吉林2018年理数高考试题解析(word档含答案解析)

合集下载

【精品】吉林省近两年(2017,2018)高考理科数学试卷以及答案(word解析版)

【精品】吉林省近两年(2017,2018)高考理科数学试卷以及答案(word解析版)

绝密★启用前吉林省2017年高考理科数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240B x x x m =-+=.若{1}AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8. 执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59. 若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2 BC10. 已知直三棱柱111ABC A B C -中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1CB所成角的余弦值为( ) A.2 B.5 C.5D.3 11. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)

全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)

为 9 3 ,则三棱锥 D ABC 体积的最大值为
A .0.7
B. 0.6
C. 0.4
D. 0.3
9.△ ABC 的内角 A ,B ,C 的对边分别为
a2 a ,b , c ,若 △ ABC 的面积为
b2
c2 ,则 C
4
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积
项是符合题目要求的.
1.已知集合 A x | x 1≥ 0 , B 0,1,2 ,则 A B
A. 0
B. 1
C. 1,2
D. 0,1,2
2. 1 i 2 i
A. 3 i
B. 3 i
C. 3 i
D. 3 i
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图
中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长
2018 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A. 8 9
1 ,则 cos 2
3
B. 7 9

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

理科数学试题 第4页(共17页)
2018 年普通高等学校招生全国统一考试(全国卷Ⅰ) 理科数学试题答案(详细解析版)
一、选择题 1.【答案】C 【解析】分析:首先根据复数的运算法则,将其化简得到 正确结果.
,根据复数模的公式,得到
详解:因为

,从而选出
所以பைடு நூலகம்
,故选 C.
点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得
每件不合格品支付 25 元的赔偿费用. (ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为
X,求 EX; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产
品作检验?
21.(12 分)
已知函数 f (x) 1 x a ln x . x
(1)讨论 f (x) 的单调性;
所以所求的最短路径的长度为
,故选 B.
点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两
个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平
面图形的相关特征求得结果.
8.【答案】D
【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程
.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必 考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17.(12 分)
在平面四边形 ABCD 中, ADC 90 , A 45 , AB 2 , BD 5 . (1)求 cosADB ; (2)若 DC 2 2 ,求 BC .

2018年高考全国Ⅰ卷理数试题(含详细解析)

2018年高考全国Ⅰ卷理数试题(含详细解析)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2. 选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4•作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5•保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题11 —iz = --------- :+ 2$设1 + £”则二=( )1B. .C.lD. ■2已知集合■,「■"二,则=( )A. {進| _1 吒疋 v:-}B. 'I L _ _ -C{r\r < -1} U {:f;|;r > 2}D.HI H< 1}U {X |X > 2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。

得到如下饼图:A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4记.为等差数列•;的前口项和,若几「一 W—,则=()A.-12B.-10C.10D.12 5设函数门工一「亠鳥一门广一出,若代茁'为奇函数,则曲线紇=/亡〕在点 〔%贬:处的切线方程为()6在一.丨「’中,…」为 边上的中线,二为的中点,则丄A. -B.-C. -D.-7某圆柱的高为2,底面周长为16,其三视图如下图。

2018年高考全国一卷理科数学答案及解析

2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、 【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1 【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x2}【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A、新农村建设后,种植收入减少。

B、新农村建设后,其他收入增加了一倍以上。

C、新农村建设后,养殖收入增加了一倍。

D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C 、-+D 、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

【精品】吉林省2018年高考理科试题及答案汇总(六份试卷)(word解析版)

【精品】吉林省2018年高考理科试题及答案汇总(六份试卷)(word解析版)

【精品】吉林省2018年高考理科试题及答案汇总(六份)(word解析版)目录吉林省2018年英语高考试卷以及答案———P2吉林省2018年语文高考试卷以及答案———P22 吉林省2018年理科数学高考试卷以及答案—P37 吉林省2018年物理高考试卷以及答案———P46 吉林省2018年化学高考试卷以及答案———P56 吉林省2018年生物高考试卷以及答案———P65绝密★启用前吉林省2018年高考英语试卷注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3、考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案涂到答题卡上。

