1.8《碰撞与动量守恒》单元测试

合集下载

动量守恒与碰撞实验验证

动量守恒与碰撞实验验证

动量守恒与碰撞实验验证引言:动量守恒定律是经典力学中一项重要的物理学原理,它描述了一个封闭系统中动量的守恒性质。

在碰撞实验中,我们可以通过测量物体的质量和速度来验证动量守恒定律,并进一步理解物体间的碰撞行为。

本文将探讨动量守恒定律以及如何通过碰撞实验验证该定律。

一、动量守恒定律的原理动量守恒定律指出,在没有外力作用的封闭系统中,系统的总动量保持不变。

具体而言,当多个物体相互作用发生碰撞时,它们之间的总动量在碰撞前后保持不变。

二、完全弹性碰撞实验验证动量守恒定律完全弹性碰撞是指碰撞后物体之间没有能量损失的碰撞。

在这种情况下,我们可以通过实验来验证动量守恒定律。

1. 实验装置为了验证动量守恒定律,我们需要准备以下实验装置:- 两个相同质量的弹性小球- 一条直线轨道- 光电门和计时器2. 实验步骤- 将直线轨道放置水平,并确保其平整。

- 将两个小球放在轨道的一端,使它们相互靠近且具有一定的初始速度。

- 在轨道的另一端安装光电门和计时器,用于测量小球通过的时间间隔。

- 记录小球碰撞前后的速度和光电门测得的时间间隔。

3. 实验结果与分析根据实验记录,我们可以计算碰撞前后小球的速度,并计算它们的动量。

如果碰撞为完全弹性碰撞,理论计算的总动量应该在碰撞前后保持不变。

通过比较实验结果与理论预测,我们可以验证动量守恒定律。

三、非完全弹性碰撞实验验证动量守恒定律非完全弹性碰撞是指碰撞后物体之间发生能量损失的碰撞。

在这种情况下,我们同样可以通过实验来验证动量守恒定律。

1. 实验装置为了验证动量守恒定律,我们需要准备以下实验装置:- 两个不同质量的小球(一个较轻,一个较重)- 一条直线轨道- 光电门和计时器2. 实验步骤- 将直线轨道放置水平,并确保其平整。

- 将较轻的小球放在轨道的一端,使其具有一定的初始速度。

- 在轨道的另一端安装光电门和计时器,用于测量小球通过的时间间隔。

- 将较重的小球放在轨道的另一端。

- 记录小球碰撞前后的速度和光电门测得的时间间隔。

第一章动量守恒定律单元检测试题(1)

第一章动量守恒定律单元检测试题(1)

第一章动量守恒定律单元检测(时间:90分钟满分:100分)一、单项选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面列举的装置各有一定的道理,其中不能用动量定理进行解释的是()A.运输玻璃器皿等易碎物品时,在器皿的四周总是垫着碎纸或海绵等柔软、有弹性的垫衬物B.建筑工人戴的安全帽内有帆布垫,把头和帽子的外壳隔开一定的空间C.热水瓶胆做成两层,且把两层中间的空气抽去D.跳高运动中的垫子总是十分松软2.关于动量守恒,下列说法正确的是()A.系统中所有物体的加速度都为零时,系统的动量不一定守恒B.系统只有重力做功,系统的动量才守恒C.一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射子弹时,枪和子弹组成的系统动量守恒D.光滑水平面上的两小球发生碰撞,两小球动量守恒3.如图所示,在光滑水平面上,有质量分别为3m和m的A、B两滑块,它们中间夹着一根处于压缩状态的轻质弹簧(弹簧与A、B不拴连),由于被一根细绳拉着而处于静止状态.当剪断细绳,在两滑块脱离弹簧之后,下述说法正确的是()A.两滑块的动能之比为1∶3B.两滑块的动量大小之比为3∶1C.两滑块的速度大小之比为3∶1D.弹簧对两滑块做功之比为1∶14.如图所示,质量m A=8.0kg的足够长的木板A放在光滑水平面上,在其右端放一个质量为m B=2.0kg的小木块B.给B以大小为4.0m/s、方向向左的初速度,同时给A以大小为6.0m/s、方向向右的初速度,两物体同时开始运动,直至A、B运动状态稳定,下列说法正确的是()A.木块B的最终速度大小为5.6m/sB.在整个过程中,木块B的动能变化量为0C.在整个过程中,木块B的动量变化量为0D.在整个过程中,系统的机械能守恒5.如图甲所示,水平轻质弹簧一端与物块A左侧相连,一起静止在光滑水平面上,物块B从左侧以大小为v0的初速度向弹簧和物块A运动.运动过程中两物块的v-t图像如图乙所示,则下列说法正确的是() A.物块A的质量大于物块B的质量B.t2时刻弹簧的弹性势能最大C.t1时刻物块A的加速度大于物块B的加速度D.t2时刻物块A的加速度大于物块B的加速度6.如图所示,装有炮弹的火炮总质量为m 1,炮弹的质量为m 2,炮弹射出炮口时对地的速率为v 0,若炮管与水平地面的夹角为θ,则火炮后退的速度大小为(设水平面光滑)()A.m 2v 0cos θm 1-m 2 B.m 2v 0m 1-m 2C.m 2m 1v 0 D.m 2v 0cos θm 17.2020年5月28日,中国第一艘国产航空母舰“山东舰”在某海域执行训练任务.如图,假设在某次舰上飞机起飞训练中,质量为m =2×104kg 的飞机在弹射系统作用下经过t 1=0.2s 以某一初速度进入甲板跑道,之后在甲板上做匀加速直线运动,经过t 2=4.0s 在跑道上运动120m 后成功起飞,且飞机的起飞速度为v =50m/s ,不计空气阻力.下列说法正确的是()A .飞机在弹射系统作用下获得的动量大小为1×105kg·m/sB .弹射系统作用于飞机的平均作用力大小为1×106NC .飞机在甲板跑道上的加速度大小为12.5m/s 2D .弹射系统对飞机做的功为2.5×105J8.如图所示,在光滑的水平面上有一质量为M 的静止的物体,物体上有一光滑的半圆弧轨道,半径为R ,最低点为C ,两端AB 一样高,现让质量为m 的小滑块从A 点由静止下滑,重力加速度为g ,则在运动过程中()A .M 所能获得的最大速度为m 2mgRM 2+Mm B .m 运动到最低点C 时对轨道的压力大小为3mgC .M 向左运动的最大距离为2mRm +MD .M 与m 组成的系统机械能守恒,动量也守恒二、多项选择题:本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.9.在距地面高为h ,同时以相等初速度v 0分别平抛、竖直上抛、竖直下抛三个质量均为m 的物体,忽略空气阻力,当它们从抛出到落地时,比较它们的动量的增量Δp ,有()A .竖直上抛的物体的Δp 最大B .平抛的物体的Δp 最大C .竖直下抛的物体的Δp 最小D .三者的Δp 一样大10.如图所示,静止在光滑水平面上的小车,站在车上的人将右边筐中的球一个一个地投入左边的筐中.所有球仍在车上,那么,在投球过程中下列说法正确的是()A .由于人和小车组成的系统所受的合外力为零,所以小车静止不动B .由于人和小车组成的系统所受的合外力不为零,所以小车向右运动C .投完球后,小车将向右做匀速直线运动D .投完球后,小车将静止不动11.A、B两小球在光滑水平面上沿同一直线向同一方向运动,A球的动量为5kg·m/s,B球的动量为7kg·m/s,当A球追上B球时发生对心碰撞,则碰撞后A、B两球动量的可能值为()A.p A=6kg·m/s,p B=6kg·m/sB.p A=3kg·m/s,p B=9kg·m/sC.p A=-2kg·m/s,p B=14kg·m/sD.p A=-5kg·m/s,p B=17kg·m/s12.如图所示,竖直放置的轻弹簧下端固定在地上,上端与质量为m的钢板连接,钢板处于静止状态.一个质量也为m的物块从钢板正上方h处的P点自由落下,与钢板碰撞后粘在一起向下运动x0后到达最低点Q,设物块与钢板碰撞的时间Δt极短,重力加速度为g.下列说法正确的是()A.物块与钢板碰后的速度大小为2gh2B.在Δt时间内,物块对钢板的冲量大小为m2gh2-mgΔtC.从P到Q的过程中,整个系统重力势能的减少量为mg(x0+h))D.从P到Q的过程中,弹性势能的增加量为mg·(2x0+h2三、非选择题:本题共6小题,共60分.13.(8分)某同学用如图甲所示的实验装置验证“动量定理”.图乙是某次实验中获取的纸带,图中所标各计数点间还有4个计时点未画出,打点计时器的工作频率为50Hz.(1)为了较为准确地完成实验,以下做法正确的是________.A.实验前,需要补偿阻力B.实验过程中,要保证砝码及砝码盘的质量远远小于小车的质量C.实验过程中,要先释放小车,再接通电源D.实验过程中,需用秒表测量小车在某两点间运动的时间(2)图乙是实验中打下的一段纸带,记录的力传感器的示数为1.05N,测得小车的质量为0.5kg,由此计算出小车从B 到D的过程中,动量变化量Δp=______kg·m/s,合力冲量I=______N·s,在误差允许的范围内,动量定理成立.(以上计算结果均保留三位有效数字)14.(8分)现利用图甲所示装置验证“动量守恒定律”.在图甲中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与穿过打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,数字计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A的质量m1=280g,滑块B的质量m2=120g,遮光片的宽度d=1.00cm;打点计时器所用交变电流的频率f=50Hz.将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰,碰后数字计时器显示的时间为Δt B=4.00ms,碰撞前、后打出的纸带如图乙.(1)通过分析可知:纸带的________端(填“C”或“D”)与滑块A左侧相连;(2)滑块A在碰撞前速度大小v0=2.00m/s,滑块A在碰撞后速度大小v1=________m/s,滑块B在碰撞后的速度大小v2=________m/s(保留三位有效数字);(3)设两滑块碰撞前、后的动量分别为p和p′,则p=m1v0=0.560kg·m/s、p′=____kg·m/s(保留三位有效数字).15.(8分)如图甲所示,一块长度为L、质量为m的木块静止在光滑水平面上.一颗质量也为m的子弹以水平速度v0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s(图乙).设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点,求子弹穿过木块的时间.16.(8分)下雨是常见的自然现象,如果雨滴下落为自由落体运动,则雨滴落到地面时,对地表动植物危害巨大,实际上,动植物都没有被雨滴砸伤,因为雨滴下落时不仅受重力,还受空气的浮力和阻力,使得雨滴落地时不会因速度太大而将动植物砸伤.某次下暴雨,质量为m=2.5×10-5kg的雨滴,从高h=2000m的云层下落.(g取10m/s2)(1)如果不考虑空气浮力和阻力,雨滴做自由落体运动,落到地面经Δt1=1.0×10-5s速度变为零,因为雨滴和地面作用时间极短,可认为在Δt1内地面对雨滴的作用力不变且不考虑雨滴的重力,求雨滴对地面的作用力大小;(2)考虑到雨滴同时还受到空气浮力和阻力的作用,设雨滴落到地面的实际速度为8m/s,落到地面上经时间Δt2=3.0×10-4s速度变为零,在Δt2时间内地面对雨滴的作用力不变且不考虑这段时间雨滴受到的重力、空气的浮力和阻力,求雨滴对地面的作用力大小.17.(12分)如图所示,用轻弹簧相连的质量均为2kg的A、B两物块静止于光滑的水平地面上,弹簧处于原长,质量为4kg的物块C以v=6m/s的初速度在光滑水平地面上向右运动,与前方的物块A发生碰撞(碰撞时间极短),并且C与A碰撞后二者粘在一起运动,A、B、C三者位于同一直线上.在以后的运动中:(1)当弹簧的弹性势能最大时,物块B的速度多大?弹簧弹性势能的最大值是多大?(2)弹簧第一次恢复原长时物块B的速度多大?18.(16分)如图,在光滑水平地面上有一辆质量M=2kg的小车,小车左右两侧均为半径R=0.3m的四分之一光滑圆弧轨道,两圆弧轨道之间平滑连接长L=0.6m的粗糙水平轨道.质量m=1kg的小物块(可视为质点)从小车左侧圆弧轨道顶端A处由静止释放,小物块和粗糙水平轨道间的动摩擦因数μ=0.1,重力加速度g=10m/s2.求:(1)小物块第一次滑到左侧圆弧轨道末端时,小物块与小车的速度大小之比;(2)小物块第一次滑到右侧圆弧轨道上的最大高度h;(3)整个运动过程小物块在粗糙水平轨道上经过的路程s及全过程小车在地面上发生的位移x的大小.。

