高二物理选修3-1磁场讲义汇总

合集下载

人教版高中物理选修3-1 第三章 磁场知识点总结概括

人教版高中物理选修3-1 第三章 磁场知识点总结概括

选修3-1知识点第三章磁场3.1磁现象和磁场一、磁现象,最初发现的磁体是被称为“天然磁石”的矿物,其中含有主要成分为Fe3O4。

注意:天然磁石和人造磁铁都是永磁体。

①磁性:能够吸引铁质物体的性质。

②磁极:磁体上磁性最强的部分叫磁极。

小磁针静止时指南的磁极叫做南极,又叫S极;指北的磁极叫做北极,又叫N极。

二、电流的磁效应1、奥斯特通电直导线实验。

①导线:要南北方向放置②磁针要平行的放置于导线的下方或者上方。

2、实验现象,当给导线通时,与导线平行放置的小磁针发生转动。

3、实验结论,电可以生磁,即电流的磁效应。

三、磁场1、定义:磁体和电流周围空间存在的一种特殊物质,客观存在。

2、基本性质:磁场对放入其中的磁体或通电导体会产生磁力作用。

四、地球的磁场1、地球是一个巨大的磁体。

(类似条形磁体)2、地球周围空间存在的磁场叫地磁场。

3、磁偏角:地磁的北极在地理的南极附近,地磁的南极在地理的北极附近,但两者并不完全重合,它们之间的夹角称为磁偏角。

3.2磁感应强度一、磁感应强度,为描述磁场强弱的物理量,用符号“B”表示。

二、磁感应强度的方向1、物理学中把小磁针在磁场中静止时 N 极所指的方向规定为该点的磁感应强度的方向,简称为磁场的方向。

2、因为 N 极不能单独存在。

小磁针静止时是所受的合力为零,因而不能用测量 N 极受力的大小来确定磁感应强度的大小。

三、磁感应强度的大小1、电流元:很短的一段通电导线中的电流 I 与导线长度 L 的乘积IL。

(也可以叫点电流)2、通电指导线在磁场中受力大小为BILF(1)式中B 是比例系数,它与导线长度和电流大小都没有关系。

B是反映磁场性质的物理量,是由磁场自身决定的,与是否引入电流元、引入的电流元是否受力及受力大小无关。

(客观存在)(2)不同磁场中,B 一般不同。

3、磁感应强度的表达式:(1)定义:在导线与磁场垂直的情况下,所受的磁场力 F 跟电流 I和导线长度 L 的乘积 IL 的比值叫磁感应强度。

高二物理选修3-1第三章磁场知识点总结复习

高二物理选修3-1第三章磁场知识点总结复习

第三章磁场教案3.1 磁现象和磁场第一节、磁现象和磁场1.磁现象磁性:能吸引铁质物体的性质叫磁性.磁体:具有磁性的物体叫磁体.磁极:磁体中磁性最强的区域叫磁极。

2.电流的磁效应磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比)电流的磁效应:电流通过导体时导体周围存在磁场的现象(奥斯特实验)。

3.磁场磁场的概念:磁体周围存在的一种特殊物质(看不见摸不着,是物质存在的一种特殊形式)。

磁场的基本性质:对处于其中的磁极和电流有力的作用.磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的.磁场对电流的作用,电流与电流的作用,类比于库仑力和电场,形成磁场的概念,磁场虽然看不见、摸不着,但是和电场一样都是客观存在的一种物质,我们可以通过磁场对磁体或电流的作用而认识磁场.4.磁性的地球地球是一个巨大的磁体,地球周围存在磁场———地磁场.地球的地理两极与地磁两极不重合(地磁的N极在地理的南极附近,地磁的S极在地理的北极附近),其间存在磁偏角.地磁体周围的磁场分布情况和条形磁铁周围的磁场分布情况相似。

宇宙中的许多天体都有磁场。

月球也有磁场。

例1、以下说法中,正确的是()A、磁极与磁极间的相互作用是通过磁场产生的B、电流与电流的相互作用是通过电场产生的C、磁极与电流间的相互作用是通过电场与磁场而共同产生的D、磁场和电场是同一种物质例2、如图表示一个通电螺线管的纵截面,ABCDE在此纵截面内5个位置上的小磁针是该螺线管通电前的指向,当螺线管通入如图所示的电流时,5个小磁针将怎样转动?例3、有一矩形线圈,线圈平面与磁场方向成 角,如图所示。

设磁感应强度为B,线圈面积为S,则穿过线圈的磁通量为多大?例4、如图所示,两块软铁放在螺线管轴线上,当螺线管通电后,两软铁将(填“吸引"、“排斥”或“无作用力”),A端将感应出极。

3。

2 磁感应强度第二节 、 磁感应强度1.磁感应强度的方向:小磁针静止时N 极所指的方向规定为该点的磁感应强度方向 思考:能不能用很小一段通电导体来检验磁场的强弱呢?2.磁感应强度的大小匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。

物理选修3-1-知识点归纳(全)

物理选修3-1-知识点归纳(全)

物理选修3-1-知识点归纳(全) 第一章电学基础1.电荷、电场与库仑定律•电荷的本质和性质•电场的概念及特征•库仑定律的表述和应用2.电势、电势差和电势能•电势的概念、性质和单位•电势差的概念、性质和计算•电势能的概念、性质和计算3.电容与电容器•电容的概念、性质和计算•平行板电容器、球形电容器、电容的串、并联组合4.电流、电阻和欧姆定律•电流的概念、性质和单位•电阻的概念、性质、计算和分类•欧姆定律的表述和应用5.磁学基础•磁场的概念和特征•磁感应强度的概念和计算•洛伦兹力的概念、表述和应用第二章电磁感应1.电磁感应现象•感生电动势的概念和计算•导体在磁场中的运动规律2.电磁感应定律•法拉第电磁感应定律的表述和应用•楞次定律的表述和应用3.自感和互感•自感系数和互感系数的概念、性质和计算•互感器的应用4.交流电路•交变电压和交变电流的概念和表示方法•交流电路的基本元件和参数•交流电路的基本特性和计算方法第三章光学基础1.光的本质和性质•光的本质和特征•干涉、衍射、反射、折射的现象和解释2.光的传播•光速、光程、光程差的概念和计算•光的直线传播和折射定律•全反射和光的色散现象3.光的成像和光学仪器•光的成像公式和规律•球面镜的成像特点和应用•复合透镜的成像原理和计算方法第四章物质结构和性质1.物质的结构和组成•原子结构和基本粒子•周期表和元素的性质2.固体物质的结构和性质•晶体的结构和性质•固体材料的物理性质3.材料的热学性能•温度、热能和内能的关系•热力学定律和热学过程的基本属性•热传导、热辐射和热对流的计算和应用以上是对物理选修3-1的全面知识点归纳,希望能对大家的学习有所帮助。

选修3-1磁场知识梳理

选修3-1磁场知识梳理

选修3-1磁场知识梳理一.磁场的描述及磁场对电流的作用知识点一、磁场、磁感应强度1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。

(2)方向:小磁针的N极所受磁场力的方向。

2.磁感应强度(1)物理意义:描述磁场的强弱和方向。

(2)大小:B=FIL(通电导线垂直于磁场)。

(3)方向:小磁针静止时N极的指向。

(4)单位:特斯拉(T)。

3.匀强磁场(1)定义:磁感应强度的大小处处相等、方向处处相同的磁场称为匀强磁场。

(2)特点:疏密程度相同、方向相同的平行直线。

知识点二、磁感线通电直导线和通电线圈周围磁场的方向1.磁感线在磁场中画出一些有方向的曲线,使曲线上各点的切线方向跟这点的磁感应强度方向一致。

2.几种常见的磁场(1)常见磁体的磁场(如图1所示)图1(2)电流的磁场知识点三、安培力、安培力的方向匀强磁场中的安培力1.安培力的大小(1)磁场和电流垂直时:F=BIL。

(2)磁场和电流平行时:F=0。

2.安培力的方向图2左手定则判断:(1)伸出左手,让拇指与其余四指垂直,并且都在同一个平面内。

(2)让磁感线从掌心进入,并使四指指向电流方向。

(3)拇指所指的方向就是通电导线在磁场中所受安培力的方向。

磁场及安培定则的应用1.理解磁感应强度的三点注意(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B与F成正比,与IL成反比。

(2)测量磁感应强度时小段通电导线必须垂直磁场放入,如果平行磁场放入,则所受安培力为零,但不能说该点的磁感应强度为零。

(3)磁感应强度是矢量,其方向为放入其中的小磁针N极的受力方向,也是自由转动的小磁针静止时N极的指向。

2.磁场的叠加磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解。

3.安培定则的应用在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”。

安培力作用下导体的运动1.安培力(1)方向:根据左手定则判断。

高中物理选修3-1——磁场知识点总结

高中物理选修3-1——磁场知识点总结

高中物理选修3-1——磁场知识点总结一、磁场及其磁感线1、磁场(1)磁场是存在于磁极或电流周围空间里的一种特殊的物质,磁场和电场一样,都是“场形态物质”。

(2)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点磁场的方向。

(3)磁场的基本性质:磁场对处在它里面的磁极或电流有磁场力的作用。

磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。

2、磁感线(1)磁感线:是形象地描述磁场而引入的有方向的曲线。

在曲线上,每一点切线方向都在该点的磁场方向上,曲线的疏密反映磁场的强弱。

(2)磁感线的特点:a.磁感线是闭合的曲线,磁体的磁感线在磁体外部由N极到S极,内部由S极到N极。

b.任意两条磁感线不能相交。

3、几种常见磁场的磁感线的分布(1)条形磁铁和碲形磁铁的磁感线条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。

