高中物理带电子在磁场中的运动知识点汇总
带电粒子在匀强磁场中的运动知识小结
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
高中物理之带电粒子在磁场中的运动知识点
高中物理之带电粒子在磁场中的运动知识点带电粒子在磁场中的运动特点带电粒子在磁场中的运动往往比较复杂,我们只考虑其中几种特殊情况:不考虑粒子本身的重力(一般如:电子、质子、粒子、离子等不考虑它们的重力);磁场为匀强磁场。
①初速度v0与磁场平行:此时洛伦兹力F=0,粒子将沿初速度方向做匀速直线运动。
②初速度与磁场垂直:由于洛伦兹力总与粒子运动方向垂直,粒子在洛伦兹力作用下做匀速圆周运动,其向心力由洛伦兹力提供,所以其轨道半径为,运动周期为。
由此可见:荷质比相同的粒子以相同的速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同。
它们运动的周期T与粒子的速度大小无关,与粒子的轨道半径R无关,只要是荷质比相同的粒子,进入同一磁场,其周期相同。
规律方法“一点、两画、三定、四写”求解粒子在磁场中的圆周运动问题(1)一点:在特殊位置或要求粒子到达的位置(如初位置、要求经过的某一位置等);(2)两画:画出速度v和洛伦兹力F两个矢量的方向;(3)三定:定圆心、定半径、定圆心角;(4)四写:写出基本方程带电粒子在匀强磁场中的运算1圆心的确定①因为洛伦兹力指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点,如下图甲的P、M两点)的F洛的方向,其延长线的交点即为圆心.(也可以说是任意两点的切线方向的垂直线交点)②做粒子入射点速度方向的垂直线,做出入射点、出射点连线的中垂线,两线的交点即是圆心O.2半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角)。
并注意以下两个重要的几何特点:①粒子速度的偏向角(φ)等于回旋角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,φ=α=2θ=ω。
②相对的弦切角(θ)相等,与相邻的弦切角(θ')互补,即θ+θ'=180°。
3粒子在磁场中运动时间的确定利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则注意圆周运动中有关对称规律如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
高中物理带电粒子在磁场中的运动知识点汇总-
高中物理带电粒子在磁场中的运动知识点汇总-
1. 磁场的基本概念
磁场是一种物理现象,指在空间范围内存在的磁场力作用所表现出来的影响。
常用的表示磁场的单位是特斯拉 (T)。
2. 洛伦兹力定律
当一个带电粒子在磁场中运动时,会受到一个称为洛伦兹力的力作用。
洛伦兹力的大小与电荷的电量、磁场的强度和带电粒子的速度有关。
3. 带电粒子在匀强磁场中的运动规律
带电粒子在匀强磁场中前进的轨迹为圆形或者螺旋线,圆的半径与带电粒子的质量、速度、电荷量和磁场强度有关。
4. 带电粒子在非匀强磁场中的运动规律
带电粒子在非匀强磁场中的运动规律比匀强磁场更复杂,通常需要用电场力和重力力来计算。
5. 延迟磁场
延迟磁场是指当一个带电粒子在磁场中运动时,会产生一个磁场,这个磁场会影响该带电粒子后续的运动。
在一些情况下,延迟磁场可能比初始磁场更重要。
6. 磁场对物体的影响
磁场不仅对带电粒子的运动有影响,还对物体的运动有影响。
当一个物体在磁场中运动时,会受到磁场力的作用,这个力与电荷无关,而是与磁矩有关。
7. 模拟实验
在实验室中可以使用引入带电粒子和磁场的装置来进行模拟实验。
这些实验可以帮助学生深入理解磁场和带电粒子在其中的运动规律。
高考物理带电粒子在磁场中的运动知识点汇总
高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。
带电粒子在电磁场中的运动-高中物理专题(含解析)
带电粒子在电磁场中的运动-高中物理专题(含解析)引言本文将讨论带电粒子在电磁场中的运动,涉及到相关的物理概念和解析。
我们将从基本的概念开始,逐步深入探讨。
电磁场的基本概念电磁场是由电荷和电流所产生的。
对于静电场而言,电磁场的作用是通过电荷之间的相互作用传递力;而对于电流产生的磁场来说,电磁场的作用是通过磁力线的变化传递力。
在电磁场中,带电粒子受到电磁力的作用而运动。
带电粒子在电磁场中的运动方程带电粒子在电磁场中的运动方程可以由洛伦兹力得出。
洛伦兹力是指带电粒子在电磁场中所受的力,其方向垂直于粒子速度和磁场方向的平面。
洛伦兹力的大小与带电粒子的电荷量、速度以及磁场的强度有关。
带电粒子在电磁场中的运动方程可以表示为:F = q(E + v × B)其中,F是带电粒子所受的力,q是带电粒子的电荷量,E是电场强度,v是带电粒子的速度,B是磁场强度。
带电粒子在电磁场中的运动类型带电粒子在电磁场中的运动类型有很多种。
根据粒子速度和磁场方向的关系,可以将其分为以下几种情况:1. 带电粒子在电磁场中做匀速直线运动。
2. 带电粒子在电磁场中做匀速圆周运动。
3. 带电粒子在电磁场中做螺旋运动。
实例解析下面我们通过一个实例来解析带电粒子在电磁场中的运动。
假设我们有一个带正电荷的粒子,处于一个均匀磁场和一个均匀电场中。
该粒子以速度v在电场和磁场的交叉方向上运动。
根据洛伦兹力公式,该粒子在电磁场中所受的合力为:F = q(E + v × B)其中q为粒子的电荷量,E为电场强度,B为磁场强度。
根据合力的方向,我们可以确定粒子在电磁场中的运动类型。
具体的运动轨迹可通过求解运动方程得到。
结论带电粒子在电磁场中的运动是由洛伦兹力所驱动的。
根据粒子速度和磁场方向的关系,带电粒子可以做匀速直线运动、匀速圆周运动或螺旋运动。
通过解析带电粒子在电磁场中的运动,我们可以更好地理解电磁场对粒子的影响,为相关领域的研究和应用提供基础知识。
电子在磁场中的运动
电子在磁场中的运动电子是组成原子的基本粒子之一,而磁场则是指存在于空间中的磁力场。
