信息论第八章答案(华工)
信息论、编码与密码学课后习题答案
第1章 信源编码
1.1考虑一个信源概率为{0.30,0.25,0.20,0.15,0.10}的DMS。求信源熵H(X)。
解: 信源熵
H(X)=-[0.30*(-1.737)+0.25*(-2)+0.2*(-2.322)+0.15*(-2.737)+0.1*(-3.322)]
10100+11110=01010 10100+00111=10011
10100+01101=11001
11110+00111=11001 11110+01101=10011
00111+01101=01010
满足第一条性质
2、全零码字总是一个码字
{00000,01010,10011,11001,10100,11110,00111,01101}
(1)给出此信源的霍夫曼码并确定编码效率。
(2)每次考虑两个符号时,给出此信源的霍夫曼码并确定编码效率。
(3)每次考虑三个符号时,给出此信பைடு நூலகம்的霍夫曼码并确定编码效率。
解:
(1)本题的霍夫曼编码如下图所示:
图1.11 霍夫曼编码
则霍夫曼码如下表:
符号
概率
码字
x1
0.5
1
x2
0.4
00
x3
0.1
01
该信源的熵为:
(2)全零字总是一个码字,
(3)两个码字之间的最小距离等于任何非零码字的最小重量,即
设 ,即 , , , ,
首先证明条件(1):
, , , , , ,
很明显,条件(1)是满足的。条件(2)也是显然成立的。
信息论基础教材习题答案.docx
第
9.6共有28=256个码字,不能由一个码字的循环产生所有的码字,因为码长为8位,由一个码字循环移位 最多能产生8个码字。
9.7根据伴随式定义:5(x)=j(x) [mod g(x)],由于码多项式都是g(x)的倍式,如果接受矢量y(x)是码多 项式,则它的的伴随式等于0,如果y(Q不是码多项式,则伴随式s(Q不等于0。
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
G =
0
0
0
0
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
信息论与编码理论 第8章循环码 习题解答-20071211精选全文完整版
可编辑修改精选全文完整版第8章 循环码习题答案:1. 已知(8, 5)线性分组码的生成矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1000011101000100001000100001000100001111G(1)证明该码是循环码;(2)求该码的生成多项式)(x g 。
(1)证明如下:(1)(2)(2)1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 01 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 00 0 1 0 0 0 1 01 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1+⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(3)(3)(4)1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 00 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 00 0 0 1 1 1 1 01 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1++−−−→⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎢⎥⎢−−−→⎢⎥⎢⎢⎥⎢⎢⎥⎢⎣⎦⎣⎦(1)(5)(4)(5)1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 00 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 00 0 0 1 1 1 1 00 0 0 1 0 0 0 10 0 0 0 1 1 1 1++⎥⎥−−−→⎥⎥⎥⎡⎤⎡⎢⎥⎢⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎣⎦⎣⎤⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦由生成矩阵可知为(8、5)循环码。