第一节(共5小题,每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A.¥19.15B. ¥9.18C. ¥9.15答案是C.1.What does John find difficult in Iearning German?A.PronunciationB.VocabularyC.Grammar2.What is the probable relationship between the speakers?A.ColleaguesB.Brother and sisterC.Teacher and student3.Where does the conversation probably take place?A.In a bankB. At a ticket officeC.On a train4.What are the speakers talking about?A.A restaurantB.A streetC.A dish5.What does the woman think of her interview?A.It was toughB.It was interestingC.It was successful第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A,B,C三个选项中选出最佳选项。

吉林省2018年高考文科数学试题及答案(Word版)

吉林省2018年高考文科数学试题及答案(Word版)

吉林省2018年高考文科数学试题及答案(Word 版)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+ B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .2B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A.π4B .π2C .3π4D .π11.已知1F,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1B .2C D 1-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018高考全国新课标2卷理科数学版和答案解析

2018高考全国新课标2卷理科数学版和答案解析

WORD 格式整理绝密★启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.1 2i1 2iA.4 35 5i B.4 35 5i C.3 45 5i D.3 45 5i2.已知集合 2 2 3A x,y x y ≤,x Z,y Z,则A中元素的个数为A.9 B.8 C.5 D.4x xe e3.函数 2f xx的图像大致为4.已知向量a,b满足|a| 1 ,a b 1 ,则a(2a b)A.4 B.3 C.2 D.02 2x y5.双曲线2 2 1( 0, 0)a ba b的离心率为3,则其渐近线方程为A.y 2x B.y 3x C.2y x D.23y x26.在△ABC 中,cos C52 5,BC 1 ,AC 5 ,则ABA.4 2 B.30 C.29 D.2 5分享专业知识WORD 格式整理1 1 1 1 17.为计算S 1 ⋯,设计了右侧的程序框图,2 3 4 99 100开始N 0,T 0 则在空白框中应填入i 1 A.i i 1B.i i 2 是否i 100C.i i 3D.i i 4 N N 1iS N T 1输出ST Ti 1结束8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 7 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A.112B.114C.115D.1189.在长方体A BCD A1B1C1D1 中,AB BC 1 ,A A ,则异面直线AD1 与1 3 DB 所成角的余弦值为1A.15B.56C.55D.2210.若 f (x) cos x sin x 在[ a, a] 是减函数,则 a 的最大值是A.π4B.π2C.3π4D.π11.已知 f (x) 是定义域为( , ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则f (1) f (2) f (3) ⋯ f (50)A.50 B.0 C.2 D.5012.已知F1 ,2 2x yF 是椭圆:的左,右焦点,A是C 的左顶点,点P 在过A且斜率C 2 2 1(a b 0)2a b为36的直线上,△PF1F2 为等腰三角形,F1 F2 P 120 ,则C 的离心率为A.23B.12C.13D.14二、填空题:本题共 4 小题,每小题 5 分,共20 分。

