核酸的结构与功能
核酸的结构与功能
核酸的结构与功能核酸,这个生物体的基本组成部分,以其独特的结构和功能,影响着生物体的生命活动。
它包括DNA和RNA两种主要类型,各有其独特的特点和功能。
一、核酸的结构核酸是由磷酸、核糖和四种不同的碱基组成。
这四种碱基分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和尿嘧啶(U)。
它们通过特定的方式连接在一起,形成DNA或RNA。
DNA,也被称为脱氧核糖核酸,是生物体遗传信息的主要载体。
它是由两条相互旋转的链组成的双螺旋结构,其中碱基通过氢键以特定的配对方式连接,即A与T配对,G与C配对。
这种配对方式保证了DNA 的稳定性和遗传信息的正确复制。
RNA,也被称为核糖核酸,是生物体内重要的信息传递者和调节者。
它通常是由单链结构组成,也可以是双链结构。
与DNA不同,RNA的碱基配对方式相对简单,通常是A与U配对,G与C配对。
二、核酸的功能1、遗传信息的储存和传递:DNA是生物体遗传信息的主要载体,负责储存和传递生物的遗传信息。
这些信息通过DNA的复制传递给下一代,并指导生物体的生长和发育。
2、基因表达的调控:RNA在基因表达中起着重要的调控作用。
它可以通过碱基配对原则识别并携带DNA中的遗传信息,将遗传信息从DNA传递到蛋白质合成的地方。
同时,一些RNA还可以作为调节分子,影响基因的表达。
3、蛋白质合成:RNA不仅是遗传信息的载体,还是蛋白质合成的模板。
在蛋白质合成过程中,RNA将DNA中的遗传信息翻译成蛋白质中的氨基酸序列。
4、细胞内的信号传导:某些RNA分子可以作为分子开关,调控细胞内的信号传导通路。
这些RNA可以结合并调控蛋白质的活性,从而影响细胞内的生物化学反应。
5、免疫反应的调节:某些RNA分子还可以作为免疫反应的调节剂。
它们可以影响免疫细胞的活性,从而影响免疫反应的强度和持续时间。
总结起来,核酸是生物体中至关重要的分子,其结构和功能共同保证了生物体的正常生长和发育。
从DNA中的遗传信息传递到RNA的信息载体作用,再到蛋白质的合成和细胞内信号传导的调控,核酸都发挥着不可或缺的作用。
大学化学-核酸的结构与功能
(3)、Watson 和Crick提出双螺旋模型(1953)
2011-9
20
Franklin, Rosalind Elsie
(UK,1920-58), who conducted X-ray
diffraction studies on the structure of
the DNA molecule, the carrier of hereditary information, while working
1´
3´ 2´
5´
HOCH2 O OH
4´
1´
3´ 2´OH ຫໍສະໝຸດ HOH H-D –型
- D – 核糖
- D – 2 – 脱氧核糖
2011-9
8
两类核酸的基本成分
成分
磷酸 戊糖 嘌呤碱 嘧啶碱
RNA
磷酸 D-核糖 A、G C、U
2011-9
DNA
磷酸 D-2-脱氧核糖 A、G C、T
9
核苷、核苷酸与多核苷酸
2011-9
14
二、DNA的基本组成单位是脱氧核苷酸
脱氧核苷酸通过3’,5’-磷酸二酯键连接形成具 有方向性的线性DNA大分子,即多聚脱氧核苷酸 (polydeoxynucleotide),常称DNA链。
H2O
2011-9
15
5´-末端
核酸是有方向性的: C 方向:5 → 3
磷酸二酯键 磷酸二酯键
(deoxyribonucleic acid, DNA)
存在于细胞核和线粒体
携带遗传信息,并通过复制传递 给下一代。
核糖核酸 (ribonucleic acid, RNA)
分布于细胞核、细胞质、线粒体
核酸的结构和功能
核酸的结构和功能核酸是生物体内的重要生物大分子之一,其结构和功能对于生物体的正常生理活动具有重要意义。
核酸主要包括核糖核酸(RNA)和脱氧核糖核酸(DNA),它们在细胞中扮演着信息传递、遗传、调控等方面的重要角色。
本文将详细介绍核酸的结构和功能。
一、核酸的结构核酸是由核苷酸单元组成的长链分子。
核苷酸由一个含氮碱基、糖分子和磷酸组成。
核苷酸通过磷酸二酯键连接成链状结构,相邻核苷酸之间的磷酸二酯键被称为链的磷酸骨架。
在DNA中,糖分子是脱氧核糖(deoxyribose),而在RNA中则是核糖(ribose)。
碱基分为嘌呤(鸟嘌呤和胸腺嘧啶)和嘧啶(腺嘌呤、鸟嘌呤和尿嘧啶)两类。
在DNA中,鸟嘌呤和胸腺嘧啶以氢键的方式通过碱基配对相互结合,形成双螺旋结构。