电子在磁场中的运动是一个引人注目的物理现象,本文将探讨电子在磁场中的运动规律、影响因素以及相关应用。
一、洛伦兹力与电子运动当电子在磁场中运动时,会受到洛伦兹力的作用。
洛伦兹力是描述电子在存在磁场的情况下所受到的力的数学表达式,其大小和方向与电子速度、磁场的强度和方向都有关系。
根据右手法则,洛伦兹力垂直于电子运动方向和磁场方向,且其大小与电子速度以及磁场的强度成正比。
二、电子在匀强磁场中的运动在匀强磁场中,电子将以螺旋状轨道进行运动。
其运动方向由洛伦兹力和电子初始速度决定。
磁场的方向垂直于电子的速度方向时,电子将在垂直于磁场方向的平面上做匀速圆周运动。
若电子速度与磁场方向存在夹角,则电子会在进行斜螺旋运动,同时沿磁场方向前进。
三、影响电子运动的因素电子在磁场中的运动受到多种因素的影响,包括电子的速度、磁场的强度和方向、电子的质量等。
当磁场强度增大时,电子的轨道半径也会增大;当电子速度增大时,轨道半径则减小;而电子质量的改变也会对电子运动的轨迹产生影响。
四、电子在磁场中的应用电子在磁场中的运动规律为多个领域的应用提供了基础。
例如,在电子微控制器器件中,利用磁场对电子进行定向和控制,可以实现传感器和执行器的功能。
另外,在磁共振成像技术中,利用电子在磁场中的行为差异可以对物体的内部结构进行成像和诊断。
综上所述,电子在磁场中的运动是一个复杂而有趣的物理现象。
洛伦兹力的作用使得电子轨迹呈现出多样化的形式,这种运动的规律性对于许多应用具有重要意义。
进一步研究电子在磁场中的运动规律有助于我们更深入地理解物质的行为,并为相关技术和应用的发展提供指导。
高中物理带电子在磁场中的运动知识点
高中物理带电子在磁场中的运动知识点一、概要高中物理中,电子在磁场中的运动是一个重要的知识点,涉及到电磁学的基本原理和应用。
这一知识点主要研究电子在磁场中受到洛伦兹力作用时的运动规律,包括电子的轨迹、速度、加速度以及磁场对电子的影响等。
掌握该知识点对于理解电磁现象、电子在科技领域的应用以及科学实验分析具有重要意义。
本文将对电子在磁场中的运动进行详细分析,帮助读者理解其基本原理和关键概念。
1. 介绍磁场与电子运动的重要性,说明电子在磁场中的运动规律是物理学中的重要课题在物理学中,磁场与电子的运动关系是一个极为重要且富有挑战性的课题。
磁场作为一种无形的力量,影响着周围物质的性质和行为,特别是在微观领域中对电子的影响更是显著。
电子作为物质的基本组成部分之一,其运动规律的研究对于理解物质的本质和性质至关重要。
因此电子在磁场中的运动规律研究,不仅关乎我们对物质世界的深入理解,也是物理学领域持续探索的热点。
从更广泛的角度来看,磁场和电子的运动关乎众多科学领域,如电磁学、量子力学、原子物理等。
它们在能源科技、信息技术等现代科技领域的应用也极为广泛。
例如电磁场理论在电动机、发电机、磁悬浮列车等领域的应用都离不开电子在磁场中的运动规律。
此外电子在磁场中的行为对于理解物质的磁性、半导体材料的性质等也有着重要意义。
因此电子在磁场中的运动规律研究具有重要的理论价值和实际应用价值。
从物理学的角度来看,电子在磁场中的运动受到洛伦兹力的影响,其轨迹呈现出复杂的曲线特性。
这些特性包括电子的运动方向、速度、加速度等的变化规律,以及磁场强度、方向对电子运动的影响等。
这些复杂而又精确的运动规律为我们提供了理解微观世界的重要线索,也为我们在纳米科技、微电子等领域的技术创新提供了理论基础。
因此研究电子在磁场中的运动规律是物理学研究的重要课题之一。
2. 简述本文目的,阐述本文内容将涵盖电子在磁场中的受力分析、运动轨迹、能量变化等方面电子在磁场中的受力分析。
高中物理带电粒子在匀强磁场中的运动讲解_
高中物理带电粒子在匀强磁场中的运动讲解_下面是学习信息网整理的有关高中物理带电粒子在匀强磁场中的运动知识点总结讲解,方便大家的学习浏览1、理解洛伦兹力对粒子不做功。
2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀磁场中做匀速圆周运动.3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题,知道质谱仪的工作原理。
4、知道回旋加速器的基本构造、工作原理、及用途。
[问题1]什么是洛伦兹力?[磁场对运动电荷的作用力][问题2]带电粒子在磁场中是否一定受洛伦兹力?[不一定,洛伦兹力的计算公式为F=qvBsin ,为电荷运动方向与磁场方向的夹角,当 =90 时,F=qvB;当 =0 时,F=0。
] [问题3]带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习带电粒子在匀强磁场中的运动。
带电粒子垂直进入匀强磁场中的受力及运动情况分析一是要明确所研究的物理现象的条件----在匀强磁场中垂直于磁场方向运动的带电粒子。
二是分析带电粒子的受力情况,用左手定则明确带电粒子初速度与所受到的洛伦兹力在同一平面内,所以只可能做平面运动。
三是洛伦兹力不对运动的带电粒子做功,它的速率不变,同时洛伦兹力的大小也不变。
四是根据牛顿第二定律,洛伦兹力使运动的带电粒子产生加速度(向心加速度)①电子受到怎样的力的作用?这个力和电子的速度的关系是怎样的?(电子受到垂直于速度方向的洛伦兹力的作用.)②洛伦兹力对电子的运动有什么作用?(洛伦兹力只改变速度的方向,不改变速度的大小)③有没有其他力作用使电子离开磁场方向垂直的平面?(没有力作用使电子离开磁场方向垂直的平面)④洛伦兹力做功吗?(洛伦兹力对运动电荷不做功)1.带电粒子在匀强磁场中的运动(1)运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功。
【说明】:(1)轨道半径和粒子的运动速率成正比.(2)带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关。
高中物理选修三3.6带电粒子在匀强磁场中的运动
知识点一 带电粒子在匀强磁场中的运动:
1.运动轨迹: 带电粒子(不计重力)以一定的速度 v 进入磁感应强度为 B 的匀 强磁场时:
(1)当 v∥B 时,带电粒子将做_匀__速__直__线_运动. (2)当 v⊥B 时,带电粒子将做_匀__速__圆__周_运动.
