材料成型原理第四章答案
材料成型传输原理复习(新)

考试题型:一、判断题(10题,15%)二、选择题(10题,20%)三、名词解释(3题,9%)四、简答与计算题(7题,56%)要记忆的公式:1、牛顿粘性定律τ=-μdvdy2、傅里叶定律 q=-λdTdy3、菲克第一定律JA=-DABdCdyv1P2v224、伯努力方程gz1+P1ρ+=gz2+ρ+5、雷诺准数 Re=λρcvρDμ6、热扩散率a=Cpμ7、普兰特准数Pr=8、努塞尔准数Nu=9、施密特准数Sc= va=λalλvD10、舍伍德准数Sh=KclD11、沿程阻力降计算公式(达西公式)∆p=λρv2Ldρv2v或hf=λld⋅v2g12、局部阻力降计算公式:∆p=ς⋅或hf=ς⋅2g13、能依题意例出单层、二层、三层的无限大平板和圆筒的传热计算公式 14、黑体辐射力:Eb = C0 (T/100)4式中: C0=5.67 w/(㎡K4) 叫黑体的辐射系数。
15、半无限大表面渗碳时的非稳态传质:Cw-CC-C0=erf(x2Dt)16、半无限大物体一维非稳态导热:17、对流传热量:Q=αA∆T绪论重点:动量、热量与质量传输的类似性动量传输:牛顿粘性定律τ=-μdvdyTw-TTw-T0=erf(x2at)热传导:傅里叶定律 q=-λdTdy质量传输:菲克第一定律 JA=-DABdCdy记忆上述三个公式。
公式中参数的物量意义和各符号表示什么?1、什么是传输过程?传输过程的基础是什么?2、试总结三种传输过程的物理量、推动力、传输方程。
3、传输过程的研究方法有哪些?各有什么特点?第2章流体的性质名词解释:1、不压缩流体答:不可压缩流体指流体密度不随压力变化的流体。
2、可压缩流体3、理想流体答:粘性系数为零(不考虑粘性)的流体4、速度边界层5、粘性系数(动力粘度)答:表征流体变形的能力,由牛顿粘性定律所定义的系数:μ=±τyxduxdy,速度梯度为1时,单位面积上摩擦力的大小。
6、运动粘度7、牛顿流体8、非牛顿流体填空题:1、理想流体是指不存在力,或其作用可忽略的流体。
材料成型原理复习题答案

《材料成形原理》复习题(铸)第二章液态金属的结构和性质1.粘度。
影响粘度大小的因素?粘度对材料成形过程的影响?1)粘度:是液体在层流情况下,各液层间的摩擦阻力。
其实质是原子间的结合力。
2)粘度大小由液态金属结构决定与温度、压力、杂质有关:(1)粘度与原子离位激活能U成正比,与相邻原子平衡位置的平均距离的三次方成反比。
(2)温度:温度不高时,粘度与温度成反比;当温度很高时,粘度与温度成正比。
(3)化学成分:杂质的数量、形状和分布影响粘度;合金元素不同,粘度也不同,接近共晶成分,粘度降低。
(4)材料成形过程中的液态金属一般要进行各种冶金处理,如孕育、变质、净化处理等对粘度有显著影响。
3)粘度对材料成形过程的影响(1)对液态金属净化(气体、杂质排出)的影响。
(2)对液态合金流动阻力与充型的影响,粘度大,流动阻力也大。
(3)对凝固过程中液态合金对流的影响,粘度越大,对流强度G越小。
2.表面张力。
影响表面张力的因素?表面张力对材料成形过程及部件质量的影响?1)表面张力:是金属液表面质点因受周围质点对其作用力不平衡,在表面液膜单位长度上所受的紧绷力或单位表面积上的能量。
其实质是质点间的作用力。
2)影响表面张力的因素(1)熔点:熔沸点高,表面张力往往越大。
(2)温度:温度上升,表面张力下降,如Al、Mg、Zn等,但Cu、Fe相反。
(3)溶质元素(杂质):正吸附的表面活性物质表面张力下降(金属液表面);负吸附的表面非活性物质表面张力上升(金属液内部)。
(4)流体性质:不同的流体,表面张力不同。
3)表面张力影响液态成形整个过程,晶体成核及长大、机械粘砂、缩松、热裂、夹杂及气泡等铸造缺陷都与表面张力关系密切。
3.液态金属的流动性。
影响液态金属的流动性的因素?液态金属的流动性对铸件质量的影响?1)液态金属的流动性是指液态金属本身的流动能力。
2)影响液态金属的流动性的因素有:液态金属的成分、温度、杂质含量及物理性质有关,与外界因素无关。
材料成型原理课后题答案

