Zhao ShuiLin-FAB3 Wet Process Review

合集下载

发酵法生产1,3-丙二醇的研究进展

发酵法生产1,3-丙二醇的研究进展

2017年第36卷第4期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·1395·化 工 进展发酵法生产1,3-丙二醇的研究进展李晓姝,张霖,高大成,师文静,樊亚超(中国石油化工股份有限公司抚顺石油化工研究院,辽宁 抚顺113001)摘要:1,3-丙二醇是一种重要的化合物,近年来由于其用途的不断拓宽而越来越受到广泛重视。

生物合成法生产1,3-丙二醇具有绿色高效、使用可再生能源等特点,是目前最具前景的生产方式。

本文从发酵菌种、发酵工艺、发酵过程优化和精制提纯几个方面对发酵法生产1,3-丙二醇的研究现状进行了介绍。

提出为使生物法生产1,3-丙二醇在成本上与化学法相比更具优势,在提高产量的同时应该引入新技术、新手段对发酵过程进行强化,使得过程更加精准且易于控制;同时指出综合考虑经济性与能耗问题,对发酵与分离的全过程进行整合,是今后发酵法生产1,3-丙二醇实现产业化的研究重点。

关键词:1,3-丙二醇;发酵;生物转化;甘油中图分类号:TQ 923 文献标志码:A 文章编号:1000–6613(2017)04–1395–09 DOI :10.16085/j.issn.1000-6613.2017.04.032Progress on the production of 1,3-propanediol by fermentationLI Xiaoshu ,ZHANG Lin ,GAO Dacheng ,SHI Wenjing ,F AN Yachao(Fushun Research Institute of Petroleum and Petrochemicals ,SINOPEC ,Fushun 113001,Liaoning ,China )Abstract :1,3-propanediol is an important chemical compound ,which has recently received more andmore attention due to its wide applications. Synthesizing 1,3-propanediol via the biological method has some merits ,such as green ,high efficiency ,and sustainable. This method is the most promising for the 1,3-propanediol production.In this paper ,the research advances on production of 1,3-propanediol by fermentation were reviewed with regard to fermentative strains ,fermentation process ,process optimization and purification. To have a low cost advantage over the other chemical synthesizes ,the biological method needs to increase the concentration of 1,3-propanediol ,to strengthen the fermentation process that is more accurate and easier control. Economy and energy consumption need to be considered to integrate the whole process of fermentation and separation ,which should be the focus of research and industrial production of 1,3-propanediol by biological process in the future. Key words :1,3-propanediol ;fermentation ;bioconversion ;glycerol1,3-丙二醇(1,3-PD )是一种重要且用途广泛的化工原料,其与对苯二甲酸聚合合成的聚对苯二甲酸丙二醇酯(PTT ),是一种性质优良的聚酯材料。

聚离子液体膜修饰电极检测厚朴酚

聚离子液体膜修饰电极检测厚朴酚

d o d e c y l s u l f o n a t e s o l u t i o n ,a P o l y{ 1 一 [ 3 一 ( N - P y r r o l y 1 )p r o p y 1 ] 一 3 - h e x y l i m i d a z o l i u m d o d e c y l s u l f o n a t e i o n i c l i q u i d}
El e c t r o c he mi c a l Fa b r i c a t i o n o f a Po l y me r i z e d I o ni c Li q u i d Fi l m
Mo d i ie f d El e c t r o d e f o r Ma g n o l o l De t e r mi na t i o n
Ab s t r a c t A n i m i d a z o l i u m— b a s e d i o n i c l i q u i d b e a r i n g a t e r mi n l a p y r r o l e mo i e t y ,1 一 [ 3 一 ( N — p y r r o l e)p r o p y 1 ] - 3 一
第3 2卷第 4期
2 0 1 3年 1 2月
中南民族大学学报 (自然科学版 ) J o u r n a l o f S o u t h - C e n t r a l U n i v e r s i t y f o r N a t i o n li a t i e s ( N a t . S c i . E d i t i o n )
C o l l e g e o f C h e mi s t y r a n d Ma t e r i ls a S c i e n c e,S o u t h — C e n t r a l Un i v e r s i t y f o r Na t i o n li a t i e s ,Wu h a n 4 3 0 0 7 4,C h i n a

超疏水表面的过冷水滴捕获规律研究

超疏水表面的过冷水滴捕获规律研究

超疏水表面的过冷水滴捕获规律研究作者:王文帅陈增贵燕则翔吕湘连何洋来源:《航空科学技术》2023年第12期摘要:飞机在飞行过程中经常面临结冰危险,具有迫切的防冰需求,高效节能的超疏水电热复合防冰蒙皮具有广阔的应用前景,但目前设计流程中尚未考虑超疏水表面过冷水滴收集特性。

为充分发挥超疏水表面对飞机防冰系统的作用,本文设计了一套液滴直径与流量可精准控制的喷雾装置,确定了过冷水滴捕获率试验的方案,并结合传热及表面特性相关理论总结了不同试验条件下表面捕获率变化规律。

试验结果表明,在一定环境条件中,超疏水表面与聚酰亚胺(PI)表面的过冷水滴捕获率相对值保持稳定,约为25%。

结合热传递及受力分析,超疏水表面能够有效减少水滴在表面的停留总量及停留时间,从而降低过冷水滴捕获率。

本文为新一代超疏水电热复合蒙皮的防冰功率精确设计与能耗优化提供了依据,对保证恶劣环境下无人机正常工作具有重要意义。

关键词:超疏水表面;过冷水滴捕获率;飞机防冰;温度;倾斜角度;喷雾时间中图分类号:V259 文献标识码:A DOI:10.19452/j.issn1007-5453.2023.12.003基金项目:翼型叶栅空气动力学重点实验室稳定支持经费项目(61422010102,6142201200403)云层中温度在冰点以下,仍保持液态的水滴称过冷水滴。

