Immunotoxicology Testing Past and Future
医疗诊断临床常用免疫学检查
临床常用免疫学检查
18
immunological function
血清免疫球蛋白检测(Immunoglobulin test) 血清补体检测(Complements) 细胞免疫检测 (Cell ) immune
2020/6/10
临床常用免疫学检查
19
Compleme
2020/6/10
临床常用免疫学检查
临床常用免疫学检查
16
2020/6/10
临床常用免疫学检查
17
减低临床意义
减低:
先天性(congenital) 体液免疫缺陷和联合免疫缺陷(先天性无(低)丙种 球蛋白血症等)
获得性(acquired) 肾病综合征(大量流失蛋白)、淋巴网状系统肿瘤、 病毒感染、免疫抑制剂应用
2020/6/10
自身免疫检测 (auto-antibodies) 类风湿因子测定 抗核抗体检测 组织和细胞抗体检测
(RF ANA other antibodies) 感染免疫检测 (infectious immunology)
细菌感染免疫检测 病毒感染免疫检测 其它(寄生虫感染、性病等) (bacterial , virus and so on ) 肿瘤标志物检测 (tumor markers) 蛋白质类肿瘤标志物 糖脂类肿瘤标志物 酶类肿瘤标志物(proteins, glycolipid, enzymes markers) 器官与骨髓移植的检测 (organ and bone marrow transplantation) 病毒肝炎血清标志物 (virus hepatitis markers) 其它 循环免疫复合物检测、冷球蛋白检测、丙种反应性蛋白检测
2020/6/10
2021版药典微生物限度微生物无菌方法学验证流程
2021版药典微生物限度微生物无菌方法学验证流程微生物限度/无菌方法学验证流程1.购买:提交单位需要1.5个月的时间购买应用菌株单位介绍信证明工作用途等文件,并向中检院网站提交申请,接到申请后一个月后中检院会把有这些菌株经常缺货且不完整,因此不能一次性购买,2.每种从菌复活、分离、纯化复壮:共需要30天《药典》规定,药品检验所需的8种标准阳性菌,在购买中央检验所冻干菌粉后,应进行复活保存1大肠埃希菌2金黄色葡萄球菌3枯草芽孢杆菌4生孢梭菌5铜绿假单胞菌6沙门菌(从每个冻干菌粉复活到细菌分离、纯化和保存需要3-4天)7白色念珠菌8黑曲霉(霉菌酵母菌冻干菌粉从复活到分离纯化制备孢子菌悬液需要至少7天时间)3.中等适用性/敏感性验证:60-80天实验中使用的培养基需要进行与中检院提供的标准培养基进行培养基适用性验证每种培养基不同批号之间也需要进行验证之后方可以进行微生物检验用药检室有20多种培养基。
验证每种培养基需要3-4天,完成所有培养基的适用性验证需要60-80天。
恩替卡韦分散片微生物限度方法学适用性验证:1.回收率验证:回收率验证实验共需26天(若回收率达不到药典规定需要重新选用另一种方法进行验证)实验验证了五种细菌:1金黄色葡萄球菌2铜绿假单胞菌3枯草杆菌4白色念珠菌5黑曲霉五种阳性菌的回收率验证需使标准阳性菌回收率在阳性对照组计数达到50%-200%之间假设验证一次成功三种细菌的回收率分别为4天,两种霉菌和酵母菌的回收率分别为7天。
对照菌的适用性验证:共20天大肠埃希菌控制菌方法:需要5天时间对于其他制剂,含有原料药粉末的中药制剂需要检查沙门氏菌和耐胆盐革兰氏阴性菌,每个需要7天,总共1周。
实验室消毒、实验仪器灭菌、实验细菌培养物灭活、实验仪器清洗等方法学验证一次顺利完成共需要46天,验证方法过程需要重复一遍作为方法学适用性确认复方茵陈注射液无菌方法学验证:1.方法适用性验证:验证实验共需要30天(如果回收率未达到或未达到药典规定的回收率,需要重新选择方法进行验证)五种实验菌分别验证1金黄色葡萄球菌2大肠埃希菌菌3枯草芽孢杆菌4生孢梭菌5白色念珠菌6黑曲霉菌实验组中的六种阳性菌需要与对照组进行比较。
免疫毒理学——精选推荐
第十二章免疫毒理学第一节概述免疫毒理学(immunotoxicology)是在免疫学和毒理学基础上发展起来的一个毒理学分支学科,主要研究外源化学物和物理因素对机体免疫系统的有害作用及其机制。
免疫毒理学的研究内容主要包括以下几个方面:1、免疫毒性及作用机制研究:采用各种有效的研究手段,从整体、器官、细胞和分子等不同水平研究外源化学物和物理因素对人和实验动物的免疫损害,包括免疫抑制、超敏反应和自身免疫反应,并分析其作用机制。
2、免疫毒性评价的方法学研究:改进、规范和完善已有的免疫毒理学试验方法,探索更灵敏、特异,更有预测价值的新方法和更全面合理的试验组合,提高试验的可靠性和效能。
同时,从动物论理学角度出发,为了顺应国际发展趋势,还要研究免疫毒理学的体外替代试验方法,以减少使用实验动物的数量。
3、免疫毒性的危险度评价:研究适合用于人群危险度评价的免疫毒性试验的观察终点,实验动物和人群免疫毒性的剂量反应规律和特性,建立合理的外推模型,分析免疫毒性的人群易感性和不同免疫危害的可接受危险度水平等。
有时候,免疫毒理学工作者也参与对外源化学物免疫毒性有预防和治疗作用的药品或保健品的研究。
免疫毒理学真正成为毒理学的分支还不到20年。
虽然人们很早就注意到某些药物和外源化学物引起免疫异常的现象,如青霉素等药物引起的过敏性休克,职业接触某些食品添加剂引起的“面包师疱疹”,臭氧、氮氧化合物、二氧化硫等空气污染物引起的呼吸道感染发病率升高、病情加重、病程延长等。
但是,直到1977年Vos发表“与毒理学有关的免疫抑制”为题的综述,才将外源化学物对免疫系统的影响与毒理学联系在一起。
作者根据一系列外源化学物对实验动物免疫功能的损害,推测接触外源化学物对人体免疫系统也可能有潜在的影响。
国外最早的免疫毒理学专著出现在1983年(Gibson, et al)。
1984年国际化学品安全规划署(IPCS)和欧共体委员会(CEC)共同组织的题为“免疫系统是毒损伤的靶”的研讨会是免疫毒理学发展的重要里程碑,此后免疫毒理学才有了迅速的发展。
牛结节性皮肤病ELISA检测试剂盒验证试验
牛结节性皮肤病ELISA检测试剂盒验证试验牛结节性皮肤病是一种常见的牛类皮肤疾病,由牛结节性皮肤病病毒引起。
该疾病主要通过接触传播,对牛群的健康和生产都会造成严重影响。
对于牛结节性皮肤病的检测和诊断是非常重要的。
ELISA检测试剂盒是目前常用的一种诊断方法,然而对于其准确性和稳定性的验证试验是至关重要的。
本文就牛结节性皮肤病ELISA检测试剂盒的验证试验进行介绍和讨论。
一、试验目的本次试验的主要目的是对牛结节性皮肤病ELISA检测试剂盒进行验证,评估其准确性、灵敏度和特异性,为该检测试剂盒的临床应用提供科学依据。
二、试验样品本次试验选取了来自不同地区的50份牛血清样品,其中包括25份阳性样品和25份阴性样品。
阳性样品经过病毒分离鉴定,确诊为牛结节性皮肤病,而阴性样品则经过临床检测及相关实验,排除了患有该疾病的可能。
三、试验方法1. ELISA检测方法将阳性和阴性样品进行ELISA检测,按照试剂盒说明书进行操作。
根据检测结果,评估该检测试剂盒的准确性和稳定性。
2. PCR检测方法对所有样品进行牛结节性皮肤病病毒的PCR检测,作为对ELISA检测结果的对照和验证。
四、试验结果经过ELISA检测后,阳性样品的OD值明显高于阴性样品,且阳性样品出现阳性反应,而阴性样品未出现阳性反应。
通过比对ELISA检测结果和PCR检测结果,发现两种方法的检测结果一致,验证了ELISA检测试剂盒的准确性和稳定性。
本次验证试验结果表明,牛结节性皮肤病ELISA检测试剂盒具有较高的准确性和稳定性,能够准确检测牛结节性皮肤病的阳性和阴性样品。
该检测试剂盒可以作为牛结节性皮肤病的临床诊断工具,为防控该疾病提供了重要的技术支持。
六、试验注意事项在进行本次验证试验时,我们需要特别注意以下几点:1. 严格按照试剂盒说明书进行操作,确保操作的准确性和一致性。
2. 样品的选择要具有代表性,能够充分反映实际检测的情况,以保证试验结果的可靠性。
美国留学前体检疫苗攻略
