】设()()1122,,,A x y B x y ,由222211y x x y ab =-+⎧⎪⎨+=⎪⎩得()222222220a b x a x a a b +-+-=,由韦达定理得22221221222222,,10a b x x y y a b a ba b∆,所以线段AB 的中点M222222,a b a ba b ,又M 在直线20x y -=上, 所以22222220a b a b a b ,即2222222a b a c ==-, 所以222a c =,解得e =【点睛】本题主要考查直线与椭圆的位置关系,离心率的求法以及弦中点问题,还考查了运算求解的能力,属于中档题.17.8【分析】双曲线:的右焦点到渐近线的距离为4可得的值由条件以为圆心2为半径的圆与双曲线仅有1个交点由双曲线和该圆都是关于轴对称的所以这个点只能是双曲线的右顶点即根据可求得答案【详解】由题意可得双曲线解析:8 【分析】双曲线C :()222210,0x y a b a b-=>>的右焦点2F 到渐近线的距离为4,可得b 的值,由条件以2F 为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于x 轴对称的,所以这个点只能是双曲线的右顶点.即2c a -=,根据2222++16c a b a ==可求得答案. 【详解】由题意可得双曲线的一条渐近线方程为by x a=, 由焦点2F 到渐近线的距离为44=,即4b =.双曲线C 上到2F 的距离为2的点有且仅有1个,即以2F 为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于x 轴对称的,所以这个点只能是双曲线的右顶点. 所以2c a -=,又2222++16c a b a ==即2216c a -=,即()()16c a c a -+=,所以8c a +=. 所以双曲线的右顶点到左焦点1F 的距离为8c a +=. 所以这个点到双曲线C 的左焦点1F 的距离为8. 故答案为:8 【点睛】本题考查双曲线的性质,属于中档题.18.【分析】先设与直线平行的直线求出直线与圆锥曲线相切时的直线方程再求两平行线的最大距离即可根据面积公式求出面积最大值【详解】解:由题意可得弦长为定值要使面积最大则只要点到直线的距离最大当平行于直线的直解析:169,55⎛⎫- ⎪⎝⎭【分析】先设与直线:10l x y -+=平行的直线:0l x y m '-+=,求出直线与圆锥曲线相切时的直线方程,再求两平行线的最大距离,即可根据面积公式求出PAB ∆面积最大值. 【详解】解:由题意可得弦长AB 为定值,要使PAB ∆面积最大, 则只要点P 到直线:10l x y -+=的距离最大, 当平行于直线l 的直线与椭圆相切时, 对应的切点到直线l 的距离最大或最小. 设直线:0l x y m '-+=直线与椭圆联立得22:01169l x y m x y -+='⎧⎪⎨+=⎪⎩, 化简得222532161440x mx m ++-=,则()22(32)425161440m m ∆=-⨯-=,解得5m =±.当5m =时,直线l '与直线l的距离为d == 当5m =-时,直线l '与直线l的距离为d ==∴当5m =-时, 2251602560x x -+=,解得165x =, 代入直线:50l x y '--=,解得95y =- 即点P 的为坐标169,55⎛⎫-⎪⎝⎭.故答案为: 169,55⎛⎫- ⎪⎝⎭ 【点睛】本题主要考查直线与圆锥曲线的位置关系,考查了直线与椭圆交点坐标,是中档型的综合题.19.【分析】求出椭圆的焦点坐标利用已知条件求解点坐标再代入双曲线的渐近线方程转化求解椭圆的离心率即得【详解】由题可得点由线段中点的纵坐标为0得点的纵坐标为又点在椭圆上且在第一象限则有解得点的横坐标为由双解析:35【分析】求出椭圆的焦点坐标,利用已知条件,求解P 点坐标,再代入双曲线222211615x y -=的渐近线方程,转化求解椭圆的离心率即得. 【详解】由题可得点2(0,)F c -,由线段2PF 中点的纵坐标为0,得点P 的纵坐标为c ,又点P 在椭圆上且在第一象限,则有22221c x a b +=,解得点P 的横坐标为2b a ,由双曲线222211615x y -=,得渐近线1516y x =与椭圆交于点2(,)P b c a ,则有21516b c a =,整理得2215()160a c ac --=,即215(1)160e e --=,由01e <<,得35e =.故答案为:35e = 【点睛】本题考查椭圆和双曲线的性质,属于中档题.20.【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求的最小值进而可推断出当三点共线时最小则答案可得【详解】设点在准线上的射影为则根据抛物线的定义可知所以要求取得最小值即求取得最小当三 解析:5【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,进而把问题转化为求PB PD +的最小值,进而可推断出当D 、P 、B 三点共线时PB PD +最小,则答案可得. 【详解】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,所以,要求PB PF +取得最小值,即求PB PD +取得最小, 当D 、P 、B 三点共线时PB PD +最小为()415--=. 故答案为:5. 【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D 、P 、B 三点共线时PB PD +最小是解题的关键,考查数形结合思想的应用,属于中等题. 三、解答题21.(1)22620x y --=;(2)证明见解析. 【分析】(1)设直线PQ 方程为3x my =+,()11,P x y ,()22,Q x y ,根据条件得出05m <<,分别求出P Q ,的纵坐标,由条件可得12PF yFQ y =可得答案. (2)由()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---,所以154APPBk k k == ,所以1225544PB PB PQ k k k k k k =⋅⋅=,要证12k k 为定值,只需证54PB BQ k k ⋅为定值,由()()121212122211BP BQ y y y y k k x x my my ⋅=⋅=--++,可得答案. 【详解】解:(1)设直线PQ 方程为3x my =+,()11,P x y ,()22,Q x y222235(3)4205420x my my y x y =+⎧⇒+-=⎨-=⎩()225430250m y my ⇒-++=由过右焦点F 的直线l 与双曲线C 的右支交于P ,Q 两点,则()()22222540300542505430425540m m m m m m ⎧-≠⎪-⎪>⎪-⎪⎨⎪<-⎪⎪∆=-⨯⨯->⎪⎩,205m ⇒<<由点P 在x 轴上方,则()()2212223020130201,254254m m m m y y m m --+-++==-- ()()222230201321123342230201321PF m m m m m FQ m m m m --+++==-⇒=⇒==--++--+ ∴直线l 方程为23226204x y x y =+⇒--=(2)由方程可得()()2,0,2,0A B -,设()11,P x y ,()22,Q x y 则()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---, 所以154AP PBk k k ==,所以1225544PB PB PQ k k k k k k =⋅⋅= 要证12k k 为定值,只需证54PB BQ k k ⋅为定值由(1)可知1223054my y m -+-=,1222554y y m =- ()()121212122211BP BQ y y y y k k x x my my ⋅=⋅=--++()2222121222252554542530115454m m mm y y m y y m m m m --==-+++⋅+⋅+--22225252530544m m m ==--+-∴125414255k k ⎛⎫=⋅-=- ⎪⎝⎭为定值. 【点睛】关键点睛:本题考查直线与双曲线的位置关系求直线方程和考查定值问题,解答本题的关键是先得出()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---,所以154AP PB k k k == ,所以1225544PB PB PQ k k k k k k =⋅⋅=,要证12k k 为定值,只需证54PB BQ k k ⋅为定值,属于中档题. 22.(1)2214x y +=;(2)存在圆心在原点的圆2245x y +=满足条件.【分析】(1)先利用椭圆定义得到48a =,结合离心率求得参数a ,c ,再解得b ,即得到方程;(2)先假设圆存在,设方程)(22201x y r r +=<<,讨论直线PQ 斜率存在时与椭圆有两个交点满足题意,结合直线PQ 是圆的切线,解得半径,再验证斜率不存在该圆也满足题意,即得结果. 【详解】解:(1)结合椭圆的定义可知,1AF B △的周长为4a,故48a c a =⎧⎪⎨=⎪⎩,解得2a c =⎧⎪⎨=⎪⎩ ∴2221b a c =-=,故椭圆C 的方程为2214x y +=;(2)假设满足条件的圆存在,其方程为)(22201x y r r +=<<,当直线PQ 的斜率存在时,设其方程为y kx t =+,由2214y kx t x y =+⎧⎪⎨+=⎪⎩,消去y 整理得)(222148440k x ktx t +++-=. 设)(11,P x y ,)(22,Q x y , 则())()(2228414440kt kt∆=-+->,即2214<+t k ,122814kt x x k +=-+,21224414t x x k-=+.① ∵OP OQ ⊥,∴12120x x y y +=.又11y kx t =+,22y kx t =+.∴)()(12120x x kx t kx t +++=,即)()(22121210k x x kt x x t ++++=.②将①代入②得)()(2222222144801414k t k t t kk +--+=++,即)(2224115t k k =+<+. ∵直线PQ 与圆222x y r +=相切,∴圆心()0,0到直线y kx t =+的距离d 等于半径r ,即)(0,15r d ====, ∴存在圆2245x y +=满足条件. 当直线PQ 的斜率不存在时,圆2245x y +=也满足条件. 综上所述,存在圆心在原点的圆2245x y +=使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥. 【点睛】 思路点睛:圆锥曲线中求与直线相关的问题,通常需要联立方程,得到二次方程后利用韦达定理、结合题中条件(比如斜率关系,向量关系,距离关系,面积等)直接计算,即可求出结果,运算量较大.23.(1)24y x =;4a =;(2)证明见解析;定点48,33⎛⎫- ⎪⎝⎭. 【分析】(1)由抛物线的定义可得求出2p =,再代入4x =可求出a ; (2)将()11,A x y ,()22,B x y 代入抛物线可得1212124y y k x x y y -==-+,由123k k +=可得()121281633y y y y =-+-,即可得出定点. 【详解】(1)由题意,452pMF =+=,故2p =,24y x =; 令4x =,可得4y =±,故4a =.(2)设()11,A x y ,()22,B x y ,设直线AB 斜率为k ,联立方程21122244y x y x ⎧=⎨=⎩,两式相减得22121244y y x x -=-,即1212124y y k x x y y -==-+, 故直线AB 方程为()21111244y y y k x x x y y ⎛⎫-=-=- ⎪+⎝⎭,即1212124y y y x y y y y =-++;1144MA k k y ==+,2244MB k k y ==+, ∴121244344MA MB k k k k y y +=+=+=++,即()121281633y y y y =-+-; 因此,直线AB 为12121212444833y y y x x y y y y y y ⎛⎫=-=++ ⎪+++⎝⎭经过定点48,33⎛⎫- ⎪⎝⎭. 【点睛】本题考查抛物线中直线过定点问题,解题的关键是得出直线斜率124k y y =+,由123k k +=得出()121281633y y y y =-+-. 24.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=;(2)设直线l 的方程为1x my =+,设定点(,0)Q t联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠,设()11,M x y ,()22,N x y , ∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关. ∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=.【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.25.