飞机穿过过冷水滴云层时,液滴与飞机表面发生碰撞,进而发生结冰[1]。

飞机表面结冰,使得气动结构发生变化,从而影响飞机整體的操纵稳定性,干扰内部的仪表设备。

若表面覆冰脱落,还有可能会破坏发动机的结构,引起更严重的飞行问题,甚至导致飞机坠毁[2-3]。

基于超疏水表面特性的防冰技术是一种新型的飞机防冰方案,针对超疏水表面防冰机理的研究可以促进防冰系统功耗的精准设计,拓宽技术应用面。

实际飞行条件下,单一的超疏水涂层无法实现有效防冰。

目前,采用主动与被动相结合的防/除冰技术是满足飞机防冰需求的最佳方案。

水中苯胺类化合物分析的难点

水中苯胺类化合物分析的难点

㊀第36卷㊀第6期2020年12月中㊀国㊀环㊀境㊀监㊀测Environmental Monitoring in ChinaVol.36㊀No.6Dec.2020㊀水中苯胺类化合物分析的难点赵云芝,何吉明四川省生态环境监测总站,四川成都610091摘㊀要:结合实验研究了水中苯胺类化合物的测定难点和影响因素,包括样品保存和水样中悬浮物的影响㊂苯胺类化合物易被氧化,样品不易保存且受悬浮物的影响㊂研究结果表明:样品中未加入抗氧化剂进行保存时,部分苯胺类化合物迅速降解;当样品中加入80mg /L 硫代硫酸钠进行保存时,部分苯胺类化合物的保存时间可以延迟2~3d 后降解㊂样品中悬浮物对联苯胺萃取影响较大,回收率偏低,可以通过调节样品pH 至酸性后过滤,再将滤液调至中性后进行萃取,回收率明显提高㊂笔者同时讨论了消除与补偿基质干扰的方法,包括色谱分离条件和检测器条件的选择㊁优化,内标法㊁空白基质匹配标准校正法和工作曲线法等定量方法的选择㊂关键词:苯胺类化合物;水样;难点和影响因素中图分类号:X830.2㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002-6002(2020)06-0134-09DOI :10.19316/j.issn.1002-6002.2020.06.20Difficulties in the Determination of Aniline Compounds in WaterZHAO Yunzhi,HE JimingSichuan Ecological and Environmental Monitoring Center,Chengdu 610091,ChinaAbstract :The difficulties and influencing factors in the determination of aniline compounds in water were studied withexperiment,including the impact of sample preservation and suspended solids in water sample.Aniline compounds are easy to be oxidized,the sample is not easy to be preserved and is affected by suspended solids.The results showed that some aniline compounds were rapidly degraded when no antioxidant was added to the samples for preservation;When 80mg /L sodiumthiosulfate was added to the sample for preservation,the preservation time of some aniline compounds could be delayed for 2-3days.The suspended solids in the sample had a great influence on the extraction of benzidine,and the recovery was relatively low.It could be filtered by adjusting the pH of the sample to acidity,and then the filtrate was adjusted to neutral for extraction,and the recovery was significantly improved.The methods of eliminating and compensating matrix interference were discussed,including the selection and optimization of chromatographic separation conditions and detector conditions,the selection of quantitative methods such as internal standard method,blank matrix matching standard correction method and working curve method.Keywords :aniline compounds;water sample;difficulties and influencing factor收稿日期:2020-06-30;修订日期:2020-09-22第一作者简介:赵云芝(1980-),女,河南南阳人,硕士,高级工程师㊂通讯作者:何吉明㊀㊀苯胺类化合物具有很高的毒性,其中一些具有明显的致癌作用,是中国规定的优先控制污染物[1]㊂苯胺类化合物易被氧化,样品不易保存㊂‘水质苯胺类的测定N-(1-萘基)-乙二胺偶氮分光光度法“(GB 11889 1989)适用于芳香族伯胺类化合物的测定㊂标准要求采集500mL 水样于硬质玻璃瓶中,并在采集后24h 内进行测定㊂但氨基取代基的数量不同或氨基取代基的位置不同,被氧化性质不同,样品保存时间也会有差异㊂目前关于水样中苯胺类化合物的保存还鲜见报道㊂水样中悬浮物的多少对有机化合物提取的影响一直是难点,有机化合物的性质不同,对悬浮物的吸附能力也有差异,影响也不同㊂苯胺类化合物因极性强㊁易被氧化,样品前处理难度大,提取效率低,其前处理方式的选择非常重要㊂苯胺类化合物的分析方法有很多种(如气相色谱法㊁气相色谱-质谱法㊁液相色谱法㊁液相色谱-串联质谱法等),但样品中的基质(盐㊁共流出物等)易干扰待测物的检测,如何消除或补偿分析方法中的基质干扰也是研究的难点㊂㊀赵云芝等:水中苯胺类化合物分析的难点135㊀㊀笔者研究了样品中苯胺类化合物的保存条件㊁保存时间以及样品中悬浮物对前处理的影响,讨论了样品中苯胺类化合物的前处理方法和分析方法中基质干扰的消除与补偿,以期为水中苯胺类化合物的准确测定提供参考㊂1㊀实验部分1.1㊀仪器、试剂及材料高效液相色谱-串联质谱仪:高效液相色谱仪(日本岛津公司),带ESI源API4000QTrap三重四极杆质谱仪(美国AB Sciex公司),MiliQ超纯水发生器(美国Millipore公司),SHIMADZU Shim-pack FC-ODS柱(150mmˑ2.1mm,3μm,日本岛津公司),混合型阳离子交换柱(WondaSep MCX,150mg/6mL,日本岛津公司),0.22㊁0.45μm聚四氟乙烯滤膜(津腾公司),N-EVAP Ⅲ氮吹仪(美国),24通道固相萃取装置(美国Supelco公司)㊂甲醇(HPLC级,J&K SCIENTIFIC LTD),甲酸(HPLC级,CNW Technologies),乙酸(HPLC级, TEDIA),氨水(优级纯,含量为25%~28%),硫代硫酸钠(分析纯);标准物质:邻苯二胺㊁邻甲氧基苯胺㊁邻甲苯胺㊁间硝基苯胺㊁间氯苯胺㊁2-萘胺㊁2,4-二甲基苯胺㊁2,6-二甲基苯胺㊁2,6-二乙基苯胺㊁2-乙基-6-甲基苯胺㊁苯胺㊁联苯胺㊁对甲苯胺㊁对硝基苯胺㊁邻硝基苯胺㊁3,3-二氯联苯胺㊁对氯苯胺㊂分别准确称取适量的苯胺类标准物质,用甲醇配制成浓度为100μg/mL标准储备液, -18ħ以下避光保存㊂混合中间标准溶液:吸取适量苯胺类化合物标准贮备液,用甲醇稀释,配制成浓度为1~10μg/mL的混合中间标准溶液,其中,邻硝基苯胺和间硝基苯胺的质量浓度为10.0μg/mL,其余化合物质量浓度为1.0μg/mL, -18ħ以下避光保存㊂1.2㊀样品采集与保存采集不同悬浮物浓度的地表水㊁生活污水㊁印染废水㊁制药废水,用甲酸或氨水调节其pH至7~8,一组样品未加硫代硫酸钠,另一组样品加入80mg/L硫代硫酸钠,在4ħ以下冷藏㊁避光保存㊂1.3㊀前处理1.3.1㊀直接进样法样品经0.22μm聚四氟乙烯滤膜过滤,弃去至少1mL初滤液后,移取1.0mL过滤后的样品于棕色进样瓶中,混匀待测㊂1.3.2㊀固相萃取法依次用10mL甲醇和水活化混合型阳离子交换柱,取100mL水样以小于3mL/min的流速通过小柱㊂依次用5mL3%乙酸水溶液和4mL 10%甲醇水溶液淋洗小柱㊂用真空泵抽干小柱10min,用7mL5%氨化甲醇洗脱富集后的小柱,洗脱液经50ħ氮吹浓缩至略低于1mL,用纯水定容至1.0mL,再用纯水稀释2倍后混匀待测㊂2㊀结果与讨论2.1㊀样品的保存苯胺类化合物暴露于空气中,可被氧化而色泽变深㊂芳胺容易被氧化,氧化剂不同,得到的产物也较为复杂,颜色为黄色㊁棕红色甚至黑色㊂染料废水等工业废水中的苯胺类和联苯胺类多采用二氧化氯氧化法进行去除或预处理㊂曹向禹[2]采用ClO2氧化法预处理联苯胺类染料中间体生产废水,在较佳工艺条件下(涉及ClO2的加入量㊁ClO2与联苯胺的化学计量比和反应时间),出水中联苯胺的去除率达到80%以上㊂于德爽等[3]采用二氧化氯氧化法去除染料废水中苯胺类物质,去除率达到95%以上㊂由于苯胺类化合物可被氧化,样品采集后的保存是个难点,采样过程中要注意密封㊁避光㊁冷藏,并加入抗氧化剂进行保存㊂水样中常用的抗氧化剂有抗坏血酸和硫代硫酸钠,因印染㊁制药等工业废水中的苯胺类多采用二氧化氯氧化法去除以及制造工艺中使用漂白粉脱色或消毒剂等,样品中苯胺类化合物的保存易受余氯的影响,多采用硫代硫酸钠进行去除㊂美国环保署EPA8131标准方法中规定,水样采集后用氢氧化钠或硫酸调节样品pH为6~8,如果有余氯存在,样品中每毫克余氯需要加入35mg 硫代硫酸钠去除㊂印染等工业废水处理前的样品中含有二氧化氯(浓度为2mg/L左右),出口废水中二氧化氯浓度控制在0.5mg/L以下,故硫代硫酸钠的添加量一般为70mg/L可以有效去除余氯㊂根据‘水质苯胺类化合物的测定气相色谱-质谱法“(HJ822 2017)的要求,样品采集后立即加入氢氧化钠或硫酸溶液,调节pH为6~8, 4ħ冷藏保存,如水样中有余氯,每1000mL样品㊀136㊀中㊀国㊀环㊀境㊀监㊀测第36卷㊀第6期㊀2020年12月㊀中加入80mg 