而在RNA中,核糖和碱基之间没有形成稳定的双螺旋结构。
二、核酸的功能1.存储遗传信息:DNA是生物体内存储遗传信息的主要分子。
通过DNA的序列编码了生物体内所有蛋白质的合成信息。
每一个DNA分子都包含了生物体所有的遗传信息,它能够准确地复制自身,并通过遗传信息的传递实现后代群体的生存和繁殖。
2.转录和翻译:DNA的遗传信息通过转录作用被转录成一种中间产物RNA,即RNA的合成过程。
在细胞质中,RNA通过读取DNA上的密码信息并翻译成蛋白质序列,从而实现遗传信息的传递。
这个过程被称为翻译。
3.转运和储存能量:核酸还能承担转运和储存能量的功能。
例如,三磷酸腺苷(ATP)是细胞内的一种重要能量转移分子,在胞吞、细胞呼吸等细胞代谢过程中转运和释放能量。
4. 催化作用:部分RNA分子具有催化作用,被称为酶RNA (ribozyme)。
酶RNA能够在特定条件下催化化学反应,例如:RNA酶能够剪切RNA链,还能参与核酸的合成和修复等生物化学过程。
5.调控基因表达:除了DNA编码蛋白质的功能外,核酸还能调控基因表达过程。
RNA在细胞内扮演着信使RNA、转运RNA和核糖体RNA等不同角色,参与调控基因表达的过程,例如:转录因子通过与一些基因的调控区域结合,将DNA转录为RNA,进而调控该基因的表达。
第二章 核酸的结构与功能
核酸的结构与功能
❖ 1868年,瑞士外科医生Fridrich从外科手术绷带上的脓细胞的细 胞核中分离出一种溶于碱而不溶于酸的酸性有机化合物,其分子 中含磷2.5%、含氮14%,该物质被命名为核酸。
❖ 根据核酸分子中所含戊糖的差别: (一)脱氧核糖核酸(DNA):主要存在于细胞核中(真核细胞的 线粒体中也存在不少量的DNA),携带着决定个体基因型的遗传信 息,是遗传信息的贮存和携带者; (二)核糖核酸(RNA):主要存在于细胞核和细胞质中,参与细
比DNA复制得多,这与它的功能多样化密切相关。
一、mRNA是蛋白质合成中的模板
❖ 1960年,Jacob 和 Monod 等人用放射性核素示踪实验证实: 一类大小不同的RNA才是细胞内合成蛋白质的真正模板,于 1961年首先提出了信使RNA(mRNA)这个概念。
❖ 在各种RNA分子中,mRNA约占细胞内RNA总量的2~5%,种类 最多,分子大小相差很大;
N H
❖DN生称AN物为稀体有的D碱N基A8 N和79NH。RN45 AN36分12 子N 中NH2还含有一些65含1N4 3量2N 很O 少H的3C碱基65 1,N4 32
N
O
鸟嘌呤
RNA
胞嘧啶
胸腺嘧啶
5´
HOCH2
4´ H
OH O
H 1´
H
H
3´
2´
OH OH
β-D-核糖(构成RNA)
5´
HOCH2
遗传的相对稳定性,又可发生各种重组和突变,适应环境的 变迁,为自然选R型择细提菌供:无机毒会型。肺炎球菌
S型细菌:有毒型肺炎球菌
肺炎球菌转化实验
第三节
RNA 的结构与功能
❖ RNA和蛋白质共同担负着基因的表达和表达调控功能。 ❖ RNA通常以单链形式存在,但可通过链内的碱基配对形成
核酸的结构和功能
核酸的结构和功能核酸是生命体内十分重要的一种生物大分子,它不仅可以储存遗传信息,还可以传递遗传信息和控制遗传信息的表达。
核酸的结构和功能一直是生物学研究中备受关注的重要领域,本文将从核酸的结构和功能两个方面进行探讨。
一、核酸的结构核酸是由核苷酸单元组成的,每个核苷酸单元由一个糖分子、一个碱基和一个磷酸基团组成。
糖分子是五碳糖,对于RNA来说,是核糖,对于DNA来说,是脱氧核糖。
碱基有四种类型,分别为腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶,它们可以自由地组合在一起,形成不同的核苷酸单元。
核苷酸单元通过磷酸基团的连接形成了核酸链。
RNA是单链结构,而DNA是双链结构,其中一条链具有正向朝向,另一条链具有反向朝向。
DNA两条链通过氢键相互串联在一起,即A碱基配对T碱基,C碱基配对G碱基,这种配对方式保证了DNA两条链互补性,且不同的DNA序列具有不同的特异性。
RNA在一些特殊情况下可以形成双链结构,例如siRNA和微小RNA可以通过与靶序列的互补配对来抑制基因表达。
二、核酸的功能核酸的功能主要包括储存遗传信息、传递遗传信息和控制遗传信息的表达。
1. 储存遗传信息DNA作为遗传物质的载体,在细胞分裂和繁殖的过程中,能够确保一定程度的遗传稳定性和连续性。
它能够储存所有生物的遗传信息,并且在细胞复制过程中保持遗传信息的准确复制。
当细胞分裂时,DNA能够在细胞的两个子细胞之间进行遗传信息的传递,从而保证遗传信息的传承。