(1)2212x y +=;(2)存在;1)y x =-.【分析】(1)由余弦定理可得12d d +=.(2)设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=,先假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,与椭圆方程联立,韦达定理代入求出k 的值,再检验斜率不存在的情况.【详解】(1)当0θ≠时,在ABM 中,由余弦定理得:22121242cos2d d d d θ=+-.又212cos1d d θ=,整理得,12d d +=所以点M 的轨迹E 是以(1,0)A -和(1,0)B 为焦点,长轴长为个端点)又当点M 为该椭圆的长轴的两个端点时,0θ=,也满足212cos1d d θ=.所以点M 的轨迹E 的方程是2212x y +=.(2)假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222124220k x k x k +-+-= 设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,由韦达定理得,2122412k x x k +=+,21222212k x x k-=+. 由题意以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=.又()()()212121212111y y k x k x k x x x x =--=-++⎡⎤⎣⎦, 整理得:()212121210x k x x x x x =⎡-+⎤⎣⎦++.代入整理得:22222222222410121212k k k k k k k ⎛⎫--+-+= ⎪+++⎝⎭,即k = 当直线l 的斜率不存在时,直线l 的方程为1x =,此时P ⎛ ⎝⎭、1,Q ⎛ ⎝⎭,经验证0OP OQ ⋅≠不满足题意.综上所述,所求直线l存在,其方程为1)y x =-. 【点睛】关键点睛:本题考查求轨迹方程和根据条件求直线方程,解答本题的关键是由以线段PQ 为直径的圆过原点,得0OP OQ ⋅=,即12120x x y y +=,转化为方程联立韦达定理代入求解,将条件转化为向量的数量积为0,进而转化为利用韦达定理求解的方法,属于中档题.26.(1)22143x y +=;(2)2212y x -=. 【分析】(1)由题意知1c =,根据椭圆的定义求出2a =,根据222b a c =-得到23b =,从而可得椭圆的标准方程;(2)根据2212x y -=求出焦点坐标,设所求双曲线的标准方程为22221(,0)x y m n m n -=>,代入点并利用223m n +=可求得1m =,n =而可得结果. 【详解】(1)由题意知1c =,焦点1(1,0)F -,2(1,0)F ,根据椭圆定义可得12||||2PF PF a +=2a =,所以24a =,2a =,所以222413b a c =-=-=,故椭圆C 的方程为22143x y +=.(2)由2212x y -=得222,1a b ==,所以222213c a b =+=+=,所以c =所以双曲线2212x y -=双曲线的焦点为(,设双曲线的方程为22221(,0)x y m n m n-=>,可得223m n +=,将点代入双曲线方程可得,22221m n -=,解得1m =,n =即有所求双曲线的方程为:2212y x -=.【点睛】关键点点睛:第一问利用椭圆的定义求出a 是解题关键;第二问根据两个双曲线的半焦距相等求解是解题关键.。

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测题(含答案解析)(1)

(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测题(含答案解析)(1)

一、选择题1.若圆锥曲线C :221x my +=的离心率为2,则m =( )A .BC .13-D .132.若点)0到双曲线C :22221x y a b-=(0a >,0b >)的离心率为( )A B C D 3.(),0F c 是椭圆22221x y a b+=(0a b >>)的右焦点,过原点作一条倾斜角为60︒的直线交椭圆于P 、Q 两点,若2PQ c =,则椭圆的离心率为( )A .12B 1C D 4.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为[42,,则线段AB 的长度的取值范围是( )A .B .[1 , 2]C .[4 8],D .5.已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,M 为E 上一点.若126MF F π∠=,21212F F F M F F +=,则E 的离心率为( )A B C 1 D 16.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )A B .C .2D .47.已知抛物线22y px =(0p >)的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,则点A 到y 轴的距离为( ) A .5B .4C .3D .28.点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为( ) A .14B .12C .2D .49.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,AOBp =( ) A .1B .32C .2D .310.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( ) A.2B1 C1D.2+11.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=12.已知1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,若在右支上存在点A 使得点2F 到直线1AF,则离心率e 的取值范围是( )A.1,2⎛ ⎝⎭ B.2⎛⎫+∞ ⎪ ⎪⎝⎭ C.1,2⎛ ⎝⎭ D.2⎛⎫+∞ ⎪ ⎪⎝⎭二、填空题13.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别是1F ,2F,直线:(l y k x =过点2F ,且与双曲线C 在第一象限交于点P .若(22()0OP OF PF +⋅=(O 为坐标原点),且()121PF a PF +=,则双曲线C 的离心率为__________. 14.数学中有许多形状优美、寓意美好的曲线,曲线22:4C x y x y +=+就是其中之一.曲线C 对应的图象如图所示,下列结论:①直线AB 的方程为:20x y ++=; ②曲线C 与圆228x y +=有2个交点; ③曲线C 所围成的“心形”区域的面积大于12; ④曲线C 恰好经过4个整点(即横、纵坐标均为整数的点). 其中正确的是:________.(填写所有正确结论的编号)15.设12,F F 为椭圆22:14x C y +=的两个焦点,P 为椭圆C 在第一象限内的一点且点P的横坐标为1,则12PF F △的内切圆的半径为__________.16.点(,)P x y 是曲线22:143x yC +=上一个动点,则23x y +的取值范围为______.17.如图,圆O 与离心率为32的椭圆()2222:10x y T a b a b +=>>相切于点()0,1M ,过点M 引两条互相垂直的直线1l ,2l ,两直线与两曲线分别交于点A ,C 与点B ,D (均不重合).若P 为椭圆上任一点,记点P 到两直线的距离分别为1d ,2d ,则2212d d +的最大值是__________.18.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:x0 426y22 2-22-则2C 的虚轴长为______.19.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.已知椭圆1C :22221(0)x y a b a b +=>>的离心率为32,椭圆1C 的一个短轴端点恰好是抛物线2C :24x y =的焦点F . (1)求椭圆1C 的方程;(2)过点F 的直线交抛物线2C 于,M N 两点,连接NO ,MO ,线段NO ,MO 的延长线分别交椭圆1C 于A ,B 两点,记OMN 与OAB 的面积分别为OMN S △、OAB S,设OMNOAB SSλ=-,求λ的取值范围.22.已知椭圆()2222:10x y C a b a b+=>>的离心率63e =,一条准线方程为362x =. (1)求椭圆C 的方程;(2)设,G H 为椭圆上的两个动点,G 在第一象限,O 为坐标原点,若OG OH ⊥,GOH 的面积为3155,求OG 的斜率. 23.如图,设圆2212x y +=与抛物线24x y =相交于A ,B 两点,F 为抛物线的焦点.(1)若过点F 且斜率为1的直线l 与抛物线和圆交于四个不同的点,从左至右依次为1P ,2P ,3P ,4P ,求1234PP P P +的值;(2)若直线m 与抛物线相交于M ,N 两点,且与圆相切,切点D 在劣弧AB 上,求MF NF +的取值范围.24.已知圆22:12O x y +=,P 为圆O 上的动点,点M 在x 轴上,且M 与P 的横坐标相等,且()21PN NM =-,点N 的轨迹记为C .(1)求C 的方程;(2)设()2,2A ,()4,0B ,过B 的直线(斜率不为±1)与C 交于,D E 两点,试问直线AD 与AE 的斜率之和∑是否为定值?若是,求出该定值;若不是,求∑的取值范围.25.已知椭圆()2222:10x y M a b a b +=>>的一个顶点坐标为()2,0-线y x m =-+交椭圆于不同的两点A 、B .(1)求椭圆M 的方程;(2)设点()2,2C -,是否存在实数m ,使得ABC 的面积为1?若存在,求出实数m 的值;若不存在,说明理由.26.点A 是抛物线21:2(0)C y px p =>与双曲线2222:1(0)y C x b b-=>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p . (1)求双曲线2C 的方程;(2)若直线:1l y kx =-与双曲线的右支交于两点,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-,123m =⇒=-, 故选C.2.A解析:A【分析】先求得双曲线C 的其中一条渐近线方程0bx ay -=,根据点)0到双曲线C 的渐近线223c a =,即可求得双曲线的离心率. 【详解】由题意,双曲线C :22221x y a b-=的其中一条渐近线方程为b y x a =,即0bx ay -=,因为点)0到双曲线C==2232b c =,即222332c a c -=,即223c a =,所以==ce a故选:A. 【点睛】本题考查了双曲线的标准方程及几何性质,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).3.B解析:B 【分析】设椭圆的左焦点为1F ,连接1,PF PF ,由题 可得1PF PF ⊥且POF 是等边三角形,表示出1,PF PF ,利用勾股定理建立关系即可求出. 【详解】如图所示,设椭圆的左焦点为1F ,连接1,PFPF , 2PQ c =,则PO c =,则1PF PF ⊥,又60POF ∠=,则POF 是等边三角形,即PF c =,12PF PF a +=,12PF a c ∴=-,又22211PF PFF F +=,即()()22222a c c c -+=,整理可得22220c ac a +-=,即2220e e+-=,解得1e =. 故选:B.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.C解析:C 【分析】 由题可求得2121222ABF AF F BF F cSSS=+=,2222ABF EABEBF EAF S SSSa =++=,即可得出2aAB c=,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222c a∴=,2a AB c ∴=, 22c e a =∈⎣⎦,,2,22a c ⎤∴∈⎦,则[]24,8ac∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出22aAB c=⋅可求解. 5.B解析:B 【分析】先取线段1F M 中点P ,连接2PF ,得到2c P F =,结合正弦定理证明12F PF ∠是直角,求出12,F M MF ,再根据定义122FM MF a +=得到,a c 之间关系,即求得离心率. 【详解】如图椭圆中,取线段1F M 中点P ,连接2PF ,则21222F F F M F P+=,因为21212F F F M F F +=,所以21222F F F P c ==,则2c P F =,12F F P 中,1212122sin sin F F M P F F F P F F =∠∠,即122sin sin6c P F F c π=∠,解得12in 1s P F F =∠,又()120,F PF π∠∈,12F PF ∠=2π,故13F P c =,2PF 是线段1F M 的中垂线,故121223,2FM c MF F F c ===,结合椭圆定义122FM MF a +=, 故2322c c a +=,即)31c a =,故离心率31231c e a ===+. 