专题检测卷(17) 专题九碰撞与动量守恒 近代物理初步

专题检测卷(17)  专题九碰撞与动量守恒 近代物理初步

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

专题检测卷(十七)碰撞与动量守恒近代物理初步(45分钟100分)1.(16分)(1)如图所示,小车M由光滑的弧形段AB和粗糙的水平段BC组成,静止在光滑水平面上。

当小车固定时,从A点由静止滑下的物块m到C点恰好停止。

如果小车不固定,物块m仍从A点静止滑下( )A.还是滑到C点停住B.滑到BC间某处停住C.会冲出C点落到车外D.上述三种情况都有可能=0.4 kg,开始时都静止于光滑水平面上,(2)两木板M小物块m=0.1 kg以初速度v=10 m/s滑上M1的表面,最后停在M2上时速度为v2=1.8 m/s,求:①最后M1的速度v1;②在整个过程中克服摩擦力所做的功。

2.(17分)(2012·天津高考)(1)下列说法正确的是( )A.采用物理或化学方法可以有效地改变放射性元素的半衰期B.由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子C.从高空对地面进行遥感摄影是利用紫外线良好的穿透能力D.原子核所含核子单独存在时的总质量小于该原子核的质量(2)如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h,坡道底端与台面相切。

小球A从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半。

两球均可视为质点,忽略空气阻力,重力加速度为g。

求:①小球A刚滑至水平台面的速度v A;②A、B两球的质量之比m A∶m B。

3.(17分)(2013·宿迁一模)(1)下列说法中正确的是( )A.光电效应现象说明光具有粒子性B.普朗克在研究黑体辐射问题时提出了能量子假说C.玻尔建立了量子理论,成功解释了各种原子发光现象D.运动的宏观物体也具有波动性,其速度越大物质波的波长越大(2)如图所示,一水平面上P点左侧光滑,右侧粗糙,质量为m的劈A在水平面上静止,上表面光滑,A轨道右端与水平面平滑连接,质量为M的物块B恰好放在水平面上P点,物块B与水平面的动摩擦因数为μ=0.2。

山东省2021高考物理一轮复习 专题七 碰撞与动量守恒精练(含解析)

山东省2021高考物理一轮复习 专题七 碰撞与动量守恒精练(含解析)

专题七碰撞与动量守恒【考情探究】课标解读考情分析备考指导考点内容动量、动量定理1。

理解冲量和动量。

2.通过理论推导和实验,理解动量定理,能用动量定理解释生产生活中的有关现象。

动量守恒定律是高考命题的重点和热点,常常与牛顿运动定律、能量守恒定律等知识综合考查。

常见的考查形式有:(1)动量定理在流体中的应用;(2)满足动量守恒定律条件的分析判断,对单一过程进行简单应用;(3)在碰撞、反冲等问题中,综合应用动量守恒定律、动量定理、能量守恒定律和牛顿运动定律。

1。

在学生初步形成的运动与相互作用观念和能量观念的基础上,引导学生通过研究碰撞现象拓展对物理世界的认识和理解。

2。

通过探究碰撞过程中的守恒量,进一步发展学生运动与相互作用观念和能量观念,使其了解物理规律具有适用范围和条件。

3。

通过实验探究和理论推导,让学生经历科学论证过程,理解动量定理的物理实质与牛顿第二定律的一致性.4.能从理论推导和实验验证的角度,理解动量守恒定律,深化对物体之间相互作用规律的理解。

5.能用动量和机械能的知识分析和解释机械运动现象,解决一维碰撞问题。

动量守恒定律及其应用1.通过理论推导和实验,理解动量守恒定律,能用动量守恒定律解释生产生活中的有关现象。

2.知道动量守恒定律的普适性.3.通过实验,了解弹性碰撞和非弹性碰撞的特点。

4.定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。

动量和能量的综合1。

能从牛顿运动定律、动量守恒定律、能量守恒定律思考物理问题.2.体会用守恒定律分析物理问题的方法,体会自然界的和谐与统一.【真题探秘】基础篇固本夯基【基础集训】考点一动量、动量定理1。

(多选)为了进一步探究课本中的迷你小实验,某同学从圆珠笔中取出轻弹簧,将弹簧一端固定在水平桌面上,另一端套上笔帽,用力把笔帽往下压后迅速放开,他观察到笔帽被弹起并离开弹簧向上运动一段距离。