2.圆周运动轨道半径和周期:
(1)由
提示:(1)带电粒子以某一速度垂直磁场方向进入匀强磁场后, 在洛伦兹力作用下做匀速圆周运动,其运动周期与速率、半径均无
关(T=2qπBm),带电粒子每次进入 D 形盒都运动相等的时间(半个周 期)后平行电场方向进入电场中加速.
(2)回旋加速器两个 D 形盒之间的窄缝区域存在周期性变化的 并垂直于两个 D 形盒正对截面的匀强电场,带电粒子经过该区域时 被加速.
(2)圆弧 PM 所对应圆心角 α 等于弦 PM 与切线的夹角(弦切角)θ 的 2 倍,即 α=2θ,如图所示.
拓展 (1)关于半径的计算,还有直接观察法(不借助数学方法而直接 观察得到半径)、三角函数法、勾股定理法、正弦定理法、余弦定 理法等,但经常用到的是利用三角函数和勾股定理求解.实际应用 中要根据题目中提供的有关条件,构建三角形后灵活选择合适的方 法求出半径,进而求得相关物理量. (2)直线边界:进出磁场具有对称性,如图所示.
(3)为了保证带电粒子每次经过盒缝时均被加速,使其能量不断
提高,交变电压的周期必须等于带电粒子在回旋加速器中做匀速圆
周运动的周期,即 T=2Bπqm.因此,交变电压的周期由带电粒子的质 量 m、带电量 q 和加速器中磁场的磁感应强度 B 决定.
(4)带电粒子在磁场中做圆周运动,洛伦兹力充当向心力,qvB =mvR2,Ek=12mv2,因此,带电粒子经过回旋加速器加速后,获得 的动能 Ek=q22Bm2R2.
带电粒子在磁场中的运动
洛伦兹力,带电粒子在磁场中的运动一、洛伦兹力:磁场对运动电荷的作用力1.洛伦兹力的公式:F=qvb2.当带电粒子的运动方向与磁场方向互相平行时,F=03.当带电粒子的运动方向与磁场方向互相垂直时,F=qvb4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷磁场中受到的磁场对电荷的作用力一定为0。
二、洛伦兹力的方向1.运动电荷在磁场中受力方向要用左手定则来判定.2.洛伦兹力F的方向既垂直磁场B的方向,又垂直运动电荷v的方向,即F总是垂直B和v的所在平面.3.使用左手定则判定洛伦兹力方向时,若粒子带正电时,四个手指的指向与正电荷的运动方向相同.若粒子带负电时,四个手指的指向与负电荷的运动方向相反.4.安培力的本质是磁场对运动电荷的作用力的宏观表现.三、洛伦兹力的特征洛伦兹力与电荷运动状态有关:当v=0时,F=0;v≠0,但v∥B时,F=0。
1洛伦兹力对运动电荷不做功.注意:由于洛伦兹力的方向总与带电粒子在磁场中的运动方向垂直,所以洛伦兹力对运动电荷不做功,不能改变运动电荷的速度大小和电荷的大小,但洛伦兹力可以改变运动电荷的速度方向和运动电荷的运动状态.四、带电粒子在匀强磁场中的运动1.不计重力的带电粒子在匀强磁场中的运动可分为三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的几个基本公式: (1)向心力公式_qvB=m错误!(2)轨道半径公式R=错误!;(3)周期、频率公式T=2πRv=错误!.3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做类平抛运动曲线运;垂直进入匀强磁场,则做匀速圆周运动曲线运动.一、在研究带电粒子在匀强磁场中做匀速圆周运动规律时,着重把握“一找圆心,二找半径错误!,三找周期错误!或时间”的分析方法.1.圆心的确定因为洛伦兹力F洛指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F洛的方向,沿两个洛伦兹力F洛画其延长线的交点即为圆心,另外,圆心位置必定在圆中一根弦的中垂线上(见图).2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点.(1)粒子速度的偏向角(φ)等于同心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt。
高中物理:带电粒子在匀强磁场中的运动
高中物理:带电粒子在匀强磁场中的运动【知识点的认识】带电粒子在匀强磁场中的运动1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)【命题方向】常考题型:带电粒子在匀强磁场中的匀速圆周运动如图,半径为R的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()A. B. C. D.【分析】由题意利用几何关系可得出粒子的转动半径,由洛仑兹力充当向心力可得出粒子速度的大小;解:由题,射入点与ab的距离为.则射入点与圆心的连线和竖直方向之间的夹角是30°,粒子的偏转角是60°,即它的轨迹圆弧对应的圆心角是60,所以入射点、出射点和圆心构成等边三角形,所以,它的轨迹的半径与圆形磁场的半径相等,即r=R.轨迹如图:洛伦兹力提供向心力:,变形得:.故正确的答案是B.故选:B.【点评】在磁场中做圆周运动,确定圆心和半径为解题的关键.【解题方法点拨】带电粒子在匀强磁场中的匀速圆周运动一、轨道圆的“三个确定”(1)如何确定“圆心”①由两点和两线确定圆心,画出带电粒子在匀强磁场中的运动轨迹.确定带电粒子运动轨迹上的两个特殊点(一般是射入和射出磁场时的两点),过这两点作带电粒子运动方向的垂线(这两垂线即为粒子在这两点所受洛伦兹力的方向),则两垂线的交点就是圆心,如图(a)所示.②若只已知过其中一个点的粒子运动方向,则除过已知运动方向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆心,如图(b)所示.