2018全国高考理科数学试题及答案解析_全国卷.docx

2018全国高考理科数学试题及答案解析_全国卷.docx

绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页, 23 小题,满分150 分。

考试用时120 分钟。

注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型( B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={ x| x<1}, B={ x|3x 1 },则A.A B { x | x 0}B.A B R C.A B { x | x 1}D.A B2.如图,正方形ABCD内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是A.1B.πC.1D.π48243.设有下面四个命题p1:若复数 z 满足1R ,则z R ;p2:若复数 z 满足z2R ,则z R ;zp3:若复数 z1 , z2满足 z1z2R,则z1z2;p4:若复数z R ,则z R .其中的真命题为A.p1, p3B.p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n } 的前 n 项和.若 a4a5 24, S648 ,则 { a n} 的公差为A.1B. 2C. 4D. 8围是A.[2,2]B.[ 1,1]C.[0,4]D.[1,3]6.(112 )(1x) 6展开式中 x2的系数为xA. 15B. 20C. 30D. 357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A. 10B. 12C. 14D. 168.右面程序框图是为了求出满足3n- 2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000和 n=n+2C.A 1 000 和n=n+1D.A 1 000 和n=n+29.已知曲线1:=cosx , 2:=sin (2x+2π) ,则下面结论正确的是C y C y3A.把C1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得6到曲线 C2B.把C1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π个单位长度,12得到曲线 C2C.把C上各点的横坐标缩短到原来的1倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得126到曲线 C21 π.得到曲 C210.已知F 抛物:2=4 的焦点,F作两条互相垂直的直l1,2,直l1与C交于、两点,C y x l A B直 l 2 与C交于D、E两点,|AB|+|DE|的最小A. 16B. 14C. 12D. 1011.xyz正数,且2x3y5z,A. 2x<3y<5z B. 5z<2x<3y C. 3y<5z<2x D. 3y<2x<5z12.几位大学生响国家的号召,开了一款用件。

2018年全国各省市高考数学真题及解析(高清精美版)

2018年全国各省市高考数学真题及解析(高清精美版)
卷天津卷北京卷以及上海卷浙江卷江苏卷总计在内的13份真题及超详细解析
2018年全国各省市高考数学真题及解析(高清精美版)
这份独家秘笈囊括了2018年高考数学文理的全国I、II、III卷,天津卷、北京卷以及上海卷、浙江卷、江苏卷总计在内的13份真题及超详细解析,
其中对图片和文字精益求精的排版使得电子版打印出来十分清晰,
而对试题进行的逐题逐项解析更是十分实用,
这是所有高中学生或入门竞赛、教师及高考试题研究者在这个夏天研究,复习巩固以及刷题必备的超级干货!

2018年吉林省高考理科试题与答案汇总(Word版)

2018年吉林省高考理科试题与答案汇总(Word版)

2018年吉林省高考理科试题与答案汇总(Word版)目录语文------------------- 2~13 理科数学-------------------14~37 理科综合-------------------38~46 英语-------------------47~592018年吉林省高考语文试题与答案(试卷满分150分,考试时间150分钟)第Ⅰ卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)所谓“被遗忘权”,即数据主体有权要求数据控制者永久删除有关数据主体的个人数据,有权被互联网遗忘,除非数据的保留有合法的理由,在大数据时代,数字化,廉价的存储器,易于提取、全球覆盖作为数字化记忆发展的四大驱动力,改变了记忆的经济学,使得海量的数字化记忆不仅唾手可得,甚至比选择性删除所耗费的成本更低,记忆和遗忘的平衡反转,往事正像刺青一样刻在我们的数字肌肤上;遗忘变得困难,而记忆却成了常态,“被遗忘权”的出现,意在改变数据主体难以“被遗忘”的格局,对于数据主体对信息进行自决控制的权利,并且有着更深的调节、修复大数据时代数字化记忆伦理的意义。

首先,“被遗忘权”不是消极地防御自己的隐私不受侵犯,而是主体能动地控制个人的信息,并界定个人隐私的边界,进一步说,是主体争取主动建构个人数字化记忆与遗忘的权利,与纯粹的“隐私权”不同,“被遗忘权”更是一项主动性的权利,其权利主体可自主决定是否行使该项权利对网络上已经被公开的有关个人信息进行删除,是数据主题对自己的个人信息所享有的排除他人非法使用的权利。

其次,在数据快速流转且难以被遗忘的大数据时代,“被遗忘权”对调和人类记忆与以往的平衡具有重要的意义,如果在大数据时代不能“被遗忘”,那意味着人们容易被囚禁在数字化记忆的监狱之中,不论是个人的遗忘还是社会的遗忘,在某种程度都是一种个人及社会修复和更新的机制,让我们能够从过去的经验中吸取教训,面对现实,想象未来,而不仅仅背过去的记忆所束缚。