不计空气阻力,忽略笔帽与弹簧间的摩擦,在弹簧恢复原长的过程中()A。

2020高考物理专题卷:专题十六《碰撞与动量守恒定律》 含答案解析

2020高考物理专题卷:专题十六《碰撞与动量守恒定律》 含答案解析

2020衡水名师原创物理专题卷专题十六 碰撞与动量守恒定律考点62 动量 冲量 动量定理 (1、2、3、5、11)考点63 动量守恒定律及其应用 (4、6、7、9、10、15、16、17、19) 考点64 碰撞及其能量变化的判断 (8、12、13、14、20) 考点65实验:验证动量守恒定理 (18)第I 卷(选择题 68分)一、选择题(本题共17个小题,每题4分,共68分。

每题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.【2017·西藏自治区拉萨中学高三上学期期末】考点62 易下列运动过程中,在任意相等时间内,物体动量变化相等的是( )A .平抛运动B .自由落体运动C .匀速圆周运动D .匀减速直线运动 2.【2017·山东省枣庄市高三上学期期末质量检测】考点62 易质量为60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来;已知弹性安全带的缓冲时间是1.2s ,安全带长5m ,不计空气阻力影响,g 取10m/s 2,则安全带所受的平均冲力的大小为( )A .100 NB .500 NC .600 ND .1100 N3.【2017·长春外国语学校高三上学期期末考试】考点62易关于速度、动量和动能,下列说法正确的是( )A .物体的速度发生变化,其动能一定发生变化B .物体的动量发生变化,其动能一定发生变化C .物体的速度发生变化,其动量一定发生变化D .物体的动能发生变化,其动量一定发生变化4.【2017·安徽省合肥市第一中学高三第三阶段考试】考点63易如图所示, 12F F 、等大反向,同时作用在静止于光滑水平面上的A 、B 两物体上,已知两物体质量关系 A B M M ,经过相等时间撤去两力,以后两物体相碰且粘为一体,这时A 、B将A .停止运动B .向右运动C .向左运动D .仍运动但方向不能确定 5.【2017·湖北省部分重点中学高三新考试大纲适应性考试】考点62中质量为m 的运动员从下蹲状态竖直向上起跳,经过时间 t,身体仲直并刚好离开地面,离开地面时速度为 0υ.在时间t 内( )A .地面对他的平均作用力为 mgB .地面对他的平均作用力为 t m υC .地面对他的平均作用力为 )(g t m -υD .地面对他的平均作用力为)(t g m υ+ 6.【2017年全国普通高等学校招生统一考试物理(全国1卷正式版)】考点63 中将质量为1.00kg 的模型火箭点火升空,50g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg m/s ⋅B .5.7×102 kg m/s ⋅C .6.0×102kg m/s ⋅ D .6.3×102kg m/s ⋅ 7.【2017·四川省成都市高三第一次诊断性检测】考点63难如图所示,小车静止在光滑水平面上,AB 是小车内半圆弧轨道的水平直径,现将一小球从距A 点正上方h 高处由静止释放,小球由A 点沿切线方向经半圆轨道后从B 点冲出,在空中能上升的最大高度为0.8h ,不计空气阻力.下列说法正确的是( )A .在相互作用过程中,小球和小车组成的系统动量守恒B .小球离开小车后做竖直上抛运动C .小球离开小车后做斜上抛运动D .小球第二次冲出轨道后在空中能上升的最大高度为0.6h8.【河南省南阳市第一中学2017届高三上学期第二次周考】考点64难如图所示,倾角为 的固定斜面充分长,一质量为m 上表面光滑的足够长的长方形木板A 正以速度v 0沿斜面匀速下滑,某时刻将质量为2 m 的小滑块B 无初速度地放在木板A 上,则在滑块与木板都在滑动的过程中( )A .木板A 的加速度大小为3gsinθB .木板A 的加速度大小为零C .A 、B 组成的系统所受合外力的冲量一定为零D .木板A 的动量为13mv0时,小滑块B 的动量为23mv09.【2017·西藏自治区拉萨中学高三上学期期末】考点63 中如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,使C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,以下说法正确的是( )A .弹簧伸长过程中C 向右运动,同时AB 也向右运动B .C 与B 碰前,C 与AB 的速率之比为M :mC .C 与油泥粘在一起后,AB 立即停止运动D .C 与油泥粘在一起后,AB 继续向右运动10.【江西省南昌市十所省重点中学命制2017届高三第二次模拟突破冲刺理综物理试题(一)】考点63 中如图所示,质量分别为m1和m2的两个小球A 、B 带有等量异种电荷,通过绝缘轻弹簧相连接,置于绝缘光滑的水平面上.当突然加一水平向右的匀强电场后,两小球A 、B 将由静止开始运动,在以后的运动过程中,对两个小球和弹簧组成的系统(设整个过程中不考虑电荷间库仑力的作用,且弹簧不超过弹性限度),以下说法中错误的是()A. 两个小球所受电场力等大反向,系统动量守恒B. 电场力分别对球A和球B做正功,系统机械能不断增加C. 当弹簧长度达到最大值时,系统机械能最大D. 当小球所受电场力与弹簧的弹力相等时,系统动能最大11.【2017·哈尔滨市第六中学上学期期末考试】考点62中如图甲所示,一质量为m的物块在t=0时刻,以初速度v0从足够长、倾角为θ的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示.t0时刻物块到达最高点,3t0时刻物块又返回底端.下列说法正确的是()A.物块从开始运动到返回底端的过程中重力的冲量大小为3mgt0sinθB.物块从t=0时刻开始运动到返回底端的过程中动量变化量大小为023vmC.斜面倾角θ的正弦值为085gtvD.不能求出3t0时间内物块克服摩擦力所做的功12.【吉林省普通高中2017届高三下学期第四次调研考试试卷理综物理】考点64 中如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为2B Am m=,规定向右为正方向,A、B两球的动量均为6Kg.m/s,运动中两球发生碰撞,碰撞前后A球动量变化为﹣4Kg.m/s,则()A. 左方是A球B. 右方是A球C. 碰撞后A、B两球速度大小之比为2:5D. 经过验证两球发生的碰撞不是弹性碰撞13.【四川省成都外国语学校2017届高三11月月考】考点64中如图所示在足够长的光滑水平面上有一静止的质量为M的斜面,斜面表面光滑、高度为h、vv0tt0 2t03t0Oθv0(甲)(乙)倾角为θ.一质量为m(m<M)的小物块以一定的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固定,则小物块恰能冲到斜面的顶端.如果斜面不固定,则小物块冲上斜面后能达到的最大高度为()A.h B.mhm M+C.mhM D.Mhm M+14.【四川省成都外国语学校2017届高三12月一诊模拟】考点64易在光滑水平面上,一质量为m,速度大小为v的A球与质量为2m静止的B球碰撞后,A球的动能变为1/9,则碰撞后B球的速度大小可能是( )A. 13v B.23v C.49v D.59v16.【黑龙江省牡丹江市第一高级中学2017届高三12月月考】考点63易甲、乙两船的质量均为M,它们都静止在平静的湖面上,质量为M的人从甲船跳到乙船上,再从乙船跳回甲船,经过多次跳跃后,最后人停在乙船上.假设水的阻力可忽略,则()A.甲、乙两船的速度大小之比为1:2B.甲船与乙船(包括人)的动量相同C.甲船与乙船(包括人)的动量之和为零D.因跳跃次数未知,故无法判断17.【黑龙江省牡丹江市第一高级中学2017届高三12月月考】考点63难如图所示,在光滑水平面上有一质量为M的木块,木块与轻弹簧水平相连,弹簧的另一端连在竖直墙上,木块处于静止状态,一质量为m的子弹以水平速度v0击中木块,并嵌在其中,木块压缩弹簧后在水平面做往复运动.木块自被子弹击中前到第一次回到原来位置的过程中,木块受到的合外力的冲量大小为()A.MmvM m+B.2MvC.2MmvM m+D.2mv第II卷(非选择题 42分)二、非选择题(共3小题,共42分,按题目要求作答,计算题应写出必要的文字说明、方程式和重要步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)18.【2017届辽宁省大连市高三第二次模拟考试理科综合物理试卷】考点65 难如图甲所示,在验证动量守恒定律实验时,小车A的前端粘有橡皮泥,推动小车A使之做匀速运动。