硫代硫酸钠㊂故笔者选择硫代硫酸钠的添加量为80mg /L㊂笔者针对样品中苯胺类化合物在不加抗氧化剂和加入抗氧化剂(硫代硫酸钠)情况下的保存时间进行了研究㊂在地表水中加入浓度为1.0㊁5.0㊁50.0μg /L的苯胺类化合物和制药废水中加入浓度为50.0μg /L 的苯胺类化合物,密封㊁避光㊁冷藏保存,采用直接进样-液相色谱-三重四极杆质谱法测定,计算1~10d 的样品加标回收率,结果见图1㊂研究发现,地表水中低浓度(1.0㊁5.0μg /L)加标样品中,联苯胺和邻苯二胺在1d 之后迅速降解,其他化合物在4d 之内无明显变化,4d 之后有缓慢降解㊂地表水中加标50.0μg /L 时,17种苯胺类化合物在10d 内无显著变化,但在制药废水中加标50.0μg /L 时,邻苯二胺1d 后降解较快,联苯胺2d 后缓慢降解,其余化合物在10d 内无显著变化㊂说明样品中若不加入抗氧化剂,邻苯二胺和联苯胺易被氧化,受不同基质水样影响较大,降解较快,其余的氯代苯胺类㊁烷基代苯胺类和硝基代苯胺类的性质较稳定,降解较慢㊂图1㊀未加抗氧化剂的实际样品保存时间研究Fig.1㊀Study on the preservation time of actual samples without antioxidant㊀㊀同时考察了在实际样品中加入硫代硫酸钠对保存时间的影响㊂分别在地表水和制药废水中加入80mg /L 硫代硫酸钠,然后再加入不同浓度苯胺类化合物(地表水加标浓度为 1.0㊁5.0㊁50.0μg /L,制药废水中加标浓度为50.0μg /L),密封㊁避光㊁冷藏保存,采用直接进样-液相色谱-三重四极杆质谱法测定,计算样品加标回收率㊂结果见图2㊂研究发现,地表水中加入硫代硫酸钠后,低浓度(1.0㊁5.0μg /L)加标样品中,邻苯二胺在3d 内无明显变化,3d 之后降解很快,联苯胺和3,3 -二氯联苯胺在5d 后迅速降解,其余化合物的加标回收率在7d 内变化不大㊂制药废水中加入硫代硫酸钠后,加标样品中的邻苯二胺在4d 之后有缓慢降解㊂㊀赵云芝等:水中苯胺类化合物分析的难点137㊀㊀图2㊀实际样品中加入80mg/L硫代硫酸钠后的保存时间研究Fig.2㊀Study on the preservation time after adding80mg/L sodium thiosulfate to the actual sample㊀㊀综上所述,水样中加入硫代硫酸钠可延缓联苯胺和邻苯二胺的降解㊂因此,水样采集后应加入硫代硫酸钠,每500mL水样中加入40mg硫代硫酸钠,4ħ以下冷藏保存,除邻苯二胺在3d内完成分析,联苯胺和3,3 -二氯联苯胺在5d内完成分析,其余化合物应在7d内完成分析㊂2.2㊀样品中悬浮物对前处理的影响2.2.1㊀直接进样法为考察样品中的悬浮物浓度对苯胺类化合物的吸附作用,笔者选择了悬浮物浓度分别为18.5mg/L(生活污水出口)㊁47.3mg/L(印染废水出口)㊁68.3mg/L(地表水)的实际样品进行加标回收率测定,苯胺类化合物的加标浓度均为50.0μg/L,加标样品放置24h后经聚四氟乙烯滤膜过滤测定,回收率结果见图3㊂结果表明,随着悬浮物浓度的升高,苯胺类化合物的实际样品加标回收率并未发生显著变化,加标回收率为74.6%~102%㊂采用直接进样法时,为考察悬浮物对不同浓度苯胺类化合物的影响,向悬浮物浓度为68.3mg/L的地表水样品中加标1.0㊁5.0㊁50.0μg/L苯胺类化合物,计算样品加标回收率,见图4㊂结果表明,悬浮物对低浓度(1.0㊁5.0μg/L)的联苯胺㊁邻苯二胺和3,3 -二氯联苯胺有影响,但回收率为60.6%~70.8%,对其他低浓度苯胺类化合物无影响,回收率为75.6%~ 116%㊂2.2.2㊀固相萃取法为考察悬浮物对苯胺类化合物萃取效率的影响,向悬浮物浓度分别为10.8㊁21.6㊁32.4㊁64.8㊁108㊁703mg/L的地表水样品中加标0.2μg/L的苯胺类化合物,经混合型阳离子交换固相萃取柱富集净化,液相色谱-三重四极杆质谱法测定,计算样品加标回收率,结果见图5㊂结果表明,悬浮物对联苯胺影响较大,样品加标回收率偏低,且随着悬浮物浓度升高,回收率逐渐下降㊂但悬浮物对其他苯胺类化合物影响不显著,回收率为60.9%~119%㊂㊀138㊀中㊀国㊀环㊀境㊀监㊀测第36卷㊀第6期㊀2020年12月㊀图3㊀不同浓度悬浮物对苯胺类化合物回收率的影响Fig.3㊀Effects of suspended solids at different concentrations on the recovery of aniline compounds图4㊀悬浮物对不同浓度苯胺类化合物回收率的影响Fig.4㊀Effects of suspended solids on recovery of aniline compounds at different concentrations图5㊀不同浓度悬浮物对苯胺类化合物回收率的影响Fig.5㊀Effects of suspended solids at different concentrations on therecovery of aniline compounds㊀赵云芝等:水中苯胺类化合物分析的难点139㊀㊀㊀㊀当悬浮物浓度过高时,可以先将样品用盐酸溶液调到pH 为3,摇匀样品后,用经过乙醇浸润的聚四氟乙烯滤膜过滤,过滤液用1.0mol /L 氢氧化钠溶液调至pH 为7~8后再进行富集㊂研究了向悬浮物浓度分别为10.8㊁21.6㊁32.4㊁64.8㊁108㊁703mg /L 的地表水样品中加标0.2μg /L 的苯胺类化合物,经上述前处理后再通过阳离子交换固相萃取柱富集净化,液相色谱-三重四极杆质谱法测定,计算样品加标回收率,结果见图6㊂结果表明,联苯胺的回收率明显提高,但3,3 -二氯联苯胺的回收率明显降低,苯胺的回收率在悬浮物浓度大于32.4mg /L 时显著降低,其余苯胺类化合物的回收率为60.1%~112%㊂当悬浮物浓度过高时,也可以通过减少取样体积,避免堵塞固相萃取柱㊂图6㊀调节样品pH 及过滤后不同浓度悬浮物对苯胺类化合物回收率的影响Fig.6㊀Effects of suspended solids at different concentrations on recovery of anilinecompounds after pH adjustment and filtration㊀㊀综上所述,在直接进样法和固相萃取法中,由于邻苯二胺和联苯胺极性强,更易被氧化,3,3 -二氯联苯胺分子量大,易被悬浮物吸附,受不同基质水样影响较大,悬浮物浓度升高后,样品加标回收率会降低㊂其余的氯代苯胺类㊁烷基代苯胺类和硝基代苯胺类的性质较稳定,受悬浮物影响不大㊂2.3㊀样品前处理方法的选择国内外研究水中苯胺类化合物的前处理方法主要有蒸馏法㊁顶空固相微萃取[4]㊁液液萃取[5]㊁吹扫捕集[6]㊁液液微萃取[7]㊁直接进样法[8-9]㊁固相萃取法(C 18小柱㊁HLB 小柱㊁GDX-502层析柱和阳离子交换柱等)等[10-11]㊂顶空固相微萃取和吹扫捕集多适用于易挥发㊁易吹脱捕集的苯胺及烷基苯胺类化合物㊂直接进样法多适用于可直接进水相样品的液相色谱法㊁液相色谱-三重四极杆质谱法㊁离子色谱法等,复杂水样需经处理后直接进样分析㊂液液萃取和固相萃取是水样中有机污染物的常用前处理方法㊂赵云芝等[11]采用液液萃取㊁固相萃取2种前处理方法对苯胺类化合物进行富集和净化㊂结果发现,液液萃取对苯胺类化合物的回收率偏低,特别是极性较强的间苯二胺㊁邻苯二胺㊁联苯胺㊁苯胺等化合物的回收率更低㊂由于苯胺类化合物属于弱碱性化合物,极性较强,在固相萃取中,常用的C 18柱和HLB 柱对苯胺类化合物吸附不完全致使回收率偏低㊂混合型阳离子交换柱(MCX)和硅胶基质阳离子交换柱(SCX)利用吸附和交换2种作用力对苯胺类化合物进行富集,同时采用清洗步骤进行净化,大部分苯胺类化合物的回收率为70%~100%,但对于极性很强的间苯二胺和邻苯二胺的回收率稍微偏低,为50%~70%㊂综上所述,对于极性很强的二苯胺类化合物建议采用直接进样法,易挥发㊁易吹脱捕集的苯胺及烷基苯胺类化合物可采用顶空固相微萃取和吹扫捕集,联苯胺类建议采用固相萃取法,氯代苯胺㊁硝基代苯胺及烷基苯胺类可采用液液萃取法和固相萃取法等㊂㊀140㊀中㊀国㊀环㊀境㊀监㊀测第36卷㊀第6期㊀2020年12月㊀2.4㊀分析方法中基质干扰的消除与补偿2.4.1㊀色谱分离条件的选择和优化选择合适的色谱分离条件是解决样品基质干扰最有效的方法㊂对于反相液相色谱,可以通过改变流动相的组成和pH,降低梯度洗脱时有机相的初始浓度,延长梯度时间,降低流速,减少进样量㊁更换不同规格类型的色谱柱或使用双柱,还可以采用二维液相色谱分离㊂气相色谱分离主要通过改变升温程序㊁更换不同规格型号的色谱柱㊁改变流速和汽化室温度㊁调节分流比㊁使用二维气相色谱分离等㊂该研究在采用气相色谱-质谱法测定土壤中半挥发性有机物时,通过提高质谱的分流比,虽然降低了一些灵敏度,但基质干扰明显减低,不用频繁清洗离子源和截掉毛细管色谱柱㊂2.4.2㊀检测器的选择和优化对苯胺类化合物的检测,采用气相色谱法时多使用氢火焰离子化检测器和氮磷检测器,当基质干扰严重时,可以选择气相色谱-质谱法检测,优化扫描模式(全扫或选择离子扫描)㊁电离强度及选择不同的离子源(EI或CI)等,还可以选择气相色谱-三重四极杆质谱法进行检测㊂采用液相色谱法时多采用紫外检测器,当基质干扰严重时,可以采用荧光检测器进行分析,通过优化激发波长和发射波长等条件,对有荧光响应的部分苯胺类化合物(如苯胺㊁联苯胺㊁邻甲基苯胺㊁间甲基苯胺㊁对甲基苯胺㊁对氯苯胺等)进行检测㊂还可以选择液相色谱-三重四极杆质谱法对苯胺类化合物进行检测,通过优化质谱参数或改变离子源种类(ESI源㊁APCI源或APPI源)来降低基质干扰㊂笔者比较了APCI源和ESI源对苯胺类化合物基质效应的影响㊂在相同的色谱分离条件下,使用APCI源时,苯胺类化合物的响应强度比使用ESI源时降低了约3倍,结果见图7㊂图7㊀苯胺类化合物在液相色谱-串联质谱法不同离子源条件下的总离子流Fig.7㊀Total ion chromatogram of aniline compounds under different ionsource conditions by liquid chromatography-tandem mass