高二物理磁场试题及答案详解

合集下载

高二物理磁场对电流的作用试题答案及解析

高二物理磁场对电流的作用试题答案及解析

高二物理磁场对电流的作用试题答案及解析1.如图所示,直导线处于足够大的匀强磁场中,与磁感线成θ=30°角,导线中通过的电流为I,为了增大导线所受的安培力,可采取下列四种办法,其中不正确的是( )A.增大电流IB.增加直导线的长度C.使导线在纸面内顺时针转30°D.使导线在纸面内逆时针转60°【答案】C【解析】为了增大导线所受的磁场力,由可得:增大电流,增大直导线长度都可以增大安培力,AB不符合题意;使导线在纸面内顺时针转30°则导线方向和磁场方向平行,安培力为零,减小,C符合题意;使导线在纸面内逆时针转60°则,安培力增大,故不符合题意,故选C【考点】考查了安培力的计算2.如图所示,条形磁铁放在桌面上,一根通电直导线由S极的上端平移到N极的上端的过程中,导线保持与磁铁垂直,导线的通电方向如图所示.则这个过程中磁铁受到的摩擦力(磁铁保持静止) ( ) A.为零B.方向由左变为向右C.方向保持不变D.方向由右变为向左【答案】B【解析】首先磁铁上方的磁感线从N极出发回到S极,是曲线,直导线由S极的上端平移到N极的上端的过程中,电流的受力由左上方变为正上方再变为右上方,根据牛顿第三定律磁铁受到的力由右下方变为正下方再变为左下方,磁铁静止不动,所以所受摩擦力方向由向左变为向右。

B正确。

【考点】考查了磁场对电流的作用3.下图中分别标明了通电直导线中电流I、匀强磁场的磁感应强度B和电流所受安培力F的方向,其中正确的是()【答案】A【解析】根据左手定则让B垂直穿过手心,四指指向电流的方向,拇指指向安培力的方向,可以判断A选项正确;B图通电导线不受力,故B错误;C图F方向竖直向下,故C错误;D图F方向应垂直直面向外,所以D错误。

【考点】本题考查安培力方向的判断、左手定则的使用。

4.在同一光滑斜面上放同一导体绑棒,右图所示是两种情况的剖面图。

它们所外空间有磁感强度大小相等的匀强磁场,但方向不同,一次垂直斜面向上,另一次竖直向上,两次导体A分别通有电流I1和I2,都处于静止平衡。

高二物理磁场单元测试题(含答案解析)

高二物理磁场单元测试题(含答案解析)

- 1 -高二物理磁场单元测试题注意:本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分,共100分,考试时间90分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,1-8小题只有一个选项正确,9-12小题有多个选项正确。

全部选对的得5分,选不全的得3分,有选错或不答的得0分。

)1.指南针静止时,其位置如图中虚线所示.若在其上方放置一水平方向的导线,并通以恒定电流,则指南针转向图中实线所示位置.据此可能是 ( B )A.导线南北放置,通有向北的电流B.导线南北放置,通有向南的电流C.导线东西放置,通有向西的电流D.导线东西放置,通有向东的电流2.磁场中某区域的磁感线,如图所示,则 ( B )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小 3.由磁感应强度的定义式ILF B 可知,磁场中某处的磁感应强度的大小 ( D ) A .随通电导线中的电流I 的减小而增大B .随IL 乘积的减小而增大C .随通电导线所受磁场力F 的增大而增大D .跟F 、I 、L 的变化无关4.质量为m 、带电量为q 的小球,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向外的匀强磁场中,其磁感应强度为B ,如图所示。

若带电小球下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是( B )①小球带正电②小球在斜面上运动时做匀加速直线运动③小球在斜面上运动时做加速度增大,而速度也增大的变加速直线运动④则小球在斜面上下滑过程中,当小球对斜面压力为零时的速率为mg cos θ/BqA .①②③B .①②④C .①③④D .②③④5.如图所示,三根通电直导线P 、Q 、R 互相平行,通过正三角形的三个顶点,三条导线通入大小相等,方向垂直纸面向里的电流;通电直导线产生磁场的磁感应强度B=KI/r ,I 为通电导线的电流强度,r 为距通电导线的距离的垂直距离,K 为常数;则R 受到的磁场力的方向是( A )- 2 -A.垂直R ,指向y 轴负方向B.垂直R ,指向y 轴正方向C.垂直R ,指向x 轴正方向D.垂直R ,指向x 轴负方向 6.如图所示,在水平地面上方有正交的匀强电场和匀强磁场,匀强电场方向竖直向下,匀强磁场方向水平向里。

高二物理磁场试题答案及解析

高二物理磁场试题答案及解析

高二物理磁场试题答案及解析1.如图所示,环形导线中通有顺时针方向的电流I,则该环形导线中心处的磁场方向为A.水平向右B.水平向左C.垂直于纸面向里D.垂直于纸面向外【答案】C【解析】图中电流为环形电流,由右手螺旋定则可得:大拇指指向电流方向,四指弯曲方向在内部向里,所以内部磁场应垂直于纸面向里.C正确,【考点】考查了右手螺旋定则点评:右手螺旋定则在应用过程中容易出现错误,要加强练习,增加熟练程度2.下列关于磁现象的叙述正确的是( )A.一切磁现象都起源于电荷的运动B.物质内部的分子电流是由原子内部电子运动产生的C.运动电荷与静止的电荷之间也有磁力作用D.磁场对静止的电荷没有磁力的作用【答案】ABD【解析】由安培的分子电流假说可知A对;物质内含有大量的自由电子,所以物质内部的分子电流是由原子内部电子运动产生的,B对;只有运动电荷才会受到洛伦兹力的作用,C错;D对;【考点】考查对分子电流假说的了解点评:本题难度较小,对分子电流假说要有所了解,知道磁场只对运动的电荷有力的作用3.一束带电粒子沿水平方向飞过小磁针的下方,并与磁针指向平行,如图6所示.此时小磁针的S 极向纸内偏转,则这束带电粒子可能是( )A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.向左飞行的负离子束【答案】AD【解析】小磁针静止时N极所指方向为改点的磁场方向,所以N极向外偏转,说明该点磁场方向垂直纸面向外,由右手螺旋定则可知电流方向水平向右,为向右飞行的正离子束或向左飞行的负离子束,AD正确【考点】考查磁场方向和右手螺旋定则的使用点评:本题难度较小,明确小磁针N极所指方向为该点磁场方向,能灵活应用右手螺旋定则判断问题4.当导线中分别通以图示方向的电流,小磁针静止时北极指向读者的是A B C D【答案】C【解析】由安培定则可得出A中小磁针的N极指向纸面里,B中小磁针的N极指向纸面里,C中小磁针的N极指向读者,D中小磁针的N极指向右端,故选C5.如图是质谱仪的工作原理示意图。

高中物理【磁场】专题分类典型题(带解析)

高中物理【磁场】专题分类典型题(带解析)