(2)通电直导线磁场的磁感线通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。

需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。

电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。

用右手握住直导线,伸直的大拇指与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

(3)环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线,在环形的中心轴上,由对称性可知,磁感线是与环形导线的平面垂直的一条直线。

如图甲所示,环形电流方向与磁感线方向的关系也可以用右手定则来判断,如图乙所示,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是圆环轴线上磁感线的方向;如图丙所示,让右手握住部分环形导线,伸直的大拇指与电流方向一致,则四指所指的方向就是围绕环形导线的磁感线的方向。

高中物理选修3-1磁场讲义

高中物理选修3-1磁场讲义

1、2、3、磁场磁感线磁场磁现象与人类有着密切的联系.例如生活中离不开的、电视、发电机、电动机,现代科学研究中离不开的电流表、质谱仪、计算机、回旋加速器等,都跟磁现象有关.这是因为电现象和磁现象有着密不可分的联系,凡是用到电的地方,几乎都有磁相伴随.磁悬浮与磁悬浮列车把两个磁铁的磁极靠近时,它们之间会产生相互作用的磁力:同名磁极互相推斥,异名磁极互相吸引.磁极之间相互作用的磁力是通过磁场发生的.磁铁在周围的空间里产生磁场,磁场对处在它里面的磁极有磁场力的作用.磁铁并不是磁场的唯一来源.1820年丹麦物理学家奥斯特(1777-1851)做过下面的实验:把一条导线平行地放在磁针的上方,给导线通电,磁针就发生偏转.这说明不仅磁铁能产生磁场,电流也能产生磁场.电流能够产生磁场,那么电流在磁场中又会怎样呢?把一段直导线放在磁铁的磁场里,当导线中有电流通过时,可以看到导线因受力而发生运动.可见,磁场不仅对磁极产生力的作用,对电流也产生力的作用.电流能够产生磁场,而磁场对电流又有力的作用,那么电流和电流之间自然应该通过磁场发生作用.实验看到,两条平行直导线,当通以相同方向的电流时,它们相互吸引,当通以相反方向的电流时,它们相互排斥.这时每个电流都处在另一个电流的磁场里,因而受到磁场力的作用.也就是说,电流和电流之间,就像磁极和磁极之间一样,也会通过磁场发生相互作用.综上所述,我们认识到,磁体或电流在其周围空间里产生磁场,而磁场对处在它里面的磁极或电流有磁场力的作用.这样,我们对磁极和磁极之间、磁极和电流之间、电流和电流之间的相互作用获得了统一认识,所有这些相互作用都是通过磁场来传递的.磁场的方向磁感线把小磁针放在磁体或电流的磁场中,小磁针因受磁场力的作用,它的两极静止时不一定指向南北方向,而指向另外某一个方向.在磁场中的不同点,小磁针静止时指的方向一般并不相同.这个事实说明,磁场是有方向性的.物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点的磁场方向.在磁场中人们可以利用磁感线来形象地描写各点的磁场方向.所谓磁感线,是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上.实验中常用铁屑在磁场中被磁化的性质,来显示磁感线的形状.在磁场中放一块玻璃板,在玻璃板上均匀地撒一层细铁屑,细铁屑在磁场里被磁化成“小磁针”.轻敲玻璃板使铁屑能在磁场作用下转动,铁屑静止时有规则地排列起来,就显示出磁感线的形状.电流的磁效应图中表示条形磁铁和蹄形磁铁的磁感线分布情况.磁铁外部的磁感线是从磁铁的北极出来,进入磁铁的南极.图甲表示直线电流磁场的磁感线分布情况.直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上.实验表明,改变电流的方向,各点的磁场方向都变成相反的方向,即磁感线的方向随着改变.直线电流的方向跟它的磁感线方向之间的关系可以用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向(图乙).图甲表示环形电流磁场的磁感线分布情况.环形电流磁场的磁感线是一些围绕环形导线的闭合曲线.在环形导线的中心轴线上,磁感线和环形导线的平面垂直.环形电流的方向跟中心轴线上的磁感线方向之间的关系,也可以用安培定则来判定:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向(图乙).图中表示通电螺线管磁场的磁感线分布情况.螺线管通电以后表现出来的磁性,很像是一根条形磁铁,一端相当于北极,另一端相当于南极.改变电流的方向,它的南北极就对调.通电螺线管外部的磁感线和条形磁铁外部的磁感线相似,也是从北极出来,进入南极.通电螺线管部具有磁场,部的磁感线跟螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线.通电螺线管的电流方向跟它的磁感线方向之间的关系,也可用安培定则来判定:用右手握住螺线管.让弯曲的四指所指的方向跟电流的方向一致.大拇指所指的方向就是螺线管部磁感线的方向.也就是说,大拇指指向通电螺线管的北极.与天然磁铁相比,电流磁场的强弱和有无容易调节和控制,因而在实际中有很多重要的应用.电磁起重机、、电动机、发电机,以及在自动控制中得到普遍应用的电磁继电器等.都离不开电流的磁场.在磁场中也可以用磁感线的疏密程度大致表示磁感应强度的大小.在同一个磁场的磁感线分布图上,磁感线越密的地方,表示那里的磁感应强度越大.这样,从磁感线的分布就可以形象地表示出磁场的强弱和方向.如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫做匀强磁场.匀强磁场是最简单但又很重要的磁场,在电磁仪器和科学实验中有重要的应用.距离很近的两个异名磁极之间的磁场,通电螺线管部的磁场,除边缘部分外,都可认为是匀强磁场.4 安培力磁感应强度磁场不仅有方向性,而且有强弱的不同.我们怎样来表示磁场的强弱呢?与电场强度类似,研究磁场的强弱,我们要从分析电流在磁场中的受力情况着手,找出表示磁场强弱的物理量.磁场对电流的作用力通常称为安培力.这是为了纪念法国物理学家安培(1775-1836),他研究磁场对电流的作用力有杰出的贡献.安培力的大小磁感应强度实验表明:把一段通电直导线放在磁场里,当导线方向与磁场方向垂直时,电流所受的安培力最大;当导线方向与磁场方向一致时,电流所受的安培力最小,等于零;当导线方向与磁场方向斜交时,所受安培力介于最大值和最小值之间.通电导线长度一定时,电流越大,导线所受安培力就越大;电流一定时,通电导线越长,安培力也越大.精确的实验表明,通电导线在磁场受到的安培力的大小,既与导线的长度L成正比,又与导线中的电流I成正比,即与I和L的乘积IL成正比,用公式表示为F=BIL,上两式中的比值B有什么物理意义呢?在不同的蹄形磁铁的磁场中做上述实验,将会发现:在同一磁场中,不管电流I、导线长度L怎样改变,比值B总是确定的.但是在不同的磁场中,比值B一般是不同的.可见,B是由磁场本身决定的.在电流I、导线长度L相同的情况下,电流所受的安培力F越大,比值B越大,表示磁场越强.因而我们可以用比值B表示磁场的强弱,叫做磁感应强度.在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度.在上述实验中,导线所在处蹄形磁铁两极间的磁场强弱是处处相同的.但是,像电场一样,磁场中不同位置处的磁场强弱一般是不同的.两个条形磁铁的磁极离得较远时,磁力很小,让它们逐渐靠近,你会感到磁力在增大.这说明,离磁极远近不同位置处,磁场的强弱是不同的.在这种磁场中,我们仍然可以用上述方法研究磁场,只是此时要用一段特别短的通电导线来研究磁场的强弱.当通电导线的长度很短时,用上述方法定义出的磁感应强度就是导线所在处的磁感应强度.磁感应强度B的单位是由F.I和L的单位决定的.在国际单位制中,磁感应强度的单位是特斯拉,简称特,国际符号是T,地面附近地磁场的磁感应强度大约是0.3×10-4T~0.7×10-4T,永磁铁的磁极附近的磁感应强度大约是10-3T~1T,在电机和变压器的铁芯中,磁感应强度可达0.8T~1.4T.磁场还具有方向性,我们把磁场中某一点的磁场方向定义为该点磁感应强度的方向,这样磁感应强度这一矢量就可以全面地反映出磁场的强弱和方向了.引入了磁感应强度的概念,由公式F=BIL知道,在匀强磁场中,在通电直导线与磁场方向垂直的情况下.电流所受的安培力F等于磁感应强度B、电流I和导线长度L三者的乘积.在非匀强磁场中,公式F=BIL适用于很短的一段通电导线,这是因为导线很短时,它所在处各点的磁感应强度的变化很小,可近似认为磁场是匀强磁场.安培力的方向安培力的方向既跟磁场方向垂直,又跟电流方向垂直,也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面.通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,可以用左手定则来判定:伸开左手.使大拇指跟其余四个手指垂直.并且都跟手掌在一个平面,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向.*通电导线方向与磁场方向不垂直时的安培力如果通电导线方向不跟磁场方向垂直,如何计算电流受到的安培力呢?当通电导线方向与磁场方向有一个夹角θ时,我们可以把磁感应强度B分解为两个分量:一个是跟通电导线方向平行的分量B1=Bcosθ,另一个是跟通电导线方向垂直的分量B2=Bsinθ.B1与通电导线方向平行,对电流没有作用力,电流受到的力是由B2决定的,即F=ILB2.将B2=Bsinθ代入上式,得到F=ILBsinθ.这就是通电导线方向与磁场方向成某一角度时安培力的公式.公式F=BIL是上式θ=90°时的特殊情况.这时安培力的方向又如何判定呢?我们仍旧可以用左手定则来判定安培力的方向,只是这时磁感线是倾斜进入手心的.磁通量在电磁学里常常要讨论穿过某一个面的磁场,为此需要引入一个新的物理量棗磁通量.设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S,我们定义磁感应强度B与面积S的乘积,叫作穿过这个面的磁通量,简称磁通.如果用Ф表示磁通量,则有Ф=BS.磁通量的意义可以用磁感线形象地加以说明.