(2)生成多项式如下:32()1g x x x x =+++2. 证明:1245810++++++x x x x x x为(15, 5)循环码的生成多项式,并写出信息多项式为1)(4++=x x x m 时的码多项式(按系统码的形式)。
信息论与编码第7-8章习题解答
相应的校验矩阵为
1 0 0 1 ' G 和 G 的差别仅是列的置换,所以 H 和 H ' 的差别也是同样的列置换,所以 1 1 0 1 1 0 1 1 0 1 1 1 1 0 H = 0 1 1 1 0 0 0 I 4×4 0 0 0 1 1 1 1
该码的校验矩阵任意二列线性独立,而第 1,2,3 列之和为零矢量,所以存在 着相关的三列,从而最小 Hamming 重量为 3。
wH (c 1 + c 2 ) = wH (c 1 ) + wH (c 2 ) − 2 wH (c 1 ⋅ c 2 ) 是偶数,其中 c1 ⋅ c 2 表示 c1 和 c 2 的交截。因此 c1 + c 2 ∈ E n ,所以 En 是一个线性码。
由于对称性, 在所有长度为 n 的二元矢量中, 奇数重量与偶数重量的矢量数相等, n −1 所以 En 中码字数为 2 , 从而 k = n − 1 ; 又 En 中最小非零码字的重量为 2, 所以 d = 2 , 于是 En 的参数为 ( n, n − 1,2) 。 7-4 设二元线性码 M 的生成矩阵为 1 0 0 1 1 G = 0 0 1 0 1 0 1 1 1 1 求 M 的最小距离。 [解] 由 G 生成的(5,3)码的八个码字为 (00000) , (10011 ) , (00101) , (01111) (10110) , (01010) , (11100) , (11001) 所以非零码字最小重量为 2,从而最小 Hamming 矩离 d min = 2 。 7-5 设二元线性码 M 的生成矩阵为 1 1 0 1 0 G = 0 1 0 1 0 , 建立码 M 的标准阵,并对码字 11111 和 10000 分别进行译码。 [解] 由 G 生成的(5,2)码 M 的标准阵列为 (00000) , (11010) , (01010) , (10000) (00001) , (11011) , (01011 ) , (10001) (00010) , (11000) , (01000) , (10010) (00100) , (11110) , (01110) , (10100) (00011 ) , (11001) , (01001) , (10011 ) (00101) , (11111) , (01111) , (10101) (01100) , (10110) , (00110) , (11100)
信息论与编码第八章课后习题答案
扩展信源的平均码长为:
L3 = 0.729 + 0.081*9 + 0.009*15 + 0.005 = 1.598
L3 = 0.532667 码符号/信源符号 N 四次扩展信源略; 当 N → ∞ 时,根据香农第一定理,平均码长为:
LN = H (S ) = 0.469 码符号/信源符号 N log r
第八章课后习题
【8.1】求概率分布为(1/3,1/5,1/5,2/15,2/15)信源的二元霍夫曼码。讨论此码对于 概率分布为(1/5,1/5,1/5,1/5,1/5)的信源也是最佳二元码。 解:
概率分布为(1/3,1/5,1/5,2/15,2/15)信源二元霍夫曼编码过程如下:
同样,对于概率分布为(1/5,1/5,1/5,1/5,1/5)的信源,编码过程如下:
488 2 少?如何编码? 解:
平均每个消息携带的信息量为 2 比特,因此发送每个消息最少需要的二元脉 冲数为 2。如果四个消息非等概率分布,采用紧致码编码,可使得所需要的二元 脉冲数最少,编码过程如下:
平均码长为:
∑ L = P(si )li = 1.75 二元码符号/信源符号
即在此情况下消息所需的二元脉冲数为 1.75 个。 【8.6】若某一信源有 N 个符号,并且每个符号等概率出现,对这信源用最佳霍 夫曼码进行二元编码,问当 N = 2i 和 N = 2i +1( i 是正整数)时,每个码字的长 度等于多少?平均码长是多少? 解:
码长的方差,并计算平均码长和方差,说明哪一种码更实用些。 解:
进行三元编码,需增补一个概率为 0 的信源符号,两种编码方法如下所示。
图1
图2
ห้องสมุดไป่ตู้
信息论参考答案
信息论参考答案信息论参考答案信息论是一门研究信息传输和编码的学科,它的核心概念是信息的度量和传输。
信息论的发展可以追溯到上世纪40年代,由克劳德·香农提出,并逐渐成为计算机科学、通信工程等领域的重要理论基础。
本文将从信息的定义、信息的度量以及信息的传输三个方面,探讨信息论的相关知识。
一、信息的定义信息是指能够改变接收者知识状态的事实或数据。
在信息论中,信息的基本单位是比特(bit),它表示一个二进制的选择,即0或1。