第三章:8:实际金属液态合金结构与理想纯金属液态结构有何不同?答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。
液态中存在着很大的能量起伏.而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。
12:简述液态金属的表面张力的实质及其影响因数。
答:①实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。
②影响因数:熔点、温度和溶质元素.13:简述界面现象对液态成形过程的影响。
答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填.液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁.凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。
15:简述过冷度与液态金属凝固的关系。
答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。
液态金属不会在没有过冷度的情况下凝固.16:用动力学理论阐述液态金属完成凝固的过程.答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。
生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程.只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程.17:简述异质形核与均质形核的区别.答:①均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核.②异质形核与固体杂质接触,减少了表面自由能的增加.③异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。
18:什么条件下晶体以平面的方式生长?什么条件下晶体以树枝晶方式生长?答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。
材料成型原理第四章答案

第四章1. 何谓结晶过程中的溶质再分配它是否仅由平衡分配系数K 0所决定当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。
答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。
溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。
当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===SL m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。
2.B 开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。
解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时,K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的 平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。
材料成型传输原理课后答案(吴树森版)

第一章流体的主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定的形状、易于流动的物质。
它包括液体和气体。
流体的主要物理性质有:密度、重度、比体积压缩性和膨胀性。
1-2某种液体的密度ρ=900 Kg/m3,试求教重度γ和质量体积v。
解:由液体密度、重度和质量体积的关系知:∴质量体积为1.4某种可压缩液体在圆柱形容器中,当压强为2MN/m2时体积为995cm3,当压为多少?强为1MN/m2时体积为1000 cm3,问它的等温压缩率kT公式(2-1):解:等温压缩率KTΔV=995-1000=-5*10-6m3注意:ΔP=2-1=1MN/m2=1*106Pa将V=1000cm3代入即可得到K=5*10-9Pa-1。
T注意:式中V是指液体变化前的体积1.6 如图1.5所示,在相距h=0.06m的两个固定平行乎板中间放置另一块薄板,在薄板的上下分别放有不同粘度的油,并且一种油的粘度是另一种油的粘度的2倍。
当薄板以匀速v=0.3m/s被拖动时,每平方米受合力F=29N,求两种油的粘度各是多少?解:流体匀速稳定流动时流体对板面产生的粘性阻力力为平板受到上下油面的阻力之和与施加的力平衡,即代入数据得η=0.967Pa.s第二章流体静力学2-1作用在流体上的力有哪两类,各有什么特点?解:作用在流体上的力分为质量力和表面力两种。
质量力是作用在流体内部任何质点上的力,大小与质量成正比,由加速度产生,与质点外的流体无关。
而表面力是指作用在流体表面上的力,大小与面积成正比,由与流体接触的相邻流体或固体的作用而产生。
2-2什么是流体的静压强,静止流体中压强的分布规律如何?解:流体静压强指单位面积上流体的静压力。
静止流体中任意一点的静压强值只由该店坐标位置决定,即作用于一点的各个方向的静压强是等值的。
2-3写出流体静力学基本方程式,并说明其能量意义和几何意义。
解:流体静力学基本方程为:同一静止液体中单位重量液体的比位能可以不等,比压强也可以不等,但比位能和比压强可以互换,比势能总是相等的。
材料成型原理课后答案