高中物理磁场专题分类题型一、【磁场的描述 磁场对电流的作用】典型题1.如图所示,带负电的金属环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡时的位置是( )A .N 极竖直向上B .N 极竖直向下C .N 极沿轴线向左D .N 极沿轴线向右解析:选C .负电荷匀速转动,会产生与旋转方向反向的环形电流,由安培定则知,在磁针处磁场的方向沿轴OO ′向左.由于磁针N 极指向为磁场方向,可知选项C 正确.2.磁场中某区域的磁感线如图所示,则( )A .a 、b 两处的磁感应强度的大小不等,B a >B bB .a 、b 两处的磁感应强度的大小不等,B a <B bC .同一通电导线放在a 处受力一定比放在b 处受力大D .同一通电导线放在a 处受力一定比放在b 处受力小解析:选A .磁感线的疏密程度表示磁感应强度的大小,由a 、b 两处磁感线的疏密程度可判断出B a >B b ,所以A 正确,B 错误;安培力的大小跟该处的磁感应强度的大小B 、电流大小I 、导线长度L 和导线放置的方向与磁感应强度的方向的夹角有关,故C 、D 错误.3.将长为L 的导线弯成六分之一圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )A .ILB ,水平向左B .ILB ,水平向右C .3ILB π,水平向右D .3ILB π,水平向左解析:选D .弧长为L ,圆心角为60°,则弦长AC =3L π,导线受到的安培力F =BIl =3ILB π,由左手定则可知,导线受到的安培力方向水平向左.4.如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )A .3∶1B .3∶2C .1∶1D .1∶2解析:选B .如图所示,当通有电流的长直导线在M 、N 两处时,根据安培定则可知:二者在圆心O 处产生的磁感应强度大小都为B 12;当将M 处长直导线移到P 处时,两直导线在圆心O 处产生的磁感应强度大小也为B 12,做平行四边形,由图中的几何关系,可得B 2B 1=B 22B 12=cos 30°=32,故选项B 正确.5.阿明有一个磁浮玩具,其原理是利用电磁铁产生磁性,让具有磁性的玩偶稳定地飘浮起来,其构造如图所示.若图中电源的电压固定,可变电阻为一可以随意改变电阻大小的装置,则下列叙述正确的是( )A .电路中的电源必须是交流电源B .电路中的a 端点须连接直流电源的负极C .若增加环绕软铁的线圈匝数,可增加玩偶飘浮的最大高度D .若将可变电阻的电阻值调大,可增加玩偶飘浮的最大高度解析:选C .电磁铁产生磁性,使玩偶稳定地飘浮起来,电路中的电源必须是直流电源,电路中的a 端点须连接直流电源的正极,选项A 、B 错误;若增加环绕软铁的线圈匝数,电磁铁产生的磁性更强,电磁铁对玩偶的磁力增强,可增加玩偶飘浮的最大高度,选项C 正确;若将可变电阻的电阻值调大,电磁铁中电流减小,产生的磁性变弱,则降低玩偶飘浮的最大高度,选项D 错误.6.一通电直导线与x 轴平行放置,匀强磁场的方向与xOy 坐标平面平行,导线受到的安培力为F .若将该导线做成34圆环,放置在xOy 坐标平面内,如图所示,并保持通电的电流不变,两端点ab 连线也与x 轴平行,则圆环受到的安培力大小为( )A .FB .23πFC .223πFD .32π3F 解析:选C .根据安培力公式,安培力F 与导线长度L 成正比;若将该导线做成34圆环,由L =34×2πR ,解得圆环的半径R =2L 3π,34圆环ab 两点之间的距离L ′=2R =22L 3π.由F L =F ′L ′解得:F ′=223πF ,选项C 正确. 7.在绝缘圆柱体上a 、b 两个位置固定有两个金属圆环,当两环通有如图所示电流时,b 处金属圆环受到的安培力为F 1;若将b 处金属圆环移动到位置c ,则通有电流为I 2的金属圆环受到的安培力为F 2.今保持b 处金属圆环原来位置不变,在位置c 再放置一个同样的金属圆环,并通有与a 处金属圆环同向、大小为I 2的电流,则在a 位置的金属圆环受到的安培力( )A .大小为|F 1-F 2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右解析:选A .c 金属圆环对a 金属圆环的作用力大小为F 2,根据同方向的电流相互吸引,可知方向向右,b金属圆环对a金属圆环的作用力大小为F1,根据反方向的电流相互排斥,可知方向向左,所以a金属圆环所受的安培力大小|F1-F2|,由于a、b间的距离小于a、c 间距离,所以两合力的方向向左.8.如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁场,下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同解析:选C.由安培定则可知,两导线中的电流在O点产生的磁场均竖直向下,合磁感应强度一定不为零,选项A错;由安培定则知,两导线中的电流在a、b两点处产生的磁场的方向均竖直向下,由于对称性,M中电流在a处产生的磁场的磁感应强度等于N中电流在b处产生的磁场的磁感应强度,同时M中电流在b处产生的磁场的磁感应强度等于N 中电流在a处产生的磁场的磁感应强度,所以a、b两点处磁感应强度大小相等,方向相同,选项B错;根据安培定则,两导线中的电流在c、d两点处产生的磁场垂直c、d两点与导线的连线方向向下,且产生的磁场的磁感应强度大小相等,由平行四边形定则可知,c、d 两点处的磁感应强度大小相等,方向相同,选项C正确;a、c两点处磁感应强度的方向均竖直向下,选项D错.9. (多选)如图所示,金属细棒质量为m,用两根相同轻弹簧吊放在水平方向的匀强磁场中,弹簧的劲度系数为k,棒ab中通有恒定电流,棒处于平衡状态,并且弹簧的弹力恰好为零.若电流大小不变而方向反向,则()A .每根弹簧弹力的大小为mgB .每根弹簧弹力的大小为2mgC .弹簧形变量为mg kD .弹簧形变量为2mg k解析:选AC .电流方向改变前,对棒受力分析,根据平衡条件可知,棒受到的安培力竖直向上,大小等于mg ;电流方向改变后,棒受到的安培力竖直向下,大小等于mg ,对棒受力分析,根据平衡条件可知,每根弹簧弹力的大小为mg ,弹簧形变量为mg k,选项A 、C 正确.10.如图所示,两平行光滑金属导轨CD 、EF 间距为L ,与电动势为E 0的电源相连,质量为m 、电阻为R 的金属棒ab 垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab 棒静止,需在空间施加的匀强磁场磁感应强度的最小值及其方向分别为( )A .mgR E 0L,水平向右 B .mgR cos θE 0L,垂直于回路平面向上 C .mgR tan θE 0L,竖直向下 D .mgR sin θE 0L,垂直于回路平面向下 解析:选D .对金属棒受力分析,受重力、支持力和安培力,如图所示;从图可以看出,当安培力沿斜面向上时,安培力最小,故安培力的最小值为:F A =mg sin θ,故磁感应强度的最小值为B =F A IL =mg sin θIL ,根据欧姆定律,有E 0=IR ,故B =mgR sin θE 0L,故D 正确.11.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比.现有平行放置的三根长直通电导线,分别通过一个直角三角形△ABC的三个顶点且与三角形所在平面垂直,如图所示,∠ACB=60°,O为斜边的中点.已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是()A.大小为2B,方向垂直AB向左B.大小为23B,方向垂直AB向左C.大小为2B,方向垂直AB向右D.大小为23B,方向垂直AB向右解析:选B.导线周围的磁场的磁感线,是围绕导线形成的同心圆,空间某点的磁场沿该点的切线方向,即与该点和导线的连线垂直,根据右手螺旋定则,可知三根导线在O点的磁感应强度的方向如图所示.已知直线电流在其空间某点产生的磁场,其磁感应强度B 的大小与电流强度成正比,与点到通电导线的距离成反比,已知I1=2I2=2I3,I2在O点产生的磁场磁感应强度大小为B,O点到三根导线的距离相等,可知B3=B2=B,B1=2B,由几何关系可知三根导线在平行于AB方向的合磁场为零,垂直于AB方向的合磁场为23B.综上可得,O点的磁感应强度大小为23B,方向垂直于AB向左.故B正确,A、C、D 错误.12.(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g=10 m/s2,则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J解析:选AB.导体棒向右沿圆弧摆动,说明受到向右的安培力,由左手定则知该磁场方向一定竖直向下,A项正确;导体棒摆动过程中只有安培力和重力做功,由动能定理知BIL·L sin θ-mgL(1-cos θ)=0,代入数值得导体棒中的电流为I=3 A,由E=IR得电源电动势E=3.0 V,B项正确;由F=BIL得导体棒在摆动过程中所受安培力F=0.3 N,C项错误;由能量守恒定律知电源提供的电能W等于电路中产生的焦耳热Q和导体棒重力势能的增加量ΔE的和,即W=Q+ΔE,而ΔE=mgL(1-cos θ)=0.048 J,D项错误.13.(多选)某同学自制的简易电动机示意图如图所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()A.左、右转轴下侧的绝缘漆都刮掉B.左、右转轴上下两侧的绝缘漆都刮掉C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉解析:选AD.若将左、右转轴下侧的绝缘漆都刮掉,这样当线圈在图示位置时,线圈的上下边受到水平方向的安培力而转动,转过一周后再次受到同样的安培力而使其连续转动,选项A正确;若将左、右转轴上下两侧的绝缘漆都刮掉,则当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后再次受到相反方向的安培力而使其停止转动,选项B 错误;左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉,电路不能接通,故不能转起来,选项C 错误;若将左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉,这样当线圈在图示位置时,线圈的上下边受到安培力而转动,转过半周后电路不导通,转过一周后再次受到同样的安培力而使其连续转动,选项D 正确.14.光滑的金属轨道分水平段和圆弧段两部分,O 点为圆弧的圆心.两金属轨道之间的宽度为0.5 m ,匀强磁场方向如图所示,大小为0.5 T .质量为0.05 kg 、长为0.5 m 的金属细杆置于金属水平轨道上的M 点.当在金属细杆内通以电流强度为2 A 的恒定电流时,金属细杆可以沿轨道由静止开始向右运动.已知MN =OP =1 m ,则下列说法中正确的是( )A .金属细杆开始运动时的加速度大小为5 m/s 2B .金属细杆运动到P 点时的速度大小为5 m/sC .金属细杆运动到P 点时的向心加速度大小为10 m/s 2D .金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N解析:选D .金属细杆在水平方向受到安培力作用,安培力大小F 安=BIL =0.5×2×0.5 N =0.5 N ,金属细杆开始运动时的加速度大小为a =F 安m=10 m/s 2,选项A 错误;对金属细杆从M 点到P 点的运动过程,安培力做功W 安=F 安·(MN +OP )=1 J ,重力做功W G =-mg ·ON =-0.5 J ,由动能定理得W 安+W G =12m v 2,解得金属细杆运动到P 点时的速度大小为v =20 m/s ,选项B 错误;金属细杆运动到P 点时的向心加速度大小为a ′=v 2r=20 m/s 2,选项C 错误;在P 点金属细杆受到轨道水平向左的作用力F 和水平向右的安培力F 安,由牛顿第二定律得F -F 安=m v 2r,解得F =1.5 N ,每一条轨道对金属细杆的作用力大小为0.75 N ,由牛顿第三定律可知金属细杆运动到P 点时对每一条轨道的作用力大小为0.75 N ,选项D 正确.二、【磁场对运动电荷的作用】典型题1.如图所示,a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右解析:选B .根据安培定则及磁感应强度的矢量叠加,可得O 点处的磁场方向水平向左,再根据左手定则判断可知,带电粒子受到的洛伦兹力方向向下,B 正确.2.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.甲电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出.乙电子以速率v 3从B 点沿BA 方向射入磁场,从D 点(图中未画出)射出,则( )A .C 、D 两点间的距离为2RB .C 、D 两点间的距离为3RC .甲在磁场中运动的时间是乙的2倍D .甲在磁场中运动的时间是乙的3倍解析:选B .洛伦兹力提供向心力,q v B =m v 2r 得r =m v qB,由几何关系求得r 1=R tan 60°=3R ,由于质子乙的速度是v 3,其轨道半径r 2=r 13=33R ,它们在磁场中的偏转角分别为60°和120°,根据几何知识可得BC =R ,BD =2r 2tan 60°=R ,所以CD =2R sin 60°=3R ,故A 错误,B 正确;粒子在磁场中运动的时间为t =θ2πT =θ2π·2πm qB,所以两粒子的运动时间之比等于偏转角之比,即为1∶2,即甲在磁场中运动的时间是乙的12倍,故C 、D 错误. 3. (多选)如图所示,一轨道由两等长的光滑斜面AB 和BC 组成,两斜面在B 处用一光滑小圆弧相连接,P 是BC 的中点,竖直线BD 右侧存在垂直纸面向里的匀强磁场,B 处可认为处在磁场中,一带电小球从A 点由静止释放后能沿轨道来回运动,C 点为小球在BD 右侧运动的最高点,则下列说法正确的是( )A .C 点与A 点在同一水平线上B .小球向右或向左滑过B 点时,对轨道压力相等C .小球向上或向下滑过P 点时,其所受洛伦兹力相同D .小球从A 到B 的时间是从C 到P 时间的2倍解析:选AD .小球在运动过程中受重力、洛伦兹力和轨道支持力作用,因洛伦兹力永不做功,支持力始终与小球运动方向垂直,也不做功,即只有重力做功,满足机械能守恒,因此C 点与A 点等高,在同一水平线上,选项A 正确;小球向右或向左滑过B 点时速度等大反向,即洛伦兹力等大反向,小球对轨道的压力不等,选项B 错误;同理小球向上或向下滑过P 点时,洛伦兹力也等大反向,选项C 错误;因洛伦兹力始终垂直BC ,小球在AB 段和BC 段(设斜面倾角均为θ)的加速度均由重力沿斜面的分力产生,大小为g sin θ,由x =12at 2得小球从A 到B 的时间是从C 到P 的时间的2倍,选项D 正确. 4.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M 点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角;该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.已知磁场Ⅰ、Ⅱ的磁感应强度大小分别为B 1、B 2,则B 1与B 2的比值为( )A .2cos θB .sin θC .cos θD .tan θ解析:选C .设有界磁场Ⅰ宽度为d ,则粒子在磁场Ⅰ和磁场Ⅱ中的运动轨迹分别如图1、图2所示,由洛伦兹力提供向心力知Bq v =m v 2r ,得B =m v rq,由几何关系知d =r 1sin θ,d =r 2tan θ,联立得B 1B 2=cos θ,选项C 正确.5.如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C .由左手定则知,粒子带负电,A 错.由于洛伦兹力不做功,粒子速率不变,B 错.由R =m vqB , 若仅减小磁感应强度B ,R 变大,则粒子可能从b 点右侧射出,C 对.由R =m v qB ,若仅减小入射速率v, 则R 变小,粒子在磁场中的偏转角θ变大.由t =θ2πT ,T =2πm qB 知,运动时间变长,D 错.6.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m 、带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析:(1)如图甲所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r3又q v 1B =m v 21R 1得v 1=3Bqr3m.(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr 4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案:(1)3Bqr 3m (2)3Bqr4m7. (多选)如图所示为一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中.现给圆环向右初速度v 0,在以后的运动过程中,圆环运动的v -t 图象可能是下图中的( )解析:选BC .当q v B =mg 时,圆环做匀速直线运动,此时图象为B ,故B 正确;当q v B >mg 时,F N =q v B -mg ,此时:μF N =ma ,所以圆环做加速度逐渐减小的减速运动,直到q v B =mg 时,圆环开始做匀速运动,故C 正确;当q v B <mg 时,F N =mg -q v B ,此时:μF N =ma ,所以圆环做加速度逐渐增大的减速运动,直至停止,所以其v -t 图象的斜率应该逐渐增大,故A 、D 错误.8.如图所示,水平放置的平行板长度为L 、两板间距也为L ,两板之间存在垂直纸面向里、磁感应强度大小为B 的匀强磁场,在两板正中央P 点有一个不计重力的电子(质量为m 、电荷量为-e ),现在给电子一水平向右的瞬时初速度v 0,欲使电子不与平行板相碰撞,则( )A .v 0>eBL 2m 或v 0<eBL4mB .eBL 4m <v 0< eBL2mC .v 0>eBL2mD .v 0<eBL4m解析:选A .此题疑难点在于确定“不与平行板相碰撞”的临界条件.电子在磁场中做匀速圆周运动,半径为R =m v 0eB ,如图所示.当R 1=L 4时,电子恰好与下板相切;当R 2=L2时,电子恰好从下板边缘飞出两平行板(即飞出磁场).由R 1=m v 1eB ,解得v 1=eBL4m ,由R 2=m v 2eB ,解得v 2=eBL 2m ,所以欲使电子不与平行板相碰撞,电子初速度v 0应满足v 0>eBL 2m 或v 0<eBL4m ,故选项A 正确.9.如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P (不在原点)沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间一定为5 πm 3qBC .粒子在磁场中运动所经历的时间可能为πmqBD .粒子在磁场中运动所经历的时间可能为πm6qB解析:选C .利用“放缩圆法”:根据同一直线边界上粒子运动的对称性可知,粒子不可能通过坐标原点,A 项错误;粒子运动的情况有两种,一种是从y 轴边界射出,最短时间要大于2πm 3qB ,故D 项错误;对应轨迹①时,t 1=T 2=πm qB ,C 项正确,另一种是从x 轴边界飞出,如轨迹③,时间t 3=56T =5πm 3qB,此时粒子在磁场中运动时间最长,故B 项错误.10.如图所示,OM 的左侧存在范围足够大、磁感应强度大小为B 的匀强磁场,磁场方向垂直纸面向外,OM 左侧到OM 距离为L 的P 处有一个粒子源,可沿纸面向各个方向射出质量为m 、电荷量为q 的带正电粒子(重力不计),速率均为v =qBLm,则粒子在磁场中运动的最短时间为( )A .πm 2qBB .πm 3qBC .πm 4qBD .πm 6qB解析:选B .粒子进入磁场中做匀速圆周运动,洛伦兹力提供向心力,则有:q v B =m v 2r ,将题设的v 值代入得:r =L ,粒子在磁场中运动的时间最短,则粒子运动轨迹对应的弦最短,最短弦为L ,等于圆周运动的半径,根据几何关系,粒子转过的圆心角为60°,运动时间为T 6,故t min =T 6=16×2πm qB =πm 3qB,故B 正确,A 、C 、D 错误.11.(2019·高考全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A .5πm 6qBB .7πm6qBC .11πm 6qBD .13πm6qB解析:选B .带电粒子在不同磁场中做圆周运动,其速度大小不变,由r =m vqB 知,第一象限内的圆半径是第二象限内圆半径的2倍,如图所示.粒子在第二象限内运动的时间:t 1=T 14=2πm 4qB =πm 2qB ;粒子在第一象限内运动的时间:t 2=T 26=2πm ×26qB =2πm 3qB ,则粒子在磁场中运动的时间t =t 1+t 2=7πm 6qB,选项B 正确.12.如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出.已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力.求:(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间.解析: (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2.④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33.⑦ 答案:(1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33三、【带电粒子在组合场中的运动】典型题1.(多选)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A .增大匀强电场间的加速电压B .增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径解析:选BD .回旋加速器利用电场加速和磁场偏转来加速粒子,粒子射出时的轨道半径恰好等于D 形盒的半径,根据q v B =m v 2R 可得,v =qBR m ,因此离开回旋加速器时的动能E k =12m v 2=q 2B 2R 22m 可知,与加速电压无关,与狭缝距离无关,A 、C 错误;磁感应强度越大,D 形盒的半径越大,动能越大,B 、D 正确.2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .则该粒子的比荷为(粒子的重力忽略不计)( )。