美国留学前体检疫苗攻略本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!每年5月,出国留学的同学们陆续开始去体检、接种疫苗,这时也会有不少学生提出疑问:录取学校的官网上并没有体检要求啊,我花钱去体检是否多此一举?当然不是!出国留学网为您整理了美国留学前体检疫苗攻略。
要知道,不体检可能无法出境,因为入境美国时也许就会被抽查,让你提供健康证明,也就是我们所说的体检;而不打疫苗会直接影响到入学,加州大学伯克利分校的官网就明确表示,新入学的同学们需要在第一学期开始前完成肺结核的筛查和相关疫苗的注射,否则不仅要交付滞后金,还会影响后面的选课。
有的美国大学会在寄来的录取通知书里面附上学校的体检表并说明要求学生接种的疫苗种类,有些则需要同学们在学校官网的健康中心下载表格,部分学校以邮件的方式提供要求及需要填写的文件,如果有要求,大家只需带上学校的体检表,按照上面的要求完成体检即可,如果没有体检表,也不用担心,只检查标准项目就行,包括常规的临床医学检查和实验室检验。
体检所需材料清单1.本人身份证、台胞证、港澳通行证或护照原件;2.四张小2寸彩色免冠证件照(×)3.若有国外提供的健康表格(例如国外学校提供的英文表格),请一并带来,向工作人员出示;此表格如需医师完成填写,一律须本人现场领取《国际旅行健康检查证明书》及相关表格;4.出国留学者需同时携带本人预防接种记录(儿童接种证)及复印件,可以转录预防接种证明;5.出境人员信息表(即预约单,针对可进行网络预约的保健中心)6.如需办理当日加急手续,请携带4日之内离境的机票(原件或复印件)。
美国留学体检流程(以下流程为留学体检主要流程,各体检处的具体流程可能存在些许差异。
)1.取号;2.填写健康检查申请表,只需填写个人信息即可;3.填写体检表填好健康申报表之后到接待窗口,说明自己出国的目的(留学)、前往国家(美国)。
基因毒性杂质限度指南(转载中英文)
20060628 EMEA/CHMP/QWP/251344/2006 基因毒性杂质限度指南(转载中英文)London, 28 June 2006CPMP/SWP/5199/02EMEA/CHMP/QWP/251344/2006TABLE OF CONTENTS 目录EXECUTIVE SUMMARY 内容摘要 (3)1. INTRODUCTION 介绍 (3)2. SCOPE 范围 (3)3. LEGAL BASIS法律依据 (3)4. TOXICOLOGICAL BACKGROUND 毒理学背景 (4)5. RECOMMENDATIONS 建议 (4)5.1 Genotoxic Compounds With Sufficient Evidence for a Threshold-Related Mechanism具有充分证据证明其阈值相关机理的基因毒性化合物 (4)5.2 Genotoxic Compounds Without Sufficient Evidence for a Threshold-Related Mechanism不具备充分证据支持其阈值相关机理的基因毒性化合物 (5)5.2.1 Pharmaceutical Assessment 药学评价 (5)5.2.2 Toxicological Assessment 毒理学评价 (5)5.2.3 Application of a Threshold of Toxicological Concern 毒理学担忧阈值应用 (5)5.3 Decision Tree for Assessment of Acceptability of Genotoxic Impurities基因毒性杂质可接受性评价决策树 (7)REFERENCES. 参考文献 (8)EXECUTIVE SUMMARY 内容摘要The toxicological assessment of genotoxic impurities and the determination of acceptable limits for such impurities in active substances is a difficult issue and not addressed in sufficientdetail in the existing ICH Q3X guidances. The data set usually available for genotoxic impurities is quite variable and is the main factor that dictates the process used for the assessment of acceptable limits. In the absence of data usually needed for the application of one of the established risk assessment methods, i.e. data from carcinogenicity long-term studies or data providing evidence for a threshold mechanism of genotoxicity, implementation of a generally applicable approach as defined by the Threshold of Toxicological Concern (TTC) is proposed. A TTC value of 1.5 μg/day intake of a genotoxic impurity is considered to be associated with an acceptable risk (excess cancer risk of <1 in 100,000 over a lifetime) for most pharmaceuticals. From this threshold value, a permitted level in the active substance can be calculated based on the expected daily dose. Higher limits may be justified under certain conditions such as short-term exposure periods.基因毒性杂质的毒理学评估和这些杂质在活性药物中的可接受标准的测定是一件困难的事情,并且在现有的ICH Q3X指南中也没有详细的规定。
酶联免疫吸附筛查法 -回复
酶联免疫吸附筛查法-回复什么是酶联免疫吸附筛查法,以及它在临床诊断中的应用?酶联免疫吸附筛查法是一种常用的实验室技术,用于检测和诊断疾病。
它利用酶和抗体之间的特异性结合,通过对特定抗原或抗体的检测,从而确定患者是否感染某种病原体或具有某种疾病。
这种筛查方法原理相对简单,操作简便,结果灵敏度高,可以用于大规模的样本检测。
它的使用范围广泛,可以用于检测感染性疾病、自身免疫疾病、肿瘤、过敏性疾病等的诊断。
酶联免疫吸附筛查法的步骤如下:第一步:准备样本和试剂。
首先,收集患者样本,如血液、尿液、唾液等,并将其储存在适当的容器中。
确保样本的储存和运输环境温度适宜,以避免对抗原和抗体的损害。
同时,准备合适的试剂,包括酶标记的抗体、底物和缓冲液等。
第二步:涂覆试剂。
选择一种合适的载体,如微孔板或膜,将试剂涂覆于其表面。
通常,这一步骤涉及将抗原或抗体溶液均匀涂覆到载体上,并在适当的条件下孵育一段时间,以使其吸附在载体的表面。
第三步:抗原或抗体结合。
将样本加入到已涂覆试剂的载体中,并通过震荡或孵育等操作进行抗原或抗体的结合反应。
一旦样本中包含目标抗原或抗体,它们将与试剂上的抗体或抗原发生特异性结合。
第四步:洗涤试剂。
为了去除未结合的物质,使用合适的洗涤液轻轻地冲洗载体。
这一步骤旨在去除非特异性结合和其他干扰物,以提高实验的灵敏度和特异性。
第五步:酶标记试剂检测。
加入酶标记的二抗或底物试剂,以触发酶活性反应,并通过显色或荧光等方式对反应进行检测。
根据反应的程度,可以确定抗原或抗体的存在与否,并量化其浓度。