③若只已知一个点及运动方向,也知另外某时刻的速度方向,但不确定该速度方向所在的点,如图(c)所示,此时要将其中一速度的延长线与另一速度的反向延长线相交成一角(∠PAM),画出该角的角平分线,它与已知点的速度的垂线交于一点O,该点就是圆心.(2)如何确定“半径”方法一:由物理方程求:半径R=;方法二:由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定.(3)如何确定“圆心角与时间”①速度的偏向角φ=圆弧所对应的圆心角(回旋角)θ=2倍的弦切角α,如图(d)所示.②时间的计算方法.方法一:由圆心角求,t=•T;方法二:由弧长求,t=.二、解题思路分析1.带电粒子在磁场中做匀速圆周运动的分析方法.2.带电粒子在有界匀强磁场中运动时的常见情形.直线边界(粒子进出磁场具有对称性)件)形边界(粒子沿径向射入,再沿向射出)3.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点.(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍.三、求解带电粒子在匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.(1)两种思路①以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;②直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.(2)两种方法物理方法:①利用临界条件求极值;②利用问题的边界条件求极值;③利用矢量图求极值.数学方法:①利用三角函数求极值;②利用二次方程的判别式求极值;③利用不等式的性质求极值;④利用图象法等.(3)从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.。
带电粒子在磁场中的运动知识点总结
带电粒子在磁场中的运动知识点总结带电粒子在磁场中的运动可以通过洛伦兹力来描述,洛伦兹力的大小为F=q(v×B),方向垂直于带电粒子的速度和磁场。
1. 磁力对粒子的运动轨迹的影响:- 在匀强磁场中,带电粒子的运动轨迹为圆周,圆心在速度与磁场垂直的平面上,半径为mv/qB,速度方向以半径为轴作右手螺旋运动。
- 在非匀强磁场中,带电粒子的运动轨迹为螺旋线,其螺旋轴垂直于磁场方向,并以瞬时速度方向为轴向作旋转运动。
2. 粒子在磁场中的运动特点:- 磁场只对带电粒子的速度方向产生影响,不会改变其速度大小。
- 磁场对带电粒子的运动不会改变其动能,只是改变其运动方向。
- 当带电粒子的速度与磁场平行时,洛伦兹力为零,粒子不受力,保持直线运动。
- 当带电粒子的速度与磁场平面夹角为0或180度时,洛伦兹力最大,速度方向会发生最大的改变。
3. 粒子在磁场中的运动方向:- 正电荷带电粒子在磁场中受力方向与负电荷带电粒子相反,遵循右手定则。
- 右手定则:将右手伸直,让食指指向带电粒子的速度方向,中指指向磁场方向,则拇指的方向就是粒子受力的方向。
4. 粒子运动的径向速度和纵向速度:- 径向速度指与粒子运动轨迹半径方向相同的速度分量,大小不变,只改变方向。
- 纵向速度指与粒子运动轨迹切线方向相同的速度分量,大小不变,只改变方向。
5. 粒子在磁场中的周期和频率:- 带电粒子在匀强磁场中做圆周运动的周期为T=2π(m/qB),圆周运动的频率为f=1/T。
- 带电粒子在非匀强磁场中做螺旋运动的周期,取决于速度和磁场的空间分布情况。
这些是带电粒子在磁场中运动的关键知识点总结,可以帮助理解和解决相关问题。
高中物理专题复习—带电粒子在电磁场中的运动(含问题详解)
带电粒子在电磁场中的运动[P 3.]一、考点剖析:带电粒子在电场中的运动比物体在重力场中的运动要丰富得多,它与运动学、动力学、功和能、动量等知识联系紧密,加之电场力的大小、方向灵活多变,功和能的转化关系错综复杂,其难度比力学中的运动要大得多。
带电粒子在磁场中的运动涉及的物理情景丰富,解决问题所用的知识综合性强,很适合对能力的考查,是高考热点之一。
带电粒子在磁场中的运动有三大特点:①与圆周运动的运动学规律紧密联系②运动周期与速率大小无关③轨道半径与圆心位置的确定与空间约束条件有关,呈现灵活多变的势态。
因以上三大特点,很易创造新情景命题,故为高考热点,近十年的高考题中,每年都有,且多数为大计算题。
带电粒子在电磁场中的运动: 若空间中同时同区域存在重力场、电场、磁场,则使粒子的受力情况复杂起来;若不同时不同区域存在,则使粒子的运动情况或过程复杂起来,相应的运动情景及能量转化更加复杂化,将力学、电磁学知识的转化应用推向高潮。
该考点为高考命题提供了丰富的情景与素材,为体现知识的综合与灵活应用提供了广阔的平台,是高考命题热点之一。
[P 5.]二、知识结构d U UL v L md qU at y 加4212122022=⨯⨯==L y dU UL mdv qUL v at v vtan y 222000=====加φ[P 6.]三、复习精要: 1、带电粒子在电场中的运动(1) 带电粒子的加速 由动能定理 1/2 mv 2=qU (2) 带电粒子的偏转带电粒子在初速度方向做匀速运动 L =v 0t t=L/ v 0 带电粒子在电场力方向做匀加速运动F=q E a =qE/m 带电粒子通过电场的侧移偏向角φ(3)处理带电粒子在电场中的运动问题的一般步骤:①分析带电粒子的受力情况,尤其要注意是否要考虑重力、电场力是否是恒力等 ②分析带电粒子的初始状态及条件,确定粒子作直线运动还是曲线运动 ③建立正确的物理模型,进而确定解题方法④利用物理规律或其它解题手段(如图像等)找出物理量间的关系,建立方程组 2、带电粒子在磁场中的运动带电粒子的速度与磁感应线平行时,能做匀速直线运动;t当带电粒子以垂直于匀强磁场的方向入射,受洛伦兹力作用,做匀速圆周运动。