高二物理磁场对电流的作用试题答案及解析

高二物理磁场对电流的作用试题答案及解析

高二物理磁场对电流的作用试题答案及解析1.长为L的通电直导线放在倾角为θ的光滑斜面上,并处在磁感应强度为B的匀强磁场中,如图所示,当B方向竖直向上,电流为I1时导体处于平衡状态,若B方向改为垂直斜面向上,则电流为I2时导体处于平衡状态,电流比值I1/I2应为()cosθ B.1/ cosθ C.sinθ D.1/ sinθ【答案】B【解析】若磁场方向竖直向上,则安培力水平方向.由平衡条件可得:,若磁场方向垂直于斜面向上,则安培力沿斜面向上.由平衡条件可得:则,B 正确。

【考点】考查了安培力的计算2.如图所示,倾角(=30(、宽为L=1m的足够长的U形光滑金属框固定在磁感应强度B=1T、范围足够大的匀强磁场中磁场方向垂直导轨平面斜向上,现用一平行于导轨的牵引力F,牵引一根质量为m=0.2 kg,电阻R=1 (的金属棒ab,由静止开始沿导轨向上移动。

(金属棒ab始终与导轨接触良好且垂直,不计导轨电阻及一切摩擦)问:(1)若牵引力是恒力,大小F="9" N,则金属棒达到的稳定速度v1多大?(2)若金属棒受到向上的拉力在斜面导轨上达到某一速度时,突然撤去拉力,从撤去拉力到棒的速度为零时止,通过金属棒的电量为q="0.48" C,金属棒发热为Q="1.12" J,则撤力时棒的速度v2多大?【答案】(1) v1=8 m/s;(2)v2=4 m/s【解析】试题分析:(1)当金属棒达到的稳定速度v1时,感应电动势E=BLv1,回路中的电流I=,此时金属棒处于平衡状态,所以有F=mg sin,得:v1=8 m/s,(2)由法拉第电磁感应定律:E=,q=IΔt=,解得 s==0.48 m,由能量守恒定律: mv22=mgs sin(+Q,得:v2=4 m/s,【考点】法拉第电磁感应定律;导体切割磁感线时的感应电动势;电磁感应中的能量转化3.在赤道上,地磁场可以看作是沿南北方向并且与地面平行的匀强磁场,磁感应强度是5×10-5T.如果赤道上有一条沿东西方向的直导线,长40m,载有20A的电流,地磁场对这根导线的作用力大小是A.4×10-8NB.2.5×10-5NC.9×10-4ND.4×10-2N【答案】D【解析】导线放置方向与磁场方向垂直,所以根据安培力公式可得,D正确;【考点】考查了磁场对通电导线的作用力的求解4.如图所示,一根质量为m的金属棒MN,两端用细软导线连接后悬于a、b两点,棒的中部处于方向垂直纸面向里的匀强磁场中,棒中通有电流,方向从M流向N,此时悬线上有拉力,为了使拉力等于零,可以采用的方法是()A.适当增大磁感应强度B.使磁场反向C.适当增大电流D.使电流反向【答案】AC【解析】根据左手定则,导线受向上的安培力,重力,绳子拉力,根据平衡条件得:,所以要使拉力为零,可增大安培力,即增大磁场感应强度、电流,故A、C正确;若磁场反向或者电流反向,则安培力反向,拉力不可能为零,所以B、D错误。