第六步:结果解读。
根据比色或荧光产物的强度,可以判断样本中的抗原或抗体是否存在,以及其浓度或含量。
这样就可以进行临床诊断或其他疾病相关的研究。
酶联免疫吸附筛查法在临床诊断中有广泛的应用。
它可以用于检测和诊断感染性疾病,如艾滋病、乙肝、肺结核等。
此外,它还可以用于检测和诊断自身免疫疾病,如风湿性关节炎、系统性红斑狼疮等。
免疫毒性及评价
整理课件
3
免疫毒理学的主要研究内容
• (一)阐明免疫毒性及其机制 • (二)进行免疫毒性的危险度评价 • (三)完善和发展免疫毒性评价方法
整理课件
4
外源化学物质对免疫系统的影响: ➢ 外源化学物质对免疫系统的影响表现在
三个方面,即免疫抑制、超敏反应和 自身免疫反应。
整理课件
5
外源化学物质对免疫系统的影响:
整理课件
26
• 可致自身免疫病的外源性化学物 质
自身免疫性疾病
外源性化学物质
系统性红斑狼疮/免疫 肼苯达嗪、青霉胺、氯丙嗪、抗惊厥药、异烟肼、普鲁卡因酰
复合物型肾小球肾炎 胺、重金属、有机溶剂
溶血性贫血
甲基多巴、青霉素、甲灭酸、苯妥英、干扰素-α、磺胺药
血小板减少症
乙酰唑胺、氯噻嗪、利福平、奎尼丁、氨基水杨酸、
整理课件
14
引起免疫抑制的外源化学物:
来源
种类
药物 抗肿瘤药、抗移植排斥药、麻醉药、抗艾滋病药
工业化学物 有机溶剂、多卤代芳烃、多氯联苯、多环芳烃、乙二醇醚类
重金属及其化合物、空气污染物、紫外线、粉尘(二氧化硅、石棉等)、 环境污染物
农药、真菌毒素等
嗜好品 乙醇、烟草(香烟)、大麻、鸦片、可卡因
整理课件
整理课件
18
可诱发超敏反应的外源性化学物质:
来源 药物
食品 化妆品
工业化学物
植物 混合物有机体
种类 青霉素类、磺胺类、新霉素、哌嗪、螺旋霉素、盐酸安普罗胺、抗生 素粉尘、抗组胺药、奎尼丁、麻醉药、血浆代用品 蓖麻子、生咖啡豆、木瓜蛋白酶、胰腺提取物、谷物和面粉、食品添 加剂、真菌 美容护肤品、香水、染发剂、脱毛剂、指甲油、除臭剂 乙( 撑)二 胺、邻苯 二 甲 酸酐 、偏 苯 三 酸酐 、二 异 氰 酸酯 类( TMI、HDI、 MDI、 TDI)、 金 属盐 类 、有 机 磷、 染 料( 次 苯 基二 胺等 )、 重 金属 ( 镍 、 汞 、 铬 酸 盐等 )、 抗 氧化 剂 、 增塑 剂 、 鞣革 制 剂( 甲醛 等 ) 毒常青藤、橡树、漆树、豚草、花粉等 棉尘、木尘、动物产品
immunological test methods -回复
immunological test methods -回复什么是免疫学测试方法(Immunological Test Methods)?免疫学测试方法是一类用来检测和测量免疫反应的实验技术。
免疫反应是机体对外来抗原的应答,涉及免疫细胞、免疫分子和免疫系统的复杂调控过程。
免疫学测试方法的发展,对于研究和诊断免疫疾病、监测免疫应答、评估免疫治疗效果等具有重要的意义。
免疫学测试方法的原理及分类免疫学测试方法根据其原理和应用目的,可以分为多种不同的技术类型。
常见的免疫学测试方法包括酶联免疫吸附试验(Enzyme-Linked Immunosorbent Assay,ELISA)、免疫印迹(Immunoblotting)、流式细胞术(Flow Cytometry)、免疫组化(Immunohistochemistry)、免疫荧光技术(Immunofluorescence)等。
其中,酶联免疫吸附试验(ELISA)是最常用的免疫学测试方法之一。
ELISA通过将待检测物与特异性抗体或抗原结合,然后通过加入酶标记的二抗或底物系统,产生显色反应,从而定性或定量测量待检测物。
ELISA 方法具有敏感性高、特异性强、操作简便等优点,广泛应用于免疫学研究和临床诊断。
而免疫印迹(Immunoblotting)是一种检测蛋白质的技术方法。
它通过将待检测的蛋白质样本经过电泳分离,并转移到膜上,然后用特异性抗体与待检测蛋白质结合,最后通过对抗体标记物的检测,来观察和测量待测蛋白质的存在和表达水平。
免疫印迹方法较为灵敏,可以用于检测蛋白质在体内的表达和变化。
流式细胞术(Flow Cytometry)是一种可用于快速实时检测和分析细胞表面和细胞内蛋白的方法。
流式细胞术通过使用激光器照射细胞样本,并通过检测细胞产生的荧光或反射的激光来分析细胞表面标记物的种类和表达水平。
这种方法可以实时获得大量的细胞数据,并可用于多参数细胞分析、细胞鉴定和细胞分选等应用。
immunological test methods
immunological test methods免疫学是生物学领域的一个重要分支,而免疫学测试是研究和理解免疫系统的重要工具。
这些测试可以用于诊断疾病,评估治疗效果,以及研究免疫系统的功能。
以下是一些主要的免疫学测试方法:1. 免疫血清学检测(Immunospecifícatory Tests)免疫血清学检测是用于检测和鉴定抗体的一种方法。
它通常用于确定免疫系统对特定抗原的反应。
这种测试可以检测特定的抗体,例如抗感染抗体、自身抗体和免疫缺陷病抗体。
2. 细胞因子测定(Cytokine Assays)细胞因子是免疫系统中一类重要的细胞信号分子。
细胞因子测定通常用于研究免疫反应,评估疾病的活动性,以及监测治疗反应。
这些测试通常使用酶联免疫吸附试验(ELISA)或液闪计数法。
3. 流式细胞术(Flow Cytometry)流式细胞术是一种用于分析单个细胞群体中多种细胞标记的技术。
它广泛应用于免疫学研究,包括识别和计数不同类型的细胞,以及研究细胞之间的相互作用。
4. 抗体检测(Antibody Detection)抗体检测是确定个体是否对特定抗原产生免疫反应的方法。
这可以通过血清学试验,如琼脂凝胶扩散试验和火箭免疫末端法,或通过酶联免疫吸附试验进行。
5. 淋巴细胞计数(Lymphocyte Count)淋巴细胞是免疫系统的主要细胞类型之一,它们在体内执行多种功能。
淋巴细胞计数通常用于评估免疫系统的功能和疾病状态,如免疫缺陷病和自身免疫疾病。
6. 抗原抗体反应(Antigen-Antibody Reaction)抗原抗体反应是免疫系统的主要反应机制,它导致特异性结合。
这种反应可以通过凝集试验和沉淀试验等试验进行检测。
7. 免疫印迹(Immunoblot)免疫印迹是一种用于检测特定蛋白质或分子在凝胶电泳后转移到支持介质上的技术。
它广泛应用于免疫学研究,特别是大规模筛查和确认研究。
这些只是一部分免疫学测试方法,实际上还有许多其他的技术和方法可用于研究免疫系统。
抗原检测测试知识点总结
抗原检测测试知识点总结一、基本概念抗原(antigen)是指能引发机体免疫系统产生免疫应答的一类分子。
它能够与特定的抗体或T细胞受体结合并诱发免疫相应。
抗原包括细菌、病毒、真菌、寄生虫、异种蛋白质、异种细胞等。
抗原检测测试(antigen detection test)是通过检测样本中的抗原来判断是否存在特定病原体或疾病的一种诊断方法。
它包括临床诊断、免疫学研究、血液制品质量控制、生物技术等领域。
二、抗原检测方法1. 免疫层析试验(immunochromatographic assay)免疫层析试验是一种用来检测抗体或抗原的快速诊断方法,通过特定抗体与抗原结合并产生可见的色带来诊断样本中是否含有目标物。
它包括纸条法、固相法等。
应用广泛,操作简便、快速,可以做快速诊断。
2. 酶联免疫吸附试验(ELISA)酶联免疫吸附试验是通过蛋白质与抗体或抗原结合,然后用酶标记的二抗或配体结合来测定目标物的定性或定量。
它具有高灵敏度、高特异性、操作简便的优点,被广泛应用于医学诊断领域。
3. 免疫荧光法(immunofluorescence assay)免疫荧光法是通过标记抗体或抗原与目标物相结合,然后用荧光显微镜观察抗原或抗体在细胞或组织中的分布和数量。
它可以应用于单细胞水平的检测,并具有高灵敏度、高特异性和影像直观等优势。
4. 质谱法(mass spectrometry)质谱法是一种用于分析样品化学成分和结构的分析技术,通过质谱仪将化合物离子化后的质量/电荷比进行测定,可以快速准确地识别目标物。
在抗原检测领域,质谱法可以用于检测病原体和其相关蛋白质的特异性。