动量守恒练习题碰撞与弹性问题

动量守恒练习题碰撞与弹性问题

动量守恒练习题碰撞与弹性问题动量守恒练习题:碰撞与弹性问题动量守恒是物理学中一个重要的基本原理,用于描述各种碰撞和相互作用过程中动量的守恒特性。

本文将通过几个练习题来阐述碰撞和弹性问题中的动量守恒原理。

1. 两个小球的弹性碰撞假设有两个质量分别为m1和m2的小球,在一维情况下,它们以速度v1和v2相向运动,发生完全弹性碰撞。

我们需要求解碰撞之后两个小球的速度。

解析:根据动量守恒定律,碰撞前后总动量守恒,即m1v1 + m2v2 =m1v1' + m2v2',其中v1'和v2'分别是碰撞之后两个小球的速度。

根据动能守恒定律,碰撞前后总动能守恒,即(m1v1^2 + m2v2^2) / 2 = (m1v1'^2 + m2v2'^2) / 2。

由于发生完全弹性碰撞,动能守恒条件表示为(m1v1^2 + m2v2^2) = (m1v1'^2 + m2v2'^2)。

通过求解以上两个方程组,可以得到碰撞后两个小球的速度v1'和v2'。

2. 弹簧碰撞问题现假设有一个质量为m的小球以速度v撞向一个静止的质量为M 的小球。

两个小球之间通过弹簧连接,并假设弹簧的劲度系数为k。

求解两个小球碰撞后的速度。

解析:根据动量守恒定律,碰撞前后总动量守恒,即mv = mv' + Mv',其中v和v'分别为碰撞前和碰撞后小球的速度。

由于两个小球通过弹簧连接,在碰撞过程中弹簧发生变形,因此弹簧的势能产生了改变。

根据能量守恒定律,碰撞前后总机械能守恒,即1/2mv^2 = 1/2mv'^2 + 1/2Mv'^2 + 1/2kx'^2,其中x'表示弹簧伸长的距离。

通过求解以上两个方程组,可以得到碰撞后两个小球的速度v'。

3. 斜面上的碰撞问题考虑一个质量为m的小球以速度v沿着一个倾斜角度为α的光滑斜面滑下,在斜面底部与一个质量为M的小球碰撞,假设碰撞是完全弹性的。

高中物理选择性必修一第一章 动量守恒定律 单元测试(含答案)

高中物理选择性必修一第一章  动量守恒定律 单元测试(含答案)

高中物理选择性必修一第一章一、选择题(1-7单选题,8-10多选题)1.2024年春天,中国航天科技集团研制的50kW级双环嵌套式霍尔推力器,成功实现点火并稳定运行,标志着我国已跻身全球嵌套式霍尔电推进技术领先行列。

嵌套式霍尔推力器不用传统的化学推进剂,而是使用等离子体推进剂,它的一个显著优点是“比冲”高。

比冲是航天学家为了衡量火箭引擎燃料利用效率引入的一个物理量,英文缩写为I sp,是单位质量的推进剂产生的冲量,比冲这个物理量的单位应该是( )A.m/s B.kg⋅m/s2C.m/s2D.N⋅s2.物理在生活和生产中有广泛应用,以下实例没有利用反冲现象的是( )A.乌贼喷水前行B.电风扇吹风C.火箭喷气升空D.飞机喷气加速3.如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。

关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小不相等4.人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A.减小地面对人的冲量B.减小人的动量的变化C.增加人对地面的冲击时间D.增大人对地面的压强5.在光滑的水平面上,质量为m1的小球以速率v0向右运动。

在小球的前方有一质量为m2的小球处于静止状态,如图所示,两球碰撞后粘合在一起,两球继续向右运动,则两球碰撞后的速度变为( )A.仍为v0B.m1v0(m1+m2)C.m2v0(m1+m2)D.v0(m1+m2)6.重量为mg的物体静止在水平地面上,物体与地面之间的最大静摩擦力为F m,从0时刻开始,物体受到水平拉力F的作用,F与时间t的关系如图a所示,为了定性地表达该物体的运动情况,在图b所示的图象中,纵轴y应为该物体的()A.动量大小P B.加速度大小a C.位移大小xD.动能大小E k7.一质量为0.1kg的小球自t=0时刻从水平地面上方某处自由下落,小球与地面碰后反向弹回,不计空气阻力,也不计小球与地面弹性碰撞的时间,小球距地面的高度h与运动时间t关系如图所示,取g=10m/s2.则()A .小球第一次与地面弹性碰撞后的最大速度为10m /sB .小球与地面弹性碰撞前后动量守恒C .小球第一次与地面弹性碰撞时机械能损失了19JD .小球将在t =6s 时与地面发生第四次弹性碰撞8.如图所示,质量为M 的带有四分之一光滑圆弧轨道的小车静止置于光滑水平面上,圆弧的半径为R(未知),一质量为m 的小球以速度v 0水平冲上小车,恰好达到圆弧的顶端,此时M 向前走了0.25R ,接着小球又返回小车的左端。

《碰撞和动量守恒》过关检测(含答案解析及答题卡)

《碰撞和动量守恒》过关检测(含答案解析及答题卡)

木里县中学《碰撞和动量守恒》过关检测本试卷分选择题和非选择题两部分。

第Ⅰ卷(选择题)1至4页,第Ⅱ卷(非选择题)5页至6页,共6页,满分100分,考试时间100分钟。

第Ⅰ卷(选择题,共42分)一、本题包括6小题,每小题3分,共18分,每小题只有一个选项符合题意。

1.如图所示,一质量为2kg 的物体放在光滑的水平面上,原处于静止状态,现用与水平方向成60°角的恒力F=10N 作用于物体上,历时5s ,则( ) ①力F 对物体的冲量大小为50N ·s ②力F 对物体的冲量大小为25N ·s ③物体的动量变化量为25kg ·m/s④物体所受合外力冲量大小为25N ·s A .①③B .②③C .①③④D .②③④2.下面列举的装置各有其一定的道理,其中不可以用动量定理进行解释的是( )A .运输玻璃器皿等易碎品时,在器皿的四周总是垫着碎纸或海绵等柔软、有弹性的垫衬物B .建筑工人戴的安全帽内有帆布垫,把头和帽子的外壳隔开一定的空间C .热水瓶胆做成双层,且把两层中间的空气抽去D .跳高运动中的垫子总是十分松软 3.从同一高度将两个质量相等的物体,一个自由落下,一个以某一水平速度抛出,当它们落至同一水平面的过程中(空气阻力不计)( ) A .动量变化量大小不同,方向相同 B .动量变化量大小相同,方向不同C .动量变化量大小、方向都不相同D .动量变化量大小、方向都相同4.静止的实验火箭,总质量为M ,当它以对地速度v 0喷出质量为m ∆的高温气体后,火箭的速度为( )A .m M mv o ∆-∆ B .m M mv o ∆-∆- C .Mmv o ∆ D .M mv o∆-5.质量为m 的物体,沿半径为R 的轨道以速率v 做匀速圆周运动,如图所示,取v B 方向为正方向,求物体由A 至B 过程所受的合外力在半周期内的冲量( )A .mv 2B .mv 2-C .mvD .mv -6.A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 的动量为5 kg ·m/s ,B 的动量为 7 kg ·m/s ,当A 追上B 球与其发生正碰后,A 、B 两球动量的可能取值是:(单位:kg ·m/s ) ( )A .P A =6 kg ·m/s ,PB =6 kg ·m/s B .P A =6 kg ·m/s ,P B =-6 kg ·m/sC .P A =-5 kg ·m/s ,P B =17 kg ·m/sD .P A =-2 kg ·m/s ,P B =14 kg ·m/sAB二、本题包括6小题,每小题4分,共24分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错的得0分。

动量守恒定律基础题

动量守恒定律基础题
9.如图所示,光滑水平地面上静止放置两由弹簧相连的木块A和B,一质量为m的子弹以速度v0水平击中木块A,并留在其中,A的质量为3m,B的质量为4m。
(1)子弹射入A后速度变为多少?
(2)求弹簧第一次恢复原长时B的速度
10.如图所示,A、B两物体与水平面间的动摩擦因数相同,A的质量为3kg,A以一定的初速度向右滑动,与B发生碰撞(碰撞时间非常短),碰前A的速度变化如图中图线Ⅰ所示,碰后A、B的速度变化分别如图线Ⅱ、Ⅲ所示,g取10m/s2,求:
(1)物块A刚开始滑动时加速度大小a;
(2)木板B刚开始滑动时弹簧的伸长量x0和物块A的速度大小v0;
(3)弹簧第一次拉伸到最长时弹簧的伸长量x.
22.如图所示,质量 为4.0kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量 为1.0kg的小物块B(视为质点),它们均处于静止状态。木板突然受到水平向右的12Ns的瞬时冲量I作用开始运动,当小物块滑离木板时,木板的动能 为8.0J,小物块的动能 为0.50J,重力加速度取 。求:
(1)碰撞后,小球A反弹瞬间的速度大小;
(2)物块B在水平面上滑行的时间t。
6.如图所示,质量为0.2kg的小物块B用不可伸长的细绳悬挂于O点,静止时恰好位于0.8m高的光滑平台的右端,质量为0.4kg的小物块A以2m/s的初速度向右运动并与小物块B发生对心碰撞,碰后小物块A滑下平台落于水平面上M点,水平射程为0.48m,已知碰后小物块B运动过程中细绳不松弛且小物块B运动至最高点时动能为0,小物块A、B均可视为质点,重力加速度g=10m/s2,求:
(1)小物块返回到A点的速度大小;
(2)小车上平面AB的长度 ;
(3)要使物块不从C点冲出, 圆弧BC的半径R的最小值。