高中物理:磁场测试题(含答案)

高中物理:磁场测试题(含答案)

高中物理:磁场测试题(含答案)
1. 磁场中硬币的行为
一枚硬币在磁场中被放置在水平面上。

磁场方向指向纸面内,硬币受力情况如何?
A. 硬币不受力,保持静止。

B. 硬币受力向下,向外滚动。

C. 硬币受力向上,向内滚动。

D. 硬币受力向下,向内滚动。

答案:C
2. 带电粒子在磁场中的运动
一个带正电的粒子以与磁场垂直的速度进入磁场,磁场方向指向纸面内。

粒子在磁场中将运动成什么轨迹?
A. 圆形轨迹。

B. 直线轨迹。

C. 椭圆轨迹。

D. 螺旋轨迹。

答案:A
3. 磁感应强度的定义
磁感应强度的定义是什么?
A. 单位长度内的磁感应线数目。

B. 磁力对单位电荷的大小。

C. 磁场中单位面积垂直于磁力方向的大小。

D. 空间单位体积内的磁感应线数目。

答案:C
4. 磁场中电流的力学效应
在两根平行导线通过电流时,它们之间产生一个磁场。

这个磁场对导线有哪种力学效应?
A. 两根导线之间会相互吸引。

B. 两根导线之间会相互排斥。

C. 导线上会产生电压。

D. 导线会受到一个恒定的力。

答案:D
5. 磁场中的电流计测量原理
磁场中的电流计测量原理基于什么原理?
A. 磁感应强度和导线长度成正比。

B. 磁场中电流的方向与电流计示数成反比。

C. 电流计受力与磁感应强度成正比。

D. 磁感应强度和电流的大小成正比。

答案:C。

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)高中物理《磁场》典型题(经典推荐)一、单项选择题1.下列说法中正确的是:A。

在静电场中电场强度为零的位置,电势也一定为零。

B。

放在静电场中某点的检验电荷所带的电荷量 q 发生变化时,该检验电荷所受电场力 F 与其电荷量 q 的比值保持不变。

C。

在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零。

D。

磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定。

2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。

如关系式 U=IR,既反映了电压、电流和电阻之间的关系,也确定了 V(伏)与 A(安)和Ω(欧)的乘积等效。

现有物理量单位:m(米)、s(秒)、N(牛)、J (焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和 T(特),由他们组合成的单位都与电压单位 V(伏)等效的是:A。

J/C 和 N/CB。

C/F 和 T·m2/sC。

W/A 和 C·T·m/sD。

W·Ω 和 T·A·m3.如图所示,重力均为 G 的两条形磁铁分别用细线 A 和B 悬挂在水平的天花板上,静止时,A 线的张力为 F1,B 线的张力为 F2,则:A。

F1=2G,F2=GB。

F1=2G,F2>GC。

F1GD。

F1>2G,F2>G4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在 1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在 1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为:A。

1/2B。

1C。

2D。

45.如图所示,矩形 MNPQ 区域内有方向垂直于纸面的匀强磁场,有 5 个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中 a、b、c 处进入的粒子对应表中的编号分别为:A。

2023-2024学年高二上物理:磁场 磁感线(附答案解析)

2023-2024学年高二上物理:磁场 磁感线(附答案解析)

2023-2024学年高二上物理:13.1磁场磁感线一.选择题(共8小题)1.如图是铁棒甲与铁棒乙内部各分子电流取向的示意图,甲棒内部各分子电流取向是杂乱无章的,乙棒内部各分子电流取向大致相同,则下列说法中正确的是()A.两棒均显磁性B.两棒均不显磁性C.甲棒不显磁性,乙棒显磁性D.甲棒显磁性,乙棒不显磁性2.2002年12月31日上午,举世瞩目的上海磁悬浮列车线首次试运行,它是世界上第一条投入商业运营的磁悬浮列车线.运行全程共30km,最高时速可达552km,单向运行约8min.磁悬浮列车上装有电磁体,铁路底部则安装线圈.通过地面线圈与列车上的电磁体排斥力使列车悬浮起来.地面线圈上的极性与列车上的电磁体下极性总保持()A.相同B.相反C.不能确定D.以上均不对3.有一导线南北方向放置,在其下方放一个小磁针.小磁针稳定后,给导线通上如图所示电流,发现小磁针的S 极垂直纸面向外偏转.关于此现象下列说法正确的是()A.没有通电时,小磁针的S极指向地磁场的南极B.通电后小磁针S极指向地磁场的南极C.通电导线在小磁针所在处产生的磁场方向垂直纸面向外D.通电后小磁针S极发生偏转说明通电导线周围存在磁场4.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。

”下列说法正确的是()A.地球内部不存在磁场B.地理南、北极与地磁场的南、北极完全重合C.地球表面任意位置的地磁场方向都与地面平行D.地磁场的南极在地理的北极附近,地磁场的北极在地理的南极附近5.关于磁场的说法正确的是()A.小磁针静止时N极所指的方向就是该处磁感应强度的方向B.电流元在磁场中某位置受到的磁场力为零,则该位置的磁感应强度一定为零C.因地磁场影响,在进行奥斯特实验时,通电导线东西放置时实验现象最明显D.导体在磁场中做切割磁感线运动时产生动生电动势,其本质是导体中的自由电荷受到洛伦兹力作用,通过洛伦兹力对自由电荷做功实现能量的转化6.如图,两平行通电直导线a、b垂直纸面放置,分别通以垂直纸面向里的电流I1、I2,另一通电电流方向垂直纸面向外的直导线c与两导线共面。

高中物理磁场大题(超全)

高中物理磁场大题(超全)

高中物理磁场大题一.解答题(共30小题)1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时进入两板间的带电粒子在磁场中做圆周运动的半径.(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求:(1)正、负粒子的质量之比m1:m2;(2)两粒子相遇的位置P点的坐标;(3)两粒子先后进入电场的时间差.3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D 为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t 的最小值.4.如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10‑19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:(1)带电粒子在磁场中运动时间;(2)当电场左边界与y轴重合时Q点的横坐标;(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.5.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板度为B1.CD为磁场的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有大量质量均为m,B2含有各种不同电荷量、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B中,求:2的带电粒子的速度;(1)进入匀强磁场B2(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度.6.在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第IV 象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷垂直于y轴射入电场,量为q的带正电的粒子从y轴正半轴上的M点以速度v经x轴上的N点与x轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:(1)M、N两点间的电势差U;MN(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.7.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中感应强度B1线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=8.02×10﹣19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么范围内?(3)现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B应满足什么条件?28.如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电的水平初速度射入电场,随后与量为+q的粒子(不计重力)从P点以大小为v边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.9.如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大乙最大值为U小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力.求:(1)t=0时刻释放的粒子在P、Q间运动的时间;(2)粒子射入磁场时的最大速率和最小速率;(3)有界磁场区域的最小面积.10.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2.足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子.11.如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E,方向如图所示;离子质量为m、电荷量为q;=2d、=3d,离子重力不计.(1)求圆弧虚线对应的半径R的大小;(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.12.如图甲所示,一对平行金属板M 、N 长为L ,相距为d ,O 1O 为中轴线.当两板间加电压U MN =U 0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O 1点以速度v 0沿O 1O 方向射入电场,粒子恰好打在上极板M 的中点,粒子重力忽略不计.(1)求带电粒子的比荷;(2)若MN 间加如图乙所示的交变电压,其周期,从t=0开始,前内U MN =2U ,后内U MN =﹣U ,大量的上述粒子仍然以速度v 0沿O 1O 方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U 的值;(3)紧贴板右侧建立xOy 坐标系,在xOy 坐标第I 、IV 象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy 坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d ,2d )的P 点,求磁感应强度B 的大小范围.13.如图所示,在第一、二象限存在场强均为E 的匀强电场,其中第一象限的匀强电场的方向沿x 轴正方向,第二象限的电场方向沿x 轴负方向.在第三、四象限矩形区域ABCD 内存在垂直于纸面向外的匀强磁场,矩形区域的AB 边与x 轴重合.M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,的质子,以初速度v不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间.14.如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P点的坐标为(,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场.在直角坐标系xOy的第Ⅳ象限区域内存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,从y轴上0≤y≤2a的区间垂直于y轴与x轴交点为Q,电子束以相同的速度v和磁场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷;(2)电子离开磁场垂直y轴进入电场的位置的范围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15.如图(a)所示,水平放置的平行金属板A、B间加直流电压U,A板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B1=B,B2未知.现有一比荷为、不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在 t1时刻粒子第一次撞到左挡板,紧接着在t1+t2时刻粒子撞到右挡板,然后粒子又从O点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求:(1)粒子第一次到达O点时的速率;(2)图中B2的大小;(3)金属板A和B间的距离d.16.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时,刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时刻进入两板间的带电粒子在磁场中做圆周运动的半径.(3)带电粒子在磁场中的运动时间.17.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t,当在两板间加如图乙所示的周期为2t0、幅值恒为U的电压时,所有电子均从两板间通过,然后进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)18.如图所示xOy平面内,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x 轴进入到另一匀强电场区域,该电场区域范围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y 轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1)带电粒子通过y轴时离x轴的距离;(2)带电粒子的比荷;(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?19.如图所示,在竖直平面内,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MOP范围内存在竖直向下的匀强电场,电场强度为E,MOQ上方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面内以速度v(0≤v≤)垂直于MO从O 点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1)速度最大的粒子在磁场中的运动时间;(2)速度最大的粒子打在水平线POQ上的位置离O点的距离;(3)磁场区域的最小面积.20.如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L,不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21.在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h,不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度v;Q(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场…,求粒子从P点开始经多长时间能够运动到O点?22.如图所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B (图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,质量为m、带电荷量为q=、方向与水平面夹角θ=的速度,在区域I 的小球P在K点具有大小v内做半径r=的匀速圆周运动,经CD水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻t;A(3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.23.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹从y轴上P点沿y轴正方角.一质量为m、电荷量为q(q>0)的粒子以速度v向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过,磁场方向变为垂直纸面向里,大小不变,不计重力.一段时间T(1)求粒子从P点出发至第一次到达x轴时所需的时间;(2)若要使粒子能够回到P点,求电场强度的最大值.24.一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变.一的角速度不计重力的负电粒子从小孔M沿着MN方向射入磁场,当筒以大小为ω转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒内未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面内且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.26.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.27.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm(3)物块A会不会第二次压缩弹簧?28.历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29.如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m 的半圆光滑轨道,两段轨道相切于B点.小球甲从C点以速度υ沿水平轨道向右运动,与静止在B点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m,小球甲与AB段的动摩擦因数为μ=0.5,C、B距离L=1.6m,g取10m/s2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;(2)在满足(1)的条件下,求的甲的速度υ;(3)若甲仍以速度υ向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围.30.动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△px 、△py;b.分析说明小球对木板的作用力的方向.参考答案与试题解析一.解答题(共30小题)1.(2017•吉林模拟)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的时电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t、B为已知量.(不考虑粒子间相互影刻经极板边缘射入磁场.上述m、q、l、t响及返回板间的情况)的大小.(1)求电压U时进入两板间的带电粒子在磁场中做圆周运动的半径.(2)求t(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.【解答】解:(1)t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,t则有 y=l,x=l,电场强度:E=…①,由牛顿第二定律得:Eq=ma…②,2…③偏移量:y=at由①②③解得:U=…④.(2)t0时刻进入两极板的带电粒子,前t时间在电场中偏转,后t时间两极板没有电场,带电粒子做匀速直线运动.带电粒子沿x轴方向的分速度大小为:vx =v=…⑤带电粒子离开电场时沿y轴负方向的分速度大小为:vy =a•t…⑥带电粒子离开电场时的速度大小为:v=…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,由牛顿第二定律得:qvB=m…⑧,由③⑤⑥⑦⑧解得:R=…⑨;(3)在t=2t时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,而根据轨迹几何知识可知,轨迹的圆心角等于粒子射入磁场时速度方向与边界夹角的2倍,所以在t=2t时刻进入两极板的带电粒子在磁场中运动时间最短.带电粒子离开磁场时沿y轴正方向的分速度为:vy ′=at…⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为α,则:tanα=,由③⑤⑩解得:α=,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为:2α=,所求最短时间为:tmin=T,带电粒子在磁场中运动的周期为:T=,联立以上两式解得:tmin=;答:(1)电压U的大小为;。