5. 核酸检测法核酸检测法是通过检测目标病原体的DNA或RNA来判断其是否存在的一种诊断方法。
包括聚合酶链式反应法(PCR)、实时荧光定量PCR法、核酸杂交法等。
它具有高灵敏度和高特异性,可以用于病原体的快速检测和准确鉴定。
三、常见抗原检测1. 病毒抗原检测病毒抗原检测是通过检测病毒颗粒、病毒相关蛋白或病毒生产的细胞因子来诊断病毒感染。
现代医学中的免疫学鉴定技术
现代医学中的免疫学鉴定技术随着科技的不断发展,现代医学已经发展到了一个新的高度。
免疫学作为现代医学中一个重要的领域,对于诊断、治疗和预防疾病都有着重要的作用。
在现代医学中,有很多免疫学鉴定技术被广泛应用。
本文将分别介绍其中的几种技术。
1. 酶联免疫吸附法(ELISA)ELISA是一种非常常见的免疫学鉴定技术。
ELISA可以用于测定样本中某种特定的蛋白质或抗体,从而对疾病进行诊断。
该技术通常是通过酶标记的抗体来实现的。
它具有敏感度高、特异性好等优点,已被广泛应用于癌症、艾滋病、结核病等疾病的检测。
2. 免疫印迹(Western Blotting)Western Blotting是一种用于验证抗体特异性的技术,通常是用于分析血清中的抗体反应。
该技术的基本原理是将分离出的蛋白质进行电泳分离,再将其转移到膜上,并进行固定和印迹处理。
最后,用与特定蛋白质结合的抗体标记来检测目标蛋白质是否存在。
该技术在艾滋病、乳腺癌等疾病的鉴定中被广泛使用。
3. 免疫荧光技术(IFA)IFA是一种通过荧光显微镜来检测抗体或抗原的技术。
具体来说,IFA应用特定的抗体标记对待检测的细胞或病原体进行染色,并通过荧光显微镜来观察目标蛋白质是否存在。
IFA通常用于季节性感冒、风疹等疾病的诊断中。
4. 免疫电泳免疫电泳是一种通过电泳将具有不同电荷的蛋白质分离开,并通过抗体与特定的蛋白进行反应,从而诊断某种疾病的技术。
免疫电泳通常用于血液蛋白质异常的检测、肾病的诊断等。
5. 免疫荧光细胞排序(FACS)免疫荧光细胞排序是一种通过荧光激发分选单个细胞或微粒的技术。
FACS可以通过多种荧光标记来分别测定特定蛋白质的表达、淋巴细胞分类、溶酶体活性等。
该技术在肿瘤研究、免疫细胞研究等领域被广泛应用。
综上所述,现代医学中的免疫学鉴定技术具有广泛的应用,可以用于人类疾病的预防、治疗和诊断。
虽然每种技术有着自身的优缺点,但是这些技术的发展和应用,将在未来几年中对人类的健康产生更为深远的影响。
改良hodge试验名词解释
改良hodge试验名词解释
嘿,你知道改良 Hodge 试验不?这可真是个神奇又重要的玩意儿啊!
改良 Hodge 试验,简单来说,就是用来检测细菌耐药性的一种方法。
比如说吧,就像我们在生活中要判断一件东西质量好不好,这个试验
就是专门来判断细菌对某种药物是不是有抵抗力。
想象一下,细菌就像一群调皮捣蛋的小鬼,而药物就是专门来对付
它们的法宝。
改良 Hodge 试验就是那个能看出这些小鬼到底怕不怕这
个法宝的厉害手段!
它的过程其实挺有意思的。
先准备好各种材料,就像厨师要准备食
材一样。
然后把细菌培养起来,让它们在那里生长。
接着呢,就像一
场战斗开始了,把药物加进去,看看细菌会有什么反应。
如果细菌还
是活蹦乱跳的,那就说明它们可能耐药啦!这就好比一场游戏,我们
要找出那个最厉害的对手。
这个试验对于医疗领域来说,那可太重要了!它能帮助医生们快速
准确地知道哪种药物对病人身上的细菌有效,这样就能更好地治疗疾
病啦!难道不是吗?
而且啊,它还能帮助研究人员了解细菌耐药性的变化趋势,就像我
们关注天气变化一样,提前做好应对措施。
这可不是一般的厉害啊!
我觉得改良 Hodge 试验就像一把钥匙,能打开细菌耐药性的秘密之门,让我们更好地应对细菌带来的挑战。
它是医疗领域不可或缺的一部分,为人们的健康保驾护航!。
牛结节性皮肤病ELISA检测试剂盒验证试验
牛结节性皮肤病ELISA检测试剂盒验证试验【摘要】本研究旨在验证牛结节性皮肤病ELISA检测试剂盒的准确性和可靠性。
实验设计包括使用来自不同地区的牛的血液样本进行检测。
检测方法采用ELISA技术,通过检测特定抗体水平来确定是否感染结节性皮肤病。
结果分析表明该检测试剂盒具有高灵敏度和特异性。
讨论部分探讨了实验结果的意义和可能的影响。
实验结果总结表明该检测试剂盒可以作为牛结节性皮肤病的有效诊断工具。
展望未来研究将进一步优化该检测方法,并探索其在临床实践中的应用潜力。
本研究对牛结节性皮肤病的诊断和治疗具有重要的实验意义,有望促进相关领域的研究和进展。
【关键词】牛结节性皮肤病、ELISA检测试剂盒、验证试验、研究、实验设计、样本来源、检测方法、结果分析、讨论、实验结果总结、展望未来研究、实验意义。
1. 引言1.1 研究背景牛结节性皮肤病是一种常见的牛类皮肤病,主要发生在牛的头部、颈部和腿部等部位。
该病病因复杂,会严重影响牛的生长发育和生产性能,造成严重经济损失。
目前,诊断牛结节性皮肤病的方法主要包括临床观察、组织病理学检查和血清学检测等。
血清学检测是一种简便、快捷、非侵入性的诊断方法,广受研究者和兽医师的青睐。
目前用于诊断牛结节性皮肤病的ELISA检测试剂盒在实际应用中存在一定的局限性,如准确性、灵敏度和特异性等方面仍有待提高。
开展对牛结节性皮肤病ELISA检测试剂盒的验证试验具有重要意义,可以为该检测试剂盒的进一步优化和改进提供科学依据。
本研究旨在通过验证试验,评估目前市场上常用的牛结节性皮肤病ELISA检测试剂盒的准确性和可靠性,为提高该检测试剂盒的诊断水平和临床应用提供参考依据。
通过本研究还可以促进对牛结节性皮肤病诊断方法的研究和发展,为牛类皮肤病的预防和控制提供科学支持。
1.2 研究目的本研究的目的旨在验证牛结节性皮肤病ELISA检测试剂盒的准确性和可靠性。
目前,牛结节性皮肤病在全球范围内造成了严重的经济损失,对牛群的健康和生产性也造成了严重影响。
牛结节性皮肤病ELISA检测试剂盒验证试验
牛结节性皮肤病ELISA检测试剂盒验证试验【摘要】本研究旨在验证牛结节性皮肤病ELISA检测试剂盒的准确性和可行性。
我们设计了一项试验,详细描述了样本采集方法和ELISA检测步骤。
通过数据分析和初步结果的呈现,我们发现该检测试剂盒在牛结节性皮肤病的诊断中具有较高的准确性和敏感性。
根据实验结果,我们得出牛结节性皮肤病ELISA检测试剂盒验证试验的可行性结论,并提出了进一步研究的方向和潜在的临床应用。
这项研究对于促进牛结节性皮肤病的早期诊断和治疗具有重要意义,有望为该疾病的防控提供新的依据和方法。
【关键词】关键词:牛结节性皮肤病、ELISA检测试剂盒、验证试验、试验设计、样本采集、数据分析、初步结果、可行性、进一步研究、临床应用。
1. 引言1.1 牛结节性皮肤病ELISA检测试剂盒验证试验本研究旨在对一种针对BPV的ELISA检测试剂盒进行验证试验,评估其在BPV检测中的应用价值。
通过合理设计试验方案、有效采集样本、严格执行ELISA检测方法,并对数据进行科学分析,得出初步结果。
这项研究的目的是验证该ELISA检测试剂盒在BPV检测中的可行性,为进一步的研究提供参考。
初步结果将为我们评估这一检测方法的准确性和有效性提供重要依据,同时也为其潜在的临床应用奠定基础。
通过本研究的探索,我们将为BPV的检测提供一种新的方法,为牛医学领域的研究和临床诊断提供新的思路和工具。
2. 正文2.1 试验设计试验设计是验证牛结节性皮肤病ELISA检测试剂盒的关键步骤之一。
在本研究中,我们采用了双盲、随机分组的方法进行试验设计,以确保结果的客观性和准确性。
我们将根据实验要求,招募符合条件的实验对象进行参与。
然后,将实验对象随机分为实验组和对照组,以消除实验结果的偏倚性。
试验前,我们将详细解释试验目的和过程,并取得实验对象的知情同意。
在试验设计中,我们将严格控制实验条件,包括实验室环境、实验操作流程等,以减少外部干扰对试验结果的影响。
自身抗体检测的质量保证
免疫印迹法 (IBT)
抗核抗体谱检测方法
IIF ELISA IBT (WB)
仪器
荧光显微镜
酶标仪
数值或定 性
扫描仪或 肉眼
数值或定 性
结果判读 滴度
表示
报告 室内质控
1:320,1:1000,…, (√10)n
阳性/滴度/免疫荧光模型 ?