材料成型原理课后答案材料成型原理是指通过一定的方法和工艺,将原料加工成所需形状的工程材料的过程。
在工程实践中,材料成型原理是非常重要的,因为它直接影响着材料的性能和质量。
下面是一些关于材料成型原理的课后答案,希望能够帮助大家更好地理解这一知识点。
1. 请简要说明材料成型原理的基本概念。
材料成型原理是指利用一定的方法和工艺,将原料加工成所需形状的工程材料的过程。
这个过程包括了原料的选择、加工工艺的设计、成型设备的选择等多个方面,是一个复杂的系统工程。
2. 什么是材料的塑性变形?请举例说明。
材料的塑性变形是指在一定条件下,材料可以经受外力作用而发生形状和尺寸的变化,而且在去除外力后,能够保持变形的一种性质。
例如金属材料在加工过程中经受压力而产生的变形,就是一种塑性变形。
3. 请简要说明材料的成型工艺对材料性能的影响。
材料的成型工艺对材料性能有着直接的影响。
不同的成型工艺会对材料的组织结构、晶粒大小、内部应力等产生影响,从而影响材料的硬度、强度、韧性等性能。
4. 请简要说明材料成型原理在工程实践中的应用。
材料成型原理在工程实践中有着广泛的应用。
例如在汽车制造中,各种金属材料需要经过成型工艺才能制成车身和零部件;在航空航天领域,各种复杂的零部件需要通过成型工艺才能完成加工。
5. 请简要说明材料成型原理的发展趋势。
随着科学技术的不断发展,材料成型原理也在不断地发展和完善。
未来,随着新材料、新工艺的不断涌现,材料成型原理将更加注重对材料性能的精细调控,以及对环境的友好性。
以上就是关于材料成型原理的一些课后答案,希望能够帮助大家更好地理解和掌握这一知识点。
材料成型原理是工程材料学中的重要内容,对于工程实践具有重要的指导意义。
希望大家能够在学习和工作中充分应用这一知识,不断提高自己的专业水平。
合工大版材料成型原理课后习题参考答案(重要习题加整理)

第二章 凝固温度场P498. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。
采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电弧热无法及时散开的缘故;相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。
9. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。
解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。
(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。
生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。
第四章 单相及多相合金的结晶 P909.何为成分过冷判据?成分过冷的大小受哪些因素的影响? 答: “成分过冷”判据为:R G L <NLD RLL L e K K D C m δ-+-0011当“液相只有有限扩散”时,δN =∞,0C C L =,代入上式后得R G L<000)1(K K D C m L L -( 其中: G L — 液相中温度梯度 R — 晶体生长速度 m L — 液相线斜率 C 0 — 原始成分浓度 D L — 液相中溶质扩散系数 K 0 — 平衡分配系数K )成分过冷的大小主要受下列因素的影响:1)液相中温度梯度G L , G L 越小,越有利于成分过冷 2)晶体生长速度R , R 越大,越有利于成分过冷 3)液相线斜率m L ,m L 越大,越有利于成分过冷 4)原始成分浓度C 0, C 0越高,越有利于成分过冷 5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。
材料成型与工艺课后答案 1-3,1-4

(4)阶梯式浇注系统 是具有多层内浇道。 优点:兼有底注式和顶 注式的优点,又克服了 两者的缺点,即浇注平 稳,减少了飞溅,又有 利于补缩。 缺点:浇注系统结构复 杂,加大了造型和铸件 清理工作量。 多用于高度较高、型腔 较复杂、收缩率较大或 品质要求较高的铸件。
3. 内浇道与铸件型腔连接位置的选择原则
2)铸件的大平面应朝下,减少辐射,防开裂夹渣。
3)面积较大的薄壁部分应置于铸型下部或垂直、 倾斜位置。防止产生浇不足、冷隔。
4)易形成缩孔的铸件,较厚部分置于上部或 侧面。考虑安放冒口利于补缩。
5) 应尽量减少型芯的数量。
6)要便于安放型芯、固定和排气。
Back to page-4
浇注位置
内浇道的位置、数目应服从所选定的凝固顺序和补缩方法。
内浇道在铸件上开设位置的选择可遵循如下原则:
1.为使铸件实现同时凝固,对壁厚均匀的铸件,可选用多个内
浇道分散引入金属液。对壁厚不太均匀的铸件,内浇道应开设 在薄壁处。
2.为使铸件实现顺序凝固,内浇道应设在有冒口的厚壁处,
从厚壁处引入金属液,形成铸件从薄壁至厚壁,最后到冒口的 凝固顺序。
分型面
浇注位置和分型面选择总原则: 优先保证铸件质量为主
操作便捷为辅:造型、起模、下芯、合箱
不可牺牲铸件质量来满足操作便利
四、铸造工艺参数的确定
铸造工艺参数包括收缩余量、加工余量、起模斜度、 铸造圆角、型芯和芯头等。 1)收缩余量 模样比铸件图纸尺寸增大的数值称收缩余量。 在制作模样和芯盒时,模样和芯盒的制造尺寸应比铸件 放大一个该合金的线收缩率。这个线收缩率称为铸造收缩 率: ∑=(L模-L铸件)/ L模*100% 通常,灰铸铁的铸造收缩率为0.7%~1.0%,铸造碳钢的 铸造收缩率为1.3%~2.0%,铝硅合金的铸造收缩率为0.8 %~1.2%,锡青铜的铸造收缩率为1.2%~1.4%。
材料成型原理课后答案