带电粒子在磁场中的运动知识点总结
带电粒子在磁场中的运动知识点总结带电粒子在磁场中的运动知识点总结磁场是由具有磁性的物质产生的一种特殊的物理现象。
带电粒子在磁场中的运动是一种经典力学问题,也是研究电磁力学的重要内容之一。
本文将从洛伦兹力和运动方程的角度,总结带电粒子在磁场中的运动知识点。
一、洛伦兹力的定义和表达式当带电粒子运动时,其受到磁场的作用力称为洛伦兹力。
洛伦兹力的大小和方向与带电粒子的电荷量、速度以及磁场的强度和方向有关。
洛伦兹力的表达式为:F = q(v × B),其中F表示洛伦兹力,q表示带电粒子的电荷量,v表示带电粒子的速度,B表示磁场的磁感应强度。
从表达式可以看出,当带电粒子的速度与磁场的方向相垂直时,洛伦兹力最大,其大小为F = qvB。
当带电粒子的速度与磁场的方向平行时,洛伦兹力为零。
二、带电粒子在均匀磁场中的运动1. 带电粒子在均匀磁场中做圆周运动。
当带电粒子的速度与磁场的方向垂直时,洛伦兹力的方向垂直于速度和磁场,使得带电粒子呈圆周运动。
带电粒子沿着圆周运动的半径越小,则速度越大。
2. 带电粒子在均匀磁场中做螺旋线运动。
当带电粒子的速度既有向心分量又有切向分量时,带电粒子在均匀磁场中做螺旋线运动。
螺旋线的轴线平行于磁场方向,而螺旋线的半径和螺旋线的间距则与带电粒子的质荷比有关。
三、带电粒子在非均匀磁场中的运动在非均匀磁场中,带电粒子的运动受到洛伦兹力和离心力的共同作用。
1. 带电粒子在平行磁场中的运动。
当带电粒子的速度与非均匀磁场的方向平行时,洛伦兹力和离心力共同作用,使得带电粒子的运动轨迹偏离直线,呈现偏转或弯曲的状态。
2. 带电粒子在非均匀磁场中的稳定运动。
在某些特殊的非均匀磁场中,带电粒子可以实现稳定的运动。
例如,带电粒子在磁偶极场中做稳定的进动运动。
四、在磁场中运动的带电粒子与其他力的作用在实际情况中,带电粒子在磁场中的运动常常受到其他力的作用,如重力和电场的作用。
1. 在重力作用下的带电粒子运动。
高中物理带电子在磁场中的运动知识点汇总
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1.产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行.2.洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最人,f=quB:当电荷运动方向与磁场方向有夹角0时,洛伦兹力f=qvB • sm 03.洛伦兹力的方向:洛伦兹力方向用左手定则判断4.洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1.若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,0=0°或180。
时,带电粒子粒子在磁场中以速度u做匀速直线运动.2.若带电粒子的速度方向与匀强磁场方向垂直,即6 = 90。
时,带电粒子在匀强磁场中以入射速度u做匀速圆周运动.V2qvB = m ——①向心力由洛伦兹力提供:RR =—②轨道半径公式:qB_2K R _ 27rm m③周期:V qB ,可见T只与q有关,与V、R无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1•“带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,t = —TI^t = —T有时需要建立运动时间t和转过的圆心角a之间的关系(36°2兀)作为辅助。
圆心的确定,通常有以下两种方法。
①已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P为入射点,M为出射点)。
②已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P为入射点,M为出射点)。
高中物理 3.5运动电荷在磁场中的运动
二、洛伦兹力的大小
当运动电荷的速度v方向与磁感应强 度B方向的夹角为θ,电荷所受的洛伦兹 力大小为
3.电子的速率v=3×106 m/s,垂直射入 B=0.10T的匀强磁场中,它受到的洛伦兹力 是多大?
思考与深化
若带电粒子垂直于磁场方向射入匀强磁场 中,带电粒子在磁场中将会如何运动?
三、显像管的工作原理
3.如图所示,一带电塑料小球质量为m,用丝线悬 挂于O点,并在竖直平面内摆动,最大摆角为60°, 水平磁场垂直于小球摆动的平面.当小球自左方 摆到最低点时,悬线上的张力恰为零,则小球自 右方最大摆角处摆到最低点时悬线上的张力为( )
A.0 B.2mg C.4mg D.6mg
4.一个质量m=0.1g的小滑块,带有q=5×10-4C 的电荷量,放置在倾角α=30°的光滑斜面上(斜 面绝缘),斜面置于B=0.5T的匀强磁场中,磁场
第5节 运动电荷在磁场中受到的力
丰城九中
一、洛伦兹力(Lorentz force) 1、定义:运动电荷在磁场中受到的作用力, 叫洛伦兹力。 2、洛伦兹力的方向:
电子射线管的原理: 从阴极发射出来电子,在阴阳两极间的高压作用
下,使电子加速,形成电子束,轰击到长条形的荧光 屏上激发出荧光,可以显示电子束的运动轨迹。
电视显像管应用了电子束在磁场中的偏 转原理。电子束射向荧光屏就能发光,一束 电子束只能使荧光屏上的一个点发光,而通 过偏转线圈中磁场的偏转就可以使整个荧光 屏发光。
思考与讨论
如图所示,电视显像管中,要使电子束 从B逐渐向A点扫描,必须加一个怎样变化的 偏转磁场?