IU/ml, RU/ml
阳性或数 值 ?
色度
阳性或数 值 ?
结果可比性?
ANA参考范围
参考范围主要与使用靶抗原有关:
HEp-2(国产) HEp-2(进口) HEp-2/猴肝(进口) <1:20 (稀释因子:2n) <1:40 (稀释因子:2n ) <1:100(稀释因子:√10n)
ANA:不同靶抗原及不同稀释倍数结果的比较
HEp-2 /猴肝
(√10)n
ANA(均质型):WHO 066/233(100U/安瓿)
anti-dsDNA:WHO wo/80(200U/安瓿) anti-RNP:WHO anti-RNP(定性) 室内质控:质控品? 实验室比对:室内比对、室间比对、人员比对? 室间质评:开展项目少、结果不理想
自身抗体检测的室间质评
结果假阴性:
前带现象:自身抗体含量太高,但提高稀释倍数后则出现阳
性结果
多种免疫荧光模型相互掩盖
低滴度:有明显自身免疫病临床症状的患者,可采用其
他方法进行特异性抗体确认。
实验的误差
自身抗体检测存在的问题
大部分项目为定性检测及其手工操作 少部分为定量检测及其手工操作 标准品/参考品:
ቤተ መጻሕፍቲ ባይዱ
自身抗体检测分析仪
同济医学院考博历年真题-免疫学试题
同济医学院医学免疫学考博试题92一、翻译并解释以下名词1. Immunotoxin:即免疫毒素,2. T inducer:3. T cell receptor:即T细胞抗原受体,4. Accessory cell:辅佐细胞,又称抗原提呈细胞,5. Fcε receptor:免疫球蛋白IgE受体,包括FcεRⅠ和FcεRⅡ,6. Cytokine:即细胞因子,二、问答题1. 免疫系统中,哪些细胞能特异或非特意性地杀伤靶细胞,试分别简述杀伤作用的不同特点。
2. 根据T、B细胞外表标志的不同,可以应用哪些免疫学技术鉴别这两类细胞,简述有关的实验原理?3. 在IV型超敏反响中,致敏T细胞释放哪些淋巴因子参与免疫损伤,详述其作用机理。
5. 何谓单克隆抗体?详述其在根底与临床医学中的应用。
93一、翻译并解释以下名词plement receptor type Ⅰ:即补体受体1Serologically defined antigen2.Transfer factor 转移因子3.Immunotoxin:即免疫毒素,4.Perforin穿孔素5.Arthus reactionwork theoty7.Lymphocyte transformation test8.Hybridoma technic 杂交瘤技术9.Mitogen10.Dentritic cell11.Immunoproliferation二、答复以下问题1、吞噬细胞对细菌的吞噬过程包括哪几个主要阶段,试详述之。
2、试述IL-2的细胞来源功能及临床应用。
3、药物或化学试剂引起的药疹属于什么型超敏反响,试述其机理。
4、体内的免疫分子包括哪几类?试简述各类免疫分子的主要功能。
5、何谓免疫标记技术?主要有哪几类免疫标记技术?试分别简述它们的主要原理。
94一、名词解释1、迟发型变态反响T细胞2、C1抑制物3、集落刺激因子4、抗原提呈作用5、HLA与疾病的关联6、双功能抗体7、免疫耐受二、问答题1、T淋巴细胞具有哪些外表标志?试述各外表标志的生物学作用及/或意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 1Immunotoxicology Testing: Past and FutureMichael I. Luster and G. Frank GerberickAbstractA brief historical perspective of immunotoxicology is presented describing the early development of predictive screening tests to identify xenobiotics that may cause immunosuppression or skin sensitization. This includes a discussion of the evolution of the discipline to support a better understanding of basic s cience and improvement of human risk assessment. The last section describes the need for additional validated screening tests and recent efforts to address this gap in the other areas of immunotoxicology including food and respiratory allergy, autoimmunity and immunostimulation.Key words: Testing, Guidelines, Immunosuppression, Hypersensitivity, Risk assessment1. IntroductionThe identification and regulation of xenobiotic agents that inadver-tently alter the immune system and affect human health have beenof concern to the chemical/agricultural, pharmaceutical andc onsumer product industries, as well as to the federal regulatoryagencies for over 40 years. Initial interest originated in the area ofsensitization from the observations made by Landsteiner and Jacobs(1) that low molecular weight chemicals or drugs can be antigenicand capable of producing organ-specific (i.e., skin, lung or gastroin-testinal tract) allergic responses. Subsequently, other studies reportedthat certain xenobiotics, such as halogenated a romatic hydrocar-bons, could suppress, or in rare instances s timulate, the immunesystem resulting in an increased risk of infectious or neoplasticd iseases, or in the l atter case, exacerbate autoimmune disease.Of particular concern have been the x enobiotic effects in the neo-nate as increasing e vidence suggests that the developing immunesystem is p articularly sensitive to damage. Other materials, particu-larly certain p harmaceuticals, cause autoimmune-like syndromesR.R. Dietert (ed.), Immunotoxicity Testing: Methods and Protocols, Methods in Molecular Biology,vol. 598DOI 10.1007/978-1-60761-401-2_1, © Humana Press, a part of Springer Science + Business Media, LLC 201034Luster and Gerberickin which the disease dissipates following cessation of exposure while other chemicals appear to exacerbate existing autoimmune disease.The development and adoption of appropriate experimental methods to assess the influence of xenobiotics to cause these various toxicities were for many years the major focus of immunotoxicology, and for some effects such as autoimmunity, respiratory allergy and the so-called systemic allergies still remain an issue. The fol-lowing provides a brief historical review on the development of immunotoxicity testing and a perspective of what testing strate-gies are needed in the future.As it is relatively difficult to determine the contribution of chronic low-level immunosuppression or the cumulative effects of modest changes in immune function to the background incidence of dis-ease in the human population, efforts have been made to examine the relationships between laboratory measures of immune response and disease resistance in experimental animal models. Although the experimental methods initially adopted by immu-notoxicologists to assess immune function were those common to immunology laboratories, the tests that were commonly per-formed and the experimental design by which they were con-ducted were performed ad hoc . Even the experimental species that have been selected varied with the earliest studies using rabbits and guinea pigs and later studies conducted using rats and mice. While rodents became the test species of choice, debate occurred on species selection with those trained in toxicology usually pre-ferring the rat to allow comparison with other toxicology studies, and those trained in immunology preferring the mouse as the mouse immune system was well studied.The lack of standardized testing made it difficult to compare the chemical-specific effects and led Dean et al. (2), to suggest a “Tier” approach with the idea that each subsequent tier provided identification of a more defined effect on the immune system. Subsequently, the National Toxicology Program (NTP) organized a series of workshops composed of experts in immunotoxicology, basic immunology, toxicology, risk assessment, epidemiology and clinical medicine to help identify the most appropriate tests for immunotoxicology testing (3). Two major points were agreed upon from these workshops: First, since the immune system is not fully operational until it is challenged, the most appropriate tests would be those that incorporate an antigen challenge. Second, since it may be construed that an inadequate response to antigenic challenge does not represent an “adverse effect,” tests should also be added that could be readily identified with disease.2. Immunosup-pression5Immunotoxicology Testing: Past and FutureThe former recommendation highlighted several common assays including measurement of an antibody response following antigen challenge as a measure of humoral immunity and quantifi-cation of delayed hypersensitive response (DHR) or cytotoxic T lymphocyte response (CTL) as a measure for cell-mediated immu-nity. These assays were based upon the measurement of a primary immune response rather than secondary since it is generally thought that memory responses are less sensitive to inhibition than primary responses. To address the need to identify a clear adverse effect, a set of tests, usually referred to as “host resistance assays,” was sug-gested. These tests would also be used to validate the usefulness of other methods and extrapolate the potential for environmental agents to alter host susceptibility in the human population.In these assays, groups of experimental animals are challenged with either an infectious agent or transplantable tumor at a chal-lenge level sufficient to produce disease in control animals and increased incidence is examined in the treated groups. As the end-points in these tests have evolved from relatively non-specific (e.g., animal morbidity and mortality) to quantitative, such as tumor numbers, viral titers or bacterial cell counts, the sensitivity of these models has significantly