2. 传递遗传信息RNA作为DNA的转录产物,能够通过核糖体进行翻译,合成蛋白质。
RNA分为mRNA、tRNA和rRNA三类,其中mRNA是将DNA上的遗传信息转录并运送到核糖体的,tRNA是将氨基酸运送到核糖体,rRNA是核糖体的主要构成部分之一。
RNA通过转录和翻译过程,将DNA上的遗传信息传递到蛋白质上,控制蛋白质的合成和功能性质。
3. 控制遗传信息的表达DNA序列中含有许多启动子和基因调控元件,它们能够通过结合转录因子调节基因的表达。
【高中生物】核酸的结构与生物学功能
(生物科技行业)核酸的结构与生物学功能核酸的结构与生物学功能核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一。
最早是瑞士的化学家米歇尔于1870年从脓细胞的核中分别出来的,由于它们是酸性的,并且最先是从核中分其他,故称为核酸。
核酸的发现比蛋白质晚得多。
核酸分为脱氧核糖核酸(简称DNA)和核糖核酸(简称RNA )两大类,它们的基本结构单位都是核苷酸(包含脱氧核苷酸)。
1 .核酸的基本单位——核苷酸每一个核苷酸分子由一分子戊糖(核糖或脱氧核糖)、一分子磷酸和一分子含氮碱基组成。
碱基分为两类:一类是嘌呤,为双环分子;另一类是嘧啶,为单环分子。
嘌呤一般均有A、G2种,嘧啶一般有C、 T、 U3种。
这 5 种碱基的结构式以以下图所示。
由上述结构式可知:腺嘌呤是嘌呤的 6 位碳原子上的 H 被氨基取代。
鸟嘌呤是嘌呤的 2 位碳原子上的 H 被氨基取代, 6 位碳原子上的 H 被酮基取代。
3 种嘧啶都是在嘧啶 2 位碳原子上由酮基取代 H ,在 4 位碳原子上由氨基或酮基取代 H 而成,对于 T,嘧啶的 5 位碳原子上由甲基取代了 H 。
凡含有酮基的嘧啶或嘌呤在溶液中可以发生酮式和烯醇式的互变异构现象。
结晶状态时,为这类异构体的容量混杂物。
在生物体内则以酮式占优势,这对于核酸分子中氢键结构的形成特别重要。
比方尿嘧啶的互变异构反应式以以下图。
酮式( 2 , 4–二氧嘧啶)烯酸式( 2 , 4 –二羟嘧啶)在一些核酸中还存在少量其他修饰碱基。
由于含量很少,故又称微量碱基或稀有碱基。
核酸中修饰碱基多是 4 种主要碱基的衍生物。
tRNA 中的修饰碱基种类很多,如次黄嘌呤、二氢尿嘧啶、 5 –甲基尿嘧啶、 4 –硫尿嘧啶等, tRNA 中修饰碱基含量不一,某些tRNA中的修饰碱基可达碱基总量的10 %或更多。
核苷是核糖或脱氧核糖与嘌呤或嘧啶生成的糖苷。
戊糖的第 1 碳原子( C1)平时与嘌呤的第 9 氮原子或嘧啶的第 1 氮原子相连。
生物化学第二章核酸
(五)体内重要的游离核苷酸及其衍生物
1、多磷酸核苷酸
NDP NTP (A,G, C, U)
dNDP dNTP (A,G, C, T)
H N
N H
N
H
9
N
H
O-
O-
O-
腺嘌呤
~ ~ -O— P -O— P -O— P HOH2C5′ O OH
‖
‖
O
O
‖
O
4′
1′
3′ 2′
M-单 D-二 T-三 P-磷酸
Erwin Chargaff (1905-1995)
3、 DNA 分子X射线衍射照片
DNA 分子 X射线衍射照片
4、DNA双螺旋结构模型(double-helical structure) 1953年,James Watson & Francis
James Watson & Francis Crick
第二章 核酸的结构和功能
Structure and function of Nucleic Acid
核 酸(nucleic acid)
是以核苷酸为基本组成单位的生 物大分子,携带和传递遗传信息。
核酸的种类、分布和功能
脱氧核糖核酸
(deoxyribonucleic acid, DNA)
分布于细胞核(98%),线 粒体,叶绿体, 质粒。
由于几何形状的限制,碱基对只能由嘌呤和嘧啶配对,即A 与T,G与C。这种配对关系,称为碱基互补。A和T之间形 成两个氢键, G与C之间形成三个氢键。
碱基配对和氢键形成
3、双螺旋横截面的直径约为2 nm,相邻两个 碱基平面之间的距离(轴距)为0.34 nm, 每10个核苷酸形成一个螺旋,其螺距(即螺 旋旋转一圈的高度)为3.4 nm。
核酸的结构与功能
现代分子生物学的基础:1953年 Watson和 Crick发现DNA的双螺旋结构
P24