荧光屏中点O的下 方,应加一垂直向内 的磁场,且越下方磁 场越强,而在O点的上 方,应加一垂直向外 的磁场,且越上方的 磁场越强。
(完整版)高中物理带电粒子在磁场中的运动(提纲、例题、练习、解析)
带电粒子在磁场中的运动【学习目标】1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法2.理解质谱仪和回旋加速器的工作原理和作用【要点梳理】要点一:带电粒子在匀强磁场中的运动要点诠释:1.运动轨迹带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中:(1)当v∥B时,带电粒子将做匀速直线运动;(2)当v⊥B时,带电粒子将做匀速圆周运动;(3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动.说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动.2.带电粒子在匀强磁场中的圆周运动如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q.(1)轨道半径:由于洛伦兹力提供向心力,则有2vqvB mr=,得到轨道半径mvrqB=.(2)周期:由轨道半径与周期之间的关系2rTvπ=可得周期2mTqBπ=.说明:(1)由公式mvrqB=知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率成正比.(2)由公式2mTqBπ=知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率均无关,而与比荷qm成反比.注意:mvrqB=与2mTqBπ=是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明题中,两公式不能直接当原理式使用.要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:1.分析方法/Bq 或时间”的基本方法和规律,具体分析为: (1)圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键.首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上.通常有两种确定方法:①已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P 为入射点,M 为出射点,O 为轨道圆心).②已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点,O 为轨道圆心).(2)运动半径的确定:作入射点、出射点对应的半径,并作出相应的辅助三角形,利用三角形的解析方法或其他几何方法,求解出半径的大小,并与半径公式mvr Bq=联立求解. (3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:360t T α=︒(或2t T απ=).可见粒子转过的圆心角越大,所用时间越长. 2.有界磁场(1)磁场边界的类型如图所示(2)与磁场边界的关系①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. ③当速率v 变化时,圆周角越大的,运动的时间越长. (3)有界磁场中运动的对称性①从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等; ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出. 3.解题步骤带电粒子在匀强磁场中做匀速圆周运动的解题方法——三步法: (1)画轨迹:即确定圆心,几何方法求半径并画出轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.注意:道PM 对应的圆心角α,即αϕ=,如图所示.(2)圆弧轨道PM 所对圆心角α等于PM 弦与切线的夹角(弦切角)θ的2倍,即2αθ=,如图所示. 要点三:质谱仪要点诠释: (1)构造质谱仪由粒子注入器、加速电场、速度选择器、偏转电场和照相底片组成,如图所示.(2)工作原理 ①加速:212qU mv =, ②偏转:2v qvB m r=,由以上两式得:粒子在磁场中作匀速圆周运动的半径12mur B q=。
03第八讲带电质点在电磁场中的运动(教师版)
第八讲 带电质点在电磁场中的运动【知识要点一】带电质点在匀强磁场中的运动 一、圆心的确定1.已知入射点的速度方向和弦 2.已知圆轨道的半径和弦3.已知入射点的速度方向和临界条件小结:确定轨迹的圆心,需要上述两个条件,在入射点的速度、弦、半径、偏转角和临界条件中五选二. 二、几何关系建立1.角度:偏转角=圆心角=2倍的弦切角,即2ϕθα==2.长度:mvL R qB−−−−→=边角关系; 3.时间:22t T mt TqBθππ=−−−−→=【例1】(矩形有界磁场)如图所示,真空中狭长形的区域内分布有磁感应强度为B 的匀强磁场,方向垂直纸面向内,区域的宽度为d ,CD 、EF 为区域的边界.现有一束电子(质量为m ,电荷量为e )以速率v 从边界CD 一侧垂直于磁场且与CD 成θ角射入,为使电子不能从另一侧边界EF 射出.电子的重力不计.求:(1)电子的速率v 应满足什么条件?(2)电子在磁场中运动的最长时间是多少? 【解析】(1)电子的速率v 越大,其轨道半径越大,故电子不能从另一侧边界EF 射出时运动轨迹应与边界EF 相切,如图所示.由图中几何关系可得:cos R R d θ+=,又mmv R eB=解得m (1cos )Bdev m θ=+矩形磁场圆形磁场则电子的速率v 应满足0(1cos )Bdev m θ<<+(2)电子速率小于v m 时,其运动时间都相等,且运动时间为22()2m t T Beθπθπ-==【例2】(圆形有界磁场)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出. (1)请判断该粒子带何种电荷,并求出其比荷q/m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B',该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B'多大?此次粒子在磁场中运动所用时间t 是多少?【解析】(1)根据粒子的偏转情况,利用左手定则可知,该粒子带负电荷.如图所示,粒子由A 点射入,由C 点飞出,其速度方向改变了900,则粒子的轨迹半径R =r .由牛顿第二定律得:2v qvB m R =则粒子的比荷q vm Br= (2)如图粒子从D 点飞出磁场速度方向改变了600角,故AD弧所对的圆心角为600,粒子做圆周运动的半径cot30R =r '︒又mv R qB '=',所以B '粒子在磁场中飞行的时间1166m t T qB π==='2×【例3】(磁偏逆向问题)一匀强磁场,磁场方向垂直于xy 平面,在xy 平面上,磁场分布在以O 为中心的一个圆形区域内.一个质量为m 、电荷量为q 的带电粒子,由原点O 开始运动,初速为v ,方向沿x 正方向.