比特是信息论中最小的单位,可以用来表示一个简单的选择问题,如是或否、真或假等。
当然,在实际应用中,比特往往被扩展为更大的单位,如字节、千字节等。
二、信息的度量信息的度量是信息论的核心问题之一。
克劳德·香农提出了信息熵的概念,用来度量信息的不确定性或者说信息的平均量。
信息熵的计算公式为:H(X) = -ΣP(x)log2P(x),其中H(X)表示随机变量X的信息熵,P(x)表示随机变量X取值为x的概率。
信息熵越大,表示信息的不确定性越高,反之亦然。
除了信息熵,信息论还引入了条件熵、相对熵和互信息等概念。
条件熵表示在已知某些信息的情况下,对另一个随机变量的不确定性进行度量。
相对熵用来衡量两个概率分布之间的差异,而互信息则表示两个随机变量之间的相关程度。
三、信息的传输信息的传输是信息论的另一个重要问题。
在信息论中,通过信道来传输信息。
信道可以是有线的或者无线的,可以是噪声的或者非噪声的。
为了保证信息的可靠传输,需要对信息进行编码和解码。
编码是将信息转化为能够在信道中传输的信号的过程。
常见的编码方法有霍夫曼编码、香农-费诺编码等。
编码的目标是尽量减少信息的冗余,提高信息的传输效率。
解码是将经过信道传输的信号恢复为原始信息的过程。
解码的目标是尽量减少信息的失真,保证信息的可靠性。
常见的解码方法有最大似然解码、Viterbi解码等。
信息论的应用广泛,不仅在通信领域发挥着重要作用,还在数据压缩、密码学、人工智能等领域有着广泛的应用。
信息论习题解答
第二章 信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此每个码字的信息量为 2⨯8log =2⨯3=6 bit 因此,信息速率为 6⨯1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61 得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6} )(b p =361 得到的信息量=)(1logb p =36log =5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521 信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13.208 bit2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H =2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6 =3.2744 bit)|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit)|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。
信息论课后习题-PPT
(Hz)
5.11(续)
(3)同样由信道容量公式可得:
其中C,
S
C
2B 1
N
log 11,B=0.5MHz
可求得:S
?
N
2.14(续)
(1)求X1X2X3的联合熵和平均符号熵; (2)求这个链的极限平均符号熵; (3)求H0,H1,H2和它们所对应的冗余度。
解始:序(列1X)1X一2X阶3的平联稳合马熵尔:可夫链X1,X2 ,,Xr ,
的起
H (X1X2X3)
P(x1x2 x3 ) log P(x1x2 x3 )
N
H(XN
|
X N 1
X1) H2
33
P(ai )P(a j | ai ) log P(a j | ai )
i1 j1
(3) 1.251 bit/符号
H0 log 3 1.585 bit/符号
3
H1 P(ai ) log P(ai ) 1.414 bit/符号 i 1
H2 1.251 bit/符号
2.8 设随机变量X和Y的联合概率分布如右表所示。随机变Z量 X Y 求:
(1)H(X),H(Y)
Y b1=0 b2=0
(2)H(X|Y),H(Y|X),H(X|Z)
X
a1=0 1/3
1/3
a2=0
0
1/3
2.13 有一个马尔可夫信源,已知转移概率为:
P(S1
|
S1 )
2 3
,P
(
S2
|
S1 )
1 3
宽应为多少? (3)若信道通频带减为0.5MHz时,要保持相
同的信道容量,信道上的信号与噪声的平均功 率比值应等于多大?
信息论第八章课后习题
(1)现将图像通过给定的信道传输,不考虑图像的任何统计特性,并采用二元
等长码,问需要多长时间才能传完这幅图像?
(2)若考虑图像的统计特性(不考虑图像的像素之间的依赖性),求此图像的
信源熵
H (S),并对灰度级进行霍夫曼最佳二元编码,问平均每个像素需
用多少二元码符号来表示?这时需多少时间才能传送完这幅图像?