• 1968年 Nirenberg发现遗传密码 • 1973年美国斯坦福大学首次进行了体外基因重组 • 1975年 Temin和Baltimore发现逆转录酶 • 1981年 Gilbert和Sanger建立DNA测序方法 • 1985年 Mullis发明PCR技术 • 1990年 启动人类基因组计划(HGP) • 2003年 完成人类基因组计划 • 20世纪末 发现许多具有特殊功能的RNA
2003年4月14日,美、英、日、意、中同时宣布: 人类30亿碱基DNA序列已测定出来
P30
核酸分子大小的表示方法
碱基数目(单链): base或kilobase, kb 碱基对数目(双链): base pair, bp或kilobase pair, kb DNA和RNA的分子量呈多样性
<50bp常被称为寡核苷酸(oligonucleotide)
P32
0.34nm
3.4nm
1nm
3、两条核苷酸链通过碱 基间的氢键连接。遵从
T
A
碱基互补原则,即:
A-T配对,形成两个氢键 C
G
G-C配对,形成三个氢键
互补
P32
4、碱基堆积力(疏水力)和氢键 维系DNA双螺旋结构的稳定 力量
P32
Watson-Crick的DNA双螺旋
2.0 nm
DNA双螺旋结构存在多样性:
第三节 DNA的结构与功能 第四节 RNA的结构与功能 第五节 核酸的理化性质及应用
第四节 RNA的结构与功能
RNA的一级结构即核苷酸的排列顺序 RNA的基本组成单位是4种核糖核苷酸 AMP、GMP、CMP、UMP RNA的基本结构键是 3’,5’ – 磷酸二酯键 RNA的分子小,种类多,稀有碱基多
第2章核酸的结构与功能ppt课件
Sanger测序原理
1.2.1.2 DNA的二级结构及其多态性
Watson和Crick在总结前人研究工作的基础上, 在1953年以立体化学上的最适构型建立了与 DNA X-射线衍射资料相符的分子模型—— DNA双螺旋结构模型。 它可在分子水平上 阐述遗传(基因复制)的基本特征。
⑴DNA双螺旋结构的主要依据
核酸根据核酸的化学组成和生物学功能,将核 酸分为:
核糖核酸(ribonucleic acid RNA)和
脱氧核糖核酸(deoxyribonucleic acid DNA)
所有细胞都同时含有DNA和RNA两种核酸。病 毒只含一种核酸,DNA或RNA,故有DNA 病毒和RNA病毒之分。多数细菌病毒(噬菌 体)属DNA病毒,而植物和动物病毒多为 RNA病毒。
5’pApCpUpUpGpApApCpC3’ RNA
简化为: 5’pACTTGAACG3’ DNA
5’pACUUGAACG3’RNA
简写式的5`-末端均含有一个磷酸残基(与糖基 的C-5`位上的羟基相连),3`-末端含有一个 自由羟基(与糖基的C-3`位相连),若5`端 不写P,则表示5`-末端为自由羟基。
3.4nm 2.8nm 36° 33°
Z-DNA
Wang和Rich等在研究人工 合成的d(CGCGCG)单 晶的X-射线衍射图谱时, 发现这种六聚体的构象不 同于B-构象。
它是左手双螺旋,在主链 中各个磷酸根呈锯齿 (Zigzag)状排列,因此 称Z-构象。
B-DNA与Z-DNA的比较
比较内容
B-DNA
T 24.8
28 25.6 29.7 28.9 29.2 32.9
G 24.1 23.2 21.9 20.5 20.4 20.4 18.7
第2章 核酸的结构与功能
第二章核酸的结构和功能核酸是以核苷酸为基本组成单位的线性多聚生物信息分子。
分为DNA和RNA两大类。
其化学组成见下表:DNA RNA碱基①嘌呤碱 A、G A、G②嘧啶碱 C、T C、U戊糖β-D-2 脱氧核糖β-D-核糖磷酸磷酸磷酸碱基与戊糖通过糖苷键相连,形成核苷。
核苷的磷酸酯为核苷酸。
根据核苷酸分子的戊糖种类不同,核苷酸分为核糖核苷酸与脱氧核糖核苷酸,前者是RNA的基本组成单位,后者为DNA的基本组成单位,核酸分子中核苷酸以3’,5’-磷酸二酯键相连,形成多核苷酸链,是核酸的基本结构。
多核苷酸链中碱基的排列顺序为核酸的一级结构。
多核苷酸链的两端分别称为3’-末端与5’-末端。
DNA的二级结构即双螺旋结构的特点:⑴两条链走向相反,反向平行,为右手螺旋结构;⑵脱氧核糖和磷酸在双螺旋外侧,碱基在内侧;⑶两链通过氢键相连,必须A与T、G与C配对形成氢键,称为碱基互补规律。
⑷大(深)沟,小(浅)沟。
⑸螺旋一周包含10个bp,碱基平面间的距离为0.34nm,螺旋为3.4nm,螺旋直径2nm;⑹疏水作用。
氢键及碱基平面间的疏水性堆积力维持其稳定性。
DNA的基本功能是作为遗传信息的载体,并作为基因复制转录的模板。
mRNA分子中有密码,是蛋白质合成的直接模板。
真核生物的mRNA一级结构特点:5’-末端“帽”,3’-末端“尾”。
