Fault Diagnosis of Centrifugal Pump Using Symptom Parameters in Frequency Domain

合集下载

电气常用专业单词

电气常用专业单词

电气常用专业单词(1048个)able 【`eibl】 adj.能够abnormal 【Qb`n•:m« l】 adj.异常abort 【«`b•:t 】中断 ,停止absent 【`Qbs«nt】 adj. 不在的,缺少的acceleration 【Qk.sel«`reiS«n】 n. 加速,加速度access 【`Qkses】 vt. 存取,进入,接近action 【`QkS«n】 . 动作actuator 【`Qktjueit«】 n.操作(执行)机构,执行器address 【«`dres】地址adjust 【«`dÎÃs t】调整,校正adjustable wrench 活扳手adjustable 【«`dÎÃst« bl】可调整的adjusting screw 调整螺钉adjustment 【«`dÎÃstment】调节、调节装置air compressor 空压机【k«m`pres«】压缩机air exhaust fan 排气扇【ig`z•:st 】排气,抽完air 【e«】风,空气alarm 【«`lam】报警align 【«`lai n】定位,对准,调整alternating current AC 交流电【:l`tÎ:n«t】轮流,交替ambient temp 环境温度ambient 【`Qmbi«t】周围的,环境的ammeter 【`Qmit«】 n. 电流表,安培计amp 【Qmp】 n. 安培ampere 【`QmpE«】 n. 安培amplifier 【`Qmplifai«】 n. 放大器,扩音器analog input 【`Qn«l•g 】模拟量输入analog output 模拟量输出analog signal 模拟信号【`Qn«l•g 】【`signl】analog 【`Qn«l•g 】模拟analog-to-digital A/D 模数转换【`didÎit«l】angle valve 角伐angle 【`QNgl】角度application program 应用程序【.Qpli`keiS«n】请求,应用arc 【a:k】电弧,弧光area 【`e«ri«】面积,区域arrester 【e`rest«】避雷器assemble line 装配线,生产线【«`se mbl】assemble 【«`sembl】安装,组装asynchronous motor 异步马达【ei`siNkr«n«s】atomizing 【`Qtm«s.fi«】雾化attention 【«`tenS«n】注意auto reclose 自动重合闸autoformer 自耦变压器automatic 【.•:t« ``mQtik】 AUTO 自动automatic voltage regulator 自动调压器【`regjuleit«】auxiliary 【:g`zilj«ri】 AUX 辅助的avoid 【«`v•id 】避免, 回避avometer 【«`v•mit« 】万用表 ,安伏欧表计axis 【`Qksis】轴,轴线back pressure 背压back up 支持,备用back wash 反冲洗baffle 【`bQfl】隔板bag filter 除尘布袋balance 【`bQl«ns】平衡,称,天平ball 【bc:l】球bar 【ba:】巴,条杆base 【beis】基础、根据battery 【`bQt«ri】 n. 电池bearing 【`bE«riN】 BRG 轴承bell 【bel】铃,钟 (ring 铃声,环)belt tension 皮带张力【`tenS«n】belt 【belt】带,皮带bi rate 【bai reit】 n. 比特率binary 【`bain«ri】二进制,双bit 【bit】比特(二进制) black 【blQk】黑色blade 【bleid】叶片bleed 【bli:d】放气,放水blow 【bl«u】吹blown 【`bl«un】熔断的blue 【blu:】蓝色boiler BLR 【`b•il« 】锅炉bolt 【b« ult】螺栓、拧螺丝boolean 【`bu:li«n】 n. 逻辑boost 【bu:st】 BST 增压,提高boost pump BP 升压泵bore 【b•: 】孔,腔both 【b«UT】双方,两者都bottom 【`b•t« m】底部bracket 【`brQkit】支架,托架,括号brake 【breik】刹车,制动器,闸break 【breik】断开,断路、破裂、折断breaker coil 跳闸线路breaker 【`breik«】断路器,隔离开关brown 【braun】棕色brush 【brÃS】电刷,刷子bucket 【`bÃkit】斗,吊斗buffer n. 【`bÃf« 】缓冲器bump 【bÃmp】碰,撞击burner 【`b«:n«】燃烧器button 【`bÃtn】按钮bypass/by pass BYP 旁路byte 【bait】字节 (八位)cabinet 【`kQbinit】厨柜,机箱、柜cable 【`keibl】电缆calculator 【`kQlkjuleit«】计算器caliber 【`kQlib«】管径、尺寸、大小cam 【kQm】凸轮cancel 【`kQns«l】取消、省略capacitance 【k«`pQsit«ns】 n. 