后来,粒子经过y 轴上的P 点,此时速度方向与y 轴的夹角为30°,P 到O 的距离为L ,如图所示.不计重力的影响.求磁场的磁感强度B 的大小和xy 平面上磁场区域的半径R .【解析】粒子在磁场中受洛伦兹力作用,做匀速圆周运动,设其半径为r ,则rv mqvB 2=①由题意知,粒子在磁场中的轨迹的圆心C 必在y 轴上,且P 点在磁场区之外.过P 沿速度方向作延长线,它与x 轴相交于Q 点.作圆弧过O 点与x 轴相切,并且与PQ 相切,切点A 即粒子离开磁场区的地点.这样也求得圆弧轨迹的圆心C ,如图所示.由图中几何关系得:L =3r ②由①②求得3mvB qL=③图中OA 的长度即圆形磁场区的半径R ,由图中几何关系可得R =④【知识要点二】带电质点在组合场中的运动 一、两种偏转的比较1.运动性质:磁偏转:匀速圆周运动;电偏转:类平抛运动.2.处理方法:磁偏转:确定圆心画出轨迹;电偏转:先分解后合成. 3.偏转角和运动时间:磁偏转:sin L qBLR mvϕ==,2m t T qB θθπ==; 电偏转:2tan y v qELv mv ϕ==,0L t v =. 二、典型应用1.质谱仪;2.回旋加速器磁偏转电偏转【例4】(突出圆心的确定)如图所示,在y >0的空间中存在匀强电场,场强沿y 轴负方向;在y <0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y =h 处的点P 1时速率为v 0,方向沿x 轴正方向;然后,经过x 轴上x =2h 处的P 2点进入磁场,并经过y 轴上y =h 2-处的P 3点.不计重力.求: (1)电场强度的大小;(2)粒子到达P 2时速度的大小和方向; (3)磁感应强度的大小.【解析】(1)粒子在电场、磁场中运动的轨迹如图所示.设粒子从P 1到P 2的时间为t ,电场强度的大小为E ,粒子在电场中的加速度为a ,由牛顿第二定律及运动学公式,有qE =ma ① v 0t =2h ② h at =221③由①②③式解得202mv E qh=④(2)粒子到达P 2时速度沿x 方向的分量仍为v 0,以v 1表示速度沿y 方向分量的大小,v 表示速度的大小,θ表示速度和x 轴的夹角,则有ah v 221=⑤ 2210v v v =+⑥ 1tan v v θ=⑦由②③⑤式得v 1=v 0 ⑧ 由⑥⑦⑧式得02v v =⑨ 45θ=︒⑩(3)设磁场的磁感应强度为B ,在洛伦兹力作用下粒子做匀速圆周运动,由牛顿第二定律,有P 3y xOP 1 P 22v qvB m r=⑾r 是圆周的半径.此圆周与x 轴和y 轴的交点分别为P 2、P 3.因为OP 2=OP 3,θ=45°,由几何关系可知,连线P 2P 3为圆轨道的直径,由此可求得r =h 2⑿由⑨⑾⑿可得mv B qh=⒀【例5】(突出电磁偏转的区别)空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为l .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之差. 【解析】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有qv 0B =m Rv 20 ①由于粒子在Q 点的速度垂直它在P 点时的速度,可知粒子由P 点到Q 点的轨迹为1/4圆周,故有R =②以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由P 点运动到Q 点经过的时间,则有 qE =ma③ 221E at R =④ R =v 0t E⑤由以上各式解得E =⑥(2)因粒子在磁场中由P 点运动到Q 点的轨迹为1/4圆周,故运动经历的时间t E为圆P Q周运动周期T 的1/4,即有t E =T /4⑦ 而02RT v π=⑧由⑦⑧和①式得2B mt qBπ= ⑨ 由①⑤两式得qBm t E =⑩(1)2B E mt t qBπ-=- 【例6】(多次电加速和磁偏转)如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r 0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B .在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m 、带电量为+q 的粒子,从紧靠内筒且正对狭缝a 的s 点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点s ,则两电极之间的电压U 应是多少?(不计重力,整个装置在真空中)【解析】带电粒子从s 出发,在两筒之间的电场力作用下加速,沿径向穿出a 而进入磁场区,在洛伦兹力作用下做匀速圆周运动.粒子再回到s 点的条件是能沿径向穿过狭缝b ,只要穿过了b ,粒子就会在电场力作用下先减速,再反向加速,经b 重新进入磁场区,然后,粒子将以同样方式经过c 、d ,再经过a 回到s 点.设粒子射入磁场区的速度为v ,根据动能定理,有212mv qU = ①设粒子在洛伦兹力作用下做匀速圆周运动的半径为R ,由洛伦兹力公式和牛顿定律得2v m qvB R= ②由以上分析可知,要回到s 点,粒子从a 到b 必经过43圆周,所以半径R 必定等于筒的外半径0r ,即0R r =③ 由以上各式解得2202qr B U m=④【知识要点三】带电质点在复合场中的运动一、运动性质和受力特点1.直线运动所受场力的合力为零0F =合或合力方向与速度方向共线. 2.匀速圆周运动重力与电场力平衡mg qE =,只由洛伦兹力f 提供向心力.3.变加速曲线运动非圆非抛物线,洛伦兹力f qvB =是变力,其大小和方向随速度的大小和方向而变化. 二、典型应用1.速度选择器; 2.电磁流量计; 3.磁流体发电机 【典例剖析】 【例7】(两种场中的直线运动)在图中虚线所示的区域存在匀强电场和匀强磁场.取坐标如图.一带电粒子沿x 轴正方向进入此区域,在穿过次区域的过程中运动方向始终不发生偏转.不计重力的影响,电场强度E 和磁感应强度B 的方向可能是 A .E 和B 都沿x 轴方向B .E 沿y 轴正向,B 沿z 轴正向C .E 沿z 轴正向,B 沿y 轴正向D .E 、B 都沿z 轴方向【解析】(1)运动方向不发生偏转,说明粒子沿x 轴正方向做直线运动,可能是匀速直线运动,可能是匀加速直线运动,还可能是匀减速直线运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qB mvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。
(2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。
并注意以下两个重要的特点: ① 粒子速度的偏向角ϕ等于回旋角α,并等于AB 弦与切线的夹角(弦切角θ)的2倍,如图9-3所示。
即:图9-1 图9-2 图9-3t 2ω=θαϕ==。
② 相对的弦切角θ相等,与相邻的弦切角θ/互补,即θ+θ/=180o 。
(3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示T2t T 360t πα=α=或。