专题03 独立性检验(第四篇)(解析版)

专题03 独立性检验(第四篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品第四篇概率与统计专题03 独立性检验【典例1】【2018年全国卷Ⅲ理数高考试题】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,分析:(1)计算两种生产方式的平均时间即可.(2)计算出中位数,再由茎叶图数据完成列联表.(3)由公式计算出,再与6.635比较可得结果.解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:(3)由于()224015155510 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.【典例2】【2020届湖北省武汉市武昌区高三元月调研考试】某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:,[200,400),,…,(单位:元),得到如图所示的频率分布直方图:(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有的把握认为“健身达人”与性别有关?(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.方案一:每满800元可立减100元;方案二:金额超过800元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.附:【分析】(1)利用频率分布直方图计算平均数即可;(2)根据题意补充列表联,由表中数据计算观测值,对照临界值得出结论;(3)分别计算选方案一、方案二所支付的金额,比较它们的大小即可.⨯=(元),解:(1)因为200620所以,预估2020年7、8两月份人均健身消费为620元.(2)列联表如下:因为22100(10302040)4.762 3.84150503070K⨯-⨯==>⨯⨯⨯,因此有的把握认为“健身达人”与性别有关系.(3)若选择方案一:则需付款900元;若选择方案二:设付款元,则可能取值为700,800,900,1000.,,,.所以(元)因为850900<,所以选择方案二更划算.【典例3】【2020届广东省东莞市高三期末调研测试】东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(含4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(含24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.(1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的列联表:完成上述列联表,并判断能否有90%的把握认为“停车是否超过6小时”与性别有关?(2)(i)表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求的概率分布列及期望;(ii )现随机抽取该停车场内停放的3辆车,表示3辆车中停车费用大于的车辆数,求的概率. 参考公式:,其中n a b c d =+++【思路引导】(1)先根据频数分布表填写列联表,再将数据代入公式求解即可;(2)(i )的可取值为5,8,11,15,19,30,根据频数分布表分别求得概率,进而得到分布列,并求得期望;(ii )先求得,则,进而求得概率即可 解:(1)由题,不超过6小时的频率为,则100辆车中有40辆不超过6小时,60辆超过6小时, 则列联表如下:根据上表数据代入公式可得()221002030104050079427063070604063K ⨯⨯-⨯==≈<⨯⨯⨯..所以没有超过90%的把握认为“停车是否超过6小时”与性别有关 (2)(i )由题意知:的可取值为5,8,11,15,19,30,则()()7119,302020P X P X ==== 所以的分布列为:∴(ii )由题意得,所以, 所以【典例4】【2020届山东省滨州市高三上学期期末考试】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中语文、数学、外语三科为必考科目,每门科目满分均为分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(选),每门科目满分均为分.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取名学生进行调查,其中,女生抽取人.(1)求的值;(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的名学生进行问卷调查(假定每名学生在“物理”和“地理”这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;(3)在抽取到的名女生中,按(2)中的选课情况进行分层抽样,从中抽出名女生,再从这名女生中抽取=+++人,设这人中选择“物理”的人数为,求的分布列及期望.附:,n a b c d【思路引导】(1)根据分层抽样的特征,以及题意,得到,求解,即可得出结果;(2)根据题中数据,可直接完善列联表,根据公式求出,结合临界值表,即可得出结果;(3)从名女生中分层抽样抽名女生,所以这女生中有人选择“物理”,人选择“地理”. 名女生中再选择名女生,则这名女生中选择“物理”的人数可为,,,,,分别求出其对应的概率,即可得到分布列,求出期望. 