材料成型原理课后答案材料成型原理是指在材料加工过程中,通过施加外力或温度等条件,使材料发生形状、结构或性能的改变,从而达到所需形状和性能的加工过程。
在工程实践中,材料成型原理是非常重要的,它涉及到材料的加工工艺、成型设备、成型模具等方面的知识。
下面我们来看一下材料成型原理课后答案。
首先,材料成型原理的基本原理是什么?材料成型原理的基本原理是利用外力或温度等条件,使材料发生形状、结构或性能的改变,从而达到所需形状和性能的加工过程。
在材料成型过程中,通常会施加挤压力、拉伸力、压缩力等外力,或者通过加热、冷却等温度条件,来改变材料的形状和性能。
其次,材料成型原理的主要分类有哪些?根据加工方式的不同,材料成型原理可以分为塑性成型和非塑性成型两大类。
塑性成型是指在加工过程中,材料会发生塑性变形,通常包括挤压、拉伸、冲压、锻造等工艺。
非塑性成型则是指在加工过程中,材料不会发生塑性变形,通常包括切割、焊接、涂覆等工艺。
再次,材料成型原理的影响因素有哪些?材料成型过程受到多种因素的影响,包括材料的性能、成型设备、成型模具、加工工艺等。
其中,材料的性能是影响成型质量的关键因素,包括材料的塑性、韧性、硬度等性能。
成型设备和成型模具的设计也会直接影响成型的效果,加工工艺的选择和控制也是影响成型质量的重要因素。
最后,材料成型原理的发展趋势是什么?随着科学技术的不断进步,材料成型原理也在不断发展。
未来,材料成型技术将更加注重节能环保、智能化、精准化和柔性化,同时也会更加注重材料的功能性和多功能性。
同时,材料成型原理也将更加注重与其他工艺的集成和协同,实现材料加工的高效、低成本和高质量。
综上所述,材料成型原理是材料加工中的重要理论基础,它涉及到材料的加工工艺、成型设备、成型模具等方面的知识。
在学习和掌握材料成型原理的过程中,我们需要深入理解其基本原理、主要分类、影响因素和发展趋势,从而更好地应用于工程实践中,为材料加工提供更好的技术支持。
工程材料及成型技术基础课后习题答案

《工程材料》复习思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
材料成型原理上册第四章

三、液相只有有限扩散时的溶质再分配
凝固过程分为三个阶段: 凝固过程分为三个阶段: 最初过渡区 稳定态区 最后过渡区
x′
凝固稳定状态阶段富集层溶质分布规律(指数衰减曲线): 凝固稳定状态阶段富集层溶质分布规律(指数衰减曲线): 稳定状态阶段富集层溶质分布规律
CL 1− K = C 0 [1 + K0
四种单向凝固条件下的溶质分布情况示意图。 四种单向凝固条件下的溶质分布情况示意图。
第四章 单相及多相合金的结晶 10
第二节 合金凝固界面前沿 的成分过冷
一、“成分过冷”条件和判据 成分过冷”
二、“成分过冷”的过冷度 成分过冷”
第四章 单相及多相合金的结晶
11
一、“成分过冷” 一、“成分过冷”条件和判据
第四章 单相及多相合金的结晶
1
第一节 凝固过程溶质再分配 第二节 合金凝固界面前沿的成分过冷 第三节 “成分过冷”对合金单相固溶体 结晶形态的影响 第四节 共晶合金的凝固
第四章 单相及多相合金的结晶
2
第一节 凝固过程溶质再分配
以从一端开始凝固的棒状亚共晶合金为例, 以从一端开始凝固的棒状亚共晶合金为例,分别讨论在下 述四种凝固条件下,铸件凝固过程中溶质的分布变化。 述四种凝固条件下,铸件凝固过程中溶质的分布变化。
第四章 单相及多相合金的结晶
19
三、成分过冷作用下的胞状组织 的形成及其形貌
胞状界面的成分过冷区的宽度约在0.0l一0.1cm之间,随 一 之间, 胞状界面的成分过冷区的宽度约在 之间 着成分过冷的增大,发生: 着成分过冷的增大,发生:
沟
槽
不规则的胞状界面
狭长的胞状界面
规则胞状态
材料成形工艺基础智慧树知到答案2024年江苏大学