故选:B. 【点睛】求椭圆离心率(或取值范围)的常见方法: (1)直接法:由a ,c 直接计算离心率c e a=; (2)构建齐次式:利用已知条件和椭圆的几何关系构建关于a ,b ,c 的方程和不等式,利用222b a c =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.6.C解析:C 【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a . 【详解】椭圆22183x y +=的半焦距为c∴双曲线中215a +=,∴2a =(∵0a >).故选:C . 【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.7.C解析:C 【分析】可设出直线方程与抛物线方程联立,得出12x x ,再由焦半径公式表示出3AF FB =,得到1232x x =+,结合这两个关系式可求解13x = 【详解】已知焦点F 到准线的距离为2,得2p =, 可得24y x =设()()1122,,,A x y B x y ,:1AB x my =+ 与抛物线方程24y x =联立可得:2440y my --=124y y ∴=-,()21212116y y x x ∴==①又3AF FB =,()12131x x ∴+=+,1232x x ∴=+② 根据①②解得13x = 点A 到y 轴的距离为3 故选:C 【点睛】抛物线中焦半径公式如下:抛物线()220y px p =>的焦点为F ,()11,A x y 为抛物线上的一点,则12pAF x =+,解题时可灵活运用,减少计算难度.8.B解析:B 【分析】设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆的方程联立,列出韦达定理,计算出12k k 的值,利用基本不等式可求得21221k k +的最小值. 【详解】设点()11,P x y 、()22,Q x y ,联立226544x my x y ⎧=+⎪⎨⎪+=⎩,消去x 并整理得()22126440525m y my ++-=, 由韦达定理可得()1221254y y m +=-+,()12264254y y m =-+,设直线AQ 的斜率为k ,则222y k x =+,2222y k x =-,所以,()222222222222212244444y y y y k k x x x y ⋅=⋅===-+----,214k k ∴=-, 而()12121212121212121625616162252555y y y y y y k k m x x m y y y y my my ⋅=⋅==++⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭()()()22222642541641922561625254254m m m m m -+==---+++,因此,222112211162k k k k +=+≥==, 当且仅当18k =±时,等号成立, 因此,21221k k +的最小值为12. 故选:B.【点睛】关键点点睛:解本题的关键在于求得214AQ k k =-,进而利用韦达定理法求得1AQ k k ⋅为定值,再结合基本不等式求得最值.9.C解析:C 【分析】求出双曲线的渐近线方程与抛物线22(0)y px p =>的准线方程,进而求出A ,B 两点的坐标,再由双曲线的离心率为2,AOBp 的值. 【详解】解:双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线方程是b y x a=±,又抛物线22(0)y px p =>的准线方程是2px =-, 故A ,B 两点的纵坐标分别是2pb y a=±, 又由双曲线的离心率为2,所以2c a =2=,则b a = A ,B两点的纵坐标分别是2=±y , 又AOB=,得2p =, 故选:C . 【点睛】本题解题的关键是求出双曲线的渐近线方程和抛物线的准线方程,解出A ,B 两点的坐标,考查离心率公式和三角形的面积公式.10.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得t a =,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入t =计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+, 则12PF F △与12QF F 的面积之比为()121222223123323822231233PF F QF F a a S PF a t S QF a t a --+=====+---+△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.11.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =()()2221x y x ++-=,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.12.D解析:D 【分析】设直线1AF 的方程,利用点2F 到直线的距离建立等式,解出斜率k ,因为0bk a<<,从而求出,a c 的不等关系,进而解出离心率的范围. 【详解】设1AF :()y k x c =+,因为点A 在右支上,则0b k a<<,,所以222222343a b k c a a =<-,即2247c a >,解得:e >故选:D . 【点睛】本题考查双曲线求离心率,属于中档题.方法点睛:(1)利用点到直线的距离建立等量关系; (2)解出斜率k 与,a b 的关系;(3)由点在右支和左焦点的位置关系,求出斜率k 的范围; (4)利用斜率k 的范围,建立,a c 的不等式,求出离心率的范围.二、填空题13.【分析】取的中点则根据得则设根据结合双曲线的定义得到然后在中利用勾股定理求解即可【详解】如图取的中点则因为所以即因为是的中位线所以由题意可得设则由双曲线的定义可知则即故在中由勾股定理得即整理得解得故【分析】取2PF 的中点H ,则22OP OF OH +=,根据22()0OP OF PF +⋅=,得2OH PF ⊥,则12PF PF ⊥,设2PF m =,根据()121PF a PF +=结合双曲线的定义得到2||2PF =,122PF a =+,然后在12Rt PF F 中,利用勾股定理求解即可.【详解】 如图,取2PF 的中点H ,则22OP OF OH +=, 因为22()0OP OF PF +⋅=,所以20OH PF ⋅=,即2OH PF ⊥.因为OH 是12PF F △的中位线,所以12PF PF ⊥.由题意可得10c =,设2PF m =,则()11PF a m =+, 由双曲线的定义可知12||2PF PF a -=,则2am a =,即2m =, 故2||2PF =,122PF a =+.在12Rt PF F 中,由勾股定理得2221122||||PF PF F F +=, 即()242240a ++=,整理得2280a a +-=, 解得2a =.故双曲线C 的离心率为10c a =. 故答案为:102【点睛】本题主要考查双曲线的几何性质和定义的应用以及平面几何的知识,平面向量垂直问题,还考查了数形结合的思想和运算求解的能力,属于中档题.14.②③【分析】求出点结合直线方程的知识可判断①;联立方程可求出交点坐标即可判断②;在曲线上取点由可判断③;求出整点即可判断④【详解】对于①曲线令则;令则;所以点所以直线AB 的方程为:即故①错误;对于②解析:②③ 【分析】求出点()2,0A ,()0,2B ,结合直线方程的知识可判断①;联立方程可求出交点坐标,即可判断②;在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,由ADEFG S 可判断③;求出整点即可判断④. 【详解】 对于①,曲线22:4C xy x y +=+,令0x =,则2y =±;令0y =,则2x =±; 所以点()2,0A ,()0,2B ,所以直线AB 的方程为:221x y+=即20x y +-=, 故①错误;对于②,由222248x y x y x y ⎧+=+⎨+=⎩可得22x y =⎧⎨=⎩或22x y =-⎧⎨=⎩, 所以曲线C 与圆228x y +=有2个交点()2,2,()2,2-,故②正确;对于③,在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,顺次连接各点,如图,则12442122ADEFG S =⨯+⨯⨯=, 所以曲线C 所围成的“心形”区域的面积大于12,故③正确;对于④,曲线经过的整点有:()2,0±,()0,2±,()2,2±,有6个,故④错误. 故答案为:②③. 【点睛】本题考查了曲线与方程的应用,考查了运算求解能力与转化化归思想,合理转化条件是解题关键,属于中档题.15.【分析】由点的横坐标为1代入得出点的纵坐标继而求得的面积S 再设的内切圆的半径为由可得答案【详解】因为点的横坐标为1所以点的纵坐标为所以的面积设的内切圆的半径为所以即所以故答案为:【点睛】本题考查椭圆 解析:333【分析】由点P 的横坐标为1,代入得出点P 的纵坐标,继而求得12PF F △的面积S ,再设12PF F △的内切圆的半径为r ,由()(12121232S F F PF PF r r =++⨯=+,可得答案.因为点P 的横坐标为1,所以点P 的纵坐标为2P y =12PF F △的面积121322P F F y S ⋅==,设12PF F △的内切圆的半径为r ,所以()(1212122S F F PF PF r r =++⨯=+,即(322r +=,所以3r =.故答案为:3 【点睛】本题考查椭圆的方程和椭圆的定义,以及焦点三角形的相关性质,属于中档题.16.【分析】可设则其中可得的取值范围【详解】由点是曲线上一个动点可设则其中又则故答案为:【点睛】本题考查了椭圆参数方程的应用辅助角公式三角函数的值域属于中档题 解析:[5,5]-【分析】可设2cos ,x y θθ==,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,可得2x 的取值范围. 【详解】由点(,)P x y 是曲线22:143x y C +=上一个动点,可设2cos ,x y θθ==,[0,2)θπ∈,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,又5sin()θα+[5,5]∈-,则2x [5,5]∈-. 故答案为:[5,5]-. 【点睛】本题考查了椭圆参数方程的应用,辅助角公式,三角函数的值域,属于中档题.17.【分析】首先根据题意求出椭圆的标准方程设根据勾股定理和得到再利用二次函数的性质即可得到最大值【详解】由题知:解得椭圆设因为则又因为即所以因为所以当时取得最大值为故答案为:【点睛】本题主要考查直线与椭 解析:163首先根据题意求出椭圆的标准方程,设()00,P x y ,根据勾股定理和12l l ⊥得到()2222012201PMx d y d ==+-+,再利用二次函数的性质即可得到最大值.【详解】由题知:2221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a =,1b =,椭圆22:14xT y +=.设()00,P x y ,因为12l l ⊥,则()2222012201PMx d y d ==+-+又因为220014x y +=,即220044x y =-.所以()22222120001161=33434d d y y y ⎛⎫=+--++ ⎪⎝⎭+-.因为011y -≤≤,所以当031y =-时,2212d d +取得最大值为163. 故答案为:163【点睛】本题主要考查直线与椭圆的综合应用,同时考查了学生的计算能力,属于中档题.18.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.19.【分析】计算得到故为正三角形计算面积得到答案【详解】抛物线的焦点准线为l :由抛物线的定义可得由直角三角形的斜边上的中线等于斜边的一半可得即有为正三角形由F 到l 的距离为则的面积是故答案为:【点睛】本题 解析:43【分析】计算得到AF AK =,FK AF =,故AKF ∆为正三角形,4AK =,计算面积得到答案. 【详解】抛物线24y x =的焦点()1,0F ,准线为l :1x =-,由抛物线的定义可得AF AK =, 由直角三角形的斜边上的中线等于斜边的一半,可得FK AF =, 即有AKF ∆为正三角形,由F 到l 的距离为2d =,则4AK =,AKF ∆的面积是316434⨯=. 故答案为:43.【点睛】本题考查了抛物线中的面积问题,确定AKF ∆为正三角形是解题的关键.