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 3 3 3
3 3 3 3 3 3 3 4 4 4
4 4 4 4 4 4 4 5 5 5
5 5 5 5 6 6 6 6 6 6
7 7 7 7 7 8 8 8 8 8
另有一无损无噪二元信道,单位时间(秒)内传输
可见,二者的码字完全相同。
【8.2】设二元霍夫曼码为
(00,01,10,11)和(0,10,110,111),求出可以编得这样霍夫
曼码的信源的所有概率分布。
解:
二元霍夫曼编码的过程必定是信源缩减的过程,编码为
(00,01,10,11)的信
源,其码树如下图所示。
假设四个信源符号的概率分别是
i(2i -1) + 2(i +1) i2i + i + 22
L= == i +
i ii
2 + 12 + 12 + 1
【8.7】设信源
ss Lss
12 M -1 M ù
S :
pp L pp
12 M -1 M
M
i=1
é
信息论基础各章参考答案.doc
= pQhb) = = pWLh)124各章参考答案2. 1. (1) 4.17 比特;(2) 5.17 比特;(3) 1.17 比特; (4) 3.17 比特 2. 2. 1.42比特2. 3.(1) 225.6 比特;(2) 13.2 比特2. 4. (1) 24.07 比特;(2) 31.02 比特2. 5. (1)根据炳的可加性,一个复合事件的平均不确定性可以通过多次实验逐步解除。
如果我们使每次实验所获得的信息量最大。
那么所需要的总实验次数就最少。
用无秩码天平 的一次称重实验结果所得到的信息量为log3,k 次称重所得的信息量为klog3o 从12个硬币 中鉴别其中的一个重量不同(不知是否轻或重)所需信息量为log24。
冽31og3=log27>log24o 所以在理论上用3次称重能够鉴别硬币并判断其轻或重。
每次实验应使结果具有最大的炳。
其中的一个方法如下:第一次称重:将天平左右两盘各放4枚硬币,观察其结果:①平衡 ② 左倾③右倾。
i )若结果为①,则假币在未放入的4枚币,第二次称重:将未放入的4枚 中的3枚和已称过的3枚分别放到左右两盘,根据结果可判断出肃中没有假币;若有,还能 判断出轻和重,第三次称重:将判断出含有假币的三枚硬币中的两枚放到左右两盘中,便可 判断出假币。
订)若结果为②或③即将左盘中的3枚取下,将右盘中的3枚放到左盘中,未 称的3枚放到右盘中,观察称重缺码,若平衡,说明取下的3枚中含假币,只能判出轻重, 若倾斜方的不变,说明在左、右盘中未动的两枚中其中有一枚为假币,若倾斜方向变反,说 明从右盘取过的3枚中有假币,便可判出轻重。
(2)第三次称重类似i )的情况,但当两个硬币知其中一个为假,不知为哪个时, 第三步用一个真币与其中一个称重比较即可。
对13个外形相同的硬币情况.第一次按4,4,5分别称重,如果假币在一五个硬币的组里,则鉴 别所需信息量为Iogl0>log9=21og3,所以剩下的2次称重不能获得所需的信息.2. 6. (1) log2“=15 比特;(2)1比特;(3) 15个问题2. 7. 证明: (略)2. 8.证明: (略)/ 、 111 、 12.9. P (dibi) = - p(ci\bi )= 12P (cM — — P (sb) < , 12 ,6,2. 10.证明: (略) 2. 11.证明: (略)2.12.证明: (略)2 [3.(1) H(X) = H(Y) = 1, H(Z) = 0.544, H(XZ) = 1.406, H(YZ) = 1.406,H(XKZ) = 1.812(2)H(X/Y) = H(Y/X) = 0.810f H(X/Z) = 0.862, H(Z/X) = H(Z/Y) =0.405 , H(Y/Z) = 0.862, H(X/YZ) = H(Y/XZ) = 0.405, H(Z/XY) =(3)1(X;K) = 0.188 Z(X;Z) = 0.138 Z(K;Z) = 0.138 7(X;Y/Z) =0.457 , I(Y;Z/X) = I(X;Z/Y) = 0.406(单位均为比特/符号)p 游(000) = 1)= Pg(l°l)=服z(l 1°)= 714. X 1 Z ■,(2)P加(°°°)=P宓(111)= !(3)P加(°°°)= 〃加(°。
信息论编码部分课后习题习题
7
第3章习题 章习题
8
第3章习题 章习题
9
第3章习题 章习题
10
第3章习题 章习题
11
第4章习题 章习题
12
第4章习题 章习题
13
第6章习题 章习题
14
第6章习题 章习题
15
第8章习题 章习题
16
第8章习题 章习题
17
第8章习题 章习题
18
第8章习题 章习题
19
第8章习题 章习题
20
第8章习题 章习题
21
第9章习题 章习题
某线性分组码的生成矩阵为
0 0 G= 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1
求: (1)用系统码的形式表示G; (2)计算系统码的校验矩阵H; (3)若接收到的码字为R1=0010100,检验它是否为码字?