我们知道在同一磁场的图示中,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大.因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大.如果平面跟磁场方向不垂直,我们可以作出它在垂直于磁场方向上的投影平面.从图中可以看出,穿过斜面和投影面的磁感线条数相等,即磁通量相等.因此,同一个平面,当它跟磁场方向垂直时,穿过它的磁感线条数最多,磁通量最大.当它跟磁场方向平行时,没有磁感线穿过它,即穿过的磁通量为零.在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb.1Wb=1T·1m2.积的磁通量,因此常把磁感应强度叫做磁通密度,并且用Wb/m2作单位.电流表的工作原理电流表是测定电流强弱和方向的电学仪器.实验时经常使用的电流表是磁电式仪表.这种电流表的构造是在一个很强的蹄形磁铁的两极间有一个固定的圆柱形铁芯,铁芯外面套有一个可以绕轴转动的铝框,铝框上绕有线圈,铝框的转轴上装有两个螺旋弹簧和一个指针.线圈的两端分别接在这两个螺旋弹簧上,被测电流经过这两个弹簧流入线圈.蹄形磁铁和铁芯间的磁场是均匀地辐向分布的,不管通电线圈转到什么角度,它的平面都跟磁感线平行.当电流通过线圈的时候,线圈上跟铁柱轴线平行的两边都受到安培力,这两个力产生的力矩使线圈发生转动.线圈转动时,螺旋弹簧被扭动,产生一个阻碍线圈转动的力矩,其大小随线圈转动角度的增大而增大.当这种阻碍线圈转动的力矩增大到同安培力产生的使线圈发生转动的力矩相平衡时,线圈停止转动.磁场对电流的作用力跟电流成正比,因而线圈中的电流越大,安培力产生的力矩也越大,线圈和指针偏转的角度也就越大.因此,根据指针偏转角度的大小.可以知道被测电流的强弱.当线圈中的电流方向改变时,安培力的方向随着改变,指针的偏转方向也随着改变.所以,根据指针的偏转方向,可以知道被测电流的方向.磁电式仪表的优点是灵敏度高,可以测出很弱的电流;缺点是绕制线圈的导线很细,允许通过的电流很弱(几十微安到几毫安),如果通过的电流超过允许值,很容易把它烧坏.这一点我们在使用时一定要特别注意.5 磁场对运动电荷的作用磁场对电流有力的作用,电流是由电荷的定向移动形成的.由此自然会想到:这个力可能是作用在运动电荷上的,而作用在通电导线上的安培力是作用在运动电荷上的力的宏观表现.从阴极发射出来的电子束,在阴极和阳极间的高电压作用下,轰击到长条形的荧光屏上激发出荧光,可以显示出电子束运动的径迹.实验表明,在没有外磁场时,电子束是沿直线前进的.如果把射线管放在蹄形磁铁的两极间,荧光屏上显示的电子束运动的径迹就发生了弯曲.这表明,运动电荷确实受到了磁场的作用力,这个力通常叫做洛仑兹力.荷兰物理学家洛仑兹(1853-1928)首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,为纪念他,人们称这种力为洛仑兹力.洛仑兹力的方向洛仑兹力的方向也可用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,且处于同一平面,把手放入磁场中,让磁感线垂直穿入手心,四指指向正电荷运动的方向,那么,拇指所指的方向就是正电荷所受洛仑兹力的方向.运动的负电荷在磁场中所受的洛仑兹力,方向跟正电荷相反.洛仑兹力的大小现在来确定洛仑兹力的大小.有一段长度为L的通电导线,横截面积为S,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,导线中的电流为I=nqvS.这段导线垂直于磁场方向放入磁感应强度为B的磁场中所受的安培力F安=ILB=(nqvS)LB.安培力F安可以看作是作用在每个运动电荷上的洛仑兹力F的合力.这段导线中含有的运动电荷数为nLS,F=qvB.上式中各量的单位分别为N、C、m/s、T.*v与B不垂直时的洛仑兹力如果导线不是垂直地放入磁场,这时安培力的公式是F安=ILBsinθ.重复上面的推导过程可得F=qvBsinθ.公式F=qvB是F=qvBsinθ在θ=90°时的特殊情况.这时的洛仑兹力的方向仍用左手定则来判定,只是此时磁感线是斜着穿入手心的.运动电荷在磁场中受到洛仑兹力的作用,运动方向会发生偏转.这一点对地球上的生命来说有十分重要的意义.从太阳或其他星体上,时刻都有大量的高能粒子流放出,称为宇宙射线.这些高能离子流,如果都到达地球,将对地球上的生物带来危害.庆幸的是,地球周围存在地磁场,地磁场改变宇宙射线中带电粒子的运动方向,对宇宙射线起了一定的阻挡作用.6 带电粒子在磁场中的动动运动轨迹垂直射入匀强磁场中的带电粒子,在洛仑兹力F=qvB的作用下,将会偏离原来的运动方向.那么,粒子的运动径迹是怎样的呢?我们来做下面的实验.实验所用的仪器是一种特制的电子射线管,由电子枪发出的电子射线可以使管的低压水银蒸气(或氢气)发出辉光,显示出电子的径迹.在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹就弯曲成圆形.垂直射入匀强磁场的带电粒子,它的初速度和所受洛仑兹力的方向都在跟磁场方向垂直的平面,没有任何作用使粒子离开这个平面,所以粒子只能在这个平面运动.洛仑兹力总是跟粒子的运动方向垂直,不对粒子做功,它只改变粒子运动的方向,而不改变粒子的速率,所以粒子运动的速率v是恒定的.这时洛仑兹力F=qvB的大小不变,即带电粒子受到一个大小不变、方向总与粒子运动方向垂直的力,因此带电粒子做匀速圆周运动,其向心力就是洛仑兹力.轨道半径和周期一带电粒子的质量为m,电荷量为q,速率为v,它在磁感应强度为B的匀强磁场中做匀速圆周运动的轨道半径r有多大呢?提供的,所以上式告诉我们,在匀强磁场中做匀速圆周运动的带电粒子,它的轨道半径跟粒子的运动速率成正比.运动的速率越大,轨道的半径也越大.这个式子告诉我们,带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关.电场可以对带电粒子施加影响,磁场也可以对运动的带电粒子施加影响,当然,电场和磁场共同存在时对带电粒子也会施加影响.这一知识在现代科学技术中有着广泛的应用.【例题】一质量为m,电荷量为q的粒子,从容器A下方的小孔S1飘入电势差为U的加速电场.然后让粒子垂直进入磁感应强度为B的匀强磁场中做匀速圆周运动,最后打到照相底片D上(图16-28).求:①粒子进入磁场时的速率;②粒子在磁场中运动的轨道半径.解析质谱仪在上图中,如果容器A中含有电荷量相同而质量有微小差别的粒子,根据例题中的结果可知,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片的不同地方,在底片上形成若干谱线状的细条,叫做质谱线.每一条谱线对应于一定的质量.从谱线的位置可以知道圆周的半径r,如果再已知带电粒子的电荷量q,就可以算出它的质量.这种仪器叫做质谱仪.上图就是质谱仪的原理示意图.利用质谱仪对某种元素进行测量,可以准确地测出各种同位素的原子量.图中所示的是锗的质谱线,在谱线上标出的数字是锗同位素的质量数.质谱仪最初是由汤姆生的学生阿斯顿设计的,他用质谱仪首先得到了氖20和氖22的质谱线,证实了同位素的存在.后来经过多次改进,质谱仪已经成了一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.回旋加速器在现代物理学中,人们要用能量很高的带电粒子去轰击各种原子核,观察它们的变化情况.怎样才能在实验室大量产生高能量的带电粒子呢?这就要用一种新的实验设备回旋加速器.我们已经学过,利用电场可以使带电粒子加速.早期制成的加速器,就是用高压电源的电势差来加速带电粒子的.这种加速器受到实际所能达到的电势差的限制,粒子获得的能量并不太高,只能达到几十万到几兆电子伏.为了提高粒子的能量,可以设想让粒子经过多次电场来加速,这倒是一个很合乎道理的想法.但是想实现这一设想,需要建一个很长很长的实验装置,其中包含多级提供加速电场的装置.能不能在较小的空间围让粒子受到多次电场的加速呢?1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地应用带电粒子在磁场中的运动特点解决了这一问题.回旋加速器的工作原理如图所示.放在A0处的粒子源发出一个带正电的粒子,它以某一速率v0垂直进入匀强磁场,在磁场中做匀速圆周运动.经过半个周期,当它沿着半圆弧A0A1到达A1时,在A1A1′处造成一个向上的电场,使这个带电粒子在A1A1′处受到一次电场的加速,速率由v0增加到v1.然后粒子以速率v1在磁场中做匀速圆周运动.我们知道,粒子的轨道半径跟它的速率成正比,因而粒子将沿着半径增大了的圆周运动.又经过半个周期,当它沿着半圆弧A1′A2′到达A2′时,在A2′A2处造成一个向下的电场,使粒子又一次受到电场的加速,速率增加到v2.如此继续下去,每当粒子运动到A1A1′、A3A3′等处时都使它受到向上电场的加速,每当粒子运动到A2′A2、A4′A4等处时都使它受到向下电场的加速,粒子将沿着图示的螺线A0A1A1′A2′A2……回旋下去,速率将一步一步地增大.带电粒子在匀强磁场中做匀速圆周运动的周期T=2πm/qB跟运动速率和轨道半径无关,对一定的带电粒子和一定的磁感应强度来说,这个周期是恒定的.因此,尽管粒子的速率和半径一次比一次增大.运动周期T却始终不变,这样,如果在直线AA、A′A′处造成一个交变电场,使它也以相同的周期T往复变化,那就可以保证粒子每经过直线AA和A′A′时都正好赶上适合的电场方向而被加速.回旋加速器的核心部分是两个D形的金属扁盒,这两个D形盒就像是沿着直径把一个圆形的金属扁盒切成的两半.两个D形盒之间留一个窄缝,在中心附近放有粒子源.D形盒装在真空容器中,整个装置放在巨大电磁铁的两极之间,磁场方向垂直于D形盒的底面.把两个D形盒分别接在高频电源的两极上,如果高频电源的周期与带电粒子在D形盒中的运动周期相同,带电粒子就可以不断地被加速了.带电粒子在D形盒沿螺线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.回旋加速器的出现,使人类在获得具有较高能量的粒子方面前进了一步.为此,1939年劳伦斯荣获了诺贝尔物理学奖.但是,在30年代末期发现,用这种经典的回旋加速器加速质子,最高能量仅能达到20MeV,要想进一步提高质子的能量就很困难了.这是因为.在粒子的能量很高的时候,它的运动速度接近于光速,按照狭义相对论(以后会介绍),这时粒子的质量将随着速率的增加而显著地增大,粒子在磁场中回旋一周所需的时间要发生变化.交变电场的频率不再跟粒子运动的频率一致,这就破坏了加速器的工作条件,进一步提高粒子的速率就不可能了.如果从这一点考。