spectrometry2.4.3㊀定量方法的选择和使用2.4.3.1㊀内标法内标物质在样品分析的不同阶段加入,被称为提取内标(在样品提取前加入)㊁净化内标(在样品净化前加入)和进样内标(在试样进入仪器检测前加入)㊂进样内标补偿进样量误差和基质效应的影响,提取内标和净化内标可以补偿提取过程损失㊁净化过程损失和基质效应的影响㊂对于多组分化合物分析,进样内标选择1~2种内标物质即可,但提取内标和净化内标必须选择与目标化合物性质非常相近的同位素内标物质,否则会因为补偿造成更大的检测误差㊂赵云芝等[11]以苯胺-D5作为进样内标,固相萃取-液相色谱-串联质谱法测定水中苯胺类化合物,16种苯胺类化合物在3个质量浓度水平下,采用混合型阳离子交换柱萃取时的加标回收率为72.5%~92.5%,相对标准偏差为1.4%~9.6%;17种苯胺类化合物在3个质量浓度水平下,采用硅胶基体阳离子交换柱萃取时的加标回收率为51.0%~102%,相对标准偏差为2.4%~13.6%㊂‘土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四极杆质谱法“(征求意见稿)[12]以苯胺-D5㊁联苯胺-D8㊁3,3 -二氯联苯胺-D6和N-亚硝基二苯胺-D6为提取内标,经超声提取㊁净化㊁浓缩㊁定容后用液相色谱-三重四极杆质谱仪检测,土壤和沉积物的加标回收率为69.2%~128%㊂2.4.3.2㊀空白基质匹配标准校正法空白基质匹配标准校正法是将空白样品经过前处理后,加入系列浓度待测物标准作为基质匹配标准溶液,用以校正检测结果㊂采用空白基质㊀赵云芝等:水中苯胺类化合物分析的难点141㊀㊀匹配标准校正,是常用的补偿基质效应的方法㊂‘原料乳与乳制品中三聚氰胺检测方法“(GB/T 22388 2008)中的液相色谱-串联质谱法即采用空白基质匹配标准校正法定量检测,标准溶液是用空白样品经提取㊁净化和氮吹浓缩后所得的样品溶液进行配制,方法的定量限为0.01mg/kg,在添加浓度为0.01~0.5mg/kg范围时,回收率为80%~110%,相对标准偏差小于10%㊂赵云芝等[11]以样品加标计算其回收率,上样100mL,苯胺类化合物的加标浓度为0.02μg/L,用混合型阳离子交换柱进行萃取,浓缩液稀释2倍后采用液相色谱-三重四极杆质谱法分析㊂分别使用空白萃取液和超纯水配制校准曲线,外标法定量㊂2种方法计算出的大部分化合物的回收率差异不大,但2,6-二甲基苯胺㊁间氯苯胺和3,3 -二氯联苯胺采用基质校准曲线很大程度上补偿基质的抑制效应,回收率明显提高㊂2.4.3.3㊀工作曲线法工作曲线法不同于空白基质匹配标准校正法,所使用的标准系列溶液经过了与样品相同的提取㊁净化㊁浓缩㊁测量等全过程,可以补偿基质干扰及前处理过程带来的损失㊂‘水质苯胺类化合物的测定液液萃取液相色谱法“(征求意见稿)[13]采用了工作曲线法进行定量检测㊂经6家实验室验证,对3个浓度水平的统一样品进行检测,实验室内相对标准偏差为0.3%~11.8%,对地表水㊁地下水㊁生活污水和工业废水的实际样品进行加标分析测定,加标回收率为62.5%~ 130%㊂3㊀结论采用液相色谱-三重四极杆质谱法研究了样品保存㊁样品中悬浮物对前处理的影响,讨论了分析方法基质干扰的消除与补偿㊂当水样中的苯胺类化合物暴露于空气中时,易被氧化而降解,因此,样品采集后应立即加入硫代硫酸钠并密闭㊁冷藏保存㊂水样中悬浮物浓度高时对联苯胺的影响很大而且容易堵塞固相萃取柱,可以调节样品pH 至酸性,使悬浮物中吸附的苯胺类化合物释放至水样中,过滤掉悬浮物,再调节样品pH至中性后进行萃取;在检测限满足质量标准或排放标准的管理要求时,可以通过减少取样体积避免堵塞固相萃取柱㊂苯胺类化合物在分析过程中易受基质干扰,可以通过色谱分离条件和检测器条件的选择和优化进行消除,采用内标法㊁空白基质匹配标准校正法和工作曲线法等定量方法进行补偿㊂参考文献(References):[1]周文敏.中国水中优先控制污染物黑名单[J].中国环境监测,1991,3(4):18-20.ZHOU Wenmin.China s Blacklist of Priority Pollutantsin Water[J].Environmental Monitoring in China,1991,3(4):18-20.[2]曹向禹.ClO2氧化法预处理联苯胺类染料中间体废水[J].化工环保,2013,33(1):39-42.CAO Xiangyu.Pretreatment of Benzidine DyeIntermediate wastewater by Chlorine Dioxide oxidationProcess[J].Environmental Protection of ChemicalIndustry,2013,33(1):39-42.[3]于德爽,彭永臻,李梅.二氧化氯氧化法去除染料废水中苯胺类物质的生产性实验研究[J].哈尔滨商业大学学报,2001,17(3):19-21.YU Deshuang,PENG Yongzhen,LI Mei.The ClO2Oxidation Process to Remove Benzenamine Materials ofDying Waste Water[J].Journal of Harbin University ofCommerce Natural Sciences Edition,2001,17(3):19-21.[4]ARCHANA J,KISHAN R N,ARADHANA K K V,etal.Conversion to Isothiocyanates via Dithiocarbamatesfor the Determination of Aromatic Primary Amines byHeadspace-Solid Phase Microextraction and GasChromatography[J].Analytica Chimica Acta,2013,801:48-58.[5]储燕萍,唐莺,韩英,等.气相色谱/质谱联用法测定饮用水源水中苯胺类化合物[J].环境监测管理与技术,2011,23(5):58-61.CHU Yanping,TANG Ying,HAN Ying,et al.Methodfor Aniline and Selected Derivatives Determination inDrink Source Water by GC/MS[J].The Administrationand Technique of Environmental Monitoring,2011,23(5):58-61.[6]张磊,杨光冠,张占恩.吹扫-捕集/气相色谱-质谱测定废水中苯胺类化合物的研究[J].苏州科技学院学报:工程技术版,2008,21(2):39-41.ZHANG Lei,YANG Guangguan,ZHANG Zhanen.Determination of Aniline Compounds in Waste Waterby Purge&Trap-Gas Chromatography/MassSpectrometry[J].Journal of University of Science andTechnology of Suzhou(Engineering and Technology),2008,21(2):39-41.[7]CHIANG J S,HUANG S D.Simultaneous Derivatizationand Extraction of Anilines in Waste Water with㊀142㊀中㊀国㊀环㊀境㊀监㊀测第36卷㊀第6期㊀2020年12月㊀Dispersive Liquid-Liquid Microextraction Followed byGas Chromatography-Mass Spectrometric Detection[J].Talanta,2008,75:70-75.[8]熊杰,钱蜀,谢永洪,等.高效液相色谱-串联质谱法同时测定水中丙烯酰胺㊁苯胺和联苯胺[J].分析化学研究报告,2014,42(1):93-98.XIONG Jie,QIAN Shu,XIE Yonghong,et al.Simultaneous Determination of Acrylamide,Aniline andBenzidine in Water Sample by High PerformanceLiquid Chromatography-Tandem Mass Spectrometry[J].Chinese Journal of Analytical Chemistry,2014,42(1):93-98.[9]赵云芝,杨坪,钱蜀.液相色谱-串联质谱法测定水中14种苯胺类化合物[J].色谱,2015,33(5):508-513.ZHAO Yunzhi,YANG Ping,QIAN Shu.Determinationof Fourteen Aniline Derivatives in Water by LiquidChromatography-Tandem Mass Spectrometry[J].Chinese Journal of Chromatography,2015,33(5):508-513.[10]王超,彭涛,高愈霄,等.混合型固相萃取/超高压液相色谱法测定废水中苯胺类化合物[J].分析测试学报,2013,32(12):1415-1420.WANG Chao,PENG Tao,GAO Yuxiao,et al.Determination of Aniline Derivatives in Waste Water byUltra High Pressure Liquid Chromatography withMixed-Mode Solid Phase Extraction[J].Journal ofInstrumental Analysis,2013,32(12):1415-1420.[11]赵云芝,谢振伟,潘乐丹,等.固相萃取/液相色谱-串联质谱法测定水质中苯胺类化合物及基质干扰的消除[J].色谱,2016,34(3):289-298.ZHAO Yunzhi,XIE Zhenwei,PAN Ledan,et al,Determination of Aniline Derivatives in Water by SolidPhase Extraction-Liquid Chromatography-Tandem MassSpectrometry and Elimination of Matrix Effects[J].Chinese Journal of Chromatography,2016,34(3):289-298.[12]生态环境部办公厅.关于征求‘土壤和沉积物钴的测定火焰原子吸收分光光度法“等六项国家环境保护标准意见的函.环办标征函 2018 68号[EB/OL].(2018-12-13)[2019-01-05].http://www.mee./xxgk2018/xxgk/xxgk06/201812/t20181211_684235.html.[13]生态环境部办公厅.关于征求‘污水监测技术规范“等五项国家环境保护标准意见的函.环办标征函2018 15号[EB/OL].(2018-06-04)[2019-01-05]./gkml/sthjbgw/stbgth/201806/t20180613_443046.htm.。