tRNA在蛋白质合成中作为转运氨基酸的载体,其一级结构特点:含有较多的稀有碱基;3’-CCA-OH,二级结构为三叶草形结构。
rRNA与蛋白质结合构成核蛋白体,作为蛋白质合成的“装配机”。
细胞的不同部位还存在着许多其他种类小分子RNA,统称为非mRNA小RNA(snmRNAs),对细胞中snmRNA 种类、结构和功能的研究称为RNA组学。
具有催化作用的某些小RNA称为核酶。
碱基、核苷、核苷酸及核酸在260nm处有最大吸收峰。
加热可使DNA双链间氢键断裂,变为单链称为DNA变性。
DNA变性时,OD260增高。
核酸的结构与功能
核酸的结构与功能
核酸是细胞内携带遗传信息的物质,在生物的遗传、变异和蛋白质的生物合成中具有极其重要的作用。
核酸的结构包括核苷酸、磷酸基骨架和碱基。
核苷酸由一分子磷酸、一分子五碳糖(脱氧核糖或核糖)和一分子含氮碱基组成。
磷酸基骨架连接核苷酸形成线性或环状的核酸分子。
碱基分为嘌呤和嘧啶两类,包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、尿嘧啶(U)等。
核酸的功能主要包括以下几个方面:
1.遗传信息传递与储存:DNA是细胞内遗传信息的主要储存库,而
RNA则将这些信息从DNA中传递到蛋白质的合成过程中。
2.蛋白质合成:RNA在蛋白质合成过程中起着重要的角色。
其中,
转录过程将DNA上的信息转录成RNA分子,而翻译过程则利用RNA 的遗传信息来合成特定的蛋白质。
3.酶的活性调节:某些RNA分子本身具有催化活性,称为核糖酶。
这些核糖酶可以催化特定的生化反应,从而调节细胞内的代谢和信号传递过程。
4.调控基因表达:RNA通过调控基因表达来控制细胞的发育和功能。
其中,小干扰RNA(siRNA)和微小RNA(miRNA)等RNA分子可以与特定的mRNA结合,从而抑制或加强特定基因的转录和翻译过程。
5.病毒的复制与感染:一些病毒利用RNA作为基因材料进行复制和
传播。
例如,HIV等病毒具有RNA基因组,通过感染宿主细胞并复制RNA来使病毒持续存在。
核酸的结构与功能
核酸分子杂交(hybridization)
在DNA变性后的复性过程中,如果将不同种类 的DNA单链分子或RNA分子放在同一溶液中,只要 两种单链分子之间存在着一定程度的碱基配对关系, 在适宜的条件(温度及离子强度)下,就可以在不同 的分子间形成杂化双链(heteroduplex)。
这种杂化双链可以在不同的DNA与DNA之间形 成,也可以在DNA和RNA分子间或者RNA与RNA分 子间形成。这种现象称为核酸分子杂交。
* tRNA的功能 活化、搬运氨基酸到核糖体,参
与蛋白质的翻译。
rRNA的结构与功能
* rRNA的种类(根据沉降系数-单位离心力场里的沉降速度) 原核及真核生物核糖体的组成
核糖体
原核生物 (70S)
亚单位
小亚基(30S) 大亚基(50S)
rRNA
16S rRNA 5S rRNA 23S rRNA
(三)DNA双螺旋结构的多样性
A型DNA
B型DNA
Z型DNA
三螺旋DNA
三、DNA的三级结构-超螺旋结构 及其在染色质中的组装
DNA的超螺旋结构
超螺旋结构(superhelix 或supercoil) DNA双螺旋链再盘绕即形成超螺旋结构。
正超螺旋(positive supercoil) 盘绕方向与DNA双螺旋方同相同
➢20世纪40年代Chargaff规则-碱基组成分析 ①DNA碱基组成有种的特异性,但没有组织、器官特异性。
来源
碱基的相对含量(x) 腺嘌呤 鸟嘌呤 胞嘧啶* 胸腺嘧啶
来源
碱基的相对含量(x)
腺嘌呤 鸟嘌呤 胞嘧啶* 胸腺嘧啶
人
30.9 19.9 19.8
29.4
扁豆
29.7 20.6 20.1
核酸的结构与功能
核酸的结构与功能核酸是生物体内重要的生物大分子之一,它不仅参与到遗传信息的传递和转录过程中,还在细胞生理活动中发挥着重要的功能。
本文将重点介绍核酸的结构和功能。
一、核酸的结构核酸主要由核苷酸组成,而核苷酸又由糖基、碱基和磷酸残基构成。
1. 糖基:核酸中的糖基有两种,即脱氧核糖和核糖。
脱氧核糖是构成DNA的糖基,而核糖则是RNA的糖基。
2. 碱基:碱基是核苷酸的重要组成部分,它可分为两类,嘌呤和嘧啶。
嘌呤包括腺嘌呤(A)和鸟嘌呤(G),而嘧啶则包括胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。
3. 磷酸残基:磷酸残基是核苷酸的磷酸部分,通过醣苷酸的骨架连接在一起,形成了核酸的链状结构。
二、核酸的功能1. 遗传信息的传递:核酸承载着生物体的遗传信息,其中DNA是生物体遗传信息的主要媒介。