高中物理全套讲义选修3-1 第8讲 磁场(中档版) 教师版讲义

高中物理全套讲义选修3-1 第8讲 磁场(中档版) 教师版讲义

磁场一、磁场1.磁场⑴磁体各部分强弱不同,磁性最强的区域叫做磁极。

能够自由转动的磁体,静止时指南的磁极叫南极(S极),指北的磁极叫北极(N极)。

与电荷相似,自然界中总存在两个磁极,同名磁极相互排斥,异名磁极相互吸引。

⑵电流周围存在磁场........⑶磁场:是磁极、电流和运动电荷周围存在的一种物质,对放在磁场中的磁极、电流有磁场力的作用。

磁体与磁体之间、磁体与通电导体之间、通电导体与通电导体之间的相互作用是通过磁场发生的。

典例精讲【例1.1】(2019春•西城区期末)如图所示,在水平长直导线的正下方,有一只可以自由转动的小磁针。

现给直导线通以由a向b的恒定电流I,若地磁场的影响可忽略,则小磁针的N极将()A.保持不动 B.向下转动C.垂直纸面向里转动 D.垂直纸面向外转动【分析】小磁针能体现出磁场的存在,且小磁针静止时N极的指向为磁场的方向,即为磁感应强度的方向。

也可为磁感线在该点的切线方向。

而电流周围的磁场由右手螺旋定则来确定磁场方向。

【解答】解:当通入如图所示的电流时,根据右手螺旋定则可得小磁针的位置的磁场方向是垂直纸面向里,由于小磁针静止时N极的指向为磁场的方向,所以小磁针的N极将垂直于纸面向里转动。

故选:C。

【例1.2】(2019•如皋市校级学业考试)地磁场如图所示,有一个带正电的宇宙射线粒子正垂直于地面向赤道射来,在地磁场的作用下,它将()A.向南偏转 B.向北偏转 C.向东偏转 D.向西偏转【分析】根据地球磁场的分布,由左手定则可以判断粒子的受力的方向,从而可以判断粒子的运动的方向。

【解答】解:地球的磁场由南向北,当带正电的宇宙射线粒子垂直于地面向赤道射来时,根据左手定则可以判断粒子的受力的方向为向东,所以粒子将向东偏转,故C正确、ABD错误。

故选:C。

【例1.3】(2019春•邗江区校级期中)以下说法正确的是()A.只有两个磁铁相互接触时,才能发生相互作用B.把一根条形磁铁从中间折断,则被分开的两部分只有N极或S极C.极光现象与地球的磁场有关D.人们代步的电动自行车中应存在磁体【分析】磁体与磁体之间的作用是通过磁场发生的;把一根条形磁铁从中间折断,则被分开的两部分都有N极或S极;极光现象与地球的磁场有关;人们代步的电动自行车中应存在磁体.【解答】解:A、磁体与磁体之间的作用是通过磁场发生的,两个磁铁没有相互接触时,也能发生相互作用。

高中物理选修31——磁场知识点总结

高中物理选修31——磁场知识点总结

高中物理选修3-1——磁场知识点总结高中物理选修3-1——磁场知识点总结一、磁场及其磁感线1、磁场(1)磁场是存在于磁极或电流周围空间里的一种特殊的物质,磁场和电场一样,都是“场形态物质”。

(2)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点磁场的方向。

(3)磁场的基本性质:磁场对处在它里面的磁极或电流有磁场力的作用。

磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。

2、磁感线(1)磁感线:是形象地描述磁场而引入的有方向的曲线。

在曲线上,每一点切线方向都在该点的磁场方向上,曲线的疏密反映磁场的强弱。

(2)磁感线的特点:a.磁感线是闭合的曲线,磁体的磁感线在磁体外部由N极到S极,内部由S极到N极。

b.任意两条磁感线不能相交。

3、几种常见磁场的磁感线的分布(1)条形磁铁和碲形磁铁的磁感线条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。

(2)通电直导线磁场的磁感线通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。

需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。

电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。

用右手握住直导线,伸直的大拇指与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

(3)环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线,在环形的中心轴上,由对称性可知,磁感线是与环形导线的平面垂直的一条直线。

如图甲所示,环形电流方向与磁感线方向的关系也可以用右手定则来判断,如图乙所示,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是圆环轴线上磁感线的方向;如图丙所示,让右手握住部分环形导线,伸直的大拇指与电流方向一致,则四指所指的方向就是围绕环形导线的磁感线的方向。

高中物理,选修3---1,第三章磁场,全章课件汇总

高中物理,选修3---1,第三章磁场,全章课件汇总

C.地球的周围存在着磁场,地球是一个大磁体, 地球的地理两极与地磁两极并不重合,其间有一 个交角,这就是磁偏角,磁偏角的数值在地球上不 同地方是相同的
D.磁场是客观存在的一种物质
选修3—1 第三章
§3.2
磁场
磁感应强度
◆电场强弱怎么表示的? 电场对其中的电荷有电场力的作用,研究电场 的强弱,从分析电荷在电场中的受力情况着手, 找到表示电场强弱的物理量,即电场强度。
高中物理选修3---1第三章 磁场全章课件汇总
§3.1
§3.2
磁现象和磁场
磁感应强度
§3.3
§3.4
几种常见的磁场
通电导线在磁场中受到的力
§3.5
§3.6
运动电荷在磁场中受到的力
带电粒子在匀强磁场中的运动
选修3—1 第三章
§3.1
磁场
通电导线在磁场中受到的力
我国是世界上最早发现磁现象的 国家,早在春秋战国时期就有磁 铁的记载
是安培力 的方向吗?
●磁感线的切线方向表示B的方向;疏密程 度表示B的大小。
3.匀强磁场
磁感线是什么样 的? ◆磁感应强度的大小和方向处处相同
磁感线是一簇平行的、等距的直线 ◆实例:

四、安培力的大小和方向
1.大小: F=BIL
(1)适用条件:①匀强磁场 ②导线与磁场方向垂直。
2) 扩展:①在非匀强磁场中,公式F=BIL仅适 用于很短的一段通电导线。 ②导线与磁场方向不垂直,L为等效长度。
(1) 与通电导线在磁场中放置的方向有关
I
I
Iபைடு நூலகம்
I∥L时, F安=0
I⊥L时, F安最大
I与L斜交时, 0<F安<F安最大

高中物理选修3-1知识点归纳(完美版)

高中物理选修3-1知识点归纳(完美版)