解:(1)对G作行运算,得到系统化后的生成矩阵为
1 0 G= 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1
(3)计算
1 1 0 1 1 0 0 T R1 H = [ 0 0 1 0 1 0 0] 1 1 1 0 0 1 0 0 1 1 1 0 0 1 = [1 0 1] ≠ 0
T
(2)由系统化后的生成矩阵得系统码的校验矩阵H为
1 1 0 1 1 0 0 H = 1 1 1 0 0 1 0 0 1 1 1 0 0 1
因此可断言R1不是码字。
22
信息论课后习题答案信息论基础课后答案信息论导引习题答案信息论与编码信息论与编码论文信息论基础习题解答信息论基础习题信息论与编码试卷信息论与编码试题信息论与编码答案第2章 Nhomakorabea题 章习题
信息论答案完整版
2.7 为了传输一个由字母 A、B、C、D 组成的符号集,把每个字母编码成两个二元码脉冲序列,以“00” 代表 A,“01”代表 B,“10”代表 C,“11”代表 D。每个二元码脉冲宽度为 5ms。
(1) 不同字母等概率出现时,计算传输的平均信息速率? (2) 若每个字母出现的概率分别为{1/5,1/4,1/4,3/10},试计算传输的平均信息速率? 解:(1)不同字母等概率出现时,符号集的概率空间为:
I (a4
=
3)
=
− log
P(a4 )
=
− log
1 8
=
log2
8=3(比特)
此消息中共有 14 个符号“0”,13 个符号“1”,12 个符号“2”和 6 个符号“3”,则此消息的自
信息是
I = 14I (a1 = 0) +13I (a2 = 1) +12I (a3 = 2) + 6I (a4 = 3) ≈ 14×1.415 +13× 2 +12× 2 + 6× 3 ≈ 87.71(比特)
解:同时掷两个均匀的骰子,也就是各面呈现的概率都是 1/6,总共有 36 种可能的状态,每 种状态出现的概率都是 1/36。 (1)设“3 和 5 同时出现”为事件 A。则在 36 种状态中,有两种可能的情况,即 5+3 和 3+5。则
P( A) = 2 / 36 I ( A) = − log P( A) = log2 18 ≈ 4.17(比特)
(2)此消息中共有 45 个信源符号,携带了 87.81 比特信息量,因此,此消息中平均每个符号携带的信 息量为
I2 = 87.81/ 45 ≈ 1.95(比特)
2.4
信息论课后题答案
2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量? 解:设随机变量X 代表女孩子学历 X x 1(是大学生) x 2(不是大学)P(X) 0.250.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm ) P(Y) 0.50.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量即:b i ty p x y p x p y x p y x I 415.15.075.025.0log )()/()(log )/(log )/(11111111=⨯-=-=-= 2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为( 02120130213001203210110321010021032011223210),求(1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少? 解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p 此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:b i t n I 951.145/811.87/==2.9 设有一个信源,它产生0,1序列的信息。
它在任意时间而且不论以前发生过什么符号,均按P(0) = 0.4,P(1) = 0.6的概率发出符号。