DNA分子通过编码自身的碱基序列,传递给下一代,从而实现了生物遗传的连续性。
2. 转录过程中的模板:DNA作为模板参与到转录过程中,转录酶根据DNA的碱基序列合成RNA,这个过程被称为转录。
RNA承载着从DNA传递过来的信息,进一步参与到蛋白质的合成中。
3. 蛋白质的合成:核酸在蛋白质的合成过程中发挥着重要的功能。
由DNA转录形成的RNA分子将遗传信息带到细胞质中的核糖体,核糖体根据RNA的信息合成特定的氨基酸序列,最终形成特定的蛋白质。
4. 能量传递:核酸有能量转移的功能。
在细胞生理活动中,ATP(腺苷三磷酸)作为一种常见的核苷酸,通过释放相应的磷酸,将化学能转化为细胞内能量。
5. 调节基因表达:核酸还通过一系列的调控机制来调节基因的表达。
例如,RNA干扰技术能够通过干扰特定基因的转录过程,实现对基因表达的调控。
结语:通过对核酸的结构与功能进行了解,我们深刻认识到核酸在生物体内的重要性。
作为遗传信息的承载者和调控蛋白质合成的关键参与者,核酸在维持生物体的正常功能和生理过程中起着不可忽视的作用。
进一步研究核酸的结构和功能有助于揭示生命活动的本质,并为生物技术领域的发展提供新的思路和路径。
【高中生物】核酸的结构与生物学功能
(生物科技行业)核酸的结构与生物学功能核酸的结构与生物学功能核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一。
最早是瑞士的化学家米歇尔于1870年从脓细胞的核中分离出来的,由于它们是酸性的,并且最先是从核中分离的,故称为核酸。
核酸的发现比蛋白质晚得多。
核酸分为脱氧核糖核酸(简称DNA)和核糖核酸(简称RNA)两大类,它们的基本结构单位都是核苷酸(包含脱氧核苷酸)。
1.核酸的基本单位——核苷酸每一个核苷酸分子由一分子戊糖(核糖或脱氧核糖)、一分子磷酸和一分子含氮碱基组成。
碱基分为两类:一类是嘌呤,为双环分子;另一类是嘧啶,为单环分子。
嘌呤一般均有A、G2种,嘧啶一般有C、T、U3种。
这5种碱基的结构式如下图所示。
由上述结构式可知:腺嘌呤是嘌呤的6位碳原子上的H被氨基取代。
鸟嘌呤是嘌呤的2位碳原子上的H被氨基取代,6位碳原子上的H被酮基取代。
3种嘧啶都是在嘧啶2位碳原子上由酮基取代H,在4位碳原子上由氨基或酮基取代H而成,对于T,嘧啶的5位碳原子上由甲基取代了H。
凡含有酮基的嘧啶或嘌呤在溶液中可以发生酮式和烯醇式的互变异构现象。
结晶状态时,为这种异构体的容量混合物。
在生物体内则以酮式占优势,这对于核酸分子中氢键结构的形成非常重要。
例如尿嘧啶的互变异构反应式如下图。
酮式(2,4–二氧嘧啶)烯酸式(2,4–二羟嘧啶)在一些核酸中还存在少量其他修饰碱基。
由于含量很少,故又称微量碱基或稀有碱基。
核酸中修饰碱基多是4种主要碱基的衍生物。
tRNA中的修饰碱基种类较多,如次黄嘌呤、二氢尿嘧啶、5–甲基尿嘧啶、4–硫尿嘧啶等,tRNA中修饰碱基含量不一,某些tRNA中的修饰碱基可达碱基总量的10%或更多。
核苷是核糖或脱氧核糖与嘌呤或嘧啶生成的糖苷。
戊糖的第1碳原子(C1)通常与嘌呤的第9氮原子或嘧啶的第1氮原子相连。
在tRNA中存在少量5–核糖尿嘧啶,这是一种碳苷,其C1是与尿嘧啶的第5位碳原子相连,因为这种戊糖与碱基的连接方式特殊(为C—C连接),故称为假尿苷如下图。
核酸的结构与功能
目录
超螺旋(Supercoil): Coiled coils
目录
(一)原核生物DNA的环状超螺旋结构
盘绕生成超螺旋
解螺旋
原核生物DNA多为环状的双螺旋分子 ,以 负超螺旋的形式存在,平均每200碱基就有一个 超螺旋形成。
目录
Avery证明遗传物质是DNA 的实验
目录
DNA双螺旋结构的研究背景
1951年, Pauling利用X线晶 体衍射技术研究α角蛋白的 空间结构,发现了蛋白质的 α螺旋结构 α螺旋结构理论首次用分子 形成螺旋这种方式解释生物 大分子的空间结构
Linus Pauling
目录
DNA双螺旋结构的研究背景
嘧啶
尿嘧啶(U) 胸腺嘧啶(T)
仅存在于RNA中 仅存在于DNA中
目录
嘧啶(Pyrimidine,Py)
尿嘧啶(uracil, U)
胞嘧啶(cytosine, C)
胸腺嘧啶(thymine, T)
目录
嘌呤(Purine,Pu) 腺嘌呤(adenine, A)
鸟嘌呤(guanine, G)
目录
核糖体RNA 信使RNA 转运RNA
微小RNA 胞质小RNA
rRNA mRNA tRNA
microRNA scRNA/7SLRNA
细胞质 细胞质 细胞质