基于微纳气泡示踪的拖曳法ADCP流速测试

基于微纳气泡示踪的拖曳法ADCP流速测试

Vol.41 No.2Apr., 2021第41卷第2期2021年4月水文JOURNAL OF CHINA HYDROLOGYDOI: 10.19797/ki.1000-0852.20190306基于微纳气泡示踪的拖曳法ADCP 流速测试韩继伟!,2,邵军!,2,符伟杰!,2,赵士伟3,毛春雷!,2,房照娟4(1.水利部南京水利水文自动化研究所,江苏南京210012;2.水利部水文水资源监控工程技术研究中心,江苏 南京210012;3. 32217部队,山东,烟台264000;4.江苏省水文水资源勘测局泰州分局,江苏泰州225300)摘要:声学多普勒剖面流速仪(ADCP )设备在水文领域保有量大、应用广,但如何对其进行量值溯源, 确保现场测量数据准确可靠是用户非常关注的问题。

分析ADCP 的测试现状,阐述ADCP 的6个测试参数,分析出流速测试是核心;利用微纳气泡作为示踪粒子,尝试解决静止水体无反射粒子的问题,为ADCP 流速测试提供支撑;以TRDI 的WHR600-1型ADCP 为例,说明ADCP 流速测试过程和试验数据处理方法。

得出微纳米气泡是ADCP 拖曳水槽水跟踪测试较好的示踪物质,进而实现ADCP 水跟踪流速测试。

为拖曳水槽ADCP 测试改造建设提供技术思路,并给出实验室测试建议。

关键词:ADCP 坐标系;拖曳水槽;水跟踪;微纳米气泡;测试中图分类号:TV123;P335+.1文献标识码:A文章编号:1000-0852(2021)02-0063-061引言声学多普勒剖面流速仪(ADCP)是流速仪的一种,利用声学多普勒测速原理,采用矢量合成方法,测量流 速的垂直剖面分布的仪器袁测量一次可测得一个剖面 上若干层水流速度的三维分量和绝对方向[1-3](目前国内尚缺乏针对声学多普勒剖面流速仪的检定(校准)方法,如果采用直线明槽式检定方法则精度差,甚至无法进行检定。

因此声学多普勒剖面流速仪多在出厂时采用比测方法检定,但比测检定需要野外进行,耗时 耗力且精度不高。

不含双酚类物质阳离子固色剂的应用及其与拒水柔软剂的关系

不含双酚类物质阳离子固色剂的应用及其与拒水柔软剂的关系

锦/氨针织布作为泳装、瑜伽服、塑形内衣等服饰的常用面料得到广泛应用,通常采用弱酸性染料或者中性染料进行染色。

深颜色锦/氨针织面料色牢度较差,尤其超细纤维深颜色面料湿牢度更差。

提高织物色牢度在优先选择高牢度染料的同时,也需要选择合适的固色剂和固色工艺。

近些年,国内外政府、环保组织对影响身体健康的甲醛、双酚类物质、APEO 、ADH 等纺织化学品明确禁止或者限制用量使用,双酚类物质主要包括双酚A 、B 、F 、S 等衍生型物质[1-3],纺织品含有甲醛或双酚类物质等有害物质会影响健康[4-7]。