解:(1)由题意得,解得.(2)2×2列联表为:22100(45202510)8.1289 6.63555457030K ⨯⨯-⨯=≈>⨯⨯⨯,故有的把握认为选择科目与性别有关.(3)从名女生中分层抽样抽名女生,所以这女生中有人选择“物理”, 人选择“地理”. 名女生中再选择名女生,则这名女生中选择“物理”的人数可为,,,,,设事件发生的概率为,则44491(0)126C P X C ===,1354492010(1)12663C C P X C ====,2254496010(2)12621C C P X C ====,3154494020(3)12663C C P X C ====,45495(4)126C P X C ===所以的分布列为:期望()012341261261261261269E X =⨯+⨯+⨯+⨯+⨯=. 【典例5】【广东省佛山市2019-2020学年高三教学质量检测(一)】党中央、国务院历来高度重视青少年的健康成长.“少年强则国强”,青少年身心健康、体魄强健、意志坚强、充满活力,是一个民族旺盛生命力的体现,是社会文明进步的标志,是国家综合实力的重要方面.全面实施《国家学生体质健康标准》,把健康素质作为评价学生全面健康发展的重要指标,是新时代的要求.《国家学生体质健康标准》有一项指标是学生体质指数(),其计算公式为:,当BMI 23.5>时,认为“超重”,应加强锻炼以改善.某高中高一、高二年级学生共2000人,人数分布如表(a ).为了解这2000名学生的指数情况,从中随机抽取容量为160的一个样本.表(a )(1)为了使抽取的160个学生更具代表性,宜采取分层抽样,试给出一个合理的分层抽样方案,并确定每层应抽取出的学生人数;(2)分析这160个学生的值,统计出“超重”的学生人数分布如表(b).(ⅰ)试估计这2000名学生中“超重”的学生数;(ⅱ)对于该校的2000名学生,应用独立性检验的知识,可分析出性别变量与年级变量哪一个与“是否超重”的关联性更强.应用卡方检验,可依次得到的观测值,,试判断与的大小关系.(只需写出结论)【思路引导】(1)按照高一男生、高一女生、高二男生、高二女生分层四层,然后利用分层抽样的方法确定每层的人数.(2)计算出“超重”发生的频率,用样本来估计总体的特征.解:(1)考虑到应与年级或性别均有关,最合理的分层应分为以下四层:高一男生、高一女生、高二男生、高二女生.高一男生:人;高一女生:人;高二男生:人;高二女生:人.(2)(ⅰ)160人中,“超重”人数为人,“超重”发生的频率为0.1,用样本的频率估计总体概率,估计在这2000人中,“超重”人数为人.(ⅱ).【典例6】【四川省绵阳市2019届高三第三次诊断性考试】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.有声书公司将付费高于元的用户定义为“爱付费用户”,将年龄在岁及以下的用户定义为“年轻用户”.已知抽取的样本中有的“年轻用户”是“爱付费用户”.(1)完成下面的列联表,并据此资料,能否有的把握认为用户“爱付费”与其为“年轻用户”有关?(2)若公司采用分层抽样方法从“爱付费用户”中随机选取人,再从这人中随机抽取人进行访谈,求抽取的人恰好都是“年轻用户”的概率..【思路引导】(1)根据题意可得列联表,然后根据表中的数据求出后与临界值表中的数据对照后可得结论.(2)根据古典概型概率公式求解可得所求概率.解:(1)根据题意可得列联表如下:由表中数据可得,所以有的把握认为“爱付费用户”和“年轻用户”有关.(2)由分层抽样可知,抽取的人中有人为“年轻用户”,记为,,,,人为“非年轻用户”,记为.则从这人中随机抽取人的基本事件有:,,,,,,,,,,共个基本事件.其中满足抽取的人均是“年轻用户”的事件有:,,,,,,共个.所以从中抽取人恰好都是“年轻用户”的概率为.1. 【山东省实验中学等四校2019届高三联合考试】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.参考公式:【思路引导】(1)完成列联表,由列联表,得2258.333 6.635 3K=≈>,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率.②由列联表可知,抽到经常网购的市民的频率为:,由题意100.6X B(,),由此能求出随机变量的数学期望和方差.解:(1)完成列联表(单位:人):由列联表,得:()2220050305070258.333 6.635120801001003K ⨯⨯-⨯==≈>⨯⨯⨯, ∴能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关. (2)①由题意所抽取的10名女市民中,经常网购的有人, 偶尔或不用网购的有人,∴选取的3人中至少有2人经常网购的概率为:. ② 由列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,∴从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6, 由题意()100.6XB ,,∴随机变量的数学期望()100.66E X =⨯=,方差D (X )=.2【辽宁省沈阳市铁路实验中学2019-2020学年高三上学期10月月考】.司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.(1)完成下面的列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望.