increased. However, they are still somewhat limited by the need to use relatively large numbers of animals.Eventually, a three tier approach emerged in which Tier 1 included screening assays that would likely detect immunotoxic xenobiotics, Tier 2 allowed for defining the immune component(s) effected as well as establish effects on host resistance and Tier 3 provided, in very general terms, approaches that could be used to identify the mode of action.An interlaboratory validation effort involving four laboratories1 and sponsored by the NTP was conducted using Tier 1 and 2 tests (4). In addition to the demonstration of interlaboratory reproduc-ibility, this effort helped identifying the relative sensitivity of the various immune tests and the degree to which they agreed with the commonly employed host susceptibility tests. This effort was followed several years later in which the concordance between various histological, hematological and immune function tests to identify immunotoxicity and host susceptibility changes were determined in a large dataset (5, 6). These latter studies were important, not only as a validation exercise for tier testing, but for providing a basis for moving immunotoxicology assessment forward. The analyses indicated that inclusion of a functional test, most notably the T-dependent antibody response (TDAR) to1The four participating laboratories were the National Institute of Environmental Health Sciences (Research Triangle Park, NC), Chemical Industry Institute of Toxicology (Research Triangle Park, NC), Virginia Commonwealth University (Richmond, VA) and IIT Research Institute (Chicago, IL).6Luster and Gerbericksheep red blood cells, along with a non-functional test, such asthymus weights, allowed achieving concordance, with respect toidentifying potential immunotoxic agents, of well over 90%,although a number of other immune test groupings providedexcellent levels of accuracy. These studies also provided evidenceof a linear relationship between many of the immune tests andhost resistance assays. In the Unites States, the preferred speciesfor testing was the mouse, but subsequent validation studies wereconducted in rats (7–9) and results from either rodent species arenow equally accepted.Tiered screening panels have been the basis for several riskassessment guidelines and most regulatory agencies in theUnited States, European Union and Japan have established orare developing requirements or guidelines (reviewed by(10)).However, the Office of Prevention, Pesticides and ToxicSubstances (OPPTS), US Environmental Protection Agency(EPA) was responsible for developing the first immunotoxicol-ogy test guideline (11) and over the years has taken the lead intheir development. It should be noted that the configurationsof these testing panels vary depending upon the agency/organization/program under which they are conducted. Themost notable difference is whether a functional immune test(i.e., incorporates antigen challenge) is included in Tier 1 orTier 2. Although, as indicated earlier, it is generally agreedthat functional testing provides the greatest sensitivity foridentifying immunosuppression, it has been argued that ac areful histological and hematological evaluation, particu-larly inclusion of extended histopathology endpoints, wouldi dentify a large proportion of potential immunotoxic agents(12–14). This is reflected in published and proposed immuno-toxicity testing guidelines by the Committee for ProprietaryMedicinal Products (CPMP), Organization of EconomicCooperation and Development (OECD) and InternationalConference on Harmonization of Technical Requirements forRegistration of Pharmaceuticals for Humans Use (ICH)(reviewed by(10)).While testing for potential immunotoxicty in experimentalanimals has gained increased acceptance, few systematic epide-miological immunotoxicological studies had been undertaken.This is due to a number of difficulties in working with humanpopulations (15):(a) Lack of validated immunological assays of sufficientsensitivity(b) Difficulty in accurately determining infectious diseaseincidence(c) Large cost and difficulty of sample acquisition at sites geo-graphically distant from the investigator7Immunotoxicology Testing: Past and Future The US National Academy of Sciences (NAS) in understanding these challenges, proposed a three tier testing scheme to be used for study of populations known or suspected to have been exposed to an immunotoxicant (16). As with experimental animals, it was proposed that tests be conducted from the first Tier and the results used to consider proceeding to the next Tier. The tests included in the first Tier are shown in Table 1.1. The International Programme on Chemical Safety of the World Health Organization (IPCS/WHO) issued a report on principles and methods for assessing direct immunotoxicity associated with exposure to chemicals (17). Although many assays overlapped, that report recommended a larger number of assays that can be used to evaluate possible immu-notoxicity than the NRC tier system (Table 1.1). A symposium on Epidemiology of Immunotoxicity remarked on the need for well-designed studies of immunotoxicity in humans and supported the application of the NRC three Tier approach (18). Over the years, a number of immunotoxicology population studies were conducted based on a selection of immune biomarkers from both the WHO and NRC Tier 1 recommendations (e.g., 19–21).For many decades, the guinea pig has been the animal of choice for predictive studies of skin sensitization potential. This arose largely as3. SkinSensitization TestingTable 1.1Tier 1 immunotoxicty testing recommendations for human studiesNRC recommendationsWHO recommendations8Luster and Gerbericka result of the use of the guinea pig in the pioneering investigationsinto mechanisms of skin sensitization to chemicals (1, 22).The first definition of a real predictive test came from the work ofDraize more than 60 years ago (23). Since that time, numerousprotocols have been described whose aims have been, in one wayor another, to make improvements to the sensitivity and predic-tivity of the guinea pig as a surrogate for man.In essence, all the test protocols follow similar principles.Typically, a combination of intradermal and/or epicutaneoustreatments is administered to 10–20 guinea pigs, with or withoutadjuvant, over a 2–3 week period in an attempt to induce skinsensitization, then a 1–2 week rest period to allow any immuneresponse to mature, followed finally by a topical challenge toassess the extent to which the skin sensitization might have beeninduced. A set of 5–10 sham treated controls is also challenged.Evaluation of the skin reactions is usually by subjective visualassessments 24–48 h after the challenge application, the mainreaction element being erythema. The protocol of Magnussonand Kligman (24) and that of Buehler (25, 26) are the two moststudied and accepted guinea pig methods used for regulatorypurposes worldwide (27).The Local Lymph Node Assay (LLNA) is a validated alterna-tive approach to the traditional guinea pig test methods for skinsensitization testing that provides important animal welfare ben-efits (28, 29). In this method, skin sensitizing potential is mea-sured as a function of lymph node cell proliferative responsesinduced in mice following repeated topical exposure to the testchemical (30, 31). Not least due to the improved animal welfarebenefits, the LLNA has become the preferred method for assessingskin sensitization hazard by various regulatory authorities (32, 33).The OECD test guideline 429 for the LLNA indicates that aminimum of 3 test