高中物理选修3-1知识点归纳(完美版)前言高中物理选修3-1是高三物理的一门选修课,是学习物理的重要组成部分。

下面将会对此课程的主要知识点进行系统的归纳。

第一部分:电磁场基础1. 静电场静电场是指电荷所产生的电场,它是在相对静止的带电粒子周围的区域产生的。

静电场中电场强度矢量的方向是电荷的正向,所以在空间中,静电场的分布形状与带电体形状有关。

静电场的主要概念有:电荷、电场、电势、电场线等。

2. 电容器和电场能电容器是由两个导体构成的器件,它们之间放置绝缘材料,可以储存电荷,并且可以储存电场能。

电场能是指带电粒子在电场中的能量,它的大小与电势有关。

3. 当量电荷和库仑力当量电荷是标准单位电荷,在电磁学中通常使用“库仑”作为当量电荷的计量单位。

库仑力是指电荷之间相互作用的力,它的大小与电荷的数量和距离有关。

第二部分:交流电1. 交流电基础交流电是指电压和电流随时间周期性变化的电流,其频率一般为50Hz或60Hz。

交流电的频率和振幅都是周期性变化的,可以表示为正弦波形。

交流电的主要特点是可以实现远距离传输,并且可以通过变压器进行改变电压。

2. 交流电路分析交流电路是指由交流电源、电感器、电容器和电阻器等组成的电路。

在分析交流电路时,需要用到阻抗的概念,阻抗是指交流电流通过电子元件时产生的电阻力。

3. 电感和互感电感是指通过电流改变电场的电磁器件,其基本特征是电流变化的速率对电压的改变速率有影响。

互感是指两个电磁元件之间相互影响的量,是指相互产生的电感量。

第三部分:电磁波1. 电磁波概述电磁波是指由电场和磁场通过介质或真空中传递的波动。

电磁波的典型特点是不需要介质即可传递,其传播速度是恒定的。

2. 电磁波的特性电磁波的特性包括:频率、波长、速度、偏振等。

其中,频率和波长是电磁波的主要特性,也是区分不同类型电磁波的重要标志。

3. 光的本质与光学显微镜光是电磁波中的一种,是人类最重要的感官之一。

光学显微镜是一种通过光学原理来观察细胞、菌群、细菌和物质组织的一种显微镜。

高中物理选修3-1讲义:第三章第3讲几种常见的磁场

高中物理选修3-1讲义:第三章第3讲几种常见的磁场

[目标定位] 1.知道磁感线的概念,并能记住几种常见磁场的磁感线分布特点.2.会用安培定则判断电流周围的磁场方向.3.知道磁通量的概念,并会计算磁通量.4.知道安培分子电流假说的内容,并能解释简单的磁现象.一、磁感线如果在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这一点的磁感应强度的方向一致,这样的曲线就叫做磁感线.想一想实验中常用铁屑来模拟磁感线的形状,是否说明磁感线真实存在?答案磁感线并不真实存在,细铁屑在磁场里被磁化成“小磁针”,受震动后会有规则排列,能显示磁感应强度的方向,无数个细铁屑连接在一起,好像磁感线显现出来一样.二、几种常见的磁场(如图331所示)1.直线电流的磁场直线电流的磁场方向可以用安培定则来表示:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向.这个规律也叫右手螺旋定则.2.环形电流的磁场环形电流的磁场可用另一种形式的安培定则表示:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向.3.通电螺线管的磁场通电螺线管是由许多匝环形电流串联而成的.因此,通电螺线管的磁场也就是这些环形电流磁场的叠加.所以环形电流的安培定则也可以用来判定通电螺线管的磁场,这时拇指所指的方向就是螺线管内部磁场的方向,从外部看,通电螺线管的磁场相当于一个条形磁铁的磁场,所以拇指所指的方向也是它的北极方向.想一想 如果把一个小磁针放入通电螺线管的内部,静止时小磁针的N 极将指向螺线管的哪一极呢?答案 小磁针的N 极指向通电螺线管的N 极.三、安培分子电流假说 法国学者安培提出了著名的分子电流假说.他认为在原子、分子等物质微粒的内部,存在的一种环形电流——分子电流.分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极.想一想 没有磁性的铁棒在受到外界磁场作用时,两端对外界显示出较强的磁作用,形成了磁极,这怎么解释呢?答案 铁棒在未被磁化时,内部分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性.当铁棒受到外界磁场作用时,分子电流的取向变得大致相同,两端对外界显示出较强的磁作用,形成磁极,这实际上就是磁化现象.四、匀强磁场1.定义:磁感应强度的大小、方向处处相同的磁场.2.磁感线:间隔相同的平行直线.3.实例:距离很近的对放的两个异名磁极间的磁场,两平行放置的通电线圈,其中间区域的磁场都是匀强磁场.五、磁通量1.定义:匀强磁场磁感应强度B 与和磁场方向垂直的平面面积S 的乘积,叫做穿过这个面积的磁通量,简称磁通.2.表达式:Φ=BS . 单位:Wb,1 Wb =1 T·m 2.3.引申:B =ΦS,因此磁感应强度B 又叫磁通密度.一、对磁感线的深化理解磁感线和电场线的比较相同点:都是为了形象地描述场,而假想的曲线;都是疏密程度表示场的强弱,切线方向表示场的方向;都不能相交.不同点:电场线起于正电荷,终止于负电荷,不闭合;但磁感线是闭合曲线.例1关于磁场和磁感线的描述,下列说法中正确的是()A.磁感线总是从磁铁的N极出发,到S极终止的B.磁感线可以形象地描述各磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致C.磁感线可以用细铁屑来显示,因而是真实存在的D.两个磁场的的叠加区域,磁感线可能相交答案 B解析条形磁铁内部磁感线从S极到N极,A不正确;磁感线上每一点切线方向表示磁场方向,磁感线的疏密表示磁场的强弱,小磁针静止时北极受力方向和静止时北极的指向均为磁场方向,所以选项B正确;磁感线是为了形象地描述磁场而假设的一组有方向的闭合的曲线,实际上并不存在,所以选项C不正确;叠加区域合磁场的方向也具有唯一性,故磁感线不可能相交,所以D选项错误.借题发挥磁场、电场都是一种客观存在的特殊物质,磁感线、电场线虽是假想的曲线,但可形象地描述磁场、电场的强弱和方向.应注意两者的区别与关系.二、几种常见的磁场分布1.常见永磁体的磁场(如图332所示)图3322.三种常见的电流的磁场安培定则立体图横截面图纵截面图直线电流以导线上任意点为圆心的多组同心圆,越向外越稀疏,磁场越弱环形电流内部磁场比环外强,磁感线越向外越稀疏通电螺线管内部为匀强磁场且比外部强,方向由S极指向N极,外部类似条形磁铁,由N极指向S极例2如图333所示,分别给出了导线中的电流方向或磁场中某处小磁针静止时N极的指向或磁感线方向.请画出对应的磁感线(标上方向)或电流方向.图333答案用安培定则来判断,分别如下图中各图所示.解析如果已知电流的方向,可用右手螺旋定则判断磁感线的方向.如果已知小磁针静止时N极指向,那么小磁针N极所指方向就是磁感线方向.三、磁通量的理解1.磁通量的计算(1)公式:Φ=BS适用条件:①匀强磁场;②磁感线与平面垂直.(2)当平面与磁场方向不垂直时,穿过平面的磁通量可用平面在垂直于磁场B方向的投影面积进行计算,即Φ=BS⊥.2.物理意义:磁通量可用穿过某一平面的磁感线条数表示;若磁感线沿相反方向穿过同一平面,则磁通量等于穿过平面的磁感线的净条数(磁通量的代数和).温馨提示磁通量的正、负既不表示大小,也不表示方向,它表示磁通量从某个面穿入还是穿出,若规定穿入为正,则穿出为负,反之亦然.图334例3如图334所示,线圈平面与水平方向夹角θ=60°,磁感线竖直向下,线圈平面面积S=0.4 m2,匀强磁场磁感应强度B=0.6 T,则穿过线圈的磁通量Φ为多少?答案0.12 Wb解析方法一:把S投影到与B垂直的方向,则Φ=B·S cos θ=0.6×0.4×cos 60° Wb=0.12 Wb.方法二:把B分解为平行于线圈平面的分量B∥和垂直于线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=B cos θ,则Φ=B⊥S=B cos θ·S=0.6×0.4×cos 60° Wb=0.12 Wb.四、安培分子电流假说的应用及意义图3351.安培分子电流假说安培认为,物质微粒内的分子电流使它们相当于一个个的小磁体(如图335所示).2.当铁棒中分子电流的取向大致相同时,铁棒对外显磁性(如图336甲所示);当铁棒中分子电流的取向变得杂乱无章时,铁棒对外不显磁性(如图336乙所示),所以磁体在高温或受到猛烈撞击时,将会退磁.图3363.安培分子电流假说揭示了磁现象的电本质:一切磁现象都是由电荷的运动产生的.例4(2014·衡水高二检测)关于磁现象的电本质,安培提出了分子电流假说.他提出此假说的背景是()A.安培通过精密仪器观察到分子电流B.安培根据原子结构理论,进行严格推理得出的结论C.