(1) 试问这个信源是否是平稳的? (2) 试计算H(X 2), H(X 3/X 1X 2)及H ∞;(3) 试计算H(X 4)并写出X 4信源中可能有的所有符号。
信息论与编码习题参考答案(全)
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论基础 课后习题答案
信息论基础课后习题答案问题1问题:信息论的基本目标是什么?答案:信息论的基本目标是研究信息的传递、存储和处理的基本原理和方法。
主要关注如何量化信息的量和质,并通过定义信息熵、条件熵、互信息等概念来描述信息的特性和性质。
问题2问题:列举一些常见的信息论应用领域。
答案:一些常见的信息论应用领域包括:•通信领域:信息论为通信系统的性能分析和设计提供了基础方法,例如信道编码和调制调制等。
•数据压缩领域:信息论为数据压缩算法的研究和实现提供了理论依据,例如无损压缩和有损压缩等。
•隐私保护领域:信息论用于度量隐私保护方案的安全性和隐私泄露的程度,在隐私保护和数据共享中起着重要作用。
•机器学习领域:信息论被应用于机器学习中的特征选择、集成学习和模型评估等任务中,提供了许多有用的数学工具和概念。
•生物信息学领域:信息论被应用于分析DNA序列、蛋白质序列和生物网络等生物数据,发现其中的模式和规律。
问题3问题:信息熵是什么?如何计算信息熵?答案:信息熵是衡量一个随机变量的不确定性或信息量的度量值。
信息熵越大,表示随机变量的不确定性越高,每个可能的取值都相对等可能发生;反之,信息熵越小,表示随机变量的不确定性越低,某些取值较为集中或者出现的概率较大。
信息熵的计算公式如下所示:H(X) = -Σ P(x) * log2(P(x))其中,H(X) 表示随机变量 X 的信息熵,P(x) 表示随机变量X 取值为 x 的概率。
问题4问题:条件熵是什么?如何计算条件熵?答案:条件熵是在给定其他随机变量的条件下,一个随机变量的不确定性或信息量的度量。
条件熵基于条件概率定义,用于描述一个随机变量在给定其他相关随机变量的条件下的信息量。
条件熵的计算公式如下所示:H(Y|X) = -Σ P(x, y) * log2(P(y|x))其中,H(Y|X) 表示随机变量 Y 在给定随机变量 X 的条件下的条件熵,P(x, y) 表示随机变量 X 取值为 x 且随机变量 Y 取值为 y 的概率,P(y|x) 表示随机变量 Y 在给定随机变量 X 取值为x 的条件下取值为 y 的概率。
信息论与编码技术知到章节答案智慧树2023年华东交通大学
信息论与编码技术知到章节测试答案智慧树2023年最新华东交通大学第一章测试1.下列不属于消息的是()。
参考答案:信号2.关于译码,下列说法正确的是()。
参考答案:经过信道后的信号一般先进行信道译码,再进行信源译码;在译码时需要根据编码规则来进行相应的译码;无论是信道译码还是信源译码都是通信系统模型的组成部分3.香农信息论讨论的信息基本概念在于它的不确定性,因此确定事件发生没有信息量。
()参考答案:对4.通信系统模型中,信道指传输信息的有线传输媒介。
()参考答案:错5.信源编码的目的是提高传输速率,信道编码的目的是为了减小传输时间。
()参考答案:错第二章测试1.设有一离散无记忆信源发出符号A和B的概率都为1/2,已知其发出两个长度的序列消息,其序列熵为()。
参考答案:2*log2 bit/序列2.对于有4个符号的离散无记忆信源,下列选项中,其熵可能取到的值有()。
参考答案:1;23.自信息量表征了信源中各个符号的不确定度,信源符号概率越大,其自信息量越大。
()参考答案:错4.信源X的概率分布为P(X)={a,b,1/6},信源Y的概率分布为P(Y)={a,b,1/12,1/12},则信源X的熵大于信源Y的熵。
()参考答案:错5.一个离散的有记忆信源,有八个可能的符号,下列有关其平均符号熵H N描述正确的是()。
参考答案:H N>0bit/符号;H N<3bit/符号第三章测试1.有二元对称信道,其信道特性正确传递概率为1/2,则其信道容量为()。
参考答案:2.对于有n行m列的无噪信道(其中n、m都大于等于2),其信道容量可能的取值为()。