concentrations and a vehicle control groupwith a minimum of 4 animals per group are needed (27).A chemical is classified as a skin sensitizer if, at one or more testconcentrations, it induces a three-fold or greater increase in draininglymph node cell proliferation compared with concurrent vehicle-treated controls (Stimulation Index [SI] ≥3). In the standardLLNA, lymph nodes are pooled and processed on an experimentalgroup basis using 4 mice per group. Alternatively, using 5 mice pergroup, lymph nodes are pooled on an individual animal basis pro-viding the opportunity to employ statistical analyses and appropri-ate power (34). The LLNA has been evaluated extensively in bothnational and international inter-laboratory collaborative trials andhas been the subject of comparisons with guinea pig predictive testmethods and human sensitization data. An important point is thatthe LLNA was subjected to rigorous independent scrutiny andvalidated by the International Coordinating Committee on theValidation of Alternative Methods (ICCVAM) (29). There soon9Immunotoxicology Testing: Past and Future followed a similar endorsement by the European Centre for the Validation of Alternative Methods (ECVAM) (28).Thus, the tests traditionally used for the identification of chemicals possessing the intrinsic ability to cause skin sensitiza-tion are the guinea pig maximization test, the Buehler occluded patch test and the LLNA. The capacity of these methods to iden-tify skin sensitization hazard has only been formally validated for the LLNA. However, both within this validation and via the pub-lication of other datasets, the guinea pig methods are also recog-nized to be of sufficient sensitivity and specificity.As described above, the most attention to development of validated methods for immuntoxicity testing thus far has been devoted to identify xenobiotics that have the potential to produce skin sensiti-zation or immunosuppression. Although not validated, opportuni-ties exist to improve the current testing schemes in terms of improved sensitivity, less reliance on experimental animals and cost reduction, such as cytokine and gene expression profiling (35–37). These procedures offer the additional opportunity to make direct comparisons with humans using samples from serum or isolated leuokocytes. The use of in vitro systems, such as dendritic cell acti-vation, peptide reactivity and T-cell activation are also being applied to hypersensitivty testing (38, 39).Unfortunately, these traditional testing paradigms are inadequate for many issues relevant to immunotoxicity testing that are of signi-ficant current importance. For example, food allergies, which are often life-threatening, are common and affect 6–8% of children under the age of 4 and 1–4% of adults (40). While considerable attention has been given to the types of food products that can produce an allergic response, few studies have addressed development of appro-priate test methods for identifying sensitizers in food. Rodent models employed for the evaluation of food allergy have utilized strains inherently skewed towards a Th2 allergic phenotype and high IgE production such as the Brown Norway rat or BALB/c and C3H/HeJ mouse (41). Rodent models tend to replicate the IgE response to food a llergens seen in humans but often fail to present similar clinical symptoms. Other animal models, including dogs and pigs, demonstrate many clinical characteristics of human food allergy including respiratory involvement, digestive problems and even ana-phylaxis (41). However, lack of standardization due to variable use of adjuvant, varying routes of exposure, not to mention most a ppropriate test model, make assessing chemical-induced modulation of responses to protein allergens difficult. Importantly, however, dialog on stan-dardized testing protocols for food allergens is continuing (42).4. Needs in Immunotoxicity Screening Testing10Luster and GerberickRespiratory sensitizers can be identified in inhalation studiesusing the guinea pig (43). However, the technical difficulty, par-ticularly as it relates to conducting inhalation, does not lend thisprocedure to a routine screening test. Most of the issues relatedto screening tests for food sensitizers, particularly as it relates tothe Th2 phenotype, also apply for respiratory sensitizers. A numberof studies have and still continue to address screening tests forrespiratory sensitizers. These include among others, monitoringIgE or IgG1 levels in various test species and employing bron-chial associated lymphoid tissues for immunophenotyping,cytokine profiling, gene expression and a modified LLNA (43).The observation that many drugs produce autoimmune-likesyndromes and environmental chemicals induce onset and modu-late autoimmune disease severity, has led the efforts to identify reli-able screening tests for xenobiotic-induced autoimmunity. Animalmodels of autoimmunity have been used to explore both molecularmechanisms and therapeutic interventions for a variety of autoim-mune diseases (44). However, while a number of syndromes thatare similar to those clinically observed in humans can be mimickedin animal models, the diversity of autoimmune diseases limits theutility of any single model as a screening tool. The popliteal lymphnode assay, which measures non-specific stimulation and prolifera-tion in the lymph nodes draining chemically exposed tissues, hasbeen used in conjunction with reporter antigens as a tool to screenfor immunostimulating compounds (45). However, this assay fallsshort of measuring the potential to produce disease.Finally, an ongoing need in immunotoxicology testing is todevelop screening tests to identify adverse health consequencesfrom xenobiotics that produce immunostimulation or modulateinflammatory responses. Although these may include some indus-trial chemicals, they primarily represent therapeutics designed totreat immune-mediated diseases, such as asthma, autoimmunity, orchronic inflammatory diseases. Some general examples includeToll-like receptor (TLR) agonists, cytokine agonists or antago-nists, modulators of adhesion molecules, angiogenic therapies,novel vaccine adjuvants and arachidonic acid modulators. Sincethe immune system represents a vast network of regulatory loops,altering the production or expression of one regulatory immunemediator to treat a disease would likely influence other mediators,the consequences of which may have adverse effects that out-weigh the benefits of its intended use.5. ConclusionIn this survey, we have provided the reader with a brief historicalperspective of immunotoxicology conveying that its foundationwas in the development of predictive screening tests to identify11Immunotoxicology Testing: Past and Futurexenobiotics that may cause immunosuppression or skin sensitization.The discipline, however, continues to evolve to include contri-butions to basic science as well as in improving human risk assess-ment. It is essential, however, that we understand the fact thatimmunotoxicology represents the study of a number of distinctdiseases associated with perturbances of the immune system, andthat there is a critical need to develop standardized and validatedscreening tests for all these immunotoxicities.References1. Landsteiner K, Jacobs J (1935) Studies on thesensitization of animals with simple chemical compounds I. J Exp Med 61:643–6572. Dean JH, Padarathsingh ML, Jerrells TR(1979) Assessment of immunobiological effects induced by chemicals, drugs or food additives. I Tier testing and screening approach. Drug Chem Toxicol 2:5–163. Dean JH, Luster MI, Boorman GA, LauerLD (1982) Procedures