细胞质 细胞质
核糖体组成成分 蛋白质合成模板 转运氨基酸
翻译调控 信号肽识别体的组成成分
不均一核RNA hnRNA
目录
(二)真核生物DNA以核小体为单位形成高 度有序致密结构
核小体 ( nucleosome ) : 真核生物染色质 ( chromatin ) DNA 是线性双螺旋,缠绕
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
mRNA上存在遗传密码
mRNA 分子上从 5至3方向,由 AUG开始,
每 3 个核苷酸为一组,决定肽链上某一个氨基酸 或蛋白质合成的起始、终止信号,称为三联体密 码(triplet coden)。 数量:64(43) 起始密码(initiation coden): AUG 终止密码(termination coden): UAA,UAG,UGA
目录
(2) 3’端多聚A尾巴:
真核生物mRNA的3’端都有poly(A)序列, 其长度一般为40到200个左右。
poly(A)的功能: ①它是mRNA由细胞核进入细胞质所必须的形式; ②它大大提高了mRNA在细胞质中的稳定性
目录
* mRNA的功能
从 DNA 转录遗传信息,作为指导蛋白质合成 的模板---信使
目录
帽子结构
7-甲基鸟苷三磷酸
目录
翻译区 真核细胞 mRNA (分子中间)
携带来自DNA的遗传信 息,作为蛋白质生物合成 的直接模板
具有特殊的“帽子”结构的5’ 非翻译区 端
具有“多聚A尾巴”的3’端
目录
翻译区
功能的实现方式: mRNA分子上,从5’-3’方向每三个核苷酸为一个密码 子,每种密码子代表一个氨基酸
目录
(一)DNA双螺旋结构的研究背景
碱基组成分析
Chargaff 规则:[A] = [T] [G] [C]
碱基的理化数据分析 A-T、G-C以氢键配对较合理
DNA纤维的X-线衍射图谱分析
目录
Willkins Chargaff
Chargaff’s rules:
A=T
G=C A+G = C+T
目录
The Structure of Nucleotide
目录
核酸的元素组成
nucleic acid
元素组成 特点 C、H、O、N、P P的含量较恒定 约为9-10%
protein
C、H、O、N、 S N的含量较恒定 约为15-17%(平均16%)
目录
核苷酸的结构
核糖 戊糖 核苷
脱氧核糖
A、G、C、T/U
DNA的半保留复制
5’
3’
二、DNA的三级结构
(一)DNA的超螺旋-原核生物DNA的高级结构
大多数原核生物 : 1)共价封闭的环状双螺旋分子 2)超螺旋结构:双螺旋基础上 的螺旋化 正超螺旋(positive supercoil):盘绕方向与双螺 旋方同相同 负超螺旋(negative supercoil):盘绕方向与双螺 旋方向相反
Gs(i)介导的跨膜信号转导通路
目录
某些辅酶的组成成分
NAD+、NADP+、CoA-SH、FAD 等都含有 AMP
NAD+
NADP+
第二节 核酸的一级结构
目录
5′端
核酸的一级结构
定义
核酸中核苷酸的排 列顺序。 由于核苷酸间的差 异主要是碱基不同,所 以也称为碱基序列。
C
A
G
3′端
目录
5´端
目录
目录
目录
二、戊 糖
HO CH2 5´ O OH HO CH2 O OH
4´ 3´
OH
1´ 2´
OH OH
核糖(ribose) (构成RNA)
脱氧核糖(deoxyribose) (构成DNA)
目录
目录
三、核苷(nucleoside)
定义:碱基和核糖(脱氧核糖)之间 通过糖苷键连接形成核苷(脱氧核苷)。 核苷:AR, GR, UR, CR
目录
Nucleosome
目录
目录
目录
From DNA to Chromatin
目录
三、DNA的功能
除了少数的RNA病毒外,DNA几乎是所有 生物遗传信息的携带者,是遗传的物质基础, 具体的说是复制和转录的模板,是基因的载 体。 基因,是指DNA分子中的功能区段,可 转录成功能性RNA或进一步编码成多肽链的 DNA片段。
HO CH 2 NH2 N
1
O N O
脱氧核苷:dAR, dGR, dTR, dCR
1´
连接方式:嘌呤环上的N-9或嘧啶环上的 OH OH
N-1与戊糖的C’-1以糖苷键相连
目录
NH2 N N HOCH2 H H OH O H H OH 腺嘌呤核苷 N N N
OH N HO HOCH2 H H OH O H N
目录
(二) DNA双螺旋结构模型要点
(Watson, Crick, 1953)