参考公式与数据:参考公式,其中n a b c d =+++. 【思路引导】(1)根据已知数据即可得到列联表;计算出28.2497.879χ≈>,对比临界值表可得到结果;(2)由样本估计总体思想,可得到随机抽检辆,司机为男性且开车使用手机的概率为,可知,由二项分布概率公式可计算得到每个取值所对应的概率,从而得到分布列;由二项分布数学期望计算公式可得. 解:(1)由已知数据可得列联表如下:()22100402515208.2497.87960405545χ⨯⨯-⨯=≈⨯⨯⨯>有99.5%的把握认为开车时使用手机与司机的性别有关 (2)随机抽检辆,司机为男性且开车时使用手机的概率 有题意可知:可取值是,且 ;;()21232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭; 则的分布列为:数学期望3,.【河北省唐山市2019-2020学年高三上学期期末】河北省高考综合改革从2018年秋季入学的高一年级学生开始实施,新高考将实行“3+1+2”模式,其中3表示语文、数学、外语三科必选,1表示从物理、历史两科中选择一科,2表示从化学、生物、政治、地理四科中选择两科.某校2018级入学的高一学生选科情况如下表:(1)完成下面的列联表,并判断是否在犯错误概率不超过0.01的前提下,认为“选择物理与学生的性别有关”?(2)以频率估计概率,从该校2018级高一学生中随机抽取3名同学,设这三名同学中选择物理的人数为,求的分布列和数学期望.附表及公式:【思路引导】(1)根据题设的数据可得列联表,计算的值后根据临界值表可得相应结论.(2)利用二项分布可求的分布列和数学期望.解:(1)依题意可得列联表将列联表中的数据代入公式计算得()2900300175300125600300425475⨯-⨯=⨯⨯⨯ 5.573 6.635≈<, 所以,不能在犯错误概率不超过0.01的前提下认为“选择物理与学生的性别有关”.(2)由(1)可知,从该校2018级高一学生中任取一名同学,该同学选择物理的概率,可取0,1,2,3. ,, ,.的分布列为:()124801232279927E X =⨯+⨯+⨯+⨯=. 4.【辽宁省辽阳市2019-2020学年高三上学期期末】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.(1)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为(每次抽奖互不影响,且的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数(元)的分布列并求其数学期望.附:参考公式和数据:,n a b c d=+++. 附表:【思路引导】(1)完善列联表,计算214403.841 247K=>得到答案.(2)先计算,分别计算,,,,得到分布列,计算得到答案.解:(1)列联表如下:,因此有的把握认为购买金额是否少于60元与性别有关.(2)可能取值为65,70,75,80,且.,,,,所以的分布列为.5.【广东省阳春市第一中学2018届高三上学期第三次月考】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,求这2人都是年龄大于40岁的概率.附:.试题分析:(1)由茎叶图能完成列联表,由列联表求出2 3.46 3.841K≈<,从而得到没有的把握认为市民是否购买该款手机与年龄有关.(2)购买意愿弱的市民共有20人,抽样比例为,所以年龄在20~40岁的抽取了2人,记为,年龄大于40岁的抽取了3人,记为,列出所有可能的情况,由古典概型可求其概率.解析:(1)由茎叶图可得:由列联表可得:.所以,没有95%的把握认为市民是否购买该款手机与年龄有关.(2)购买意愿弱的市民共有20人,抽样比例为,所以年龄在20~40岁的抽取了2人,记为年龄大于40岁的抽取了3人,记为,从这5人中随机抽取2人,所有可能的情况为,,,,,,,,,,共10种,其中2人都是年龄大于40岁的有,,3种,所以概率为.6.【广西柳州市2019届高三毕业班1月模拟】我市为改善空气环境质量,控制大气污染,政府相应出台了多项改善环境的措施.其中一项是为了减少燃油汽车对大气环境污染.从2018年起大力推广使用新能源汽车,鼓励市民如果需要购车,可优先考虑选用新能源汽车.政府对购买使用新能源汽车进行购物补贴,同时为了地方经济发展,对购买本市企业生产的新能源汽车比购买外地企业生产的新能源汽车补贴高.所以市民对购买使用本市企业生产的新能源汽车的满意度也相应有所提高.有关部门随机抽取本市本年度内购买新能源汽车的户,其中有户购买使用本市企业生产的新能源汽车,对购买使用新能源汽车的满意度进行调研,满意度以打分的形式进行.满分分,将分数按照分成5组,得如下频率分布直方图.(1)若本次随机抽取的样本数据中购买使用本市企业生产的新能源汽车的用户中有户满意度得分不少于分,把得分不少于分为满意.根据提供的条件数据,完成下面的列联表.并判断是否有的把握认为购买使用新能源汽车的满意度与产地有关?(2)以频率作为概率,政府对购买使用新能源汽车的补贴标准是:购买本市企业生产的每台补贴万元,购买外地企业生产的每台补贴万元.但本市本年度所有购买新能源汽车的补贴每台的期望值不超过万元.则购买外地产的新能源汽车每台最多补贴多少万元?=+++.附:,其中n a b c d【思路引导】(1)利用频率分布直方图可求出列联表中数据,代入公式即可求出,然后与表中数据比较即可判断;(2)设购买新能源汽车的补贴每台为万元,则或,分别求出对应概率,即可得到对应的分布列,进而表示出期E x≤,解不等式即可。