动量守恒定律单元检测附答案

动量守恒定律单元检测附答案

动量守恒定律单元测试 一.选择题(共14小题)1.(多选)质量为m的物块甲以3m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4m/s的速度与甲相向运动,如图所示,则( )A.甲、乙两物块在弹簧压缩过程中,动量守恒B.当两物块相距最近时,物块甲的速率为零C.当物块甲的速率为1m/s时,物块乙的速率可能为2m/s,也可能为0D.物块甲的速率可能达到5m/s2.如图所示,质量为M的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,开始时木块静止在A位置.现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,则当木块回到A位置时的速度v以及此过程中墙对弹簧的冲量I的大小分别为( )A.v=,I=0 B.v=,I=2mv0C.v=,I= D.v=,I=2mv0﹣图象如图所示,其中OA和BC段为抛物线,AB段为直线并3.一物体做直线运动的x t且与两段抛物线相切.物体的加速度、速度、动能、动量分别用a、v、E k、P表示,下列表示这些物理量的变化规律可能正确的是( )A. B.C. D.4.如图所示,质量为 m 的小滑块(可视为质点),从 h 高处的 A 点由静止开始沿斜面下滑,停在水平地面上的 B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在 B 点需给物体的瞬时冲量最小应是( )A.2m B.m C.D.4m5.(多选)将质量相等的三只小球A、B、C从离地同一高度以大小相同的初速度分别上抛下抛、平抛出去,空气阻力不计,那么,有关三球动量和冲量的情况是( )A.三球刚着地时的动量大小相同B.三球刚着地时的动量各不相同C.三球从抛出到落地时间内,受重力冲量最大的是A球,最小的是B球D.三球从抛出到落地时间内,受重力冲量均相同6.(多选)测量运动员体能的装置如图所示,质量为m1的运动员将绳拴在腰间并沿水平方向跨过滑轮(不计滑轮质量及摩擦),下端悬吊一个m2的重物,人用力向后蹬传送带,而人的重心不动,使传送带以v的速率向后运动,则不正确的是( )A.人对传送带不做功B.传送带对人的冲量等于零C.人对传送带做功的功率m2gv D.人对传送带做功的功率m1gv7.(多选)如图所示,放在光滑水平桌面上的A、B两小木块中部夹一被压缩的轻弹簧,当轻弹簧被放开时,A、B两小木块各自在桌面上滑行一段距离后,飞离桌面落在地面上若m A=3m B,则下列结果正确的是( )A.若轻弹簧对A、B做功分别为W1和W2,则有W1:W2=1:1B.在与轻弹簧作用过程中,两木块的速度变化量之和不为零C.若A、B在空中飞行时的动量变化量分别为△p1和△p2,则有△p1:△p2=1:1D.若A、B同时离开桌面,则从释放轻弹簧开始到两木块落地的这段时间内,A、B两木块的水平位移大小之比为l:38.如图所示,在光滑水平面上放置一个质量为M的滑块,滑块的一侧是一个1/4弧形凹槽OAB,凹槽半径为R,A点切线水平.另有一个质量为m的小球以速度v0从A点冲上凹槽,重力加速度大小为g,不计摩擦.下列说法中正确的是( )A.当时,小球能到达B点B.如果小球的速度足够大,球将从滑块的左侧离开滑块后落到水平面上C.当时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大D.如果滑块固定,小球返回A点时对滑块的压力为9.在光滑的水平地面上水平放置着足够长的质量为M的木板,其上放置着质量为m带正电的物块(电量保持不变),两者之间的动摩擦因数恒定,且M>m,空间存在着足够大的方向垂直于纸面向里的匀强磁场,某时刻开始它们以大小相同的速度相向运动,如图,取向右为正方向,则下列图象可能正确反映它们以后运动的是( )A.B.C.D.10.(多选)如图所示,轻弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m的小物块从槽高h处开始自由下滑,下列说法正确的是( )A.在下滑过程中,物块的机械能守恒B.在下滑过程中,物块和槽的动量守恒C.物块被弹簧反弹后,做匀速直线运动D.物块被弹簧反弹后,不能回到槽高h处11.如图,质量为3kg的木板放在光滑水平面上,质量为1kg的物块在木板上,它们之间有摩擦力,木板足够长,两者都以4m/s的初速度向相反方向运动,当木板的速度为2.4m/s 时,物块( )A.加速运动B.减速运动C.匀速运动D.静止不动12.质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.左侧射手首先开枪,子弹相对木块静止时水平射入木块的最大深度为d1,然后右侧射手开枪,子弹相对木块静止时水平射入木块的最大深度为d2,如图所示.设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相等.当两颗子弹均相对于木块静止时,下列判断正确的是( )A.木块静止,d1=d2B.木块向右运动,d1<d2C.木块静止,d1<d2D.木块向左运动,d1=d2二.实验题(共1小题)13.某物理兴趣小组利用如图1所示的装置进行实验.在足够大的水平平台上的A点放置一个光电门,水平平台上A点右侧摩擦很小可忽略不计,左侧为粗糙水平面,当地重力加速度大小为g.采用的实验步骤如下:①在小滑块a上固定一个宽度为d的窄挡光片;②用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b;③在a和b间用细线连接,中间夹一被压缩了的轻弹簧,静止放置在平台上;④细线烧断后,a、b瞬间被弹开,向相反方向运动;⑤记录滑块a通过光电门时挡光片的遮光时间t;⑥滑块a最终停在C点(图中未画出),用刻度尺测出AC之间的距离S a;⑦小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面的高度h及平台边缘铅垂线与B点之间的水平距离S b;⑧改变弹簧压缩量,进行多次测量.(1)该实验要验证“动量守恒定律”,则只需验证 = 即可.(用上述实验数据字母表示)(2)改变弹簧压缩量,多次测量后,该实验小组得到S a与的关系图象如图2所示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为 .(用上述实验数据字母表示)三.计算题(共4小题)14.如图所示,左端带有挡板P的长木板质量为m,置于光滑水平面上,劲度系数很大的轻弹簧左端与P相连,弹簧处于原长时右端在O点,木板上表面O点右侧粗糙、左侧光滑若将木板固定,质量也为m的小物块以速度v0从距O点L的A点向左运动,与弹簧碰撞后反弹,向右最远运动至B点,OB的距离为3L,已知重力加速度为g.(1)求物块和木板间动摩擦因数μ及上述过程弹簧的最大弹性势能E p.(2)解除对木板的固定,物块仍然从A点以初速度v0向左运动,由于弹簧劲度系数很大,物块与弹簧接触时间很短可以忽略不计,物块与弹簧碰撞后,木板与物块交换速度.①求物块从A点运动到刚接触弹簧经历的时间t;②物块最终离O点的距离x.15.如图所示,一条不可伸长的轻绳长为R,一端悬于天花板上的O点,另一端系一质量为m的小球(可视为质点).现有一个高为h,质量为M的平板车P,在其左端放有一个质量也为m的小物块Q(可视为质点),小物块Q正好处在悬点O的正下方,系统静止在光滑水平面地面上.今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时刚好与Q发生正碰,碰撞时间极短,且无能量损失.已知Q离开平板车时的速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?16.如图所示,在光滑的水平地面的左端连接一半径为R的光滑圆形固定轨道,在水平面质量为M=3m的小球Q连接着轻质弹簧,处于静止状态.现有一质量为m的小球P从B点正上方h=R高处由静止释放,求:(1)小球P到达圆形轨道最低点C时的速度大小和对轨道的压力;(2)在小球P压缩弹簧的过程中,弹簧具有的最大弹性势能;(3)若球P从B上方高H处释放,恰好使P球经弹簧反弹后能够回到B点,则高度H 的大小.17.如图,质量为M=2.0kg的小车静止在光滑水平面上,小车AB部分是半径为R=0.4m的四分之一圆弧光滑轨道,BC部分是长为L=0。