高二物理磁场试题答案及解析

高二物理磁场试题答案及解析

高二物理磁场试题答案及解析1.如图有一混合正离子束先后通过正交电场磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的……()A.速度B.质量C.电荷D.比荷【答案】AD【解析】这束正离子流在区域Ⅰ中不偏转,即在该区域中受到的电场力和洛伦兹力大小相等,方向相反,故,所以,即这束粒子的速度相等,A正确,进入区域Ⅱ后偏转半径又相同,根据带电粒子在磁场中的运动半径公式可得,这些粒子具有相等的,所以D正确,思路分析:区域一是速度选择器的模型,区域二是偏转磁场,根据粒子在其中运动时受力与运动关系分析解题试题点评:本题考查了粒子在复合场以及磁场中的偏转问题,关键是受力分析2.设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示.已知一离子在电场力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法中正确的是()A.此离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点后,将沿原曲线返回A点【答案】ABC【解析】根据左手定则可得,该粒子带正电,A正确,因为洛伦兹力与粒子的速度方向时刻垂直着,所以只有电场力做功,又因为粒子的初速度为零,末速度为零,所以电场力做功为零,即在沿电场方向上没有发生位移,所以AB一定在同一高度上,B正确,粒子在从A到C的过程中,电场力做正功,在从C到B的过程中电场力做负功,所以C点的粒子动能最大,C正确,因为到达B点时的速度为零,受力情况,速度情况都和A点时一样,所以粒子从B点开始做像ACB一样的曲线运动,D错误,思路分析:粒子在复合场中运动时,只受洛伦兹力和电场力,根据洛伦兹力和电场力的特点分析解题试题点评:本题考查了粒子在复合场中的运动,关键是理解洛伦兹力的方向时刻与速度方向垂直,对粒子不做功,3.回旋加速器的磁场B="1.5" T,它的最大回旋半径r="0.50" m,当分别加速质子和α粒子时,求: (1)加在两D形盒间交变电压频率之比;(2)粒子的最大速率之比.【答案】(1)2∶1(2)2∶1【解析】(1)根据回旋加速器的工作原理可得,当加速时的交变电压周期为,当加速时的交变电压周期为,所以可得即,交变电压频率之比为,(2)粒子在回旋加速器射出时具有的能量,由可得,即两种粒子的最大速率之比为思路分析:高频电压的周期与带电粒子在D形盒中的运动的周期相等,即据此分析交变电压频率之比,根据公式计算粒子被加速的最大速度之比,试题点评:本题考查了回旋加速器的相关计算,关键是对其原理的理解,特别是粒子的最大速度和回旋加速器的半径有关,和加速电场的大小无关,4.我们知道,反粒子与正粒子有相同的质量,却带有等量的异种电荷.物理学家推测,既然有反粒子存在,就可能有由反粒子组成的反物质存在.1998年6月,我国科学家研制的阿尔法磁谱仪由“发现号”航天飞机搭载升空,寻找宇宙中反物质存在的证据.磁谱仪的核心部分如图所示,PQ、MN是两个平行板,它们之间存在匀强磁场区,磁场方向与两板平行.宇宙射线中的各种粒子从板PQ中央的小孔O垂直PQ进入匀强磁场区,在磁场中发生偏转,并打在附有感光底片的板MN 上,留下痕迹.假设宇宙射线中存在氢核、反氢核、氦核、反氦核四种粒子,它们以相同速度v从小孔O垂直PQ板进入磁谱仪的磁场区,并打在感光底片上的a、b、c、d四点.已知氢核质量为m,电荷量为e,PQ与MN间的距离为L,磁场的磁感应强度为B.(1)指出a、b、c、d四点分别是由哪种粒子留下的痕迹.(不要求写出判断过程)(2)求出氢核在磁场中运动的轨道半径;(3)反氢核在MN上留下的痕迹与氢核在MN上留下的痕迹之间的距离是多少?【答案】(1)a、b、c、d四点分别是反氢核、反氦核、氦核和氢核留下的痕迹(2)(3)【解析】(1)由左手定则可判定偏转方向,从而判断出a,b为反粒子,由半径公式可确定a、b、c、d四点分别是反氢核、反氦核、氦核和氢核留下的痕迹.(2)对氢核,在磁场中做匀速圆周运动,由牛顿第二定律得:解得(3)由图中几何关系知:所以反氢核与氢核留下的痕迹之间的距离思路分析:根据左手定则判断粒子的轨迹,粒子在运动过程中洛伦兹力充当向心力,结合牛顿运动定律以及几何知识分析解题试题点评:本题考查了粒子在磁场中的偏转问题,综合考查了学生分析问题的能力,关键是对圆周运动的相关规律的熟悉5.在赤道处沿东西方向放置一根直导线,导线中电子定向运动的方向是从东向西,则导线受到地磁场的作用力的方向为()A.向东B.向北C.向上D.向下【答案】C【解析】地球磁场的南北极和地理的南北极相反,因此在赤道上方磁场方向从南指向北,依据左手定则可得安培力方向向上,故ABD错误,C正确.思路分析:解答本题首先要明确地球磁场的分布情况,然后根据左手定则直接进行判断即可.试题点评:本题的难点在于弄不清楚地球磁场方向,因此在学习中要熟练掌握各种典型磁场方向的分布情况.6.磁悬浮列车在行进时会“浮”在轨道上方,从而可高速行驶.可高速行驶的原因是列车浮起后()A.减小了列车的惯性B.减小了地球对列车的引力C.减小了列车与铁轨间的摩擦力D.减小了列车所受的空气阻力【答案】C【解析】磁悬浮列车是用强磁场将列车微微托起,使其浮在轨道上方,从而可以高速行驶,其可以高速行驶的原因是使接触面分离,从而减小了摩擦.C正确,思路分析:本题关键是抓住影响滑动摩擦力大小的两个因素:压力大小和接触面的粗糙程度.特别是减小摩擦的方法,用滚动代替滑动,使两个接触面分离等.试题点评:本题考查了影响滑动摩擦力大小的两个因素,生活中是怎样减小摩擦的.7.对于放在匀强磁场中的通电线圈,下列说法中正确的是()A.线圈平面平行于磁感线时,所受合力为零,合力矩最大B.线圈平面平行于磁感线时,所受合力最大,合力矩为零C.线圈平面垂直磁感线时,所受合力为零,合力矩为零D.线圈平面垂直磁感线时,所受合力为零,合力矩最大【答案】AC【解析】根据(表示通电导线与磁场的方向的夹角)可得当通电导线平行于磁场放在磁场中时即,磁场对通电导线没有力的作用,当通电导线垂直磁场方向放置于磁场中时即,磁场对通电导线的作用力最大,所以AC正确,试题点评:本题简单考查了通电导线放置的位置与其受到的安培力大小的关系,是一道基础性题目8.如图所示,两相同绝缘导线环,环面垂直放置,若通以如图所示电流,则…()A.球心处的磁感应强度B的方向沿纸面向上B.球心处的磁感应强度B的方向沿纸面向下C.球心处的磁感应强度B的方向穿入纸内斜向下D.球心处的磁感应强度B的方向垂直纸面向内【答案】C【解析】根据安培定则可知:水平放置的导体环在O处产生的磁场方向为竖直向下,竖直放置的导体环在O处产生的磁场方向为垂直纸面向里,按平行四边形定则可知,O处磁感应强度的方向为穿入纸内斜向下,C正确,思路分析:圆心O处磁感应强度是由两个导体环产生的磁场的叠加,根据安培定则分别判断两个环在O处产生的磁场方向,再按平行四边形定则合成.试题点评:本题安培定则的应用能力,对于安培定则掌握两点:一是何时用;二是怎样用.9.有一个电流表接在电动势为E、内阻为r(r经过处理,阻值很大)的电池两极,指针偏转了30°角,如果将其接在电动势为2E、内阻为2r的电池两极,其指针偏转角为()A.60°B.30°C.30°与60°之间D.大于60°【答案】C【解析】当接在第一个电池上时,,接在第二个电池上时,由上述两式可得因为偏转角θ与I成正比,所以故,则.所以.故C选项正确.思路分析:电流表的刻度是均匀的,所以偏转角θ与I成正比,可通过求出两次连接方式下的电流比,从而得出第二次偏转角度的表达式试题点评:本题考查了电流表的简单计算,关键是理解电流表的工作原理10.如图所示,在光滑水平桌面上,有两根弯成直角的相同金属棒,它们的一端均可绕固定转动轴O自由转动,另一端b互相接触,组成一个正方形线框.正方形每边长度均为L,匀强磁场的方向垂直桌面向下,当线框中通以图示方向的电流I时,两金属棒在b点的相互作用力为f,则此时磁感应强度的大小为______________(不计电流产生的磁场).【答案】设磁感应【解析】通电后,直角棒的每一段都受到方向垂直棒指向框内、大小相等的安培力.强度为B,则.取左边的折线Oab为研究对象,其Oa、ab两段所受安培力的水平分力必被右边一根折线Ocb在O、b两处的水平作用力所平衡.由对称性知,O、b两处的相互作用力相等,即,则,解得B=.思路分析:根据受力分析结合力的平衡条件分析解题试题点评:本题是一道力与电磁相结合的综合性题目,同时也考查了学生综合分析问题的能力11.如图所示,在垂直于纸面向内的匀强磁场中,垂直于磁场方向发射出两个电子1和2,其速度分别为v1和v2.如果v2=2v1,则1和2的轨道半径之比r1∶r2及周期之比T1∶T2分别为()A.r1∶r2=1∶2,T1∶T2=1∶2B.r1∶r2=1∶2,T1∶T2=1∶1C.r1∶r2=2∶1,T1∶T2=1∶1D.r1∶r2=1∶1,T1∶T2=2∶1【答案】B【解析】根据粒子在磁场中的运动半径公式可得,,即,根据周期公式可得,,,故,B正确,思路分析:根据带电粒子在磁场中的运动半径公式,周期公式分析解题试题点评:本题考查了带电粒子在磁场中的运动半径公式,周期公式的应用,根据计算结果需要提醒学生粒子在磁场中的运动周期跟粒子的速度无关12.如图所示,将通电线圈悬挂在磁铁N极附近,磁铁处于水平位置,和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将()A.转动,同时靠近磁铁B.转动,同时离开磁铁C.不转动,只靠近磁铁D.不转动,只离开磁铁【答案】A【解析】由右手定则可知,线圈的外面为S极,里面为N极;因为异名磁极相互吸引,因此从上往下看,线圈做逆时针方向转动,同时靠近磁铁;故A项正确.思路分析:先根据右手定则判断出线圈产生的磁场,然后再根据磁极间的相互作用分析线圈的转动情况.试题点评:此题考查了右手定则和磁极间相互作用的应用,注意线圈产生的磁场与条形磁体产生的磁场很相似,可以利用右手定则判断磁场的N、S极.13.下列说法中错误的是()A.磁场中某处的磁感应强度大小,就是通以电流I、长为l的一小段导线放在该处时所受磁场力F与I、l的乘积的比值B.一小段通电导线放在某处不受磁场力作用,则该处一定没有磁场C.一小段通电导线放在磁场中A处时受磁场力比放在B处大,则A处的磁感应强度比B处的磁感应强度大D.因为B=F/IL,所以某处磁感应强度的大小与放在该处的通电小段导线IL乘积成反比【答案】ABCD【解析】磁感应强度的定义是把一小段通电导线垂直放在磁场中,该点受到的磁场力与该小段导线的长度和电流的乘积的比值. 磁感应强度是通过比值定义得来,例如电场强度也是这种定义,电场强度与电场力及电荷量均没有关系.再如密度也是,密度与物体的质量及体积均无关.同时电流元放入磁场中不一定有磁场力,还受放置的角度有关.思路分析:磁感应强度只与磁场本身的性质有关,与外界其他因素没有关系试题点评:本题考查了对磁感应强度的概念的理解,是一道易错型的概念题目,关键是理解磁感应强度只与磁场本身的性质有关,与外界其他因素没有关系14.如图,在条形磁铁N极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?【答案】向右偏转【解析】根据安培定则可知,逆时针方向的电流产生的磁场方向为线圈朝纸面向外为N极,则由于磁铁的N极靠近线圈,所以线圈的N极要向右转动思路分析:通电线圈可等效成小磁针,根据安培定则判断极性,根据同名磁极相互排斥,异名磁极相互吸引判断线圈的运动情况.试题点评:本题是磁场中判断安培力作用下导体运动方向的问题,常常采用等效法、电流元法、特殊位置法等等.15.电视机显像管的偏转线圈示意图如图,瞬时电流方向如图中的箭头所示方向.该时刻由里向外射出的电子流将向哪个方向偏转?(请用上、下、左、右、前、后来表示偏转方向)【答案】电子流将向左方偏转【解析】根据右手螺旋定则判断左右两个线圈的N极均在上边,S极均在下边。