材料成形工艺基础江苏大学智慧树知到答案2024年第一章测试1.“成形”指的是通过加工使材料具有了某种状态,其内涵较“成型”更加丰富。
()A:对 B:错答案:A2.铸造、锻压和焊接,都有一个对坯料进行加热的过程,故都属于热加工工艺的范畴。
()A:错 B:对答案:A3.云纹铜禁的主要成形工艺为砂型铸造。
()A:错 B:对答案:A4.金属连接成形工艺一般可分为焊接以及铆接、黏结等。
()A:对 B:错答案:A5.增材制造是一种金属液态成形工艺。
()A:对 B:错答案:B6.“失蜡法”铸造是()。
A:砂型铸造B:熔模铸造C:实型铸造D:压力铸造答案:B7.《梦溪笔谈》中记载了灌钢工艺中的()。
A:生铁陷入法B:生铁覆盖法C:生铁冶炼法D:生铁提纯法答案:A8.秦始皇铜车马中铜马脖子上的项圈采用的连接工艺是()。
A:钎焊B:黏结C:铸焊D:铆接答案:A9.非金属材料成形一般包括陶瓷材料成形、高分子材料成形和()。
A:塑料成形B:橡胶成形C:复合材料成形D:胶黏剂成形答案:C10.材料成形工艺除非金属材料成形之外,一般还包括()。
A:金属连接成形B:金属塑性成形C:金属液态成形D:增材制造答案:ABCD第二章测试1.合金收缩经历三个阶段,其中液态收缩和固态收缩是产生缩孔和缩松的基本原因。
()A:错 B:对答案:A2.为防止铸件产生裂纹,在设计零件时一般力求壁厚均匀。
()A:错 B:对答案:B3.选择分型面的第一条原则是保证能够起模。
()A:对 B:错答案:A4.压力铸造可铸出形状复杂的薄壁铸件,是因为保持了一定工作温度的铸型提高了合金充型能力所致。
()A:错 B:对答案:A5.起模斜度是为便于起模而设置的,并非零件结构所需要。
()A:对 B:错答案:A6.合金的铸造性能主要包括()。
A:充型能力和流动性B:充型能力和收缩C:流动性和缩孔倾向D:充型能力和变形倾向答案:B7.下面合金形成缩松倾向最大的是()。
A:远离共晶成分的合金B:共晶成分的合金C:纯金属D:近共晶成分的合金答案:A8.灰口铸铁、可锻铸铁和球墨铸铁在机械性能上有较大差别,主要是因为它们()不同。
材料成型原理第四章答案

第四章1. 何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K 0所决定?当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。
答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。
溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。
当相图上的液相线和固相线皆为直线时K为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。
2. 某二元合金相图如右所示。
合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几?③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。
解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时, K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程)1(00-*=K L L f C C代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:图 4-43 二元合金相图3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。
材料成型原理04答案