(完整版)动量守恒定律单元测试题

(完整版)动量守恒定律单元测试题

(完整版)动量守恒定律单元测试题一、动量守恒定律 选择题1.在光滑的水平桌面上有等大的质量分别为M =0.6kg ,m =0.2kg 的两个小球,中间夹着一个被压缩的具有E p =10.8J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。

现突然释放弹簧,球m 脱离弹簧后滑向与水平面相切、半径为R =0.425m 的竖直放置的光滑半圆形轨道,如图所示。

g 取10m/s 2。

则下列说法正确的是( )A .球m 从轨道底端A 运动到顶端B 的过程中所受合外力冲量大小为3.4N·sB .弹簧弹开过程,弹力对m 的冲量大小为1.8N·sC .若半圆轨道半径可调,则球m 从B 点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D .M 离开轻弹簧时获得的速度为9m/s2.如图甲所示,一轻弹簧的两端与质量分别为1m 、2m 的两物块A 、B 相连接,并静止在光滑水平面上。

现使B 获得水平向右、大小为6m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A .在1t 、3t 两个时刻,两物块达到共同的速度2m/s ,且弹簧都处于伸长状态B .在3t 到4t 时刻之间,弹簧由压缩状态恢复到原长C .两物体的质量之比为1m :2m =2:1D .运动过程中,弹簧的最大弹性势能与B 的初始动能之比为2:33.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L -= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L -= 4.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J5.如图所示,足够长的光滑细杆PQ 水平固定,质量为2m 的物块A 穿在杆上,可沿杆无摩擦滑动,质量为0.99m 的物块B 通过长度为L 的轻质细绳竖直悬挂在A 上,整个装置处于静止状态,A 、B 可视为质点。

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案

《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题1.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 2.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动3.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR v B LB .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L -= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L -= 4.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m5.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 6.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则A .碰撞发生在M 、N 中点之外B .两球同时返回M 、N 两点C .两球回到原位置时动能比原来大些D .两球回到原位置时动能不变7.如图所示,一质量为0.5 kg 的一块橡皮泥自距小车上表面1.25 m 高处由静止下落,恰好落入质量为2 kg 、速度为2.5 m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/s g =,不计空气阻力,下列说法正确的是A .橡皮泥下落的时间为0.3 sB .橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J8.质量为m 的箱子静止在光滑水平面上,箱子内侧的两壁间距为l ,另一质量也为m 且可视为质点的物体从箱子中央以v 0=2gl 的速度开始运动(g 为当地重力加速度),如图所示。

动量守恒定律章末测试题及答案

动量守恒定律章末测试题及答案

第十六章《动量守恒定律》章末检测试题班级姓名一、选择题(每题答案全对4分,1-—9单选,10--12多选)1、下列关于系统动量守恒说法正确的是:A.若系统内存在着摩擦力,系统的动量的就不守恒B.若系统中物体具有加速度,系统的动量就不守恒C.若系统所受的合外力为零,系统的动量就守恒D.若系统所受外力不为零,系统的动量就守恒2、把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有f.且f 的冲量甚小D.车、枪和子弹组成的系统动量守恒3。

甲、乙两球在光滑水平面上发生碰撞。

碰撞前,甲球向左运动,乙球向右运动,碰撞后一起向右运动,由此可以判断:( )A.甲的质量比乙小B.甲的初速度比乙小C.甲的初动量比乙小D.甲的动量变化比乙小4、炮弹的质量为m,装好炮弹的大炮总质量为M,炮弹出口时相对地面的速度为v,炮弹与水平方向夹角为α,如果不考虑炮车与水平地面的摩擦,则射击时炮车的后退速度为( )A。

mv/(M—m) B.mvcosα/M C。

mv/M D.mvcosα/(M-m)5.如图3所示,设车厢长度为L,质量为M,静止于光滑的水平面上,车厢内有一质量为m的物体以初速度v0向右运动,与车厢壁来回碰撞n次后,静止mv0图3在车厢中。

这时车厢的速度是()A。

v0水平向右 B。

0C.mv0/(M+m),水平向右.D.mv0/(M—m),水平向右乙6.、质量为2kg的物体以2m/s的速度作匀变速直线运动,经过2s后其动量大小变为8kg。

m/s,则关于该物体说法错误的是( )A.所受合外力的大小可能等于2NB.所受合外力的大小可能等于6NC.所受冲量可能等于12N。

sD.所受冲量可能等于20N。

s7、两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1 kg m B=2 kg,v A=6m/s,v B=2 m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A.v A′=5 m/s,v B′=2.5 m/s B.v A′=2 m/s,v B′=4 m/sC.v A′=-4 m/s,v B′=7 m/s D.v A′=7 m/s, v B′=1.5 m/s8.在光滑的水平面上,两个质量均为m的完全相同的滑块以大小均为P的动量相向运动, 发生正碰,碰后系统的总动能不可能是A.0 B.错误!C.错误!D.错误!9.如图所示,质量为m的小车静止于光滑水平面上,车上有一光滑的弧形轨道,另一质量为m的小球以水平初速沿轨道的右端的切线方向进入轨道,则当小球再次从轨道的右端离开轨道后,将作( )A.向左的平抛运动;B.向右的平抛运动;C.自由落体运动;D.无法确定。

专题07 碰撞与动量守恒(解析版)

专题07 碰撞与动量守恒(解析版)

2020年高考物理三轮冲刺与命题大猜想专题07 碰撞与动量守恒目录猜想一 :结合生活现象考查动量定理的简单应用 (1)猜想二 :结合生活现象考查动量守恒定律的简单应用 (2)猜想三:动量与能量综合考查碰撞与爆炸 (3)最新模拟冲刺练习 (6)猜想一 :结合生活现象考查动量定理的简单应用【猜想依据】高空坠物的危害,物体的制动情况以及体育运动中球类的冲击力等,以此情境命制的试题都会涉及动量定理的应用体现了分析问题解决问题这一思想。

【要点概述】1.对动量定理的理解(1)动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.(2)动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.2.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小.【例1】(2020·湖北部分重点中学模拟)质量为m 的运动员从下蹲状态竖直向上起跳,经过时间t ,身体伸直并刚好离开地面,离开地面时速度为v .在时间t 内( )A .地面对他的平均作用力为mgB .地面对他的平均作用力为mv tC .地面对他的平均作用力为m ⎪⎭⎫⎝⎛-g t v D .地面对他的平均作用力为m ⎪⎭⎫ ⎝⎛+g t v 【答案】:D.【进行】人的速度原来为零,起跳后变化v ,则由动量定理可得:(F -mg )t =mv ,故地面对人的平均作用力为F =m ⎪⎭⎫ ⎝⎛+g t v ,D 正确.【例2】.(2020·广东广州一模)如图为跳水运动员从起跳到落水过程的示意图,运动员从最高点到入水前的运动过程记为Ⅰ,运动员入水后到最低点的运动过程记为Ⅰ,忽略空气阻力,则运动员( )A .过程Ⅰ的动量改变量等于零B .过程Ⅰ的动量改变量等于零C .过程Ⅰ的动量改变量等于重力的冲量D .过程Ⅰ 的动量改变量等于重力的冲量【答案】C.【解析】:过程Ⅰ中动量改变量等于重力的冲量,即为mgt ,不为零,故A 错误,C 正确;运动员进入水前的速度不为零,末速度为零,过程Ⅰ的动量改变量不等于零,故B 错误;过程Ⅰ的动量改变量等于合外力的冲量,不等于重力的冲量,故D 错误.【例3】(2020·湖南长沙二模)乒乓球运动的高抛发球是由我国运动员刘玉成于1964年发明的,后成为风靡世界乒乓球坛的一项发球技术.某运动员在一次练习发球时,手掌张开且伸平,将一质量为2.7 g 的乒乓球由静止开始竖直向上抛出,抛出后向上运动的最大高度为2.45 m ,若抛球过程,手掌和球接触时间为5 ms ,不计空气阻力,则该过程中手掌对球的作用力大小约为( )A .0.4 NB .4 NC .40 ND .400 N【答案】B.【解析】:向上为正,手离开球后的速度为v :v =2gh =2×10×2.45 m/s =7 m/s ,重力忽略由动量定理有:F =mv t =2.7×10-3×75×10-3 N≈4 N ,故B 正确,A 、C 、D 错误. 猜想二 :结合生活现象考查动量守恒定律的简单应用【猜想依据】教材例题、高考题、模拟题中都加重了试题与实际的联系、命题导向由单纯解题向解决问题转变,对于动量守恒定律这一重要规律我们也要关注其在生活实际中的应用,学会模型构建、科学推理。