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。

已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。

高二物理磁场试题及答案

高二物理磁场试题及答案

高二物理磁场试题及答案一、选择题(每题3分,共30分)1. 磁场的基本性质是:A. 磁场对电流有力的作用B. 磁场对电荷有作用力C. 磁场对运动电荷有力的作用D. 磁场对静止电荷有作用力答案:A2. 根据安培环路定理,磁场强度B与电流I的关系是:A. B∝IB. B∝1/IC. B∝I^2D. B∝1/I^2答案:A3. 洛伦兹力的方向可以通过左手定则判断,当电流方向与磁场方向垂直时,洛伦兹力的方向是:A. 垂直于电流和磁场方向B. 与电流方向相同C. 与磁场方向相同D. 与电流和磁场方向相同答案:A4. 一个带正电的粒子在磁场中运动,其速度方向与磁场方向平行,那么该粒子将:A. 受到洛伦兹力B. 做匀速直线运动C. 做匀速圆周运动D. 静止不动答案:B5. 霍尔效应是:A. 电流通过导体时,导体两端产生的电势差B. 磁场对电流的作用力C. 磁场对运动电荷的作用力D. 磁场对静止电荷的作用力答案:A6. 磁感应强度的定义式为B=Φ/A,其中Φ表示:A. 磁通量B. 磁通量密度C. 磁场强度D. 磁感应强度答案:A7. 根据磁通量的定义Φ=BS,其中S表示:A. 磁感应强度B. 磁通量C. 面积D. 磁通量密度答案:C8. 一个闭合电路在磁场中运动,产生感应电动势的现象称为:A. 电磁感应B. 霍尔效应C. 法拉第效应D. 楞次定律答案:A9. 磁通量的变化率与感应电动势的关系是:A. 感应电动势与磁通量变化率成正比B. 感应电动势与磁通量变化率成反比C. 感应电动势与磁通量成正比D. 感应电动势与磁通量成反比答案:A10. 根据楞次定律,感应电流的方向总是:A. 与原电流方向相同B. 与原电流方向相反C. 阻碍磁通量的变化D. 促进磁通量的变化答案:C二、填空题(每题3分,共30分)1. 磁场的基本单位是_______。

答案:特斯拉2. 一个长为L,通有电流I的直导线垂直于磁场放置,若磁场强度为B,则导线所受的磁场力大小为_______。

高二物理磁场对电流的作用试题答案及解析

高二物理磁场对电流的作用试题答案及解析

高二物理磁场对电流的作用试题答案及解析1.在同一光滑斜面上放同一导体绑棒,右图所示是两种情况的剖面图。

它们所外空间有磁感强度大小相等的匀强磁场,但方向不同,一次垂直斜面向上,另一次竖直向上,两次导体A分别通有电流I1和I2,都处于静止平衡。

已知斜面的倾角为θ,则:()A.I1:I2=cosθ:1B.I1:I2=1:1C.导体A所受安培力大小之比F1:F2=sinθ:cosθD.斜面对导体A的弹力大小之比N1:N2=cos2θ:1【答案】AD【解析】分别对导线受力分析,如图,利用平衡条件即可求解解得:解得:所以可见,AD正确,BC错误。