04答案一、判断题(本题共10小题,每题1分,共10分)(正确打“√”,错误打“X”)1、在滑移线场中,当α线与β线构成右手坐标系时,则代数值最大的主应力σ1的作用线位于第一和第三象限。
(√)2、低碳钢焊接熔合区,具有明显的化学成分不均匀性,导致组织、性能不均匀,影响焊接接头的强度、韧性,是焊热影响区性能最差的区域。
()3、焊接热循环中的冷却时间t表示从峰值冷却到100︒C的冷却时间。
100(√)4、稳定温度场通常是指温度场内各点的温度不随时间而变的温度场。
(√)5、同样体积大小相同的情况下,球状铸件的凝固时间大于块状铸件的凝固时间。
(X)6、焊前预热、焊后后热的根本作用在于,通过减小冷却速度而降低淬硬组织形成倾向,从而达到消除冷裂的目的。
()7、晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。
金属的塑性越好。
(√)8、滑移线就是塑性变形体内最大切应力的轨迹线。
(√)9、根据溶渣离子理论,碱性渣中自由氧离子的浓度远大于酸性渣,所以一定具有很高的氧化性。
()10、两块等厚薄板对焊,采用从两头向中间焊接,较从中间向两头焊的横向应力小。
(X )二、选择题:(本题共10小题,每题2分,共20分)(请选择一个你认为最好的答案)1、用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为B 。
A、解析法;B、主应力法;C、上限法;D、滑移线法;2、滑移线场理论假设材料为均匀、各向同性的理想刚塑性体,其应力应变关系用 表示。
;A 、B 、C 、D 、3、以下 工艺措施不利于解决Al-Mg 合金铸造过程中出现的“浇不足”缺陷。
A 、加大充型压;B 、预热铸型C 、提高浇注温度;D 、使用大蓄热系数的铸型;4、下图表示的是 中凝固时的温度分布曲线。
A 、厚壁砂型B 、内表面有大热阻涂料的铸型C 、厚壁金属型D 、水冷薄壁金属型5、已知两个应力张量分别为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧0000201001070,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧0000401001050,应力张量不变量公式为:z y x I σσσ++=1)()(2222zx yz xy x z z y y x I τττσσσσσσ+++++-=)(22223zx y zx y yz x zx yz xy z y x I τστστστττσσσ++-+=以下论述错误的是 。
材料成形基本原理3版-合工大第4章答案