目前,市场上大部分锦纶酸性固色剂因为含有双酚类物质或者苯酚而被限制使用,而阳离子固色剂一般不含双酚类物质,得到了广泛使用。

国家对印染企业用水限额在不断收紧,现有印染企业百米标准产品耗水限额为小于2.5t ,清洁生产标准要求小于2.0t 。

企业减少染色用水量,也能减少染化不含双酚类物质阳离子固色剂的应用及其与拒水柔软剂的关系摘要:深色锦/氨针织布优选不含双酚类物质的阳离子固色剂在定形工序固色,是保证织物具备优良色牢度的有效方法。

阳离子固色剂在定形工序固色能节水、节省生产时间,满足双酚类物质的限量要求。

阳离子固色剂需要在后整理过程中添加柔软剂来改善织物发涩、发硬的手感,但在定形工序使用拒水柔软剂会影响阳离子固色剂的固色效果。

因此阳离子固色剂和拒水柔软剂在定形工序的合理使用十分关键。

关键词:针织面料;拒水柔软剂;定形;阳离子固色剂中图分类号:TS195.2文献标志码:B 文章编号:1005-9350(2023)07-0043-04Abstract:Using a cationic fixing agent without bisphenol substances is an effective method to ensure excellent col⁃or fastness for dark colored cotton/spandex knitted fabric during the fixing process.Cationic color fixing agents can save wa⁃ter and production time in the fixation process,and can also meet the requirements of bisphenol substances limitations.Cat⁃ionic color fixing agents require the addition of soft oil during the finishing process to improve the astringency and hard⁃ness of the fabric.However,the use of water repellent softener in the setting process can affect the color fixing effect of cat⁃ionic color fixing agents.Therefore,the reasonable use of cationic fixing agents and water repellent softener in the setting process is crucial.Key words:knitted fabric;water repellent softener;heat setting;cationic fixing agentApplication of non-bisphenol substances cationic fixing agentand its relationship with water repellent softener收稿日期:2023-05-12作者简介:李宽绪,男,湖南澧县人,染整工程师,广东德润纺织有限公司副经理,E-mail :****************。

纳米生物润滑剂微量润滑磨削性能研究进展

纳米生物润滑剂微量润滑磨削性能研究进展

第52卷第12期表面技术2023年12月SURFACE TECHNOLOGY·1·专题——多场赋能清洁切削/磨削纳米生物润滑剂微量润滑磨削性能研究进展宋宇翔1,许芝令2,李长河1*,周宗明3,刘波4,张彦彬5,Yusuf Suleiman Dambatta1,6,王大中7(1.青岛理工大学 机械与汽车工程学院,山东 青岛 266520;2.青岛海空压力容器有限公司, 山东 青岛 266520;3.汉能(青岛)润滑科技有限公司,山东 青岛 266100;4.四川新航钛科技有限公司,四川 什邡 618400;5.香港理工大学超精密加工技术国家重点实验室,香港 999077;6.艾哈迈杜·贝洛大学 机械工程学院,扎里亚 810106;7.上海工程技术大学 航空运输学院,上海 200240)摘要:微量润滑是针对浇注式和干磨削技术缺陷的理想替代方案,为了满足高温高压边界条件下磨削区抗磨减摩与强化换热需求,进行了纳米生物润滑剂作为微量润滑的雾化介质探索性研究。

然而,由于纳米生物润滑剂的理化特性与磨削性能之间映射关系尚不清晰,纳米生物润滑剂作为冷却润滑介质在磨削中的应用仍然面临着严峻的挑战。

为解决上述需求,本文基于摩擦学、传热学和工件表面完整性对纳米生物润滑剂的磨削性能进行综合性评估。

首先,从基液和纳米添加相的角度阐述了纳米生物润滑剂的理化特性。

其次,结合纳米生物润滑剂独特的成膜和传热能力,分析了纳米生物润滑剂优异的磨削性能。

结果表明,纳米生物润滑剂优异的传热和极压成膜性能显著改善了磨削区的极端摩擦条件,相比于传统微量润滑,表面粗糙度值(Ra)可降低约10%~22.4%。

进一步地,阐明了多场赋能调控策略下,磨削区纳米生物润滑剂浸润与热传递增效机制。

最后,针对纳米生物润滑剂的工程和科学瓶颈提出了展望,为纳米生物润滑剂的工业应用和科学研究提供理论指导和技术支持。

关键词:磨削;微量润滑;纳米生物润滑剂;多场赋能;表面完整性;理化特性中图分类号:TG580.6 文献标识码:A 文章编号:1001-3660(2023)12-0001-19DOI:10.16490/ki.issn.1001-3660.2023.12.001Research Progress on the Grinding Performance of NanobiolubricantMinimum Quantity LubricationSONG Yu-xiang1, XU Zhi-ling2, LI Chang-he1*, ZHOU Zong-ming3, LIU Bo4,ZHANG Yan-bin5, DAMBATTA Y S1, WANG Da-zhong7收稿日期:2022-11-03;修订日期:2023-05-19Received:2022-11-03;Revised:2023-05-19基金项目:国家自然科学基金(52105457,51975305);山东省科技型中小企业创新能力提升工程(2021TSGC1368);青岛市科技成果转化专项园区培育计划(23-1-5-yqpy-17-qy);泰山学者工程专项经费(tsqn202211179);山东省青年科技人才托举工程(SDAST2021qt12);山东省自然科学基金(ZR2023QE057,ZR2022QE028,ZR2021QE116,ZR2020KE027)Fund:The National Natural Science Foundation of China (52105457, 51975305); The Science and Technology SMEs Innovation Capacity Improvement Project of Shandong Province (2021TSGC1368); Qingdao Science and Technology Achievement Transformation Special Park Cultivation Programme (23-1-5-yqpy-17-qy); The Special Fund of Taishan Scholars Project (tsqn202211179); The Youth Talent Promotion Project in Shandong (SDAST2021qt12); The Natural Science Foundation of Shandong Province (ZR2023QE057, ZR2022QE028, ZR2021QE116, ZR2020KE027)引文格式:宋宇翔, 许芝令, 李长河, 等. 纳米生物润滑剂微量润滑磨削性能研究进展[J]. 表面技术, 2023, 52(12): 1-19.SONG Yu-xiang, XU Zhi-ling, LI Chang-he, et al. Research Progress on the Grinding Performance of Nanobiolubricant Minimum Quantity Lubrication[J]. Surface Technology, 2023, 52(12): 1-19.*通信作者(Corresponding author)·2·表面技术 2023年12月(1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Shandong Qingdao, 266520, China;2. Qingdao Haikong Pressure Vessel Sales Co., Ltd., Shandong Qingdao, 266520, China;3. Hanergy (Qingdao) LubricationTechnology Co. Ltd., Shandong Qingdao, 266100, China; 4. Sichuan New Aviation Ta Technology Co., Ltd., Sichuan Shifang 618400, China; 5. State Key Laboratory of Ultra-precision Machining Technology, Hong Kong Polytechnic University, Hong Kong, China, 999077, China; 6. Mechanical Engineering Department, Ahmadu Bello University, Zaria, 810211, China;7. School of Air Transportation, Shanghai University of Engineering Science, Shanghai, 201620, China)ABSTRACT: The negative impact of traditional mineral oil based grinding fluids on environmental protection, human health and manufacturing costs can hardly meet the development needs of green manufacturing. Minimum quantity lubrication (MQL) atomizes a small amount of biodegradable biolubricants with compressed air to form micro droplets to providing lubrication and anti-wear effects, which is an ideal alternative to flooding and dry grinding technology defects. In order to meet the requirements of anti-wear and friction reduction and enhanced heat transfer in the grinding zone under high temperature and high pressure boundary conditions, nanobiolubricants have been widely investigated as atomised media for minimum quantity lubrication.However, the application of nanobiolubricants as cooling and lubrication media in grinding still faces serious challenges due to the unclear mapping relationship between the physicochemical properties of nanobiolubricants and grinding performance. This is due to the fact that the mechanisms of action of nanoparticles on lubricants is a result of multiple coupling factors.Nanoparticles will not only improve the heat transfer and tribological properties of biological lubricants, but also increase their viscosity. However, the coupling mechanisms between the two factors are often be overlooked. In addition, as a cooling and lubrication medium, the compatibility between nanobiolubricants with different physical and chemical properties and workpiece materials also needs to be further summarized and evaluated. To address these needs, this paper presents a comprehensive assessment of the grinding performance of nanobiolubricants based on tribology, heat transfer and workpiece surface integrity.Firstly, the physicochemical properties of nanobiolubricants were described from the perspectives of base fluids and nano additive phase. And factors which influenced thermophysical properties of nanobiolubricants were analysed. Secondly, the excellent grinding performance of the nanobiolubricants was analysed in relation to their unique film-forming and heat transfer capabilities. Coolingand lubrication mechanism of nanobiolubricants in grinding process was revealed. The results showed that nanobiolubricants can be used as a high-performance cooling lubricant under the trend of reducing the supply of grinding fluids.The excellent heat transfer and extreme pressure film-forming properties of nanobiolubricants significantly improved the extreme friction conditions in the grinding zone, and the surface roughness values (Ra) could be reduced by about 10%-22.4%, grinding temperatures could be reduced by about 13%-36% compared with the traditional minimum quantity lubrication.Furtherly, the multi-field endowment modulation strategy was investigated to elucidate the mechanism of nanobiolubricant infiltration and heat transfer enhancement in the multi-field endowed grinding zone. Multiple fields such as magnetic and ultrasonic fields have improved the wetting performance of nanobiolubricant droplets, effectively avoiding the thermal damage and enabling the replacement of flood lubrication. In the grinding of hard and brittle materials, ultrasonic energy not only enhances the penetration of the grinding fluid through the pumping effect, but also reduces the brittle fracture of the material, and the surface roughness value (Ra) can be reduced by about 10%-15.7% compared with the traditional minimum quantity lubrication. Finally, an outlook for engineering and scientific bottleneck of nanobiolubricants was presented to provide theoretical guidance and technical support for the industrial application and scientific research of nanobiolubricants.KEY WORDS: grinding; minimum quantity lubrication; nanobiolubricants; multi-field empowerment; surface integrit;physicochemical property磨削作为机械加工中的一项关键技术,是保证表面完整性所必需的精密加工方法[1]。