2.如图所示,两条导线相互垂直但相隔一小段距离,其中一条AB是固定的,另一条CD能自由转动,当直流电流按图示方向通入两条导线时,导线CD将(从纸外向纸内看)()A.顺时针方向转动,同时靠近导线ABB.逆时针方向转动,同时离开导线ABC.顺时针方向转动,同时离开导线ABD.逆时针方向转动,同时靠近导线AB【答案】D【解析】根据右手螺旋定则可知,电流AB产生的磁场在右边垂直纸面向里,在左边垂直纸面向外,电流CD处于电流AB产生的磁场中,在CD左右两边各取一小电流元,根据左手定则,左边的电流元所受的安培力方向向下,右边的电流元所受安培力方向向上,知CD导线逆时针方向转动(从纸外向纸内看).当CD导线转过90°后,两电流为同向电流,相互吸引.所以导线CD逆时针方向转动,同时靠近导线AB.故D正确,A、B、C错误.【考点】本题考查电流对电流的作用、通电直导线和通电线圈周围磁场的方向,意在考查考生对左手定则、右手螺旋定则的理解和应用.3.如图所示,金属棒MN两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M向N的电流,平衡时两悬线与竖直方向夹角均为θ。

如果仅改变下列某一个条件,θ角的相应变化情况是( )A.棒中的电流变大,θ角变大B.两悬线等长变短,θ角变大C.金属棒质量变大,θ角变大D.磁感应强度变大,θ角变大【答案】AD【解析】对通电导线受力分析,求出夹角的关系表达式,然后根据物体平衡列出平衡方程分析答题.导体棒受力如图所示,根据物体的平衡条件有,而导体棒与磁场垂直,所受的安培力为大小为,方向水平向右,所以有,棒中电流I变大,θ角变大,故A选项正确;两悬线等长变短,重力和安培力均不变,故θ角不变,故B选项错误;金属棒质量变大,θ角变小,故C选项错误;磁感应强度变大,θ角变大,故D选项正确;【考点】左手定则安培力物体的平衡4.(4分)将长度为0.2m、通有1A电流的直导线放入一匀强磁场中,电流与磁场的方向如图所示。

高中物理磁场习题200题(带答案解析)

高中物理磁场习题200题(带答案解析)

WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

高二物理磁场基本性质常见磁场试题答案及解析

高二物理磁场基本性质常见磁场试题答案及解析

高二物理磁场基本性质常见磁场试题答案及解析1.如图所示,在水平直导线正下方,放一个可以自由转动的小磁针. 现给直导线通以向右的恒定电流,不计其他磁场的形响,则( )A.小磁针保持不动B.小磁针的N将向下转动C.小磁针的N极将垂直于纸面向里转动D.小磁针的N极将垂直于纸面向外转动【答案】C【解析】由安培定则知,通电直导线在下方产生的磁场方向垂直直面向里,而磁场方向即小磁针静止时N极指向,故小磁针N极会垂直纸面向里转动,选项C正确,其余错误。

【考点】通电直导线磁场安培定则2.如图所示,三根通电长直导线P、Q、R互相平行,垂直纸面放置,其间距均为a,电流强度均为I,方向垂直纸面向里(已知电流为I的长直导线产生的磁场中,距导线r处的磁感应强度B=kI/r,其中k为常数) 。

某时刻有一电子(质量为m、电量为e)正好经过原点O,速度大小为v,方向沿y轴正方向,则电子此时所受磁场力为()A.方向垂直纸面向里,大小为B.方向指向x轴正方向,大小为C.方向垂直纸面向里,大小为D.方向指向x轴正方向,大小为【答案】A【解析】由安培定则和矢量叠加原理,可知原点O处的磁感应强度唯一由R处的电流决定,大小为,方向指向x轴负正方向,用左手定则可判定电子洛伦兹力的方向为垂直纸面向里,大小为,A正确。

【考点】通电直导线周围磁场的方向,洛伦兹力、洛伦兹力的方向3.下面关于磁场的一些说法中正确的是( )A.所有的磁场都是由于电荷的运动而产生的,即都是由电流产生的B.所有的磁场的磁感线都是闭合曲线,或者伸向无穷远C.磁场中某点的磁感线的切线方向就是磁感应强度的方向,即小磁针N极在该点的受力方向D.某小段通电导线不受磁场力的作用,说明该点的磁感应强度为零【答案】BC【解析】磁场与静电场不同,所有的磁场的磁感线都是闭合曲线,但对于条形磁铁而言,通过其中心轴线的磁感线是一条直线,它两端都伸向无穷远(也可以说这条磁感线是在无穷远处闭合),因此B选项正确.C选项就是磁感应强度的方向定义,C正确;错误分析:有人错选A,这是对“磁现象的电本质”的错误理解,其实磁场有两种,一种是由于电荷的运动产生的,另一种则是由于电场的变化产生的,在麦克斯韦理论中我们会学到.有人错选D,是因为他们没有想到磁场对电流的作用与电流方向有关,当电流方向与磁场方向在同一直线上时,电流就不受磁场力.在这点上,与电场对电荷的作用不一样,如果电荷在某点不受电场力,则该点的电场强度为零.【考点】本题考查了磁场的本质、磁感线的性质等磁场中比较基础知识,需要通过记忆进行理解。

高二物理磁场经典例题

高二物理磁场经典例题

高二物理磁场经典例题1.一个导线在均匀磁场中受力,磁场方向垂直于导线方向。

如果磁场强度增加,则导线上的安培力的变化情况如何?答案:导线上的安培力将增大。

2.在电流为I的长直导线附近,距离导线d处的磁感应强度为B。

如果将导线的电流加倍,则距离导线d处的磁感应强度如何变化?答案:距离导线d处的磁感应强度也将加倍。

3.一个半径为r的圆形线圈通以电流I,位于均匀磁场中。

求线圈上任意一点的磁感应强度。

答案:线圈上任意一点的磁感应强度为B=μ₀*I/(2*r),其中μ₀为真空中的磁导率。

4.两根平行长直导线,电流分别为I₁和I₂,它们的间距为d。

求两导线之间的相互作用力。

答案:两导线之间的相互作用力为F=μ₀*I₁*I₂/(2*π*d),其中μ₀为真空中的磁导率。

5.一根长直导线通以电流I,与之平行的一段长度为L的导线距离它为d。

求这一段导线受到的安培力。

答案:这一段导线受到的安培力为F=μ₀*I²*L/(2*π*d),其中μ₀为真空中的磁导率。

6.一个充满铜棒的长直螺线管通以电流I,螺线管的半径为R,匝数为N。

求铜棒两端的电势差。

答案:铜棒两端的电势差为ΔV=B*L*v,其中B为磁感应强度,L为铜棒的长度,v 为铜棒在磁场中的速度。

7.一个充满铜棒的长直螺线管通以电流I,螺线管的半径为R,匝数为N。

求铜棒受到的洛伦兹力。

答案:铜棒受到的洛伦兹力为F=B*I*L,其中B为磁感应强度,L为铜棒的长度。

8.一台电动机的转子中有N个线圈,每个线圈的面积为A,总电阻为R。

转子在磁场中以角速度ω旋转。

求电动机输出的电功率。

答案:电动机输出的电功率为P=N*B²*A*ω²*R,其中B为磁感应强度。

9.一个半径为r的螺线管通以电流I,磁场方向与螺线管轴线平行。

求螺线管内部的磁感应强度。

答案:螺线管内部的磁感应强度为B=μ₀*I*N/L,其中μ₀为真空中的磁导率,N为螺线管的匝数,L为螺线管的长度。

高二物理期末复习磁场典型例题含答案

高二物理期末复习磁场典型例题含答案

磁场典型例题2016、01、161、如图所示,在倾角为α得光滑斜面上,垂直纸面放置一根长为L、质量为m得直导体棒。

当导体棒中得电流I垂直纸面向里时,欲使导体棒静止在斜面上,可将导体棒置于匀强磁场中,当外加匀强磁场得磁感应强度B得方向在纸面内由竖直向上逆时针转至水平向左得过程中,关于B得大小得变化,正确得说法就是( )A、逐渐增大B、逐渐减小C、先减小后增大D、先增大后减小2、在如图所示得足够大匀强磁场中,两个带电粒子以相同方向垂直穿过虚线MN所在得平面,一段时间后又再次同时穿过此平面,则可以确定得就是( )A、两粒子一定带有相同得电荷量B、两粒子一定带同种电荷C、两粒子一定有相同得比荷D、两粒子一定有相同得动能3、如图所示,在一矩形区域内,不加磁场时,不计重力得带电粒子以某一初速度垂直左边界射入,穿过此区域得时间为t。

若加上磁感应强度为B、水平向外得匀强磁场,带电粒子仍以原来得初速度入射,粒子飞出时偏离原方向60°,利用以上数据可求出( )A、带电粒子得比荷B、带电粒子在磁场中运动得周期C、带电粒子得初速度D、带电粒子在磁场中运动得半径4、空间有一圆柱形匀强磁场区域,该区域得横截面得半径为R,磁场方向垂直于横截面。

一质量为m、电荷量为q(q>0)得粒子以速率v0沿横截面得某直径射入磁场,离开磁场时速度方向偏离入射方向得角度为60°,不计重力,该磁场得磁感应强度大小为( )A、B、C、D、5、如图所示,a、b就是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,在a、b两板间还存在着匀强电场E。

从两板左侧中点c处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d孔射出后分成三束。

则下列判断正确得就是( )A、这三束正离子得速度一定不相同B、这三束正离子得比荷一定不相同C、a、b两板间得匀强电场方向一定由a指向bD、若这三束离子改为带负电而其她条件不变,则仍能从d孔射出6、利用如图所示得方法可以测得金属导体中单位体积内得自由电子数n,现测得一块横截面为矩形得金属导体得宽为b,厚为d,并加有与侧面垂直得匀强磁场B,当通以图示方向电流I时,在导体上、下表面间用电压表可测得电压为U、已知自由电子得电荷量为e,则下列判断正确得就是 ( )A.上表面电势高B.下表面电势高C.该导体单位体积内得自由电子数为IedbD.该导体单位体积内得自由电子数为BIeUb7、如图所示,回旋加速器D形盒得半径为R,用来加速质量为m,电量为q得质子,质子每次经过电场区时,都恰好在电压为U时并被加速,且电场可视为匀强电场,使质子由静止加速到能量为E后,由A 孔射出。