参考答案:logm;logn3.信道容量,在数值上等于交互熵。
()参考答案:错4.只有当信源等概分布时,对称信道的信道容量达到最大值。
()参考答案:错5.如果信息传输速率R小于信道容量C,就不存在使传输差错率任意小的信道编码。
()参考答案:错第四章测试1.信息率失真函数R(D)中D是指()。
信息论部分习题及解答
2-1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“3和5同时出现” 这事件的自信息量。
(2)“两个1同时出现” 这事件的自信息量。
(3)两个点数的各种组合(无序对)的熵或平均信息量。
(4)两个点数之和(即2,3,…,12构成的子集)的熵。
(5)两个点数中至少有一个是1的自信息。
解:(1)设X 为‘3和5同时出现’这一事件,则P (X )=1/18,因此 17.418log)(log)(22==-=x p X I (比特)(2)设‘两个1同时出现’这一事件为X ,则P (X )=1/36,因此 17.536log)(log)(22==-=x p X I (比特)(3 ) “两个相同点数出现”这一事件的概率为1/36,其他事件的概率为1/18,则 337.418log181536log366)(22=+=X H (比特/组合)(4)222222111111()[log 36log 18()log 12()log 936181836181811136111()log ]2()log 6 3.44(/)1818365181818H X =++++++++⨯+++=比特两个点数之和(5)两个点数至少有一个为1的概率为P (X )= 11/36 71.13611log)(2=-=X I (比特)2-6设有一离散无记忆信源,其概率空间为⎪⎪⎭⎫⎝⎛=====⎪⎪⎭⎫⎝⎛8/134/124/118/304321x x x x PX该信源发出的信息符号序列为(202 120 130 213 001 203 210 110 321 010 021 032 011 223 210),求:(1) 此信息的自信息量是多少?(2) 在此信息中平均每个符号携带的信息量是多少? 解:(1)由无记忆性,可得序列)(比特/18.87)3(6)2(12)1(13)0(14=+++=I I I I(2)符号)(比特/91.145/==I H 2-9在一个袋中放有5个黑球、10个白球,以摸一个球为一次实验,摸出的球不再放进去。
信息论 基础理论与应用课后答案 全
X
a1 a2
P = 0.070.93
问男同志回答“是”所获昨的信息量为:
I 问男同志回答“否”所获得的信息量为:
比特/符号
I 男同志平均每个回答中含有的信息量为
比特/符号
H(X) = −∑P(x)log P(x) = 0.366 比特/符号
同样,女同志红绿色盲的概率空间为
Y
b1
b2
P = 0.0050.995
A′ ={ai ,i =1,2,...,2q},并且各符号的概率分布满足
Pi′= (1−e)Pi i =1,2,...,q
Pi′= ePi
i = q +1,q + 2,...,2q
试写出信源 S′的信息熵与信源 S 的信息熵的关系。
解:
H(S′) = −∑P(x)log P(x)
∑ ∑ = − (1−e)Pi log(1−e)Pi − ePi logePi ∑ ∑ ∑ ∑ = −(1−e) Pi log(1−e) − (1−e) Pi log Pi −e Pi loge −e Pi log Pi
即函数 f (x) 为减函数,因此有 f (0) ≥ f (e),即
(p1 −e)log(p1 −e) + (p2 + e)log(p2 + e) ≤ p1 log p1 + p2 log p2
因此 H(X) ≤ H(X ′)成立。
【解释】 当信源符号的概率趋向等概率分布时,不确定性增加,即信息熵是增加的。
(1)求质点 A 落入任一格的平均自信息量,即求信息熵,首先得出质点 A 落入任 一格的概率空间为:
= XP
48a11 48a12 48a13 a48148 平均自信息量为