传导发射测试项目不确定度的评定方法

传导发射测试项目不确定度的评定方法

检测认证传导发射测试项目不确定度的评定方法■ 李延苓 王沛栋* 朱昨庆 刘 爽 王海玉 崔东宁 赵龙涛(青岛市产品质量检验研究院)摘 要:随着测量不确定度计算方法的不断发展,国际对不确定度的表示方法越来越统一。

本文基于测试环境及测试仪器,依据标准JJF 1059.1—2012《测量不确定度评定与表示》,对传导发射测试项目的不确定度进行分析和评价。

以电动干发器的“传导发射敏感度”为研究对象,对测量不确定度的计算方法进行研究,分析了影响传导发射测试结果的各因素,建立了相应的数学模型,并对各不确定度的结果进行了计算,结果表明计算所得不确定度均符合要求。

关键词:不确定度,基本概念,误差,准确度,测量模型DOI编码:10.3969/j.issn.1002-5944.2024.07.038Evaluation Method of Uncertainty of Conduction and Emission TestProjectsLI Yan-ling WANG Pei-dong* ZHU Zuo-qing LIU Shuang WANG Hai-yuCUI Dong-ning ZHAO Long-tao(Qingdao Product Quality Testing Research Institute)Abstract:Based on the test environment and test instruments, the uncertainty of conduction and emission test projects is analyzed and evaluated according to the standard JJF 1059.1-2012 Evaluation and expression of measurement uncertainty in measurement. With the continuous development of measurement uncertainty calculation methods, the expression of uncertainty is more and more unified international. The paper takes the conduction and emission sensitivity of hair dryers as the research object, studies the calculation method of measurement uncertainty, analyzes the factors affecting the conduction and emission test results, establishes the corresponding mathematical model, and calculates the results of each uncertainty. The results show that the calculated uncertainties meet the requirements.Keywords: uncertainty, basic conception, deviation, accuracy, measurement model0 引 言早在一个多世纪以前,人们已经知道在给出测量结果时,同时需要给出测量误差,虽然误差早就被广泛使用,但是存在逻辑概念上的混乱以及评定方法不够统一等问题。

IC FAB 厂务系统简介

IC FAB 厂务系统简介

IC FAB 廠務系統簡介2. Electrical power supply condition :2-1. Voltage & Loading :480V : 60Hz ±0.5Hz, 3 phase 4 wire(R,S,T,G)208V : 60Hz ±0.5Hz, 3 phase 4 wire(R,S,T,G)208V : 60Hz ±0.5Hz, 3 phase 5 wire(R,S,T,N,G)120V : 60Hz ±0.5Hz, 1 phase 3 wire(L,N,G)※If tool loading of 208V is greater than 400A, we suggest to use480V power source.※Process tool should follow IEEE standard 466 -electrical power voltage requirement.As attachment-1.2-2. Type :Normal Power : without supply when power outageEmergency Power : can sustain power failure more than 10 minutesDynamic UPS : continuously supply even thought power outage3. EMI:<10mG dc &<1mG ac, and maximum 0.2 mG variation over 5 minutes nearsensitive equipment.4. ESD:4-1. Raised floor and concrete floor = 10E6~5×10E8Ω/□4-2. Clean room wall = 10E6~5×10E8Ω/□4-3. Voltage : <100 V level4-4. Photo area : discharge time: +1000V to +100V under emitter<40 sec.5. Grounding : ≦1Ω6. Noise : ≦60 NC7. Illumination : 750 ~ 800 lux for C/R;but photo area 500 ~ 600 lux with yellow light10. Drain :10-1.『HF-S Drain』: the waste water contain fluorine ion, [F-] >200 mg/l10-2.『HF-W Drain』: the waste water contain fluorine ion, [F-] <200 mg/l10-3.『IPA Waste』: the waste liquid contain IPA and concentration [IPA]>80%10-4.『Solvent Waste』: the waste liquid contain solvent and concentration [Solvent] >80% 10-5.『DA(Waste Drain)』: DA is dedicated to followed condition.A. The waste water contain TOC and concentration [TOC]>2mg/lB. The waste water contain acid or alkali but not first acid rinse waterC. Conductivity>800μs/㎝but not first acid rinse water10-6.『FDA Drain』: is dedicated to first acid rinse water10-7.『DG(general drain)』: DG is dedicated to followed condition.A. The waste water doesn't contain fluorine ion.B. [TOC]<2mg/lC. Conductivity<800μs/㎝but not hot water10-8.『DAH Drain』: hot drain water with [TOC]<2mg/l and conductivity<800μs/㎝and without fluorine ion.10-9.『Oxide Slurry Drain』: is dedicated to CMP oxide waste water10-10.『Metal Slurry Drain』: is dedicated to CMP metal waste water10-11.『Cu-W Drain』: is dedicated to CMP copper waste water10-12.『Cu-S Drain』: is dedicated to electroplating waste for Cu process10-13.『H2SO4-S』: the waste liquid contain H2SO4 and concentration [H2SO4]>80%10-14.『H3PO4-S』: the waste liquid contain H3PO4 and concentration [H3PO4]>80%10-15. Other waste collection systems are dedicated to specialty chemical waste such as EKC, coater, T-12…etc.Typical Power Design Goals for Semiconductor Process Equipment Voltage: 120/208, 277/480 variations as defined by CEBMA curve (IEEE Standard 446)RCFSUB-FABExhaustMUAoutdoor airULPA ChamberEQ-2Clean RoomHc\潔淨室air 品質管理f2.PPT, @2002/01/08.Fab Air Quality ManagementSMIF FOUPEQ-1Local Chemical FilterRCFChemical Filtermicro-environment Chemical FilterMUA Chemical Filter23511. Wafer Operation Area.2. RCF CF 前.3. RCF CF 後.4. MUA CF 前.5. MUA CF 後.儀器與方法1. IMS. (HF,Cl2,NH4OH,VOC/ppb)2. TLD-1. (Cl2 / ppb)3. CCT/ERM. (Å/hr, Å/day)4. Cu/Silver Coupon. (Å/day, Å/week)5. Metal Wafer Queue Time.6. Others. (CD, Defect, Lens,…)1FFUChemical Filter11. Air Velocity.2. Temp./Humidity.333功能與應用1. 晶片保護. (Alarm, OCAP/MRB,…), [ERT]2. Chemical Filter 之Lifetime 管理. [治標]3. 污染洩漏源管理.(Pattern,Map,...) [治本]4. CR 微污染有效管理. (計劃實驗), [持續改善]5. MUA 空氣品質管理. [提昇品質]6. 人員衛生品質管理. [特殊應用]杜絕漏源人人有責4WwaferSMIF/FOUP: Standard Mechanical Inter-Face, Front Opening Unified Pod.Fab Layout (air quality monitor)15112552434323Hc\潔淨室air 品質管理5.ppt1. Wafer Operation Area.2. RCF/FFU CF 前.3. RCF/FFU CF 後.4. MUA CF 前.5. MUA CF 後.RCFSUB-FABExhaustMUAoutdoor airULPA ChamberEQ-2Clean RoomHc\潔淨室particl e 理f2.PPT, @2002/05/13.Fab Particle ManagementSMIF FOUPEQ-1231. Wafer Exposure Area.2. ULPA 後.3. Mfg Working Area4. MUA 後.儀器與方法1. Particle Counter. (.1um)2. Particle monitor. (.3um)3. Air Velocity Meter. (0.1-1m/sec.)4. Flow pattern monitor5. Smog Generator.6. De-bug Tool. (Item1,2 + CCTV)111. Air Velocity.2. Flow Pattern23功能與應用1. 晶片保護. (Alarm, OCAP/MRB,…), [ERT]2. Filter 之Lifetime 管理. [治標]3. Particle 來源管理.(Pattern,Map,...) [治本]4. CR 微塵有效管理. (計劃實驗), [持續改善]5. MUA Particle 品質管理. [提昇品質]微塵控管人人有責4Class 1@0.1um Class 0.1@0.1umClass 100T @0.3umClass 100, @0.3umWClass 10@0.1umWafer SMIF/FOUP: Standard Mechanical Inter-Face, Front Opening Unified Pod.Gerneral Fab Layout (particle monitor)15112523323Hc\潔淨室particl e 管理5.ppt1. Wafer Operation Area.2. Mfg Working Area.3. ULPA 前.4. ULPA 後.5. MUA 前.444。