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了1【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫ ⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=, ∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.(1)2214x y +=;(2)[1,)+∞.【分析】(1)解关于,,a b c 的方程组即得解;(2)求出OMNS =1OABS=,即得λ的取值范围.【详解】解:(1)因为椭圆1C 的一个短轴端点恰好是抛物线2C :24x y =焦点()0,1F ,所以1b =.由2c a =,222a b c =+,解得2a =, 所以椭圆1C 的方程为2214x y +=.(2)因为过F 的直线交2C 于M ,N 两点,所以直线的斜率存在, 设直线方程为1y kx =+,()11,M x y ,()22,N x y ,联立241x y y kx ⎧=⎨=+⎩,故2440x kx --=.216160k ∆=+>恒成立,121244x x kx x +=⎧⎨=-⎩,由121211122OMNS OF x x x x =⨯-=⨯⨯-, 故()22221212121144444OMNSx x x x x x k ⎡⎤=-=+-=+⎣⎦,所以OMNS=不妨设()22,N x y 在第一象限,所以设直线ON :11(0)y k x k =>,则12214y k xx y =⎧⎪⎨+=⎪⎩,解得A ⎛⎫, 设直线OM :2y k x =,同理B ⎛⎫, 又因为22121212121212144164x x y y x x k k x x x x =⋅===-⋅,可得B ⎛⎫. 又因为点A 到直线OB的距离d ==所以11122OABSd OB =⋅⋅==.所以211OMNOABS Sλ=-=≥.综上:λ的取值范围是[1,)+∞. 【点睛】方法点睛:圆锥曲线中的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解.22.(1)22193x y += (2)k =k =【分析】(1)由离心率可得c a =2a c ,结合222b a c =-可得答案.(2)设直线OG 的方程为y kx =,则0k >,可得出点G 的坐标,求出OG 的长度,由OG OH ⊥,则1OHk k=-,从而可得OH 的长度,由125GOHS OH OG =⨯⨯=建立方程可得答案. 【详解】 (1)由离心率3c e a ==,一条准线方程为x =2a c两式相乘可得23c a a a c ⨯===,所以c则222963b a c =-=-=所以椭圆C 的方程为:22193x y +=(2)由G 在第一象限,设直线OG 的方程为y kx =,则0k >由22193y kxx y =⎧⎪⎨+=⎪⎩,得22931x k =+,则222931k y k =+所以OG == 由OG OH ⊥,则1OHk k =-,所以OH ==所以2119225GOHSOH OG =⨯⨯=⨯=化简得4231030k k -+=,解得23k =或213k =所以直线OG的斜率为k =3k =【点睛】关键点睛:本题考查求椭圆方程和根据三角形面积求直线斜率,解答本题的关键是设出直线OG 的方程为y kx =,表示出OG =OH =的长度,由12GOHSOH OG =⨯⨯=建立方程,属于中档题. 23.(1)1234PP P P +=2)2,22⎡⎤⎣⎦. 【分析】(1)由题意可得直线l 的方程为1y x =+,设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则可得()()12342413PP P P x x x x +=+-+⎤⎦,然后分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组,消元后利用根与系数的关系,可得结果; (2)将圆的方程和抛物线方程联立方程组可求出A ,B 两点的坐标,设()00,D x y ,则切线00:12m x x y y +=,直线方程式与抛物线方程式联立方程组,消元后,再由根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,而02y ≤≤而可求出M N y y +的范围,进而可得MF NF +的取值范围. 【详解】解:由题意,()0,1F ,直线l 的方程为1y x =+设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则)1221PP x x =-,)3443P P x x =-,∴)()()123424132413PP P P x x x x x x x x +=+--=+-+⎤⎦故分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组:22112y x x y =+⎧⎨+=⎩;214y x x y=+⎧⎨=⎩,分别消去y ,整理得:222110x x +-=;2440x x --= ∴131x x +=-,244x x +=,∴1234PP P P +=(2)由222124x y x y⎧+=⎨=⎩解得:()2A -,()2B ,设()00,D x y ,则220012x y +=;切线00:12m x x y y +=,其中02y ≤≤;设(),M M M x y ,(),N N N x y ,则002124x x y y x y+=⎧⎨=⎩,消去x ,整理得: ()2220004241440y y x y y -++=,∴22000022200004244842448244M N x y y y y y y y y y +-++===+-∵02y ≤≤∴20M N y y ⎡⎤+∈⎣⎦∵2M N MF NF y y +=++,∴MF NF +的取值范围为2,22⎡⎤⎣⎦【点睛】关键点点睛:此题考查直线与圆的位置关系,考查直线与抛物线的位置关系,第2问解题的关键是将切线方程与抛物线方程联立方程组002124x x y y x y +=⎧⎨=⎩,进而利用根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,再利用抛物线的定义可求得MF NF +的取值范围,考查数学转化思想和计算能力,属于中档题24.(1)221126x y +=;(2)不是定值;()33,464,,22⎛⎫⎛⎫-∞---+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)设(),N xy ,()00,P x y ,利用()21PN NM =-,根据向量的坐标运算可得00x xy =⎧⎪⎨=⎪⎩,代入圆O 方程可得C 的方程; (2)设()():41DE y k x k =-≠±,()11,D x y ,()22,E x y ,将DE 方程代入椭圆方程可得韦达定理的形式,利用0∆>可得k 的取值范围,将AD AE k k +整理为121kk --,根据k 的范围可求得∑的取值范围. 【详解】(1)设(),N x y ,()00,P x y ,则()0,0M x ,()21PN NM =-,2PM PN NM NM ∴=+=,又()00,PM y =-,()0,NM x xy =--,由2PM NM =得:))00x x y y -=-=-,则00x x y =⎧⎪⎨=⎪⎩,点P 在圆22:12O x y +=上,)2212x ∴+=,即221126x y +=, C ∴的方程为221126x y +=.(2)依题意,设()11,D x y ,()22,E x y ,过点B 的直线DE 斜率必存在, 可设直线DE 的方程为()()41y k x k =-≠±,由()2241126y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 得:()2222211632120k x k x k +-+-=,其中()()()4222256421321216320k k k k∆=-+-=->,解得:22k -<<,()611,11,22k ⎛⎫⎛⎫∴∈--- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 21221621k x x k ∴+=+,2122321221k x x k -=+,()()121212124242222222AD AE k x k x y y k k x x x x ------∴+=+=+----()()()()121222122122k x k k x k x x --+--+=+--()121122122k k x x ⎛⎫=-++ ⎪--⎝⎭()()()121212422124x x k k x x x x +-=-+⋅-++()22222216421221321216242121k k k k k k k k -+=-+⋅--⋅+++()()2221642112221881k k kk k k k -+-=-+⋅=--. ()66,11,11,22k ⎛⎫⎛⎫∈--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()121332,464,,1122k k k -⎛⎫⎛⎫∴=--∈-∞---+∞ ⎪ ⎪--⎝⎭⎝⎭,AD AE k k ∴+不是定值,且∑的取值范围是()33,464,,22⎛⎫⎛⎫-∞---+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定值、取值范围问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出所求量,将所求量转化为关于变量的函数的形式; ④化简所得函数式,消元可得定值或利用函数值域的求解方法求得取值范围.25.(1)2214x y +=;(2)存在,且=m 【分析】(1)由已知条件求出a 的值,结合离心率可求得c 的值,再由a 、b 、c 的关系可求得b 的值,由此可求得椭圆M 的方程;(2)设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆M 的方程联立,列出韦达定理,利用弦长公式求出AB ,求出点C 到直线AB 的距离d ,利用三角形的面积公式可得出关于实数m 的等式,解出m 的值,并验证是否满足0∆>,由此可得出结论. 【详解】(1)由于椭圆()2222:10x y M a b a b+=>>的一个顶点坐标为()2,0-,则2a =,又因为该椭圆的离心率为c a =c =1b ∴=, 因此,椭圆M 的方程为2214x y +=;(2)设点()11,A x y 、()22,B x y ,联立2214y x m x y =-+⎧⎪⎨+=⎪⎩,消去y 并整理得2258440x mx m -+-=, ()()2226445441650m m m ∆=-⨯⨯-=->,解得m <<由韦达定理可得1285m x x +=,212445m x x -=,由弦长公式可得12AB x x =-===,点C 到直线AB的距离为d =,所以,ABC的面积为11122ABCS AB d =⋅===△, 整理可得42420250m m -+=,即()22250m -=,可得252m =,满足0∆>. 因此,存在2=±m ,使得ABC 的面积为1. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.26.(1)2214y x -=;(2)(【分析】(1)取双曲线的一条渐近线:y bx =,与抛物线方程联立即可得到交点A 的坐标,再利用点A 到抛物线的准线的距离为p ,即可得到p ,b 满足的关系式,进而可得答案. (2)根据直线:1l y kx =-与双曲线的右支交于两点,利用韦达定理、判别式列不等式组求解即可. 【详解】(1)取双曲线的一条渐近线y bx =, 联立22y px y bx ⎧=⎨=⎩解得222p x b py b ⎧=⎪⎪⎨⎪=⎪⎩,故222(,)p p A b b .点A 到抛物线的准线的距离为p ,∴222p pp b+=,可得24b = 双曲线222:14y C x -=;(2)联立22114y kx y x =-⎧⎪⎨-=⎪⎩可得()224250k x kx -+-=因为直线:1l y kx =-与双曲线的右支交于两点, 所以()22222045{0442040kk k k k ->-->-∆=+->,解得2k << 所以,k的取值范围(. 【点睛】求双曲线标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出双曲线的标准方程.解决直线与双曲线的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程或不等式,解决相关问题.。

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(答案解析)(3)

(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(答案解析)(3)