4. 两条链位于同一平面的碱基遵循 碱基互补配对原则以氢键相连: A=T,GC。 5. 双螺旋的稳定: 横向—氢键; 纵向—碱基堆积力。
目录
目录
目录
目录
5’
3’
Semiconservative replication
原核细胞 真核细胞
细胞质
细胞核
DNA
目录
第四节
RNA的结构与功能
Structure and Function of RNA
目录
RNA的结构特征
1、单链,碱基不具互补比例,但其分子中也有 单链回折而形成局部双螺旋结构。 2、含有核糖,而非脱氧核糖。 3、使用尿嘧啶替代胸腺嘧啶。 4、含有稀有碱基较DNA要多。
目录
目录
RNA的种类、分布、功能
目录
NH2 N
O
CH 2
核苷酸: 脱氧核苷酸:
O
N
O
AMP, GMP, UMP, CMP
dAMP, dGMP, dTMP, dCMP
体内重要的游离核苷酸及其衍生物
多磷酸核苷酸
5ˊ-核苷酸还可在5ˊ的磷酸基上再连上一或两个磷酸基 形成核苷二磷酸或核苷三磷酸。
多种核苷三磷酸,特别是腺苷三磷酸(ATP),在细 胞的能量代谢中起重要作用,ATP等属于高能磷酸化 合物,当它被水解为腺苷二磷酸时,能释放较多的自 由能,后者可被机体直接利用。
目录
意义 DNA超螺旋结构整体或局部的拓扑学 变化及其调控对于DNA复制和RNA转录过 程具有关键作用。
目录
原核生物DNA的高级结构
目录
(三)DNA在真核生物细胞核内的组装
真核生物染色体由 DNA 和蛋白质构成,
其基本单位是 核小体(nucleosome)。
核小体的组成 DNA:约200bp
组蛋白:H1 H2A,H2B H3 H4
细胞核和胞液 核蛋白体RNA 信使RNA 转运RNA 核内不均一RNA 核内小RNA 核仁小RNA 胞浆小RNA rRNA mRNA tRNA HnRNA SnRNA SnoRNA scRNA/7SL-RNA 线粒体 mt rRNA mt tRNA 功 能 核蛋白体组分 转运氨基酸 成熟mRNA的前体 参与hnRNA的剪接、转运 rRNA的加工、修饰 蛋白质内质网定位合成 的信号识别体的组分
* mRNA成熟过程
内含子 (intron)
外显 子 (exon)
hnRNA
mRNA
目录
* mRNA结构特点
1. 大多数真核mRNA的5´末端均在转录后加上一个7-甲 基鸟苷三磷酸,同时第一个核苷酸的C´2也是甲基化, 形成帽子结构:m7GpppNm-。 2. 大多数真核mRNA的3´末端有一个多聚腺苷酸(polyA) 结构,称为多聚A尾。
目录
(ribonucleic acid, RNA)
中心法则
Replication
Replication
Transcription
Translation RNA Proteins
(biologically active)
DNA
Reverse Transcription
regulation
目录
第一节 核苷酸的结构
O H3C
N
NH
NH
ห้องสมุดไป่ตู้
NH
O
O
目录
胞嘧啶(cytosine, C)
胸腺嘧啶(thymine, T)
胺 式 亚 胺 式 互 变 异 构
目录
酮 式 烯 醇 式 互 变 异 构
目录
碱基的结构特征
嘌呤碱和嘧 啶碱分子中 都含有共轭 双键体系, 在紫外区有 吸收(260 nm左右)。
目录
• 核酸中也存在一些不常见的稀有碱基。
• 1975年 Temin和Baltimore发现逆转录酶
• 1981年 Gilbert和Sanger建立DNA 测序方法 • 1985年 Mullis发明PCR 技术 • 1990年 美国启动人类基因组计划(HGP) • 1994年 中国人类基因组计划启动
• 2001年 美、英等国完成人类基因组计划基本框架
目录
mt mRNA 蛋白质合成模板
一 、信使RNA的结构与功能
* mRNA的特点
(1)含量最少 (2)种类最多 (3)最不稳定
(4)一级结构差异最大
Primary Structures of Procaryotic and Eucaryotic mRNA
多顺反子
单顺反子
目录
hRNA与mRNA的区别
目录
二、核酸的分类及分布
脱氧核糖核酸
(deoxyribonucleic acid, DNA) 90%以上分布于细胞核,其余分布于 核外如线粒体,叶绿体,质粒等。 携带遗传信息,决定细胞和个 体的基因型(genotype)。
核糖核酸
主要分布于胞质 参与细胞内DNA遗传信息的表 达。某些病毒RNA也可作为遗 传信息的载体。
目录
遗传密码的破译,即确定代表每种氨基酸的具体密码。
至1966年,20种氨基酸对应的61个密码子和三个终止密码子全部