实验《验证碰撞中的动量守恒》中的落点问题

实验《验证碰撞中的动量守恒》中的落点问题

实验《验证碰撞中的动量守恒》中的落点问题
在实验《验证碰撞中的动量守恒》中,如果落点不准确会影响
实验结果的准确性。

落点不准确可能由以下几个原因引起:
1. 实验器材摆放不准确:如果装置不稳定或者悬挂的物体摆放
不平衡,可能导致落点不准确。

2. 实验测量不精确:如果在实验中的测量时,刻度值、时间等
等不准确,会导致数据的误差,进而导致落点不准确。

3. 风力干扰:如果实验过程中有外界因素(比如风等)的干扰,可能会改变物体的轨迹,从而导致落点不准确。

为了避免落点不准确的问题,需要进行严谨的实验设计和操作,尽可能减小误差,提高实验结果的准确性。

动量守恒实验动量守恒与碰撞实验

动量守恒实验动量守恒与碰撞实验

动量守恒实验动量守恒与碰撞实验动量守恒实验:动量守恒与碰撞实验动量守恒是物理学中的一个基本原理,它指出在一个系统内,当没有外力作用于该系统时,系统的总动量保持不变。

碰撞实验是测量和观察动量守恒的重要方法之一。

一、实验目的本实验旨在通过模拟碰撞实验来验证动量守恒原理,并探究在不同情况下动量守恒的应用。

二、实验材料1. 碰撞小车:包括两辆小车,可以在平滑的轨道上自由移动。

2. 质量块:具有一定质量的金属块。

三、实验原理动量(p)定义为物体的质量(m)乘以其速度(v),即p = mv。

在碰撞实验中,两个物体A和B分别具有质量mA和mB,初始速度分别为vA和vB。

根据动量守恒原理,碰撞前后它们的合成动量保持不变,即mA*vA + mB*vB = mA*v'A + mB*v'B,其中v'A和v'B分别为碰撞后物体A和B的速度。

四、实验步骤1. 将轨道放置在平滑的桌面上,并确保两个小车可以自由移动。

2. 在轨道的一端放置质量块,待实验开始前固定在某一位置。

3. 将小车A放置在轨道的一端,并给予它一个初始速度vA。

4. 记录小车A在与质量块碰撞前后的速度vA'。

5. 将小车B放置在轨道的一端,并给予它一个初始速度vB。

6. 记录小车B在与质量块碰撞前后的速度vB'。

7. 重复多次实验以获取可靠的数据。

8. 使用记录的数据计算动量,并验证动量守恒原理。

五、实验结果与分析在实验中,我们记录了碰撞前后小车A和小车B的速度,得到了以下数据:小车A碰撞前速度vA = 0.5 m/s,碰撞后速度vA' = -0.3 m/s;小车B碰撞前速度vB = -0.4 m/s,碰撞后速度vB' = 0.2 m/s。

根据动量守恒原理,我们可以用这些数据验证动量守恒是否成立。

碰撞前动量:pA = mA * vA = mA * 0.5 kg·m/s碰撞前动量:pB = mB * vB = mB * (-0.4) kg·m/s碰撞后动量:pA' = mA * vA' = mA * (-0.3) kg·m/s碰撞后动量:pB' = mB * vB' = mB * 0.2 kg·m/s通过计算,我们可以发现碰撞前后两个物体的合成动量是相等的,即碰撞前的总动量等于碰撞后的总动量。