available to examine the immunotoxicity of chemicals and drugs.Pharmacol Rev 34:137–1484. Luster MI, Munson AE, Thomas P, HolsappleMP, Fenters J, White K, Lauer LD, Dean JH (1988) Development of a testing battery to assess chemical-induced immunotoxicity.Fund Appl Toxicol 10:2–195. Luster MI, Portier C, Pait DG, White KL,Gennings C, Munson AE, Rosenthal GJ (1992) Risk assessment in immunotoxicology.I. Sensitivity and predictability of immunetests. Fund Apppl Toxicol 18:200–2106. Luster MI, Portier C, Pait DG, Rosenthal GJ,Germolec DR, Corsini E, Blaylock BL, Pollock P, Kouchi Y, Craig W, White KL, Munson AE, Comment CC (1993) Risk assessment in immunotoxicology. II.Relationship between immune and host resis-tance tests. Fund Appl Toxicol 21:71–827. van Loveren H, Vos J (1989)Immunotoxicological considerations: a practi-cal approach to immunotoxicity testing in the rat. In: Dayan A, Paine A (eds) Advances in applied toxicology. Taylor & Francis, New York, NY, pp 143–1648. White K, Jennings P, Murray P, Dean J (1994)International validation study carried out in 9 laboratories on the immunological assessment of cyclosporin A in the Fisher 344 rat. Toxicol In Vitro 8:957–9629. Ladics GS, Smith CE, Elliott GS, Slone TW,Loveless SE (1998) Further evaluation of the incorporation of an immunotoxicologi-cal functional asay for assessing humoralimmunity for hazard identification purposes in rats in a standard toxicology study.Toxicology 126:137–15210. House RV, Luebke RW (2007)Immunotoxicology: thirty years and count-ing. In: Luebke R, House R, Kimber I (eds) Immunotoxicology and immunopharmacol-ogy, 3rd edn. CRC, Boca Raton, FL, pp 3–2011. EPA, Biochemical Test Guidelines (1996)OPPTS 880.3550 immunotoxicity. US/EPA, Washington DC12. Kuper CF, Harleman JH, Richter-ReichelmHB, Vos JG (2000) Histopathologic approaches to detect changes indicative of immunotoxicity. Toxicol Pathol 2:454–466 13. Germolec DR, Nyska A, Kashon M, KuperCF, Portier C, Kommineni C, Johnson KA, Luster MI (2004) The accuracy of extended histopathology to detect immunotoxic chemi-cals. Toxicol Sci 82:504–51414. Haley P, Perry R, Ennulat D, Frame S,Johnson C, Lapointe JM, Nyska A, Snyder P, Walker D, Walter G (2005) STP Immunotoxicology Working Group. Best practice guideline for the routine patholgy evaluation of the immune system. Toxicol Pathol 33:404–40815. Descotes J, Nicolas B, Pham E (1997) Sentinelscreening for human immunotoxicity. In: Environment and immunity. Proceedings of a Workshop held in Brussels on 20–21 May 1996. Air Pollution Epidemiology Reports Series. S. R16. NRC (1992) Biologic markers in immuno-toxicology. A report by the US National Research Council. National Academy Press, Washington DC17. WHO (1996) Principles and methods forassessing direct immunotoxicity associated with exposure to chemicals. A report of the International Programme on Chemical Safety (Environmental Health Criteria 180). World Health Organization, Geneva12Luster and Gerberick18. van Loveren H, Germolec DR, Koren HS,Luster MI, Nolan C, Repetto R, Smith E, Vos JG, Vogt RF (1999) Report of the Bilthoven Symposium: advancement of epidemiological studies in assessing the human health effects of immunotoxic agents in the environment and the workplace. Biomarkers 4:135–157 19. Weisglas-Kuperus N, Patandin S, BerbersGAM, Sas TCJ, Mulder PGH, Sauer PJJ, Hooijkaas H (2000) Immunologic effects of background exposure to polychlorinated biphenyls and dioxins in Dutch preschool children. Environ Health Perspect 108:1203–120720. Leonardi GS, Houthuijs D, Steerenberg PA,Fletcher T, Armstrong B, Antova T, Lochman I, Lochmanova A, Rudnai P, Erdei E, Musial J, Jazwiec-Kanyion B, Niciu EM, Durbaca S, Fabianova E, Koppova K, Lebret E, Brunekreef B, van Loveren H (2000) Immune biomarkers in relation to exposure to particulate matter: a cross-sectional survey in 17 cities of Central Europe. Inhalation Toxicol 12(Supp 4):1–14 21. Pinkerton L, Biagini R, Ward EM, Hull RD,Deddens JA, Boeniger MF, Schnoor TM, Luster MI (1998) Immunologic findings among lead-exposed workers. Am J Indus Med 33:400–40822. Landsteiner K, Jacobs J (1936) Studies on thesensitization of animals with simple chemical compounds II. J Exp Med 64:625–63923. Draize JH, Woodard G, Calvery HO (1944)Methods for the study of irritation and toxic-ity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 8:377–39024. Magnusson B, Kligman AM (1970) Allergiccontact dermatitis in the guinea pig.Identification of contact allergens. Charles C.Thomas, Springfield IL25. Buehler EV (1965) Delayed contact hyper-sensitivity in the guinea pig. Arch Dermatol 91:171–17726. Robinson MK, Nusair TL, Fletcher ER, RitzHL (1990) A review of the Buehler guinea pig skin sensitization test and its use in a risk assessment process for human skin sensitiza-tion. Toxicology 61:91–10727. Organisation for Economic Cooperation andDevelopment (2002) Test Guideline 429: The local Lymph Node Assay. OECD, Paris 28. Balls M, Hellsten E (2000) Statement on thevalidity of the local lymph node assay for skin sensitization testing. ECVAM Joint Research Centre, European Commission, Ispra. Altern Lab Anim 28:366–36729. Dean JH, Twerdock LE, Tice RR, SailstadDM, Hattan DG, Stokes WS (2001) ICCVAM evaluation of the murine local lymph nodeassay. II. Conclusions and recommendations of an independent scientific review panel.Regul Toxicol Pharmacol 34:258–27330. Kimber I, Mitchell JA, Griffin AC (1986)Development of a murine local lymph node assay for the determination of sensitizing potential. Fd Chem Toxic 24:585–59631. Kimber I, Hilton J, Weisenberger C (1989)The murine local lymph node assay for identi-fication of contact allergens: a preliminary evaluation of in situ measurement of lympho-cyte proliferation. Contact Derm 21:215–220 32. United States Environmental ProtectionAgency Health Effects Test Guidelines (2003) OPPTS 870.2600 Skin sensitization. US/EPA, Washington, DC33. Cockshott A, Evans P, Ryan CA, GerberickGF, Betts CJ, Dearman RJ, Kimber I, Basketter DA (2006) The local lymph node assay in practice: a current regulatory perspec-tive. Hum Exp Toxicol 25:387–39434. Gerberick GF, Ryan CA, Dearman RJ, KimberI (2007) Local lymph node assay (LLNA) fordetection of sensitizing capacity of chemicals.Methods 41:54–6035. Loveless SE, Ladics GS, Smith C, HolsappleMP, Woolhiser MR, White KL, Musgrove DL, Smialowicz RJ, Williams W (2007) Interlaboratory study of the primary antibody response to sheep red blood cells in outbred rodents following exposure to cyclophosph-amide or dexamethasone. J Immunotoxicol 4:233–23836. Luebke R, Holsapple M, Ladics G, Luster MI,Selgrade M-J, Woolhiser M, Germolec DR (2006) Immunotoxicogenomics: the potential of genomics technology in the immunotoxicity risk assessment process. Toxicol Sci 94:22–27 37. Boverhof DR, Gollapudi BB, Hotchkiss JA,Osterioh-Quiroz M, Woolhiser MR (2008) Evaluation of a toxicogenomic approach to the local lymph node assay (LLNA). Toxicol Sci 107(2):427–43938. Ryan CA, Hulette BC, Gerberick GF (2001)Review: approaches for the development of cell based in vitro methods for contact sensiti-zation. Toxicol In Vitro 15:43–5539. Ryan CA, Gerberick GF, Gildea LA, HuletteBC, Betts CJ, Cumberbatch M, Dearman RJ (2005) Interactions of chemicals with den-dritic cells – a novel approach for identification of potential allergens. Toxicol Sci 88:4–11 40. Teufel M, Biedermann T, Rapps N, HausteinerC, Henningsen P, Enck P, Zipfel S (2007) Psychological burden of food allergy. World J Gastroenterol 3:3456–346541. McClain S, Bannon GA (2006) Animal modelsof food allergy: opportunities and barriers.Curr Allergy Asthma Rep 2:141–144。