注意:带电粒子在匀强磁场中的圆周运动具有对称性。
① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
应用对称性可以快速地确定运动的轨迹。
例1:如图9-4所示,在y 小于0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B ,一带正电的粒子以速度从O 点射入磁场,入射速度方向为xy 平面内,与x 轴正向的夹角为θ,若粒子射出磁场的位置与O 点的距离为L ,求该粒子电量与质量之比。
【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。
【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: ①带电粒子在磁场中作圆周运动,由解得② ①②联立解得【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。
例2:电视机的显像管中,电子(质量为m ,带电量为e )束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如图9-6所示,磁场方向垂直于圆面,磁场区的中心为O ,半径为r 。
当不加磁场时,电子束将通过O 点打到屏幕的中心M 点。
为了让电子束射到屏幕边缘P ,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B 应为多少?【审题】本题给定的磁场区域为圆形,粒子入射方向已知,则由对称性,出射方向一定沿径向,而粒子出磁场后作匀速直线运动,相当于知道了出射方向,作入射方向和出射方向的垂线即可确定圆心,构建出与磁场区域半径r 和轨迹半径R 有关的直角三角形即可求解。
图9-6图9-7图9-4 图9-5【解析】如图9-7所示,电子在匀强磁场中做圆周运动,圆周上的两点a 、b 分别为进入和射出的点。
做a 、b 点速度的垂线,交点O1即为轨迹圆的圆心。
设电子进入磁场时的速度为v ,对电子在电场中的运动过程有:2mv eU 2=对电子在磁场中的运动(设轨道半径为R )有:R v mevB 2= 由图可知,偏转角θ与r 、R 的关系为:R r2tan=θ联立以上三式解得:2tane mU 2r 1B θ=【总结】本题为基本的带电粒子在磁场中的运动,题目中已知入射方向,出射方向要由粒子射出磁场后做匀速直线运动打到P 点判断出,然后根据第一种确定圆心的方法即可求解。
2. “带电粒子在匀强磁场中的圆周运动”的范围型问题例3:如图9-8所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。
要使粒子必能从EF 射出,则初速度V0应满足什么条件?EF 上有粒子射出的区域?【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。
【解析】粒子从A 点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF 射出,则相应的临界轨迹必为过点A 并与EF 相切的轨迹如图9-10所示,作出A 、P 点速度的垂线相交于O/即为该临界轨迹的圆心。
临界半径R0由dCos θR R 00=+ 有:θ+=Cos 1dR 0;故粒子必能穿出EF 的实际运动轨迹半径R ≥R0即:θ+≥=Cos 1d qB mv R 0 有: )Cos 1(m qBdv 0θ+≥ 。
由图知粒子不可能从P 点下方向射出EF ,即只能从P 点上方某一区域射出;又由于粒子从点A 进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG 直线上方射出;由此可见EF 中有粒子射出的区域为PG ,且由图知:θ+θ+θ=θ+θ=cot d Cos 1dSin cot d Sin R PG 0。
【总结】带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。
例4:如图9-11所示S 为电子射线源能在图示纸面上和360°范围内向各个方向发射速率相等的质量为m 、带电-e 的电子,MN 是一块足够大的竖直挡板且与S 的水平距离OS =L ,挡板左侧充满垂直纸面向里的匀强磁场;图9-8 图9-9 图9-10①若电子的发射速率为V0,要使电子一定能经过点O ,则磁场的磁感应强度B 的条件? ②若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大?③若磁场的磁感应强度为B ,从S 发射出的电子的速度为m eBL2,则档板上出现电子的范围多大?【审题】电子从点S 发出后必受到洛仑兹力作用而在纸面上作匀速圆周运动,由于电子从点S 射出的方向不同将使其受洛仑兹力方向不同,导致电子的轨迹不同,分析知只有从点S 向与SO 成锐角且位于SO 上方发射出的电子才可能经过点O ;由于粒子从同一点向各个方向发射,粒子的轨迹构成绕S 点旋转的一动态圆,动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图9-12所示,最低点为动态圆与MN 相切时的交点,最高点为动态圆与MN 相割,且SP2为直径时P 为最高点。
【解析】①要使电子一定能经过点O ,即SO 为圆周的一条弦,则电子圆周运动的轨道半径必满足2LR ≥,由2L eB mv 0≥ 得:eL mv 2B 0≤②要使电子从S 发出后能到达档板,则电子至少能到达档板上的O 点,故仍有粒子圆周运动半径2LR ≥, 由2L eBmv 0≥有:m 2eBLv 0≥③当从S 发出的电子的速度为m eBL 2时,电子在磁场中的运动轨迹半径L 2qB mv R /==作出图示的二临界轨迹,故电子击中档板的范围在P1P2间;对SP1弧由图知L 3L )L 2(OP 221=-= 对SP2弧由图知L15L )L 4(OP 222=-=【总结】本题利用了动态园法寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R与R0的大小关系确定范围。
3. “带电粒子在匀强磁场中的圆周运动”的极值型问题寻找产生极值的条件:①直径是圆的最大弦;②同一圆中大弦对应大的圆心角;③由轨迹确定半径的极值。
例5:图9-13中半径r =10cm 的圆形区域内有匀强磁场,其边界跟y 轴在坐标原点O 处相切;磁场B =0.33T 垂直于纸面向内,在O 处有一放射源S 可沿纸面向各个方向射出速率均为v=3.2×106m/s 的α粒子;已知α粒子质量为m=6.6×10-27kg ,电量q=3.2×10-19c ,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t 各多少? 【审题】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O 进入图9-11 图9-12图9-13磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。
【解析】α粒子在匀强磁场后作匀速圆周运动的运动半径:r2m2.0qBmvR ===α粒子从点O入磁场而从点P出磁场的轨迹如图圆O/所对应的圆弧所示,该弧所对的圆心角即为最大偏转角θ。