第四章习题解答1.试述等压时物质自由能G 随温度上升而下降以及液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率的理由。
答:(1)等压时物质自由能G 随温度上升而下降的理由如下:由麦克斯韦尔关系式: VdP SdT dG +-= (1) 并根据数学上的全微分关系:dyy F dx x F y x dF xy ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=),(得: dPP G dT T G dG TP ⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂= (2)比较(1)式和(2)式得: V P G S T G TP =⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂,等压时dP =0 ,此时 dT T G SdT dG P⎪⎭⎫⎝⎛∂∂=-= (3)由于熵恒为正值,故物质自由能G 随温度上升而下降。
(2)液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率的理由如下:因为液态熵大于固态熵,即: S L > S S所以:> 即液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率 。
2、结合图4-1及式(4-6)说明过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素。
答:过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素的理由如下:右图即为图4-1其中:V G ∆表示液-固体积自由能之差T m 表示液-固平衡凝固点 从图中可以看出:T > T m 时,ΔG=Gs -G L ﹥0,此时 固相→液相T = T m 时,ΔG=Gs -G L =0,此时 液固平衡T < T m 时,ΔG=Gs -G L <0,此时 液相→固相所以ΔG 即为相变驱动力。
再结合(4-6)式来看, m m V T TH G ∆⋅∆-=∆(其中:ΔH m —熔化潜热, ΔT )(T T m -=—过冷度)由于对某一特定金属或合金而言,T m 及ΔH m 均为定值,所以过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素 。
3. 若金属固溶体以初生相按树枝晶单向生长,且生长释放的潜热与热量导出相平衡,试分析其枝晶端部可能具有哪些类型的过冷?若金属固溶体以初生相按等轴树枝晶在熔体中生长呢?答:(1)单向生长枝晶端部存在的过冷类型有:一定有动力学过冷,因为晶体的生长必然具备动力学过冷;一定有曲率过冷,因枝晶端部曲率不可能为零(或曲率半径无穷大),所以必然存在曲率过冷;可能成分过冷,金属固溶体(意味着是合金,而不是纯金属)凝固过程具有溶质再分配(具体见第五章),在条件合适的情况下,可能会出现成分过冷;在通常的条件下(题目未强调大气压之外的附加压力),不会出现压力过冷;按照题意,生长释放的潜热与热量导出相平衡,因此不会出现热过冷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章1. 何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K 0所决定?当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。
答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。
溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。
当相图上的液相线和固相线皆为直线时K为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。
2. 某二元合金相图如右所示。
合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几?③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。
解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时, K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程)1(00-*=K L L f C C代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:图 4-43 二元合金相图3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。
答:在固相无扩散而液相仅有扩散条件下凝固速度变大时(1)固相成分将发生下列变化:当凝固速度增大时,固液界面前沿的液相和固相都将经历:稳定态→ 不稳定态→稳定态的过程。
如右图所示,当R 2>R 1时在新、旧稳定状态之间,C S >C 0。
重新恢复到稳定时,C S 又回到C 0。
R 2上升越多,12/R R 越大, 不稳定区内C S 越高。
(2)溶质富集层的变化情况如下:在其它条件不变的情况下,R 越大,在固-液界面前沿溶质富集越严重,曲线越陡峭。
如右图所示。
R 2越大, 富集层高度ΔC 越大,过渡区时间(Δt )越长,过渡区间也就越60%30% 2056R 2>R 1 R 2 R 1R 2>R 1宽。
在新的稳定状态下,富集区的面积将减小。
4. A-B 二元合金原始成分为C 0=C B =2.5%,K 0=0.2,L m =5,自左向右单向凝固,固相无扩散而液相仅有扩散(D L =3×10-5cm 2/s )。
达到稳定态凝固时,求(1)固-液界面的**L S C C 和;(2)固-液界面保持平整界面的条件。
解:(1)求固-液界面的**L S C C 和 :由于固相中无扩散而液相中仅有限扩散的情况下达到稳定状态时,满足:0*K C C L = ,C *S = C 0 代入C 0=C B =2.5%,K 0=0.2即可得出: 00*K C C L ==2.0%5.2=12.5% C *S = C 0 = 2.5%(2)固-液界面保持平整界面的条件 :当存在“成分过冷”时,随着的“成分过冷”的增大,固溶体生长方式 将 经历:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶) 的转变过程,所以只有当不发生成分过冷时,固-液界面才可保持平整界面,即需满足 R G L ≥000)1(K K D C m LL - 代入L m =5,C 0=C B =2.5% ,D L =3×10-5cm 2/s , K 0=0.2可得出:RG L ≥1.67×104 ℃/cm 2s 即为所求.5. 在同一幅图中表示第一节描述的四种方式的凝固过程中溶质再分配条件下 固相成分的分布曲线。