2018年吉林高考理科试题全套(精校Word版)含答案语文数学英语文综理综试卷

2018年吉林高考理科试题全套(精校Word版)含答案语文数学英语文综理综试卷

2018年普通高等学校招生全国统一考试(吉林)真题理科试题全套及答案汇总目录2018年普通高等学校招生全国统一考试吉林语文试题................2018年普通高等学校招生全国统一考试吉林语文试题答案............2018年普通高等学校招生全国统一考试吉林理科数学................2018年普通高等学校招生全国统一考试吉林理科数学答案............2018年普通高等学校招生全国统一考试吉林英语试题................2018年普通高等学校招生全国统一考试吉林英语试题答案............2018年普通高等学校招生全国统一考试吉林理科综合试题............2018年普通高等学校招生全国统一考试吉林理科综合试题答案........绝密★启用前2018年普通高等学校招生全国统一考试(全国二卷)语文本试卷共22题,共150分,共10页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)所谓“被遗忘权”,即数据主体有权要求数据控制者永久删除有关数据主体的个人数据,有权被互联网遗忘,除非数据的保留有合法的理由,在大数据时代,数字化,廉价的存储器,易于提取、全球覆盖作为数字化记忆发展的四大驱动力,改变了记忆的经济学,使得海量的数字化记忆不仅唾手可得,甚至比选择性删除所耗费的成本更低,记忆和遗忘的平衡反转,往事正像刺青一样刻在我们的数字肌肤上;遗忘变得困难,而记忆却成了常态,“被遗忘权”的出现,意在改变数据主体难以“被遗忘”的格局,对于数据主体对信息进行自决控制的权利,并且有着更深的调节、修复大数据时代数字化记忆伦理的意义。