安培根据环形电流的磁性与磁铁相似提出的一种假说D.安培凭空想出来的答案 C对磁感线的理解1.下图表示磁场的磁感线,依图分析磁场中a点的磁感应强度比b点的磁感应强度大的是()答案AC解析磁感线的疏密可表示磁感应强度的大小.安培定则的理解和应用图3372.如图337所示,螺线管中通有电流,如果在图中的a、b、c三个位置上各放一个小磁针,其中a在螺线管内部,则()A.放在a处的小磁针的N极向左B.放在b处的小磁针的N极向右C.放在c处的小磁针的S极向右D.放在a处的小磁针的N极向右答案BD解析由安培定则,通电螺线管的磁场如右图所示,右端为N极,左端为S极,在a点磁场方向向右,则小磁铁在a点时,N极向右,A项错,D项对,在b点磁场方向向右,则磁针在b点时,N极向右,B项正确,在c点,磁场方向向右,则磁针在c点时,N极向右,S极向左,C项错.对磁通量的理解3.如图338所示,一个单匝线圈abcd 水平放置,面积为S ,有一半面积处在竖直向下的匀强磁场中,磁感应强度为B ,当线圈以ab 边为轴转过30°和60°时,穿过线圈的磁通量分别是多少?图338答案 BS 2 BS 2解析 当线圈分别转过30°和60°时,线圈平面在垂直于磁场方向的有效面积相同,都有S ⊥=S 2,所以磁通量相同,都等于BS 2.(时间:60分钟)题组一 磁场线及安培定则的应用1.(2014·福州高二检测)关于电场和磁场,下列说法正确的是( )A.我们虽然不能用手触摸到电场的存在,却可以用试探电荷去探测它的存在和强弱B.电场线和磁感线是可以形象描述场强弱和方向的客观存在的曲线C.磁感线和电场线一样都是闭合的曲线D.磁体之间的相互作用是通过磁场发生的,磁场和电场一样,都是客观存在的物质答案AD解析电场和磁场都是客观存在的物质,电场线和磁感线都是假想的曲线,实际并不存在.电场线和磁感线的最大区别在于:磁感线是闭合的,而电场线不是闭合的.故正确答案为A、D.图3392.如图339所示为某磁场的一条磁感线,其上有A、B两点,则()A.A点的磁感应强度一定大B.B点的磁感应强度一定大C.因为磁感线是直线,A、B两点的磁感应强度一样大D.条件不足,无法判断答案 D解析由磁场中一根磁感线无法判断磁场强弱.3.(2014·珠海高二检测)如图3310所示为电流产生磁场的分布图,正确的分布图是()图3310A.①③B.②③C.①④D.②④答案 C解析由安培定则可以判断出直线电流产生的磁场方向,①正确、②错误.③和④为环形电流,注意让弯曲的四指指向电流的方向,可判断出④正确、③错误.故正确选项为C.图33114.如图3311所示,a、b、c三枚小磁针分别在通电螺线管的正上方、管内和右侧,当这些小磁针静止时,小磁针N极的指向是()A.a、b、c均向左B.a、b、c均向右C.a向左,b向右,c向右D.a向右,b向左,c向右答案 C解析小磁针静止时N极的指向与该点磁感线方向相同,如果a、b、c三处磁感线方向确定,那么三枚磁针静止时N极的指向也就确定.所以,只要画出通电螺线管的磁感线如图所示,即可知a磁针的N极在左边,b磁针的N极在右边,c磁针的N极在右边.图33125.如图3312为某磁场中的磁感线.则()A.a、b两处磁感应强度大小不等,B a>B bB.a、b两处磁感应强度大小不等,B a<B bC.同一小段通电导线放在a处时受力一定比b处时大D.同一小段通电导线放在a处时受力可能比b处时小答案AD题组二分子电流假说6.科学研究表明,地球自西向东的自转速度正在变慢.假如地球的磁场是由地球表面带电引起的,则可以断定()A.地球表面带正电,由于地球自转变慢,地磁场将变弱B.地球表面带正电,由于地球自转变慢,地磁场将变强C.地球表面带负电,由于地球自转变慢,地磁场将变弱D.地球表面带负电,由于地球自转变慢,地磁场将变强答案 C解析地球的磁场类似于通电螺线管的磁场.我们已经知道,地理的南极是地磁N极,地理北极是地磁S极.按照右手螺旋定则,可以看出要有自东向西的电流才符合,那么必然是由于地球表面带负电自西向东旋转引起的.由于地球自转变慢,相当于电流减弱,地磁场将变弱.7.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的.在下列四个图中,正确表示安培假设中环形电流方向的是()答案 B题组三磁感应强度矢量的叠加图33138.如图3313所示,电流从A点分两路通过对称的环形支路汇合于B点,则环形支路的圆心O处的磁感应强度为()A.垂直于环形支路所在平面,且指向“纸外”B.垂直于环形支路所在平面,且指向“纸内”C.大小为零D.在环形支路所在平面内,指向B点答案 C解析由安培定则可判断上边环形电流在O点处产生磁场的方向垂直纸面向里,下边环形电流在O点处产生磁场的方向垂直纸面向外,方向相反,两环形支路的电流相等,环形电流支路的圆心O与两支路间的距离相等,所以O处的磁感应强度为零.图33149.如图3314所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d 位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同答案 C解析由安培定则可知,两导线在O点产生的磁场方向均竖直向下,合磁感应强度一定不为零,故选项A错误;由安培定则,两导线在a、b两处产生的磁场方向均竖直向下,由于对称性,电流M在a处产生磁场的磁感应强度等于电流N在b处产生磁场的磁感应强度,所以a、b两处磁感应强度大小相等、方向相同,选项B错误;根据安培定则判断可知,两导线在c、d处产生的磁场分别垂直c、d两点与导线连线方向向下,且产生的磁场的磁感应强度相等,由平行四边形定则可知,c、d两点处的磁感应强度大小相等,方向均竖直向下,故选项C正确、选项D错误.图331510.如图3315所示,一根通电直导线垂直放在磁感应强度为1 T的匀强磁场中,以导线截面的中心为圆心,半径为r的圆周上有a、b、c、d四个点,已知a点的实际磁感应强度为零,则下列叙述正确的是()A.直导线中的电流方向垂直纸面向外B.b点的实际磁感应强度为 2 T,方向斜向上,与B的夹角为45°C.c点的实际磁感应强度也为零D.d点的实际磁感应强度跟b点的相同答案AB解析由a点合磁感应强度为零知,该电流在a点的磁感应强度方向向左,大小为1 T,由安培定则知A项对,另由平行四边形定则知B项也正确.图331611.如图3316所示,两根相互平行的长直导线分别通有方向相反的电流I1和I2,且I1>I2;a、b、c、d为导线某一横截面所在平面内的四点,且a、b、c与两导线共面;b点在两导线之间,b、d的连线与导线所在平面垂直.磁感应强度可能为零的点是()A.a点B.b点C.c点D.d点答案 C解析要合磁感应强度为零,必有I1和I2形成两个场等大方向,只有c点有可能,选C. 12.已知山东地面处的地磁场水平分量约为3×10-5 T,某校物理兴趣小组做估测磁体附近磁感应强度的实验.他们将一小罗盘磁针放在一个水平放置的螺线管的轴线上,如下图3317所示.小磁针静止时N极指向y轴正方向,当接通电源后,发现小磁针N极指向与y轴正方向成60°角的方向.请在图上标明螺线管导线的绕向,并求出该通电螺线管在小磁针处产生的磁感应强度大小是________.(保留一位有效数字)图3317答案5×10-5 T解析 接通电源后,小磁针N 极指向是地磁场和螺线管的磁场的叠加磁场的方向,由此可判定螺线管的磁场在小磁针处方向水平向右,由安培定则判定螺线管导线绕向如图所示.由题意知地磁场水平分量B y =3×10-5 T ,设通电螺线管产生的磁场为B x .由图知B x B y=tan 60°,得B x =3×10-5× 3 T ≈5×10-5 T.题组四 磁通量的分析和计算图331813.如图3318所示,半径为R的圆形线圈共有n匝,其中心位置处半径为r的虚线范围内有匀强磁场,磁场方向垂直线圈平面.若磁感应强度为B,则穿过线圈的磁通量为() A.πBR2B.πBr2C.nπBR2D.nπBr2答案 B图331914.如图3319所示,框架面积为S,框架平面与磁感应强度为B的匀强磁场方向垂直,则穿过平面的磁通量为________.若使框架绕OO′转过60°角,则穿过框架平面的磁通量为________;若从初始位置转过90°角,则穿过框架平面的磁通量为________;若从初始位置转过180°角,则穿过框架平面的磁通量的变化是________.答案 BS 12BS 0 2BS 解析 初始位置Φ1=BS ;框架转过60°角时Φ2=BS ⊥=BS cos 60°=12BS ;框架转过90°角时Φ3=BS ⊥=BS cos 90°=0;若规定初始位置磁通量为“正”,则框架转过180°角时磁感线从反面穿出,故末态磁通量为“负”,即Φ4=-BS ,所以ΔΦ=|Φ4-Φ1|=|(-BS )-BS |=2BS .附件1:律师事务所反盗版维权声明附件2:独家资源交换签约学校名录(放大查看)学校名录参见:h ttp://w /wxt/list.aspx?ClassID=3060。