答:四种方式凝固过程中溶质再分配条件下固相成分的分布曲线:(单向凝固时铸棒内溶质的分布)6论述成分过冷与热过冷的涵义以及它们之间的区别和联系。
成分过冷的涵义:合金在不平衡凝固时,使液固界面前沿的液相中形成溶质富集层,因富集层中各处的合金成分不同,具有不同的熔点,造成液固前沿的液相处于不同的过冷状态,这种由于液固界面前沿合金成分不同造成的过冷。
热过冷的涵义: 界面液相侧形成的负温度剃度,使得界面前方获得大于kT 热过冷是由于液体具有较大的过冷度时,在界面向前推移的情况下,结晶潜热的释放而产生的负温度梯度所形成的。
可出现在纯金属或合金的凝固过程中,一般都生成树枝晶。
成分过冷是由溶质富集所产生,只能出现在合金的凝固过程中,其产生的晶体形貌随成分过冷程度的不同而不同,当过冷程度增大时,固溶体生长方式由无成分过冷时的“平面晶”依次发展为:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶)。
成分过冷与热过冷的联系:对于合金凝固,当出现“热过冷”的影响时,必然受“成分过冷”的影响,而且后者往往更为重要。
即使液相一侧不出现负的温度梯度,由于溶质再分配引起界面前沿的溶质富集,从而导致平衡结晶温度的变化。
在负温梯下,合金的情况与纯金属相似,合金固溶体结晶易于出现树枝晶形貌。
7. 何为成分过冷判据?成分过冷的大小受哪些因素的影响?答: “成分过冷”判据为:R G L <N L D R L L Le K K D C m δ-+-0011当“液相只有有限扩散”时,δN =∞,0C C L =,代入上式后得R G L <000)1(K K D C m L L -( 其中: G L — 液相中温度梯度R — 晶体生长速度m L — 液相线斜率C 0 — 原始成分浓度D L — 液相中溶质扩散系数K 0 — 平衡分配系数K )成分过冷的大小主要受下列因素的影响:1)液相中温度梯度G L , G L 越小,越有利于成分过冷2)晶体生长速度R , R 越大,越有利于成分过冷3)液相线斜率m L ,m L 越大,越有利于成分过冷4)原始成分浓度C 0, C 0越高,越有利于成分过冷5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。
(注:其中的G L 和 R 为工艺因素,相对较易加以控制; m L , C 0 , D L , K 0 ,为材料因素,较难控制 )8.分别讨论“成分过冷”对单相固溶体及共晶凝固组织形貌的影响?答:“成分过冷”对单相固溶体组织形貌的影响:随着“成分过冷”程度的增大,固溶体生长方式由无“成分过冷”时的“平面晶”依次发展为:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶)。
“成分过冷”对共晶凝固组织形貌的影响:1)共晶成分的合金,在冷速较快时,不一定能得到100%的共晶组织,而是得到亚共晶或过共晶组织,甚至完全得不到共晶组织;2)有些非共晶成分的合金在冷速较快时反而得到100%的共晶组织;3)有些非共晶成分的合金,在一定的冷速下,既不出现100%的共晶组织,也不出现初晶+共晶的情况,而是出现“离异共晶”。
9. 如何认识“外生生长”与“内生生长”?由前者向后者转变的前提是什么?仅仅由成分过冷因素决定吗?答:“外生生长”: 晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。
平面生长、胞状生长和柱状树枝晶生长都属于外生生长.“内生生长”: 等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。
如果“成分过冷”在远离界面处大于异质形核所需过冷度(ΔT异),就会在内部熔体中产生新的晶核,造成“内生生长”,使得自由树枝晶在固-液界面前方的熔体中出现。
外生生长向内生生长的转变的前提是:成分过冷区的进一步加大。
决定因素:外生生长向内生生长的转变是由成分过冷的大小和外来质点非均质生核的能力这两个因素所决定的。
大的成分过冷和强生核能力的外来质点都有利于内生生长并促进内部等轴晶的形成。
10. 影响枝晶间距的主要因素是什么?枝晶间距与材料的机械性能有什么关系?答: 影响枝晶间距的主要因素:纯金属的枝晶间距主要决定于晶面处结晶潜热散失条件,而一般单相合金的枝晶间距则还受控于溶质元素在枝晶间的扩散行为。
通常采用的有一次枝晶(柱状晶主干)间距d1、和二次分枝间距d2两种。
前者是胞状晶和柱状树枝晶的重要参数,后者对柱状树枝晶和等轴枝晶均有重要意义。
一次枝晶间距与生长速度R、界面前液相温度梯度G L直接相关,在一定的合金成分及生长条件下,枝晶间距是一定的,R及G L增大均会使一次间距变小。
二次臂枝晶间距与冷却速度(温度梯度G L及生长速度R)以及微量变质元素(如稀土)的影响有关。
枝晶间距与材料的机械性能:枝晶间距越小,组织就越细密,分布于其间的元素偏析范围就越小,故越容易通过热处理而均匀化。
而且,这时的显微缩松和非金属夹杂物也更加细小分散,与成分偏析相关的各类缺陷(如铸件及焊缝的热裂)也会减轻,因而也就越有利于性能的提高。
11. 根据共晶体两组成相的Jackson因子,共晶组织可分为哪三类?它们各有何生长特性及组织特点?答:根据共晶体两组成相的Jackson因子,共晶组织可分为下列三类:(1)粗糙-粗糙界面(非小晶面-非小晶面)共晶。
(2)粗糙-光滑界面(非小晶面-小晶)共晶。
(3)光滑-光滑界面(小晶面-小晶面)共晶。
各自何生长特性及组织特点:第(1)类共晶,生长特性为:“共生”生长,即在共晶偶合长大时,两相彼此紧密相连,而在两相前方的液体区域存在溶质的运动,两相有某种相互依赖关系。
组织特点为:对于有共晶成分的合金,其典型的显微形态是有规则的层片状或其中有一相为棒状或纤维状(即规则共晶);对于非共晶成分的合金,在共晶反应前,初生相呈树枝状长大,所得到的组织由初晶及共晶体所组成。
第(2)类共晶体,生长特性为:长大过程是相互偶合的共生长大。
组织特点为:组织较为无规则的,且容易发生弯曲和分枝。
第(3)类共晶体, 生长特性为:长大过程不再是偶合的。
组织特性为:所得到的组织为两相的不规则混合物。
12.试描述离异共晶组织的两种情况及其形成原因。
答:离异共晶组织有两种情况:“晶间偏析”和“晕圈”。