一、选择题1.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 在双曲线C 的右支上,点N 在线段12F F 上(不与12,F F 重合),且1230F MN F MN ︒∠=∠=,若2132MN MF MF -=,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±2.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±3.设AB 是过抛物线24y x =的焦点F 的一条弦(与x 轴不垂直),其垂直平分线交x 轴于点G ,设||||AB m FG =,则m =( ) A .23B .2C .34D .34.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D .5.已知点F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,点P 是椭圆C 上的任意一点且点P 不在x 轴上,点M 是线段PF 的中点,点O 为坐标原点.连接OM 并延长交圆222x y a +=于点N ,则PFN 的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由点P 位置决定6.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B .15C .14D .47.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( )A .28y x =B .26y x =C .24y x =D .22y x =8.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .39.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C.(6π-D .54π 10.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-11.双曲线2214x y -=的离心率为( )ABCD12.已知双曲线C 的两个焦点12,F F 都在xM 在C 上,且12MF MF ⊥,MC 的方程为( )A .22148x y -=B .22148y x -=C .2212y x -=D .2212x y -=二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______.15.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的圆上,则双曲线C 的离心率为_____________.16.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______. 17.已知抛物线C :24y x =,点N 在C 上,点()(),00M a a ->,若点M ,N 关于直线()31y x =-对称,则a =_____.18.设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=,则12F PF △的面积等于________.19.如图所示,在正六边形ABCDEF 中,已知两个顶点A 、D 为双曲线W 的两个焦点,其余四个顶点都在双曲线上,则双曲线W 的离心率为________________;20.已知为()0,1A -,当B 在曲线221y x =+上运动时,线段AB 的中点M 的轨迹方程是___________________.三、解答题21.已知A ,B 分别为椭圆()222:11x C y a a +=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=.(1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.22.如图,直线:l x ty n =+与抛物线2:C y x =交于A ,B 两点,且l 与圆22:1O x y +=相切于点()00,P x y .(Ⅰ)证明:00ny t +=; (Ⅱ)求||||PA PB ⋅(用n 表示)23.设椭圆()222210x y a b a b+=>>的左焦点为F 32a b =,其中A 为左顶点,O 为坐标原点.(1)求椭圆离心率e 的值;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线相切,圆心C 在直线1x =上,且//OC AP ,求椭圆方程.24.已知椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,上顶点B 3AB 与圆224:5O x y +=相切. (1)求椭圆C 的方程;(2)设p 椭圆C 上位于第三象限内的动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问四边形ABNM 的面积是否为定值?若是,求出该定值;若不是,请说明理由.25.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫ ⎪⎝⎭,求直线PA 的斜率; (2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值. 26.已知抛物线:()()()222:2,2,0,2,00C y x M a N a a =->,过点M 垂直于x 轴的垂线与抛物线C 交于,B C ,点,D E 满足(),01CE CN ND NB λλλ==<<(1)求证:直线DE 与抛物线有且仅有一个公共点;(2)设直线DE 与此抛物线的公共点Q ,记BCQ △与DEN 的面积分别为12,S S ,求12S S 的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据2132MN MF MF -=可得122F N F N =,所以112MF NMF NS S=,然后用面积公式将两个三角形面积表示出来,可得122MF MF =,再结合122MF MF a -=,余弦定理,可得a 、c 的关系,再利用222c a b =+ ,即可求出ba的值,进而可得渐近线方程. 【详解】∵2132MN MF MF -=,∴2122MN MF MF MN -=-,∴212F N NF =, ∴122F N F N =,∴122MF NMF NS S=.∵111||sin 302MF NSMF MN ︒=⋅⋅⋅,221||sin 302MF NS MF MN ︒=⋅⋅⋅, ∴122MF MF =,又122MF MF a -=,∴ 则124,2MF a MF a ==.在12MF F △中,由余弦定理得,222224164812c a a a a =+-=,故223c a =,∴222b a =,∴ba=,故所求渐近线方程为y =, 故选:B 【点睛】本题主要考查了双曲线离心率的求解,涉及了三角形面积公式、向量的线性运算、余弦定理,属于中档题.2.A解析:A 【分析】结合直线和圆的位置关系以及双曲线的定义求得,a b 的关系式,由此求得双曲线的渐近线方程. 【详解】设直线2PF 与圆222x y a +=相切于点M ,则2,OM a OM PF =⊥, 取线段2PF 的中点N ,连接1NF , 由于1122PF F F c ==, 则122,NF PF NP NF ⊥=,由于O 是12F F 的中点,所以122NF OM a ==,则2NP b ==,即有24PF b =,由双曲线的定义可得212PF PF a -=, 即422b c a -=, 即2,2b c a c b a =+=-,所以()2222b a a b -=+,化简得2434,34,3b b ab b a a ===, 所以双曲线的渐近线方程为43y x =±. 故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.3.B解析:B 【分析】联立直线AB 与抛物线方程,求出E 点坐标以及直线EG 的方程,可得||FG ,利用定义求出弦长||AB ,可得m 的值. 【详解】设:1AB x ty =+,()11,A x y ,()22,B x y ,AB 的中点为()00,E x y ,联立方程组214x ty y x=+⎧⎨=⎩,消去x 得2440y ty --=,所以124y y t +=,12022y y y t +==,2021x t =+,即()221,2E t t +,所以EG 的方程为()2221y t t x t -=---.令0y =,得223x t =+,因此()2||21FG t =+.又12||2AB x x =++=()()2122241t y y t +++=+,所以1||||2FG AB =,从而2m =. 故选:B 【点睛】本题考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.4.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5.B解析:B 【分析】根据定义可得12PF PF a +=,进而得出OM PM a +=,根据MN ON OM =-求出MN PM MF ==,得出90PNF ∠=,即可判断. 【详解】设F 是右焦点,左焦点为1F ,12PF PF a ∴+=,在1PFF 中,,O M 分别是1,FF PF 中点,12,2PF OM PF PM ∴==,1222PF PF OM PM a ∴+=+=,即OM PM a +=,()MN ON OM a a PM PM ∴=-=--=,MN PM MF ∴==,∴N 在以线段PF 为直径的圆上,90PNF ∴∠=,故PFN 的形状是直角三角形. 故选:B.【点睛】本题考查椭圆定义的应用,解题的关键是应用椭圆的定义得出MN PM MF ==,从而判断90PNF ∠=.6.B解析:B 【分析】由曲线的对称性,以及数形结合分析得115b a =,从而求得其离心率. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =,所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.7.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.8.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF FF =,A 为1PF中点,21AF PF ∴⊥, 圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.9.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1125225O l d -==,圆C 面积的最小值为22545ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.10.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.11.C解析:C 【解析】双曲线2214x y -=中,222224,1,5,a b c a b e ==∴=+=∴== 本题选择C 选项.12.C解析:C 【解析】12,MF MF ⊥∴由直角三角形的性质可得1MO FO c ==,又3,c a =21,312a b ∴==-=,C ∴的方程为2212y x -=,故选C. 二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题【分析】由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2bBOA BOF a∠=∠=,解方程即可求解. 【详解】由题意得FA b =,3FB b =,OA a =, 由题得tan tan b BOF AOF a∠=∠=, ∴24tan tan 21()b b b a a BOA BOF b a a+∠==∠=-, 整理得222a b =,即2222()a c a =-, ∴2232a c =,232e =,即e =.故答案为:2【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题.15.【分析】利用直线l 的斜率和点P 在以为直径的圆周上在直角三角形中求出和用定义求出代入离心率公式求解即可【详解】由题意可得则因为直线l 的斜率是3则因为点P 在以为直径的圆周上所以所以则故双曲线C 的离心率为【分析】利用直线l 的斜率和点P 在以12F F 为直径的圆周上,在直角三角形12PF F 中,求出1PF和2PF ,用定义求出a ,代入离心率公式求解即可.【详解】由题意可得2c =,则2124F F c ==.因为直线l 的斜率是3,则12sin 10PF F ∠=,12cos 10PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos 5PF F F PF F =∠=,21212sin 5PF F F PF F =∠=,则2125PF PF a -==,故双曲线C 的离心率为c a =【点睛】本题考查双曲线的性质,考查双曲线定义的应用,考查学生的计算能力,属于中档题.16.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b a c =-=-=,所以,32b =. 