高二物理期末复习磁场典型例题含答案

高二物理期末复习磁场典型例题含答案

磁场典型例题2016.01.161、如图所示,在倾角为α的光滑斜面上,垂直纸面放置一根长为L、质量为m的直导体棒。

当导体棒中的电流I垂直纸面向里时,欲使导体棒静止在斜面上,可将导体棒置于匀强磁场中,当外加匀强磁场的磁感应强度B的方向在纸面内由竖直向上逆时针转至水平向左的过程中,关于B的大小的变化,正确的说法是( )A.逐渐增大B.逐渐减小C.先减小后增大D.先增大后减小2、在如图所示的足够大匀强磁场中,两个带电粒子以相同方向垂直穿过虚线MN所在的平面,一段时间后又再次同时穿过此平面,则可以确定的是( )A.两粒子一定带有相同的电荷量B.两粒子一定带同种电荷C.两粒子一定有相同的比荷D.两粒子一定有相同的动能3、如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t。

若加上磁感应强度为B、水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°,利用以上数据可求出( )A.带电粒子的比荷B.带电粒子在磁场中运动的周期C.带电粒子的初速度D.带电粒子在磁场中运动的半径4、空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面。

一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向的角度为60°,不计重力,该磁场的磁感应强度大小为( )A.B.C.D.5、如图所示,a、b是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里,在a、b两板间还存在着匀强电场E。

从两板左侧中点c处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d孔射出后分成三束。

则下列判断正确的是( )A.这三束正离子的速度一定不相同B.这三束正离子的比荷一定不相同C.a、b两板间的匀强电场方向一定由a指向bD.若这三束离子改为带负电而其他条件不变,则仍能从d孔射出6、利用如图所示的方法可以测得金属导体中单位体积内的自由电子数n,现测得一块横截面为矩形的金属导体的宽为b,厚为d,并加有与侧面垂直的匀强磁场B,当通以图示方向电流I时,在导体上、下表面间用电压表可测得电压为U.已知自由电子的电荷量为e,则下列判断正确的是() A.上表面电势高B.下表面电势高C.该导体单位体积内的自由电子数为IedbD.该导体单位体积内的自由电子数为BIeUb7、如图所示,回旋加速器D形盒的半径为R,用来加速质量为m,电量为q的质子,质子每次经过电场区时,都恰好在电压为U时并被加速,且电场可视为匀强电场,使质子由静止加速到能量为E 后,由A孔射出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《磁场》单元过关
一选择题(每题5分,共50分。

在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。

全部选对的得5分,选不全的得3分,有选错或不答的得0分。


1、如图1所示,在竖直向上的匀强磁场中,水平放置着一根长直流导线,电流方向指向读者,a、b、c、d是以直导线为圆心的同一圆周上的四点,在这四点中:
A、a、b两点磁感应强度相同C、a点磁感应强度最大
B、c、d两点磁感应强度大小相等D、b点磁感应强度最大
2、如图2所示,直角三角形通电闭合线圈ABC处于匀强磁场中,磁场垂直纸面向里,则线圈所受磁场力的合力为:
A、大小为零
B、方向竖直向上
C、方向竖直向下
D、方向垂直纸面向里
3、质量为m,电荷量为q的带电粒子以速率v垂直射入磁感强度为B的匀强磁场中,在磁场力作用下做匀速圆周运动,带电粒子在圆形轨道上运动相当于一环形电流,则:
A、环形电流跟q成正比
B、环形电流跟v成正比
C、环形电流跟B成反比
D、环形电流跟m成反比
4、如图4所示,要使线框abcd在受到磁场力作用后,ab边向纸外,cd边向纸里转动,可行的方法是:
A、加方向垂直纸面向外的磁场,通方向为a→b→c→d→a的电

B、加方向平行纸面向上的磁场,通以方向为a→b→c→d→a电

C、加方向平行于纸面向下的磁场,通以方向为a→b→c→d的电

D、加方向垂直纸面向内的磁场,通以方向为a→d→c→b→a的电流
5、如图5所示,用绝缘细线悬吊着的带正电小球在匀匀强磁场中做简谐运动,则
A、当小球每次通过平衡位置时,动能相同
B、当小球每次通过平衡位置时,速度相同
C、当小球每次通过平衡位置时,丝线拉力相同
D、撤消磁场后,小球摆动周期变化
6、如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子的能量逐渐减小,从图中可以看出:
A、带电粒子带正电,是从B点射入的
B、带电粒子带负电,是从B点射入的
C、带电粒子带负电,是从A点射入的
D、带电粒子带正电,是从A点射入的
7(06Ⅰ).图中为一“滤速器”装置示意图。

a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间。

为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO'运动,由O'射出。

不计重力作用。

可能达到上述目的的办法是
A.使a板电势高于b板,磁场方向垂直纸面向里
B.使a板电势低于b板,磁场方向垂直纸面向里
C.使a板电势高于b板,磁场方向垂直纸面向外
D.使a板电势低于b板,磁场方向垂直纸面向外
8、如图所示,弹簧称下挂一条形磁铁,条形磁铁的N
极的一部分位于未通电的螺线管内,下列说法中正确的是:
A、若将a接电源正极,b接电源负极,弹簧称示数将减小
B、若将a接电源正极,b接电源负极,弹簧称示数将增大
C、若将a接电源负极,b接电源正极,弹簧称示数将增大
D、若将a接电源负极,b接电源正极,弹簧称示数将减小
9(06江苏).质子(p)和α粒子以相同的速率在同一匀强磁场中作
匀速圆周运动,轨道半径分别为R P和R ,周期分别为T P和T ,则下列选项正确的是()
A.R :R p=2 :1 ;T :T p=2 :1B.R :R p=1:1 ;T :T p=1 :1 C.R :R p=1 :1 ;T :T p=2 :1D.R :R p=2:1 ;T :T p=1 :1 10.[广东大综.] 如图9所示,在倾角为α的光滑斜面上,垂直纸面放置一根长为L,质
量为m的直导体棒.在导体棒中的电流I垂直纸面向里时,欲使导体棒静止在斜面上,下列外加匀强磁场的磁感应强度B的大小和方向正确是
A.B=m sin
IL
α
g,方向垂直斜面向上
B.B=m sin
IL
α
g,方向垂直斜面向下
C.B=mg cos
IL
α
,方向垂直斜面向下
O
b
O'
D.B=mg cos
IL
,方向垂直斜面向上
一选择题写答案处
1 2 3 4 5 6 7 8 9 10
二填空题:(每题6分共30分)
11、电子(e,m)以速度v0与x轴成30°角垂直射入磁感强度为B的匀强磁场中,经一段时间后,打在x轴上的P点,如图10所示,则P点到O点的距离为____,电子由O点运动到P点所用的时间为_____
12、如图11所示,带负电的小球从右端向左经过最低点A时,悬线张力为T1,当小球从左向右经过最低点A时,悬线张力为T2,则T1__T2(填>、<或=)
13.[上海物理卷.1B]如图所示,一束β粒子自下而上进人一垂直纸
面的匀强磁场后发生偏转,则磁场方向向,进人磁场后,
p粒子的动能(填“增加”、“减少”或“不变”)
14(06上海).如图所示,同一平面内有两根互相平行的长直导线1
和2,通有大小相等、方向相反的电流,a、b两点与两导线共面,a
点在两导线的中间与两导线的距离均为r,b点在导线2右侧,与导线2
的距离也为r.现测得a点磁感应强度的大小为B,则去掉导线1后,b
点的磁感应强度大小为,方向.
15、如图所示,倾角为θ的光滑绝缘斜面,处在方向垂直斜面向上的匀强磁场和方向未知的匀强电场中,有一质量为m、带电量为一q的小球,恰可在斜
面上做匀速圆周运动、其角速度为ω,那么,匀强磁场的磁感
应强度的大小为,未知电场的最小场强的大小
为,方向沿。

三。

、计算题((本题共2小题,共20分。

要求写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能给分。

有数值计算的题,答案中应明确写出数值和单位。


16、PQ为一根足够长的绝缘细直杆,处于竖直的平面内,与水平夹角为θ斜放,空间充满磁感应强度B的匀强磁场,方向水平如图所示。

一个质量为m,
带有负电荷的小球套在PQ杆上,小球可沿杆滑动,球与杆之间
的摩擦系数为μ(μ<tgθ),小球带电量为q。

现将小球由静止开
始释放,试求小球在沿杆下滑过程中:
(1)小球最大加速度为多少?此时小球的速度是多少?
(2)下滑过程中,小球可达到的最大速度为多大?

17(06天津).(18分)在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m ;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为
'B,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速
度方向相对于入射方向改变了60°角,求磁感应强度'B多大?此
次粒子在磁场中运动所用时间t是多少?
一选择题写答案处
1 2 3 4 5 6 7 8 9 10 BD A D B A B AD AC A A

11 mv 0/eB 、πm/3eB 12、< 13【答案】:里 不变 14(答案
2
B
,垂直纸面向外) 15解析:T qB m T πϖπ2,2==θsin min mg q E = 答案:q
mg q
m θ
ϖ
sin 沿斜面向下 三、
16、(1) a g v mg qB m ==sin ,cos /θθ
(2) v mg qB m =+(sin cos )/θμθμ
解答17.(10分)
(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷。

粒子由 A 点射入,由 C 点飞出,其速度方向改变了 90°,则粒子轨迹半径
R r =

1 又2
v qvB m
R
=
○2 则粒子的比荷
q v
m Br
=

3
(2)粒子从 D 点飞出磁场速度方向改变了 60°角,故 AD 弧所对圆心角 60°,粒子做圆周运动的半径
'cot 303R r r ==

4 又
''
mv
R qB =

5
所以
'B B =

6 粒子在磁场中飞行时间
11266'3m r
t T qB v
π==⨯=

7。

相关文档
最新文档