《碰撞》动量守恒定律与碰撞分析

《碰撞》动量守恒定律与碰撞分析

《碰撞》动量守恒定律与碰撞分析在我们的日常生活和科学研究中,碰撞是一种常见而又充满奥秘的现象。

无论是微观世界中粒子的相互作用,还是宏观世界中物体的碰撞,都遵循着动量守恒定律。

理解碰撞以及动量守恒定律,对于我们认识世界和解决实际问题具有重要意义。

首先,让我们来了解一下什么是碰撞。

简单来说,碰撞就是两个或多个物体在相对较短的时间内相互接触并产生相互作用。

碰撞可以发生在各种情况下,比如两辆汽车的追尾、台球桌上球与球的撞击、甚至是分子之间的相互碰撞。

在碰撞过程中,物体的运动状态会发生改变。

而描述这种运动状态变化的一个重要物理量就是动量。

动量等于物体的质量乘以其速度。

而动量守恒定律则指出,在一个孤立系统中(即不受外力或者外力的合力为零),碰撞前后系统的总动量保持不变。

为了更深入地理解这一定律,我们可以通过一些具体的例子来分析。

假设在一个光滑的水平面上,有两个质量分别为 m1 和 m2 的小球,它们的速度分别为 v1 和 v2 ,然后发生了正碰。

碰撞后,它们的速度分别变为 v1' 和 v2' 。

根据动量守恒定律,我们可以得到:m1v1 + m2v2= m1v1' + m2v2' 。

这意味着,在碰撞过程中,虽然两个小球的速度发生了变化,但它们的动量总和始终保持不变。

如果其中一个小球的动量增加了,那么另一个小球的动量必然减少,且增加和减少的量相等,以保证总动量不变。

再来看一个实际的例子,比如两辆质量不同的汽车在公路上发生碰撞。

在碰撞之前,两辆车都有各自的速度和动量。

当它们碰撞在一起时,由于碰撞时间很短,外力(如地面摩擦力)可以忽略不计,因此系统的总动量守恒。

如果一辆车的速度大幅降低,那么另一辆车的速度变化也会相应地遵循动量守恒定律。

了解了动量守恒定律在碰撞中的应用,我们还需要知道碰撞的类型。

常见的碰撞可以分为完全弹性碰撞、非完全弹性碰撞和完全非弹性碰撞。

完全弹性碰撞是一种理想的情况,在这种碰撞中,不仅动量守恒,而且机械能(动能)也守恒。

动量守恒与碰撞实验

动量守恒与碰撞实验

动量守恒与碰撞实验动量守恒是物理学中的一个基本原理,它描述了在一个孤立系统中,总动量保持不变的现象。

碰撞实验是验证动量守恒定律的常用方法之一。

本文将以动量守恒与碰撞实验为主题,探讨动量守恒定律的原理及其在碰撞实验中的应用。

一、动量守恒定律的原理动量是物体运动状态的量度,它与物体的质量及速度有关。

动量守恒定律表明,在一个孤立系统中,若没有外力作用,系统内物体的总动量将保持不变。

这意味着当物体发生碰撞时,其动量的改变是通过其他物体间的相互作用来实现的。

动量守恒定律可以用以下公式表示:p1 + p2 = p1' + p2'其中,p1和p2分别表示碰撞前两个物体的动量,p1'和p2'表示碰撞后两个物体的动量。

二、碰撞实验的分类碰撞实验分为完全弹性碰撞和非完全弹性碰撞两种类型。

1. 完全弹性碰撞:完全弹性碰撞是指在碰撞过程中,物体之间没有任何能量损失,碰撞后物体的速度和动量都保持不变。

这种碰撞在理想情况下发生,但实际中很难实现。

一个常见的例子是两个弹性小球的碰撞。

2. 非完全弹性碰撞:非完全弹性碰撞是指碰撞过程中物体之间发生的互相变形或能量损失。

这种碰撞导致碰撞后物体的速度和动量发生改变。

一个常见的例子是汽车碰撞。

三、动量守恒定律在碰撞实验中的应用动量守恒定律在碰撞实验中有广泛的应用,下面我们将分别介绍完全弹性碰撞和非完全弹性碰撞的实验过程。

1. 完全弹性碰撞实验:完全弹性碰撞实验通常使用弹性小球进行,实验装置包括一条直线轨道和两个小球。

实验时,将两个小球分别放在轨道的两端,然后释放它们,让它们相向运动,并在碰撞时记录下各自的速度和运动轨迹。

通过实验数据的分析,我们可以验证动量守恒定律。

根据碰撞前后动量的变化,可以计算出两个小球的相对速度和动量。

2. 非完全弹性碰撞实验:非完全弹性碰撞实验可以通过模拟汽车碰撞来进行。

实验装置包括两个小车和一条支撑轨道。

实验时,将两个小车分别放在轨道的两端,然后以一定的速度使它们相向而行,在碰撞时记录下各自的速度和运动轨迹。

动量守恒与碰撞实验

动量守恒与碰撞实验

动量守恒与碰撞实验引言:动量守恒定律是物理学中的基本定律之一,它描述了在孤立系统中,所有物体的总动量在碰撞之前和碰撞之后保持不变。

碰撞实验是为了验证这一定律而进行的实验,通过测量碰撞前后物体的动量来验证动量守恒定律。

一、动量守恒定律的基本原理动量是描述物体运动的重要物理量,它是物体质量与速度之积。

动量守恒定律表明,当一个物体作用于另一个物体时,两者的动量之和保持不变。

即在没有外力作用的情况下,物体间的相互作用会使它们的动量发生转移或交换,但总动量始终保持恒定。

二、弹性碰撞实验弹性碰撞实验是一种常用的验证动量守恒定律的实验方法。

在实验中,两个物体以一定的速度相对运动并发生碰撞。

通过实验测量碰撞前后物体的速度和质量,并计算它们的动量,可以验证动量守恒定律。

三、非弹性碰撞实验非弹性碰撞实验是另一种常用的碰撞实验方法。

在此类实验中,碰撞过程中会有能量损失,导致物体之间的速度减小。

虽然能量并非守恒,但根据动量守恒定律,物体的总动量仍然保持不变。

四、碰撞实验的应用碰撞实验在物理学研究和工程应用中具有重要的意义。

它可以帮助人们理解和解释复杂的物体运动过程,例如交通事故、运动员的碰撞等。

在工程领域,碰撞实验可以用于车辆安全性能测试和材料的性能评估等。

五、碰撞实验的发展与前景随着科学技术的发展,碰撞实验的方法越来越多样化和精确化。

例如,高速摄像技术可以捕捉碰撞瞬间的细节,计算机模拟可以模拟复杂的碰撞过程。

这些技术的不断革新和应用,将进一步促进碰撞实验在科学研究和工程应用中的发展。

结束语:通过碰撞实验,我们可以验证动量守恒定律并深入了解物体之间的相互作用。

碰撞实验在理论和实践中都有广泛应用,不仅丰富了我们对物质运动规律的认识,还提供了解决实际问题的手段。

相信随着科学技术的不断进步,我们对碰撞实验的认识和应用将会取得更大的突破。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《碰撞与动量守恒》单元测试
(时间:90分钟,满分:100分)
一、单项选择题
1.下列几种物理现象的解释中,正确的是( )
A .砸钉子时不用橡皮锤,只是因为橡皮锤太轻
B .跳高时在沙坑里填沙,是为了减小冲量
C .在推车时推不动是因为推力的冲量为零
D .动量相同的两个物体受到相同的制动力的作用,两个物体将同时停下来 2.如图1-4所示,一铁块压着一张纸条放在水平桌面上,当以较大速度v 抽出纸
条后,铁块掉在地上的P 点,若以2v 速度抽出纸条,则铁块落地点为( )
A .仍在P 点
B .在P 点左侧
C .在P 点右侧不远处
D .在P 点右侧原水平位移的两倍处
3.一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射子弹时,关于车、枪和子弹的说法正确的是( )
A .枪和子弹组成的系统动量守恒
B .枪和车组成的系统动量守恒
C .枪、车和子弹组成的系统动量守恒
D .若忽略摩擦,枪、车组成的系统动量近似守恒
4.质量M =327 kg 的小型火箭(含燃料)由静止发射,发射时共喷出质量m =27 kg 的气体,设喷出的气体相对地面的速度均为v =1000 m/s.忽略地球引力和空气阻力的影响,则气体全部喷出后,火箭的速度大小为( )
A .76 m/s
B .82 m/s
C .90 m/s
D .99 m/s
5.如图1-5所示,质量为m 的人立于平板车上,人与车的总质量为M ,人与车以速度v 1在光滑水平面上向东运动.当此人相对于车以速度v 2竖直跳起时,车的速度变为( )
A.M v 1-M v 2M -m ,向东
B.M v 1M -m ,向东
C.M v 1+M v 2M -m ,向东
D .v 1,向东
二、双项选择题
6.质量为2 kg 的物体在水平面上做直线运动,若速度大小由4 m/s 变成6 m/s ,那么在此过程中,动量变化的大小可能是( )
A .4 kg·m/s
B .10 kg·m/s
C .20 kg·m/s
D .12 kg·m/s
7.如图1-6所示,静止在光滑水平面上的物块A 和B 的质量分别为m 和2m ,它们之间用轻弹簧相连,在极短的时间内对物体A 作用一个水平向右的冲量I ,可知( )
A .物块A 立刻有速度
B .物块B 立刻有速度v B =
I
2m
C .当A 与B 之间的距离最小时,A 的速度为零,B 的速度为v B =I
2m
D .当A 与B 之间的距离最小时,A 与B 有相同速度v =I
3m
8.如图1-7所示,两带电金属球在绝缘的光滑水平桌面上沿同一直线相向
运动,A 球带电为-q ,B 球带电为+2q ,下列说法中正确的是( )
A .相碰前两球的运动过程中,两球的总动量守恒
B .相碰前两球的总动量随两球距离的逐渐减小而增大
C .相碰分离后的两球的总动量不等于相碰前两球的总动量,因为两球相碰前作用力为引力,而相碰后的作用力为斥力
D .相碰分离后任一瞬时两球的总动量等于碰前两球的总动量,因为两球组成的系统合外力为零 三、实验题
9.如图1-10,用“碰撞实验器”可以验证动量守恒定律,即研究
两个小球在轨道水平部分碰撞前后的动量关系.
(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是,可以通过仅测量________(填选项前的符号),间接地解决这个问题.
A .小球开始释放高度h
B .小球抛出点距地面的高度H
C .小球做平抛运动的射程
(2)图中O 点是小球抛出点在地面上的垂直投影.实验时,先让入射球m 1多次从斜轨上S 位置静止释放,找到其平均落地点的位置P ,测量平抛射程OP .然后,把被碰小球m 2静置于轨道的水平部分,再将入射球m 1从斜轨上S 位置静止释放,与小球m 2相碰,并多次重复.
接下来要完成的必要步骤是________.(填选项前的符号) A .用天平测量两个小球的质量m 1、m 2 B .测量小球m 1开始释放高度h C .测量抛出点距地面的高度H
D .分别找到m 1、m 2相碰后平均落地点的位置M 、N
E .测量平抛射程OM ,ON
(3)若两球相碰前后的动量守恒,其表达式可表示为________(用(2)中测量的量表示);
若碰撞是弹性碰撞,那么还应满足的表达式为________(用(2)中测量的量表示).
班级姓名得分
一、单选题
题号 1 2 3 4 5
答案
二、双选题
题号 6 7 8
答案
三、实验题
12.(1)
(2)
(3)
四、计算题(解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)
10.如图1-11甲所示,物体A、B的质量分别是6 kg和10 kg,用轻弹簧相连放在光滑的水平面上,物体B左侧与竖直墙壁接触,另有一物体C从t=0时刻起水平向左运动,在t=3 s时与物体A相碰,并立即与A有相同的速度一起向左运动.物块C的速度-时间图象如图乙所示.求:弹簧压缩过程中系统具有的最大弹性势能.
11.如图1-12所示,质量均为M 的小车A 、B ,B 车上挂有质量为M
4的金属球C ,C 球相对于B 车静止,
其悬线长0.4 m ,若两车以相同的速率1.8 m/s 在光滑平面上相向运动,相碰后连在一起(碰撞时间很短),则:
(1)C 球摆到最高点时的速度多大? (2)C 球向上摆动的最大高度是多少?
参考答案
一、单选题
1、D
2、B
3、C
4、C
5、D
二、双选题
6、AC
7、AD
8、AD
三、实验题
9、(1)C (2)ADE (3)OM+ON=OP或m1·OM2+m2·ON2=m1·OP2
四、计算题
10、解:由图象知:v C=6 m/s,v AC=2 m/s
根据动量守恒定律:m C v C=(m A+m C)v AC
∴m C=3 kg
A、C压缩弹簧的过程中,动能转化为弹性势能,则
E pm=1
2(m A+m C)v
2
AC

1
2×(6+3)×2
2 J=18 J.
11、解:由于A、B两车碰撞时间极短,所以在A、B相碰获得共同速度的过程中,球C的状态认为不变.
(1)由于在A、B碰撞过程中A、B组成的系统动量守恒,在随后C球摆动的过程中A、B、C组成的系统总动量也守恒,则对A、B、C组成的系统全过程动量均守恒,以碰前A的速度方向为正方向,得M v-(M+m)v=(2M+m)v2
解得C球摆到最高点时的速度为v2=-0.2 m/s,即方向水平向左.
(2)从A、B碰撞结束到C球摆到最高点的过程中,对A、B、C组成的系统机械能守恒
1 2×M
4
v2-
1
2(2M+
M
4)v
2
2

M
4gh
解得h=0.144 m.
答案:(1)0.2 m/s,方向水平向左(2)0.144 m。

相关文档
最新文档