故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.17.3【分析】设MN 关于直线对称等价于MN 中点在直线上且MN 与直线斜率相乘为联立方程可用表示再利用在抛物线上将点代入抛物线方程即可求出【详解】设因为点MN 关于直线对称所以中点在直线上且与直线垂直则中点为解析:3 【分析】设()00,N x y ,M ,N 关于直线)31y x =-对称等价于MN 中点在直线上,且MN 与直线斜率相乘为1-,联立方程,可用a 表示00,x y ,再利用()00,N x y 在抛物线上,将点代入抛物线方程,即可求出a . 【详解】设()00,N x y ,因为点M ,N 关于直线)31y x =-对称, 所以MN 中点在直线上,且MN 与直线垂直,则MN 中点为00,22x a y , 003122y x a, 且MN 与直线垂直,0031y x a, 联立方程可得00333,22a a x y ,点N 在抛物线上,2333422a a ,解得3a =或73a =-(舍去), 3a ∴=.故答案为:3 【点睛】本题考查点与点关于直线的对称问题,知道中点在直线上且两点间连线与直线垂直是解决问题的关键.18.1【分析】利用椭圆的定义与勾股定理可得再由三角形面积公式可得结果【详解】因为是椭圆的两个焦点点在椭圆上且满足所以所以则的面积等于故答案为:1【点睛】本题主要考查椭圆的定义与几何性质意在考查学生灵活应解析:1 【分析】利用椭圆的定义与勾股定理可得122PF PF ⋅=,再由三角形面积公式可得结果. 【详解】因为1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=, 所以122221224412PF PF a PF PF c +==⎧⎨+==⎩ ()()222121212216124PF PF PF PF PF PF ⇒⋅=+-+=-=,所以122PF PF ⋅=, 则12F PF △的面积等于12112PF PF ⋅=, 故答案为:1. 【点睛】本题主要考查椭圆的定义与几何性质,意在考查学生灵活应用所学知识解答问题的能力,属于基础题.19.【分析】利用余弦定理求得由双曲线的定义可得的值由此求出的值【详解】解:设正六边形的边长为1中心为以所在直线为轴以为原点建立直角坐标系则在中由余弦定理得故答案为:【点睛】本题考查双曲线的定义和双曲线的 1【分析】利用余弦定理求得AE ,由双曲线的定义可得2a AE DE =- 的值,由此求出e 的值. 【详解】解:设正六边形ABCDEF 的边长为1,中心为O ,以AD 所在直线为x 轴,以O 为原点,建立直角坐标系,则1c =,在AEF ∆中,由余弦定理得22212cos120112()32AE AF EF AF EF =+-︒=+--=,3AE ∴=,231a AE DE =-=-,312a -∴=, 131312c e a∴===+-, 故答案为:31+.【点睛】本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,计算2a AE DE =- 的值是解题的关键.20.【分析】设出的坐标求出的坐标动点在抛物线上运动点满足抛物线方程代入求解即可得到的轨迹方程【详解】解:设的坐标由题意点与点所连线段的中点可知动点在抛物线上运动所以所以所以点与点所连线段的中的轨迹方程是 解析:24y x =【分析】设出M 的坐标,求出P 的坐标,动点P 在抛物线221y x =+上运动,点P 满足抛物线方程,代入求解,即可得到M 的轨迹方程. 【详解】解:设M 的坐标(,)x y ,由题意点B 与点(0,1)A -所连线段的中点M ,可知(2,21)B x y +,动点B 在抛物线221y x =+上运动,所以2212(2)1y x +=+,所以24y x =. 所以点B 与点(0,1)A -所连线段的中M 的轨迹方程是:24y x =. 故答案为:24y x =. 【点睛】本题考查点的轨迹方程的求法,相关点法,是常见的求轨迹方程的方法,注意中点坐标的应用,属于中档题.三、解答题21.(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【分析】(1)根据向量数量积坐标运算公式求解即可得结果;(2)设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点. 【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a = 所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫ ⎪⎝⎭. 【点睛】求定点问题常见的方法有两种:(1)从特殊入手,求出定点,再证明这个点与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定点.22.(Ⅰ)证明见解析;(Ⅱ)||||PA PB ⋅21n n =--,1n ≤-或1n ≥.【分析】(Ⅰ)利用圆心到直线的距离为半径可得221n t =+,结合00x ty n =+以及点P 在圆上可得01nx =,在00x nt y -=消去n 后可得所求证的关系式. (Ⅱ)设()11,A x y ,()22,B x y ,则||||PA PB ⋅可用前者的纵坐标表示,联立直线方程和抛物线方程,消去x 后利用韦达定理化简||||PA PB ⋅,则可得其表达式. 【详解】解:(Ⅰ)若00y =,则直线l 垂直于x 轴,此时0t =,故00ny t +=成立, 若00y ≠,因为直线:l x ty n =+1=,整理得到:221n t =+,又00x ty n =+,故()222022121x n nx n n y y --+=+=, 整理得到2200120nx n x -+=即01nx =,而20000000000011x x x n x x y t ny y y y x ---====-=-即00ny t +=. (Ⅱ)设()11,A x y ,()22,B x y . 联立2x ty ny x=+⎧⎨=⎩,得20y ty n --=,∴12y y t +=,12y y n =-. 由(Ⅰ)可得221n t =+,故1n ≤-或1n ≥,而240t n ∆=+>,故2410n n +->即2n <-2n >- 故1n ≤-或1n ≥.而1020||||PA PB y y ⋅=--()()221201201t y y y y y y =+-++()22222220021t t t t t n ty y n n t n n n n n n--⎛⎫=+--+=--⨯+=-++ ⎪⎝⎭222211n n n n n n--=-++21n n =--,其中1n ≤-或1n ≥. 【点睛】思路点睛:对于直线与抛物线、圆的位置关系的问题,前者可设而不求(即韦达定理)来处理,后者利用几何方法来处理,计算过程中注意判别式的隐含要求以及代数式非负对应范围的影响.23.(1)12;(2)22413y x +=.【分析】(1)由已知等式结合222a b c =+可得离心率ca; (2)由(1)可得椭圆方程为2222143x y c c+=,写出直线l 方程,与椭圆方程联立可求得交点P 坐标,由//OC AP ,求得C 点坐标,这样由圆与x 轴相切得半径,再由圆与直线l 相切,可求得c ,从而得椭圆方程. 【详解】(1)设椭圆的半焦距为c由2222b a b c ⎧=⎪⎨=+⎪⎩得12c e a == (2)由(1)知2,a c b ==故椭圆方程为2222143x y c c+=,由题意(),0F c -,则直线l 的方程为()34y x c =+ 点P 的坐标满足()222214334x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简得到2276130x cx c +-=解得1=x c 或2137cx =-(舍) 代入到l 的方程解得132y c =,所以3,2P c c ⎛⎫ ⎪⎝⎭由圆心C 在直线1x =上,可设()1,C t因为(),2,0OC AP A c -∥,故3212ct c c=+,可得12t=因为圆C 与x 轴相切,所以圆的半径长为12R = 又由圆C 与l相切,圆心到直线的距离12d =,可得12c =所以,1,a b ==椭圆的方程为22413y x +=.【点睛】关键点点睛:本题考查求椭圆的离心率,求椭圆方程,只要知道关于,,a b c 的齐次等式即可求得离心率,用参数c 写出椭圆方程和直线方程,求出交点P 的坐标,从而可得圆心坐标,利用直线与圆相切是解题关键.24.(1)2214x y +=;(2)是定值,定值为2.【分析】(1)由题意可得==,a b 的值,进而可得椭圆的方程;(2)设()()0000,0,0,P x y x y <<从而可表示出直线PA 的方程,然后求出点M 的坐标,得到BM 的值,同理可得到AN 的值,进而可求得四边形ABNM 的面积,得到结论 【详解】(1)解:由题意知直线:AB bx ay ab +=,所以⎧=⎪⎪=2a =,1b =,所以椭圆C 的方程为2214x y +=,(2)证明:设()()22000000,0,0,44P x y x y x y <<+=.因为()()2,0,0,1A B ,所以直线PA 的方程为()0022y y x x =--,令0x =,得0022M y y x =--, 从而002112M y BM y x =-=+-. 直线PB 的方程为0011y y x x -=+令0y =,得001N xx y =--,从而00221N x AN x y =-=+-.所以四边形ABNM 的面积0000211212212x y s AN BM y x ⎛⎫⎛⎫==+⋅+ ⎪ ⎪--⎝⎭⎝⎭‖ ()22000000000000000000444842244222222x y x y x y x y x y x y x y x y x y ++--+--+===--+--+.所以四边形ABNM 的面积为定值2. 【点睛】关键点点睛:解题的关键是由题意将BM ,AN 表示出来,从而可得四边形ABNM 的面积. 25.(1)14-;(2)17. 【分析】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,代入椭圆方程,利用点差法即可求得直线PA 的斜率;(2)设(,)(P x y x -≤≤,圆心(1,0)D -,可得PD 的表达式,利用二次函数性质,即可求得PD 的最小值,进而可得答案. 【详解】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,因为A ,P 两点都在C 上,所以221122221818x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()2121212180x x x x y y y y -++-+=, 因为21122x x +=⨯=,211212y y +=⨯=, 所以212114PA y y k x x -==--. (2)设(,)(P x y x -≤≤,则2218x y +=,圆心(1,0)D -,则222222786||(1)(1)18877x PD x y x x ⎛⎫=++=++-=++ ⎪⎝⎭,当87x时,PD7=. 因为圆D17=.所以PD的最小值为11777-=. 【点睛】解题的关键是熟练掌握点差法的步骤,点差法常见的结论有,设以00(,)P x y 为中点的弦所在斜率为k ,则(1)椭圆22221x y a b +=中,2020y b k x a ⋅=-;(2)双曲线22221x y a b -=中,2020y b k x a⋅=;(3)抛物线22y px =中0p k y =,熟记结论可简化计算,提高正确率,属中档题.26.(1)证明见解析;(2)2. 【分析】(1)由已知先求出,B C ,设(),D x y ,结合题干得ND NB λ=,NE NC λ=,结合向量关系求得,D E 点坐标,利用点斜式得DE l 方程,联立DE l 与抛物线即可求证; (2)结合三角形面积公式得112BCQ S S BC h ==⋅△,212DEN D E S S NG y y ==⋅-△,由(1)的结论可得h ,由直线DE l 方程可求得直线DE 与x 轴交点坐标G ,从而得到NG ,12,S S 作比即可求解. 【详解】()1易知()()222,2,2,2B a a C a a -,设(),D x y ,由ND NB λ=,可得()()222,4,2x a y a a λ+=,故有()()242,2D a a λλ-,同理()()224,(1)2E a a λλ--,于是直线DE 的方程是()()()2124242y a x a aλλλ-=---, 即()224288)2(x ay a λλλ=-+--①与抛物线方程联立, 得到()()22210y a λ--=,此方程有两个相等的根:221()y a λ=-代入①,得()22221x a λ=-,故直线DE 与抛物线有且仅有一个公共点()()()22221,221Q aa λλ--()()()2321112421622BCQ Q S S BC h a a x a λλ==⋅=⋅-=-△ 设直线DE 与x 轴交于()()22282,0G a a λλ--,于是()()223221182822DEN D E S S NG y y a a a λλλλ==⋅-=⋅-=-⋅△故有122S S = 【点睛】方法点睛:本题考查由直线与抛物线的位置关系求证公共点问题,抛物线中三角形的面积问题,考查了数学运算的核心素养,常用以下方法:(1)涉及交点问题常采用直线与曲线联立方程求解法,有且仅有一个公共点可直接求解,若是关于()x y 的一元二次方程,即证0∆=;(2)对于三角形面积问题,较为规则的可直接用公式法求解,对于三角形不规则的,常采用切割法,如本题中的DEN S △.。