高中物理选修3-1《磁场》单元复习归纳

高中物理选修3-1《磁场》单元复习归纳

高中物理选修3-1《磁场》单元复习归纳《磁场》单元知识归纳A基本概念1.磁场与电场性质场源物理量描述物理意义定义决定因素单位标矢量磁场对放入其中的电荷或电流有力的作用电荷、电流磁感应强度磁感线磁感应强度B 反映磁场的强弱电场强度E 反映电场的强弱电场对放入其中的电荷有力的作用电荷电场强度、电势差(电势)电场线、等势面电势差U 反映电场的位置移动试探电荷,U=W/q 2.磁感应强度与电场强度放入通电导线,当B⊥I时,放入试探电荷,E=F/qB=F/IL 场源Q、I和距场源的距离r,与导线无关 T 矢量,与放入小磁针的N极所指的方向磁感线满足切线方向为B的方向的一组曲线闭合曲线,外部从N到S,内部S到N永不相交疏密程度反映磁场的强弱(B)场源Q和距场源的距离r,两点间的电势之差,与试与试探电荷无关探电荷无关 V/m(N/C) 矢量,与放入试探正电荷所受电场力的方向电场线满足切线方向为E的方向的一组曲线始于正电荷,终于负电荷永不相交疏密程度反映场强的强弱(E)电场力电场对电荷的力 F=Eq V 标量 3.磁感线与电场线定义特点 4.安培力、洛伦兹力与电场力物理意义大小安培力磁场对通电导线的力洛伦兹力磁场对运动电荷的力当B⊥I时,F=BIL 当B⊥v时,F=qvB 当B∥I时,F=0当B∥v时,F=0 当互成一定夹角时,取有效长度(⊥B方向的投影)方向左手定则(不等于场的方左手定则(注意电性不正电荷所受电场力与E相同向,且相互垂直)同方向相反)负电荷所受电场力与E相反题1、安培力和洛伦兹力,如下说法中正确的是() A、带电粒子在磁场中运动时不受到洛伦兹力作用,说明该区域一定没有磁场。

B、放置在磁场中的通电导线,一定受到安培力作用C、洛伦兹力对运动电荷一定不做功D、洛伦兹力对运动电荷的冲量一定为零题2、在以下图补全电流(或运动电荷)方向、磁场方向或安培力(或洛仑兹力)方向中的一个方向,并标上相应的字母。

v ×××××× B ×××××× q ××××××-××× ・・・・・・・I ・・・・・ B ・・・・××××××I B ×××××× ××××××××× f ×××××× B××××××+q ××××××××× v ×××××× B×××××× f ×××××× ×××(标出此图中电荷的正、负电性)× I B B、典型判断1.安培定则判断常见的磁场题3、如图所示为磁场、磁场作用力演示仪中的亥姆霍兹线圈,当分别在线圈中心和上方处各挂一个小磁针,且与线圈在同一平面内,则当亥姆霍兹线圈中通以如图所示方向的电流时,从上方往下看,A磁针向方向转动,B磁针向方向转动,题3、当接通电源后,小磁针A按图中所示的方向运动,则( A )A.小磁针B的N极向纸外转B.小磁针B的N极向纸内转C.小磁针B不转动D.无法判断2.磁场的叠加:遵循平行四边形定则。

高二物理选修3一1知识点

高二物理选修3一1知识点

高二物理选修3一1知识点高二物理选修3一1知识点主要包括以下几个方面:磁场的概念与性质,电磁感应,电子运动,电磁波的传播,光的传播等。

下面将对这些知识点进行详细介绍。

1. 磁场的概念与性质磁场是指空间中存在磁力作用力的区域。

磁场由磁体产生,有两个极性,即南极和北极。

同性相斥,异性相吸。

磁力线(磁感线)是描述磁场分布的曲线,它从北极出发进入南极,没有起点和终点。

2. 电磁感应电磁感应是指导体中的电流产生感应电动势的现象。

法拉第电磁感应定律描述了磁场和导体之间产生感应电流的关系,即导体中产生的感应电动势与磁场的变化率成正比。

电磁感应现象的应用广泛,如电磁感应发电机、变压器等。

3. 电子运动电子在电磁场中的运动与受力情况可以用洛伦兹力公式描述。

洛伦兹力是电子在磁场中所受的力,它垂直于电子运动方向和磁场方向。

洛伦兹力导致了带电粒子在磁场中的轨迹偏转,形成磁聚焦现象。

4. 电磁波的传播电磁波是由变化的电场和磁场相互垂直而产生的一种波动现象。

电磁波可以在真空中传播,速度等于光速,即约为3.0×10^8米/秒。

电磁波按波长可分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

5. 光的传播光是一种特殊的电磁波,它的传播具有波粒二象性。

光的传播可以用光的直线传播原理来描述,即光在同质均匀介质中沿直线传播。

光的传播速度与介质的性质有关,一般为3.0×10^8米/秒。

以上就是高二物理选修3一1知识点的简要介绍。

通过学习这些知识点,可以更好地理解物理世界中的现象和规律,提高对物理学的理解和应用能力。

希望本文对你有所帮助。

选修3 1物理知识点总结

选修3 1物理知识点总结

选修3 1物理知识点总结
一、电磁学部分
法拉第电磁感应定律:描述磁场中感应电势的大小与磁感应强度的变化率成正比。

楞次定律:解释感应电流产生的方向,即感应电流会产生反电动势,其方向总是阻碍引起它的变化。

重要公式:ε = -NΔΦ / Δt(法拉第电磁感应定律)U = LdI / dt(自感现象)U = -M dI1 / dt(互感现象)
其中,U表示感应电动势,L表示自感系数,M表示互感系数,I 表示电流,Φ表示磁通量,t表示时间。

二、电场部分
电荷与电场:理解两种电荷及其相互作用,电荷守恒定律,以及元电荷的概念。

库仑定律:描述真空中点电荷之间的相互作用力,以及作用力与电荷量和距离的关系。

电场强度:掌握电场强度的定义、计算及其与电荷量和距离的关系。

电势、电势差与电势能:理解电势、电势差和电势能的定义及它们之间的关系,特别要注意场强、电势、电势差和电势能之间的比较和区别。

三、电路学部分
电源与电动势:理解电源的电动势定义及物理意义,掌握电动势的计算公式E=W/q。

欧姆定律:掌握导体中电流与电压和电阻之间的关系,即电流与电压成正比,与电阻成反比。

此外,选修3-1物理还涉及发电机和变压器的原理,发电机利用电磁感应现象将机械能转化为电能,而变压器则利用电磁感应原理实现电压的升降。

请注意,以上仅为选修3-1物理的部分知识点总结,完整的学习和复习还需要参考教材和课堂讲解,深入理解各个概念和公式的物理意义和应用。

同时,多做习题和实验也是提高物理学习效果的重要途径。

高中物理选修3-1磁场知识点及习题汇总

高中物理选修3-1磁场知识点及习题汇总

一、 磁场 知识要点 1.磁场的产生 ⑴磁极周围有磁场。

⑵电流周围有磁场(奥斯特)。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

(不等于说所有磁场都是由运动电荷产生的。

)⑶变化的电场在周围空间产生磁场(麦克斯韦)。

2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

这一点应该跟电场的基本性质相比较。

3.磁感应强度 ILFB(条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。

磁感应强度是矢量。

单位是特斯拉,符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2) 4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。

5.磁通量如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用Φ表示。

Φ是标量,但是有方向(进该面或出该面)。

单位为韦伯,符号为W b。

1W b=1T∙m2=1V∙s=1kg∙m2/(A∙s2)。

可以认为磁通量就是穿过某个面的磁感线条数。

在匀强磁场磁感线垂直于平面的情况下,B=Φ/S,所以磁感应强度又叫磁通密度。

在匀强磁场中,当B与S的夹角为α时,有Φ=BS sinα。

地球磁场通电直导线周围磁场通电环行导线周围磁场二、安培力(磁场对电流的作用力)知识要点1.安培力方向的判定 ⑴用左手定则。

⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场第一节我们周围的磁现象知识点回顾:1、地磁场(1)地球磁体的北(N)极位于地理南极附近,地球磁体的南(S)极位于地理北极附近。

(2)地球磁体的磁场分布与条形磁铁的磁场相似。

(3)地磁两极与地理两极并不完全重合,存在偏差。

2、磁性材料(1)按去磁的难易程度划分可分为硬磁性材料和软磁性材料。

(2)按材料所含化学成分划分可分为和。

(3)硬磁性材料剩磁明显,常用来制造等。

(4)软磁性材料剩磁不明显,常用来制造等。

知识点1:磁现象一切与磁有关的现象都可称为磁现象。

磁在我们的生活、生产和科技中有着广泛的应用,归纳大致分为:(1)利用磁体对铁、钴、镍等磁性物质的吸引力;(2)利用磁体对通电线圈的作用力;(3)利用磁化现象记录信息。

知识点2:地磁场(重点)地球由于本身具有磁性而在其周围形成的磁场叫地磁场。

关于地磁场的起源,目前还没有令人满意的答案。

一种观点认为,地磁场是由于地核中熔融金属的运动产生的,而且熔融金属运动方向的变化会引起地磁场方向的变化。

科学研究发现,从地球形成迄今的漫长年代里,地磁极曾多次发生极性倒转的现象。

地磁场具有这样的特点:(1)地磁北极在地理南极附近,地磁南极在地理北极附近;(2)地磁场与条形磁铁产生的磁场相似,但地磁场磁性很弱;(3)地磁场对宇宙射线的作用,保护生命(极光、宇宙射线的伤害);地磁场对生物活动的影响(迁徙动物的走南闯北如信鸽,但候鸟南飞确是受气候的影响的,不是磁场)拓展:地磁两极与地理两极并不重合,存在地磁偏角。