深海微生物絮凝剂HBF-3的剂型研究

深海微生物絮凝剂HBF-3的剂型研究

深海微生物絮凝剂HBF-3的剂型研究赵妮;印文;王阶平;邵宗泽;喻子牛;何进【摘要】The formulation of the novel microbial flocculant HBF-3 was studied in this paper. The supernatant of the fermentative culture was made into solid formulation by freeze-drying with 5% sucrose as a cryopro-tectant. The lyophilized power of HBF-3 could be easily rehydrated and therefore kept a flocculating activity as high as 82. 4%. The liquid formulation was obtained through straightforward rotary evaporation process, which could mainly maintain the flocculating activity unchanged when diluting the concentrate to original concentration. The results also demonstrated that HBF-3 was thermostable. More importantly, the liquid formulation HBF-3 added 1. 0 g ·L-1 sorbic acid potassium maintained above 90% flocculating activity even one month later when stored at 4 °C , 28 °C , 37°C, and 50 °C , respectively.%对深海微生物絮凝剂HBF-3的剂型进行了研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

your partner in analog, connecting you with the digital world
Jerry Zhao
Requirements of wet cleaning process
Effective removal of all types of surface contaminants Not etching of damaging Si and SiO2 surface Contamination-free chemicals Safe, simple and economical for production application Ecologically acceptable, free of toxic waste products Implementable by a variety of techniques
your partner in analog, connecting you with the digital world
Jerry Zhao
Wet Process Parameters Particle Etch Rate & Uniformity Inline Defectivity Metallic Contamination Inline Oxide Thickness Selectivity (H3PO4)
Ba Cd Cu In Mg Nb Ag Tl Zn
< < < < < < < < <
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
your partner in analog, connecting you with the digital world
Jerry Zhao
Chemistry of RCA Clean
your partner in analog, connecting you with the digital world Jerry Zhao
ChemicBiblioteka ls – SC1 SC1 Chemical Compound
– NH4OH:H2O2:H2O =1:2:10 / 50C (particle removal) – NH4OH:H2O2:H2O =1:4:20 / 50C (pre-diffusion clean) – NH4OH:H2O2:H2O =1:1:5 / 50C (salicide strip)
your partner in analog, connecting you with the digital world
Jerry Zhao
Chemicals used at FAB3
DIW (De-ionized Water) - 15~18 M-cm H2SO4 (Sulfuric Acid) - 96% NH4OH (Ammonia Hydroxide) - 29% H2O2 (Hydrogen Peroxide) - 31% HCl (Hydrochloric Acid) - 36% HF (Hydrofluoric Acid) - 49% BOE (Buffered Oxide Etch) H3PO4 (Phosphoric Acid) - 86% IPA (Iso-propanol) - 100% EKC265
Plasma Strip
Post Wet Clean (Wet Strip)
your partner in analog, connecting you with the digital world Jerry Zhao
Introduction to Wet Cleaning
Wet Cleaning are a series of processes to make the wafer surface free from particles organic contamination inorganic contamination surface micro-roughness native oxide
Wet Clean Process Overview
Prepared by: Jerry Zhao Apr 15, 2005
your partner in analog, connecting you with the digital world
Jerry Zhao
Introduction to Wet Cleaning
Function
– Particle removal – Light polymer removal
Oxidation Mechanism
Electrical Repulsion Mechanism
Jerry Zhao
your partner in analog, connecting you with the digital world
your partner in analog, connecting you with the digital world
Jerry Zhao
Wet Equipments Immersion tool (SES, Kaijo, DNS, Akrion, SCP, etc.) Spray tool (Semitool, SEZ, FSI) Single wafer processing (SEZ, DNS)
your partner in analog, connecting you with the digital world
Jerry Zhao
Introduction to Wet Cleaning
Organic Contamination
lubricants grease coolants detergents photoresist solvent residues fatty material from human handling airborne particle
Typical Process Flow
FRONTEND Pre Wet Clean Film Growth or Deposition (Oxide/Poly/Nitride) Lithography Etch Implant Film Deposition Lithography Etch Plasma Strip Post Wet Clean (Polymer Removal) CMP (In-situ Clean) BACKEND Film Deposition (Oxide/Metal)
1. First systematically developed wafer cleaning process for bare and oxidized Si. Introduced to RCA device fabrication in 1965, published in 1970. 2. RCA cleaning process is based on a 2-steps wet oxidization and complexing treatment in aqueous H2O2NH4OH and H2O2 -HCl mixtures for 75~80oC. 3. Chemistry of RCA Clean - H2O2 at high pH is a powerful oxidant, decomposing to H2O + O2 - NH4OH is a strong complexant for many metals - HCl in H2O2 forms soluble alkali and metal salts by dissolution and / or complexing. - Mixtures formulated not to attack Si or SiO2.
your partner in analog, connecting you with the digital world
Jerry Zhao
Achievements of wet cleaning process
High purity of materials (UPC, UPW, UPG) Well-understanding of wet chemistry Software modification of recipe (Modified RCA Clean recipe, development of new recipes, and B Clean is the most popular clean recipe in ULSI application). Hardware improvement of tool configuration Well-characterization of process (Stability of chemical tank, optimization of cleaning parameters and well monitor of bath life and batch counts)
your partner in analog, connecting you with the digital world
Jerry Zhao
Introduction to Wet Cleaning
Inorganic Contamination
cations, anions, mostly from inorganic compounds that can be physically adsorbed or chemically bonded Contamination sources: chemical, wafer, metal debris from equipment, human Types of inorganic contamination – Heavy metals: Fe, Cu, Ni, Zn, Au, Hg, Ag – Alkali metals: Na, K, Li – Light elements: Al, Mg, Ca, C, S, Cl, F
相关文档
最新文档