人教版高中数学选修2-1第二章单元测试(一)及参考答案

人教版高中数学选修2-1第二章单元测试(一)及参考答案

2018-2019学年选修2-1第二章训练卷圆锥曲线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若椭圆2212x y m+=的离心率为12,则实数m =( )A.32或83B.32C.38D.32或382.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.22136x y -=B.22145x y -=C.22163x y -=D.22154x y -= 3.双曲线2214x y k+=的离心率()1,2e ∈,则k 的取值范围是( )A.(-∞,0)B.(-12,0)C.(-3,0)D.(-60,-12)4.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ) A.圆B.椭圆C.双曲线D.抛物线5.已知两定点()11,0F -,()21,0F ,且1212F F 是1PF 与2PF 的等差中项,则动点P 的轨迹是( ) A.椭圆B.双曲线C.抛物线D.线段6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )C.2D.37.过抛物线24y x =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在8.已知(4,2)是直线l 被椭圆221369x y +=所截得的线段的中点,则l 的方程是( )A.x -2y =0B.x +2y -4=0C.2x +3y +4=0D.x +2y -8=09.过椭圆22142x y +=的右焦点作x 轴的垂线交椭圆于A 、B 两点,已知双曲线的焦点在x 轴上,对称中心在坐标原点且两条渐近线分别过A 、B 两点,则双曲线的离心率e 为( ) A.1210.双曲线()2210x y mn m n-=≠有一个焦点与抛物线24y x =的焦点重合,则m n +的值为( ) A.3 B.2C.1D.以上都不对11.设1F ,2F 是双曲线()222210,0x y a b a b-=><的左、右焦点,点P 在双曲线上,若120PF PF ⋅=,且(122PF PF ac c ⋅==,则双曲线的离心率为( )C.2 12.已知1F ,2F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线右支上此卷只装订不密封班级 姓名 准考证号 考场号 座位号的任意一点,若212PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是( )A.(1,+∞)B.(1,2]C.(D.(1,3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若双曲线的渐近线方程为13y x =±,它的一个焦点是),则双曲线的标准方程是________.14.椭圆22192x y +=的焦点为1F ,2F ,点P 在椭圆上,若14PF =,则2PF =________,12F PF ∠的大小为________. 15.已知1F 、2F 是椭圆22221x ya b+=的左、右焦点,点P 是椭圆上任意一点,从1F 引12F PF ∠的外角平分线的垂线,交2F P 的延长线于M ,则点M 的轨迹方程是________. 16.设1F ,2F 分别为椭圆2213xy +=的左,右焦点,点A ,B 在椭圆上,若125F A F B =,则点A 的坐标是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)求与椭圆22194x y+=有公共焦点,的双曲线方程.18.(12分)已知椭圆()222210x y a b a b+=>>的离心率e =,连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B .已知点A 的坐标为(),0a -,点()00,Q y 在线段AB 的垂直平分线上,且4QA QB ⋅=,求0y 的值.19.(12分)已知过抛物线()220y Px P =>的焦点F 的直线交抛物线于()11,A x y ,()22,B x y 两点.求证:(1)12x x 为定值; (2)11FA FB+为定值.20.(12分)已知)A、()B 两点,动点P 在y 轴上的射影为Q ,22PA PB PQ ⋅=.(1)求动点P 的轨迹E 的方程;(2)设直线M 过点A ,斜率为k ,当0<k <1时,曲线E 的上支上有且仅有一点C 到直线M试求k 的值及此时点C 的坐标.21.(12分)图2设椭圆()22122:10x y C a b a b+=>>,抛物线222:C x by b +=.(1)若2C 经过1C 的两个焦点,求1C 的离心率;(2)设()0,A b,54Q b ⎛⎫ ⎪⎝⎭,又M ,N 为1C 与2C 不在y 轴上的两个交点,若△AMN 的垂心为30,4B b ⎛⎫⎪⎝⎭,且△QMN 的重心在2C 上,求椭圆1C 和抛物线2C 的方程.22.(12分)()()000,P x y x a ≠±是双曲线()2222:10,0x y E a b a b-=>>上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线交于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.2018-2019学年选修2-1第二章训练卷圆锥曲线与方程(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】如果2m <,则c =12=,所以32m =; 如果2m >,则c =12=,则83m =.故选A. 2.【答案】B【解析】∵F (3,0),AB 的中点N (-12,-15),∴1501123ABk --==--. 又∵F (3,0),可设双曲线的方程为22221x y a b -=,易知229a b +=①再设()11,A x y ,()22,B x y ,则有2211221x y a b -=② 2222221x y a b-=③由②-③可得2222121222x x y y a b --=,即()()()()1212121222x x x x y y y y a b -++-= ∴21212212121AB y y x x b k x x a y y -+=⨯==-+. 又∵12122x x +=-,12152y y +=-,∴式可化为2212115b a -⎛⎫⨯= ⎪-⎝⎭,∴2254b a =④ 由①和④可知25b =,24a =,∴双曲线的方程为22145x y -=,故选择B.3.【答案】B【解析】∵24a =,2b k =-,∴24c k =-.∵()1,2e ∈,∴()2241,44c ka -=∈,k ∈(-12,0). 4.【答案】D【解析】设M (2,0),由题设可知,把直线x =-1向左平移一个单位即为直线2x =-,则点P 到直线x =-2的距离等于|PM |,所以动点P 的轨迹为抛物线,故选D.5.【答案】D【解析】依题意知12122PF F F P F +==,作图可知点P 的轨迹为线段,故选D. 6.【答案】B【解析】不妨设双曲线C 为()222210,0x y a b a b-=>>,并设l 过()2,0F c 且垂直于x 轴,则易求得22b AB a=,∴2222b a a =⨯,222b a =,∴离心率c e a ===故选B.7.【答案】B【解析】过抛物线24y x =的焦点作一条直线与抛物线相交于A ,B 两点,若直线AB 的斜率不存在,则横坐标之和等于2,不适合.故设直线AB 的斜率为k ,则直线AB 为()1y k x =-代入抛物线24y x = 得()2222220k x k x k -++=,A ,B 两点的横坐标之和等于5,()22225k k +∴=,243k =,∴这样的直线有且仅有两条.故选B. 8.【答案】D【解析】设l 与椭圆的两交点分别为()11,x y 、()22,x y ,则得22122212936y y x x -=--,所以121212y y x x -=--.故方程为()1242y x -=--,即280x y +-=.故选D. 9.【答案】C【解析】)A,)1B-,设双曲线为()222210,0x y a b a b-=>>,渐近线方程为by x a=±,因为A 、B 在渐近线上,所以1b a =b a =c e a ==故选C. 10.【答案】C【解析】抛物线24y x =的焦点为F (1,0),故双曲线221x y m n-=中0m >,0n >,且21m n c +==.C 选项正确. 11.【答案】A【解析】由120PF PF ⋅=可知12PF F △为直角三角形,则由勾股定理, 得222124PF PF c +=,① 由双曲线的定义,得()22124PF PF a -= ②又122PF PF ac ⋅=,③由①②③得220c ac a --=,即210e e --=,解得e =或e =(舍去).故选A.12.【答案】D 【解析】()222212222244448a PF PF a PF a a a a PF PF PF +==++≥+=,当且仅当2224a PF PF =,即22PF a =时取等号.这时14PF a =.由1212PF PF F F ≥+, 得62a c ≥,即3ce a=≤,得(]1,3e ∈,故选D.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】2219x y -=【解析】由双曲线的渐近线方程为13y x =±,知13b a =,它的一个焦点是),知2210a b +=,因此3a =,1b =,故双曲线的方程是2219x y -=.14.【答案】2,120°【解析】由椭圆的定义知122236PF PF a =⨯+==,因为14PF =,所以22PF =.在12PF F △中,222121212121cos 22PF PF F F F PF PF PF +-∠==-.∴12120F PF ∠=︒.15.【答案】(2224x ya +=【解析】由题意知1MP F P =,∴1222PF PF MF a +==.∴点M 到点2F 的距离为定值2a .∴点M 的轨迹是以点2F 为圆心,以2a 为半径的圆,其方程为(2224x ya +=.16.【答案】()0,1±【解析】设11(),A x y ,22(),B x y ,由()1F ,)2F ,且125F A F B =得(2115x x =+,2115y y=.又A 、B 两点在椭圆上,故有(221122111317525x y x y+⎧⎪⎪⎨=++=⎪⎪⎩,消去1y 得(2211243x x +-=,有10x =,从而11y =±,故点A 的坐标为(0,1)和(0,)1-.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】2214x y -=.【解析】由椭圆方程22194x y +=,知长半轴13a =,短半轴12b =,焦距的一半1c∴焦点是()1F,)2F ,因此双曲线的焦点也是()1F ,)2F ,设双曲线方程为()222210,0x y a b a b-=>>,由题设条件及双曲线的性质,得222c c a b c a ⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩,解得21a b =⎧⎨=⎩,故所求双曲线的方程为2214x y -=.18.【答案】(1)2214x y +=;(2)0y =±或0y =.【解析】(1)由c E a ==,得2234a c =.再由222c a b =-,得2a b =.由题意可知12242a b ⨯⨯=,即2ab =.解方程组22a b ab =⎧⎨=⎩,得a =2,b =1.所以椭圆的方程为2214xy +=. (2)由(1)可知()2,0A -.设B 点的坐标为()11,x y ,直线l 的斜率为k ,则直线l 的方程为()2y k x =+. 于是A ,B 两点的坐标满足方程组()22214y k x x y =+⎧⎪⎨+=⎪⎩, 由方程组消去y 并整理,得()()222214161640k x k x k ++-=+.由212164214k x k --=+,得2122814k x k-=+.从而12414ky k =+. 设线段AB 的中点为M ,则M 的坐标为22282,1414k k k k ⎛⎫- ⎪++⎝⎭. 以下分两种情况:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是()02,QA y =--,()02,QB y =-.由4QA QB ⋅=,得0y =±.②当k ≠0时,线段AB 的垂直平分线方程为2222181414k k y x k k k ⎛⎫-=-+ ⎪++⎝⎭. 令x =0,解得02614ky k =-+. 由()02,QA y =--,()110,QB x y y =-.