这种现象最早是由我国北宋的学者沈括在《梦溪笔谈》中提出的,比西方早400多年。

并不是所有的天体都有和地球一样的磁性,如火星就没有磁性知识点3:磁性材料磁性材料一般指铁磁性物质。

按去磁的难易程度,磁性材料可分为硬磁性材料和软磁性材料。

硬磁性材料具有很强的剩磁,不易去磁,一般用于制造永磁体,如扬声器、计算机硬盘、信用卡、饭卡等;软磁性材料没有明显的剩磁,退磁快,常用于制造电磁铁、电动机、发电机、磁头等。

易忽略点:怎样区分磁性材料如何判断给定的物体是采用硬磁性材料还是软磁性材料是学习中容易出错的地方。

解决此类问题关键有两点:1、明确所给物体的功能和原理;2、熟悉这两种磁性材料的特点。

1练习:1、下列有关磁的应用中利用磁化现象记录信息的是()A、门吸B、磁带C、磁石治病D、磁悬浮2、为了判断一根钢棒有无磁性,采取了下列几种办法,你认为哪种办法可以认定钢棒没有磁性()A、将钢棒的一端接近磁针的北极,两者相互吸引,再将钢棒的另一端接近磁针的南极,两者相互排斥。

B、将钢棒的一端接近磁针的北极,两者相互排斥,将钢棒的另一端接近磁针的北极时,两者相互吸引。

C、将钢棒的一端接近磁针的北极时,两者相互吸引,将钢棒的另一端接近磁针的南极时,两者相互吸引。

D、将钢棒的一端接近磁针的北极时,两者相互吸引,将钢棒的另一端接近磁针的北极时,两者相互吸引。

2第二节认识磁场知识点1:磁场(重点)实物和场是物质存在的两种不同形式,磁场和电场一样,都是客观存在的一种特殊物质。

一、磁场客观存在于磁体、电流周围,磁体和电流通过磁场传递相互作用。

二、磁场的基本性质:对放入其中的磁体或电流产生力的作用。

磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的三、磁场有强弱和方向,可以用磁感线形象地描述磁场的强弱和方向,也可以用小磁针受力方向来描述磁场的方向。

物理学规定,磁场的方向即小磁针N极受力的方向,亦即小磁针静止时N极指向。

四、磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的。

知识点2:磁感线(重点)在磁场中每一点,磁场都有确定的大小和方向,物理学中用磁感线形象地描述磁场。

所谓磁感线就是为了使人们更形象更直观地描述磁场,而引入的一系列有方向的曲线:(1)磁感线的定义在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。

(2)特点:A、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极.B、每条磁感线都是闭合曲线,任意两条磁感线不相交。

C、磁感线上每一点的切线方向都表示该点的磁场方向。

D、磁感线的疏密程度表示磁感应强度的大小注意:磁感线是为了形象地描述磁场而引入的数学工具,最早是由英国物理学家法拉第提出的,并不真实存在,实验时常用被磁化的铁屑来显示磁感线的分布,但绝不能认为磁感线是由细铁屑组成的。

磁感线是闭合的,磁场中未画磁感线的空间,磁场照样存在,磁感线不相交。

磁感线和电场线的区别3知识点3:安培定则(重点)法国物理学家安培通过实验总结出了用于判断电流的磁场分布的法则——安培定则,又称为右手螺旋定则。

可用于判断直线电流、环形电流和通电螺线管的磁感线分布。

直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向.几种常见磁场的磁感线的分布(1)条形磁铁和碲形磁铁的磁感线条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。

(2)通电直导线磁场的磁感线通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。

需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。

电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。

用右手握住直导线,伸直的大拇指与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

45(3)环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线,在环形的中心轴上,由对称性可知,磁感线是与环形导线的平面垂直的一条直线。

如图甲所示,环形电流方向与磁感线方向的关系也可以用右手定则来判断,如图乙所示,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是圆环轴线上磁感线的方向;如图丙所示,让右手握住部分环形导线,伸直的大拇指与电流方向一致,则四指所指的方向就是围绕环形导线的磁感线的方向。

(4)通电螺线管的磁感线通电螺线管表现出来的磁性很像一根条形磁铁,一端相当于北极(N ),另一端相当于南极(S ),形成的磁感线在通电螺线管的外部从北极(N )出来进入南极(S ),通电螺线管内部具有磁场,磁感线方向与管轴线平行,方向都是由S 极指向N 极,并与外部磁感线连接形成一些闭合曲线,其方向也可用安培定则判断,用右手握住螺线管,让弯曲的四指所指的方向跟电流的方向一致,那么大拇指所指的方向就是螺线管内部磁感线的方向,如图所示。

(5)地磁场的磁感线地磁场的南北极与地理上的南北极刚好相反,所以磁感线从地理的南极出来进入地理的北极如图所示。

知识点4:分子电流假说1.内容:法国物理学家安培受到通电螺线管外磁场与条形磁铁的磁场相似的启发,提出了著名的分子电流假说:任何物质的分子中都存在环形电流——分子电流,分子电流使每个物质分子都成为一个微小的磁体,如图。

2.解释:安培的分子电流假说对有关磁现象的解释:(1)磁化现象:一软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场相互抵消,对外不显磁性。

当软铁棒受到外界磁场的作用时,各分子电流取向变得大致相同,两端显示较强的磁作用,形成磁极,软铁棒就被磁化了。

(2)消磁:磁体在高温或猛烈敲击下,即在激烈的热运动或机械运动影响下,分子电流取向变得杂乱无章了,磁体磁性消失。

拓展:(1)假说是一种常用的科学研究方法,在安培的时代,人们不知道物质内部为什么会有分子电流,20世纪后,随着电子的发现,人们认识到,原子内部带电粒子的不停运动即对应安培所说的分子电流,分子电流假说已经成为真理,揭示了磁现象的电本质。

(2)需要指出的是并非所有的磁场都是由电荷的运动产生的根据麦克斯韦的电磁场理论,变化的电场可以产生磁场。

(3)磁现象的电本质:磁铁和电流的磁场本质上都是运动电荷产生的.易错点:磁体内部小磁针指向在判断小磁针处于磁体内部N极指向问题时,有些同学往往套用初中的结论“同名磁极相互排斥,异名磁极相互吸引”而做出错误判断,错误原因是不了解结论的适用条件。

对于“小磁针在磁场中静止时,小磁针处于磁体内部时,我们应该运用高中教材中的物理学规定:N极所指的方向就是磁场的方向,也就是磁感线的方向。

”所以,学习物理知识,切忌不加分析,盲目套用公式或结论。

易忽略点:磁场的方向磁场的方向可用磁感线的切线方向来表示,也可用小磁针的N极指向来表示。

在用小磁针描述时,容易忽略的是:小磁针的哪一极以及小磁针的状态(静止时)。

易混点:磁场和电场磁场和电场虽然都是物质的一种特殊形态,都具有物质性,但并不是完全相同的物质,其不同点有:(1)起源不同。

电场存在于电荷周围,磁场存在于磁体、电流和运动电荷的周围。

(2)场线不同。

电场线不闭合,起始于正电荷终止于负电荷;磁感线闭合,外部从N 极到S极,内部从S极到N极。

(3)(静)电场是保守力场,电场力做功与路径无关,只与初末位置的电势差有关。

磁场是涡旋场,不能引入相应的“势能”概念来研究磁场的性质。

67练习:2、如图11-1-1所示,a 、b 、c 三枚小磁针分别放在通电螺线管的正上方、管内和右侧。

当这些小磁针静止时,小磁针N 极的指向是( )A.a 、b 、c 均向左 B.a 、b 、c 均向右C.a 向左,b 向右,c 向右D.a 向右,b 向左,c 向右变式训练1:如图11-1-2所示,带负电的金属环绕轴'OO 以角速度 匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是( ) A.N 极竖直向上 B.N 极竖直向下C.N 极沿轴线向左 D.N 极沿轴线向右4、根据安培假说的思想,认为磁场是由于运动电荷产生的,这种思想对地磁场也应是适用的,而目前在地球上并未发现相对地球定向移动的电荷,那么由此推断,地球应该( ) A 、负电荷 B 、带正电 C 、不带电 D 、无法确定5、一个电子沿纸面做快速的顺时针方向的圆周运动,则这个电子的运动将( ) A 、不产生磁场B 、产生只在圆周内侧存在的磁场C 、产生相当于环形电流产生的磁场,在圆心处的磁场方向垂直纸面向里D 、产生相当于环形电流产生的磁场,在圆心处的磁场方向垂直纸面向外判断下图中导线A 所受磁场力的方向.答案:O 'O 图11-1-28知识点1:安培力(重点)磁场对电流的作用力称为安培力,安培力是按性质命名的力,在对物体(通电导线)进行受力分析时,应该加以考虑。

(1) 安培力方向的判定方向——左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在同一平面内,把手放入磁场中,让磁感线垂直穿过手心,使伸开的四指指向电流方向,那么大拇指所指的方向为安培力的方向。

相关文档
最新文档