2018年高考真题理科数学全国卷II含解析

2018年高考真题理科数学全国卷II含解析

适用全国卷Ⅱ(甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆)2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

(word完整版)2018年高考全国2卷理科数学带答案解析

(word完整版)2018年高考全国2卷理科数学带答案解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-L ,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年吉林数学(理科)高考试题及答案

2018年吉林数学(理科)高考试题及答案

③若 h(2) 0 ,即 a e2 ,由于 h(0) 1,所以 h(x) 在 (0, 2) 有一个零点, 4
由(1)知,当 x
0 时, ex
x2 ,所以 h(4a)
1 16a3 e4a
1
16a3 (e2a )2
1
16a3 (2a)4
1
1 a
0.
故 h(x) 在 (2, 4a) 有一个零点,因此 h(x) 在 (0, ) 有两个零点.
1
2
所以
2 3 | a 4|
= 3 .解得 a 4 (舍去), a 4 .
2 3(a 4)2 3a2 a2 2
3
所以 n ( 8
34 ,
3
,
4 )
.又
uuur PC
(0,
2,
2
3) ,所以 cos
uuur PC, n
3
.
33 3
4
所以 PC 与平面 PAM 所成角的正弦值为
3
.
4
21.(12 分)
年的数据建立的线性模型 yˆ 99 17.5t 可以较好地描述 2010 年以后的环境基础设施投资额的变化趋
势,因此利用模型②得到的预测值更可靠.学.科网 (ⅱ)从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型①得到的预测值 226.1 亿元 的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠. 以上给出了 2 种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(12 分)
参考答案:
一二、填空题
13. y 2x
三、解答题
3.B 4.B 5.A 6.A 9.C 10.A 11.C 12.D

2018高考全国新课标2卷理科数学版及答案解析资料讲解

2018高考全国新课标2卷理科数学版及答案解析资料讲解

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y x = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角的余弦值为 A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

【精品】吉林省近两年(2018,2019)高考文科数学试卷以及答案(word解析版)

【精品】吉林省近两年(2018,2019)高考文科数学试卷以及答案(word解析版)

绝密★启用前吉林省2018年高考文科数学试卷本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为 A .0.6 B .0.5 C .0.4 D .0.36.双曲线22221(0,0)x ya b a b -=>>A .y =B .y =C .y =D .y x = 7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A .B C 8.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ABCD10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A.1 B.2CD1 12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试(吉林卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 43. 函数的图像大致为学+科+网...A. AB. BC. CD. D4. 已知向量,满足,,则A. 4B. 3C. 2D. 05. 双曲线的离心率为,则其渐近线方程为A. B. C. D.6. 在中,,,,则A. B. C. D.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.B.C.D.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C.D.10. 若在是减函数,则的最大值是A. B. C.D.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 5012. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

13. 曲线在点处的切线方程为__________.14. 若满足约束条件则的最大值为__________.15. 已知,,则__________.16. 已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23为选考题,考生根据要求作答。

学科&网(一)必考题:共60分。

17. 记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.18. 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19. 设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.20. 如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.21. 已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22. [选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.23. [选修4-5:不等式选讲]设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

13. 曲线在点处的切线方程为__________.【答案】【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程. 详解:点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.14. 若满足约束条件则的最大值为__________.【答案】9【解析】分析:先作可行域,再平移直线,确定目标函数最大值的取法.详解:作可行域,则直线过点A(5,4)时取最大值9.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15. 已知,,则__________.【答案】【解析】分析:先根据条件解出再根据两角和正弦公式化简求结果.详解:因为,,所以,因此点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16. 已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.【答案】【解析】分析:先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式求结果.学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...因为与圆锥底面所成角为45°,所以底面半径为因此圆锥的侧面积为点睛:本题考查线面角,圆锥的侧面积,三角形面积等知识点,考查学生空间想象与运算能力三、解答题:共70分。

相关文档
最新文档