()()210102222228646214141414k k k k QA QB x y y y k k k k --⎛⎫⋅=---=++ ⎪++++⎝⎭()()4222416151414k k k +-==+,整理得272k =,故k =所以0y =.综上,0y =±或0y =. 19.【答案】(1)见解析;(2)见解析.【解析】(1)抛物线22y Px =的焦点为,02p F ⎛⎫⎪⎝⎭,设直线AB 的方程为()02p y k x k ⎛⎫=-≠ ⎪⎝⎭.由222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y ,得()22222204k p k x P k x -++=. 由根与系数的关系,得2124p x x = (定值).当AB ⊥x 轴时,122px x ==,2124p x x =,也成立.(2)由抛物线的定义,知12p FA x =+,22pFB x =+.()()121222121212121111222422x x p x x p p p pp p p FA FB x x x x x x x x +++++=+==+++++++()121222x x p ppx x p ++==++ (定值). 当AB ⊥x 轴时,FA FB P ==,上式仍成立. 20.【答案】(1)222y x -=;(2)k =,(C . 【解析】(1)设动点P 的坐标为(x ,y ),则点Q(0,y ),(),0PQ x =-,()2,PA xy =-,(),PB x y =-,222PA PB x y ⋅=-+.∵22PA PB PQ ⋅=,∴22222x y x -+=,即动点P 的轨迹方程为222y x -=. (2)设直线M :(()01y k x k =<<,依题意,点C 在与直线M 平行且与M ,设此直线为1:M y kx b =+.=,即22b +=.①把y kx b =+代入222y x -=,整理,得()()2221220k x kbx b -++-=,则()()222244120Δk b k b =---=,即2222b k +=.② 由①②,得k =,b =此时,由方程组222y y x ⎧=⎪⎨⎪-=⎩,解得x y ⎧=⎪⎨=⎪⎩即(C . 21.【答案】;(2)1C :2211643x y +=,2C :224x y +=. 【解析】(1)因为抛物线2C 经过椭圆1C 的两个焦点1,()0F c -,()2,0F c ,可得22c b =. 由22222a b c c =+=,有2212c a =,所以椭圆1C的离心率e =.(2)由题设可知M ,N 关于y 轴对称,设()11,M x y -,()11,N x y ,()10x >,则由△AMN 的垂心为B ,有0BM AN ⋅=, 所以()2111304x y b y b ⎛⎫-+--= ⎪⎝⎭①由于点()11,N x y 在2C 上,故有2211x by b +=②由①②得14by =-,或1y b = (舍去),所以1x =,故,4b M ⎛⎫- ⎪ ⎪⎝⎭,,4b N ⎫-⎪⎪⎝⎭, 所以△QMN的重心为4b ⎫⎪⎭,由重心在2C 上得:2234b b +=,所以2b =,12M ⎛⎫- ⎪⎝⎭,12N ⎫-⎪⎭,又因为M ,N 在1C 上,所以(2221214a ⎛⎫- ⎪⎝⎭+=,得2163a =.所以椭圆1C 的方程为:2211643x y +=, 抛物线2C 的方程为:224x y +=. 22.【答案】;(2)λ=0或λ=-4. 【解析】(1)点()()000,P x y x a ≠±在双曲线22221x y a b-=上,有2200221x y a b -=.由题意又有000015y y x a x a ⋅=-+,可得225a b =,22226c a b b =+=,则c e a ==.(2)联立22255x y b y x c⎧-=⎨=-⎩,得22410350x cx b -+=,设()11,A x y ,()22,B x y ,则1221252354c x x b x x ⎧+=⎪⎪⎨⎪=⎪⎩ ① 设()33,OC x y =,OC OA OB λ=+,即312312x x x y y y λλ=+⎧⎨=+⎩,又C 为双曲线上一点,即2223355x y b -=, 有()()222121255x x y y b λλ+-+=,化简得()()()2222221122121255255x y x y x x y y b λλ--+⋅-=.②又()11,A x y ,()22,B x y 在双曲线上,所以2221155x y b -=,2222255x y b -=.由①式又有()()()221212121212125545510x x y y x x x c x c x x c x x c b -=--⋅-=-++-=,得:240λλ+=,解出λ=0或λ=-4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试二 圆锥曲线与方程(一)
一、选择题
1.抛物线x 2=2y 的焦点坐标是( ) (A )(1,0)
(B )(0,1)
(C ))2
1,0(
(D ))0,2
1(
2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )
(A )
11242
2=-y x (B )
14122
2=-y x (C )
16102
2=-y x (D )
110
62
2=-y x 3.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( ) (A )
3
1 (B )
3
3 (C )
2
1 (D )
2
3 4.若抛物线y 2
=2px 的焦点与椭圆12
62
2=+y x 的右焦点重合,则p 的值为( ) (A )-2 (B )2 (C )-4 (D )4
5.已知A (-1,0),B (1,0),动点P 满足|P A |+|PB |=2,则P 点的轨迹方程是( )
(A )x 2
+y 2
=1 (B )y =0 (C )y =0,x ∈[-1,1] (D )13
42
2=+y x 6.若0<m <a 2
,则双曲线112222222
2=-=+--b
y a x m b y m a x 与有( ) (A )共同的离心率 (B )共同的渐近线 (C )共同的焦点 (D )共同的顶点
7.动点M (x ,y )到点(4,0)的距离,比它到直线x +5=0的距离小1,则点M 的轨迹方程是( ) (A)x +4=0 (B)x -4=0 (C)y 2=8x (D)y 2=16x 8.直线y =2k 与曲线9k 2x 2+y 2=18k 2|x |(k ∈R ,k ≠0)的公共点的个数为( ) (A)1个 (B)2个 (C)3个 (D)4个 二、填空题
9.已知双曲线12222=-b y a x 的一条渐近线方程为x y 34
=,则双曲线的离心率为______.
10.如果一个椭圆是以双曲线
19
162
2=-y x 的焦点为顶点,顶点为焦点,那么这个椭圆的方程是____________.
11.设A 1、A 2为椭圆)0(1:22
22>>=+b a b
y a x C 的长轴的两个顶点,若其两个焦点将线段
A 1A 2三等分,设22b a c -=
,则a ,b ,c 的大小关系是____________.
12.△ABC 一边的两顶点B (0,6),C (0,-6),另两边AB 、AC 的斜率乘积是
9
4
,则顶点A 的轨迹方程是____________.
13.双曲线的两条渐近线的夹角为60°,则双曲线的离心率e =____________. 14.抛物线y 2=2px 上一点A (4,m )到其焦点的距离为5,则p +m =____________.
三、解答题
15.已知点M (-2,0),N (2,0),点P 满足条件|PM |-|PN |=22.
(1)求动点P 的轨迹W 的方程; (2)若0=⋅PN ,求点P 的坐标.
16.已知双曲线12
2
2
=-y x 与点P (1,2),过点P 且斜率为1的直线l 与双曲线相交于A ,B 两点,求证:点P 是线段AB 的中点.
17.若抛物线2
2
1x y =
上距点A (0,a )(a >0)最近的点恰好是原点,求实数a 的取值范围.
18.已知曲线C 的方程为kx 2+(4-k )y 2=k +1(k ∈R ).
(1)若曲线C 是椭圆,求实数k 的取值范围;
(2)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程.
19.在正△ABC 中,D ,E 分别是AB ,AC 的中点,设椭圆W 是以B ,C 为焦点,且过D ,
E 两点.
(1)求椭圆W 的离心率;
(2)若|BC |=4,建立适当坐标系,给出椭圆W 的标准方程. 20.已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为F (-3,0),
且右顶点为D (2,0),设点A 的坐标是)2
1,
1(.
(1)求该椭圆的标准方程;
(2)若P 是椭圆上的动点,求线段P A 中点M 的轨迹方程;
(3)过原点O 的直线交椭圆于点B ,C ,求△ABC 面积的最大值.
单元测试二
一、选择题
1.C 2.A 3.D 4.D 5.C 6.C 7.D 8.D 二、填空题
9.3
5
10.192522=+y x 11.a >b >c 12.)0(1813622=/=-x x y 13.2或332 14.6或-2
三、解答题
15.(1)由双曲线定义,知动点P 的轨迹是以M 、N 为焦点的双曲线的右支,
且c =2,2=
a ,所以
b 2=
c 2-a 2=2,
所以,轨迹W 的方程为)2(12
22
2≥=-x y x ; (2)因为0=⋅MN PN ,所以P 点的横坐标x p =2,
因为P 在轨迹W 上,所以12
2222=-p
y ,解得2±=p y , 所以)2,2(±P .
16.直线l 的方程为:y -2=1×(x -1),即y =x +1,
联立方程⎪⎩

⎨⎧=-+=121
22y x x y ,消去y ,得x 2-2x -3=0,
设A (x 1,y 1),B (x 2,y 2),则x 1=3,x 2=-1,
所以y 1=4,y 2=0,故点A (3,4),B (-1,0), 所以AB 的中点坐标为(1,2),即中点为P . 17.设P (x ,y )为抛物线2
2
1x y =
上动点, 则222222)()0(||a ay y x a y x PA +-+=
-+-=

因为P 在抛物线2
2
1x y =上,所以x 2=2y ,代入上式, 得12)]1([)22(||222-+-+=+-+=
a a y a y a y PA )0(≥y ,
因为当P 在原点,即当y =0时,|P A |有最小值, 所以a -1≤0,又a >0,
故实数a 的取值范围0<a ≤1. 18.(1)因为曲线C 是椭圆,
所以方程kx 2
+(4-k )y 2
=k +1,可化为
14112
2=-+++k
k y k k x , 则⎪⎪⎪⎩
⎪⎪
⎪⎨⎧-+=/+>-+>+k k k k k
k k k 41
1041
01
,解得0<k <2,或2<k <4;
(2)因为曲线C 是双曲线, 所以,当焦点在x 轴上时,有
041
,01>-+->+k
k k k ①
因为有一条渐近线的倾斜角是60°,
所以2
)60(tan 141
=+-+-
k
k k k

由①②,得k =6,此时双曲线方程为12
7672
2=-y x ; 同理,当焦点在y 轴上,无解.
所以双曲线方程为12
7672
2=-y x . 19.(1)设BC =m ,椭圆的半长轴长、半短轴长、半焦距长分别为a 、b 、c ,
因为正△ABC ,所以2c =|BC |=m ,2a =|BD |+|CD |=
2
32m
m +
, 所以,离心率为
134
342
-=+=m
m m a c
; (2)以BC 的中点为原点,BC 为x 轴,向右为正方向,BC 的垂直平分线为y 轴,向上为正方向建立平面直角坐标系, 由题意,c =2,13+=
a ,所以322=
b ,
所以,椭圆方程为13
23242
2=++y x .
20.(1)设椭圆方程为122
22=+b
y a x ,
∵3=c ,a =2,∴b =1,椭圆方程为14
22
=+y x . (2)设P (x 0,y 0),P A 中点M (x ,y ), 所以,221,2
100+
=+=
y y x x ,
则x 0=2x -1,2
1
20-=y y ,代入原椭圆方程,
得M 的轨迹方程:
1)2
1
2(4)12(22=-+-y x . (3)设B (x 1,y 1),C (x 2,y 2),过原点的直线方程为y =kx ,代入椭圆方程, 得(1+4k 2)x 2-4=0,所以x 1+x 2=0,2
21414
k
x x +-
=, 所以22
4114||k k BC ++=,点A 到直线BC 的距离2
1|
21|k k d +-
=, k
k k k d BC S ABC
144
141)12(||2122+
-=+-=⨯⨯=∆,
因为当k >0时,41
4214=≥+⋅k
k k k ,当且仅当k k 14=,即21=k 时,取等号.
所以2
1
=
k 时,S △ABC 有最小值0; 同理,2
1
-=k 时,S △ABC 有最大值2;
当k =0或k 不存在时,不符合题意,
所以,2
1
-
=k 时,△ABC 面积有最大值2.。

相关文档
最新文档