容量,电容capacitor 【k«`pQsit«】 n. 电容器=capacitator card 【ka:d】(电子)板、卡carton 【`ka:t«n】纸板箱casualty 【`kQÎju«lti】人身事故、伤亡、故障center 【`sent«】中心central control room 中控室central processing unit CPU 中央处理器centrifugal fan 离心风机centrifugal 【sen`trifjug«】离心的change 【tSeindÎ】改变character 【`kQrikt«】字符charge indicator 验电器、带电指示器charge 【tSA:dÎ】 n. 充电,电荷chassis earth 机壳接地chassis 【`SQsi】底座、机壳check 【tSek】检查chimney 【`tSmni】烟囱、烟道circuit 【`s«:kit】 n. 电路circuit breaker 电路断路器circuit diagram 电路图【`dai«grQm】circuitry 【`s«:kitri】 n. 电路,线路circulating water pump 循环水泵circulating 循环【`s«:kjuleitiN】clamp 【klQmp】夹具、钳class of insulation 绝缘等级【 .insju`leiS«n】class 【kla:s】类、等级、程度clean 【kli:n】清洁的、纯净的cleanse 【klenz】净化、洗净、消毒CLEARING OF FAULT 故障清除clockwise 【`kl•kwaiz 】顺时针、右旋的clog 【kl•g 】障碍,塞满,粘注close 【kl«uz】关闭closed-loop 闭环【lu:p】coarse 【k•:s 】粗的、不精确的code 【k« u d】代号、密码coder 【`k«u d«】编码器coil 【k•il 】 n.线圈cold 【k«uld】冷,冷的,感冒collect 【k«`lekt】收集colour 【`kÃl« 】颜色command 【k«`ma:nd】命令、指挥communication 【k« .mju:ni`keiS n】通信、通讯compensation 【k•mpen`seiS« n】补偿,矫正component 【k« m`p«un«nt】元件compress air 压缩空气【E«】compress 【k«m`pres】压缩compressor 【k«m`pres«】压缩机computer 【k« m`pju:t«】计算机condensate 【k•n`denseit 】冷凝、使凝结condition 【k«n`diS«n】条件、状况、环境conduct 【`k•ndÃkt 】传导conductivity 【.k•ndÃk`tiviti 】导电率conductor 【k«n`dÃkt« 】 n.导体,导线configure 【k«n`fig«】组态congealer 【k«n`dÎi:l«】冷却器、冷冻器connect 【k«`nek t】连接connection 【k«`nekS«n】联接connector 【k«`n«kt«】联接器、接线盒console 【k«n`s«ul】控制台constant 【`k•nst« nt】恒定的contact 【`k•ntQkt 】 n.接触,触点,vt.接触,联系contact to earth 接地、触地、碰地【« :P】contact 【`k•ntQkt 】触点contactor 【`k•ntQkt« 】 (电流)接触器、触头continuous 【k« n`tinju«s】连续的control 【k«n`tr•l 】 CNTR/CNTPL 控制control panel 控制盘【`pQnl】面板,仪表板,屏幕control valve 调节阀【vQlv】controller 【k«n`tr«ul«】控制器convert 【k«n`v«:t】 n.转换 vt.使转变,转换… . conveyor 【k«n`vei«】传送带,输送机cooktop 【`kukt•p 】 n.炉灶cool 【ku:l】冷的cooler 【`ku:l«】冷却器cooling fan 冷却风机【fQn】cooling tower 冷却塔【`tau«】塔,城堡cooling water pump 冷却水泵cooling 【`ku:liN】冷却copy 【`k•pi 】拷贝core 【k•: 】铁心、核心、磁心correct 【k«`rekt】正确的 ,改正correction 【k«`rekS«n】修正、改正corrosion 【k«`r«uΫ n】腐蚀counter 【`kaunti«】 n.计数器couple 【`kÃpl】 CPL 联轴器curdle 【`k«:dl】凝固currency 【`kÃr« nsi】流动、流通current 【`kÃr« nt】 n. 电流,水流、当前、气流current transformer CT 电流互感器【trQns`f•:m« 】cursor 【`k«:s«】光标curve 【k«:v】曲线cutter 【`kÃt« 】切削工具 ,刀具ccycle 循环、周期、周波cylinder 【`silind«】 CYL 汽缸,圆柱体cymometer 【sai`m•mi t« 】频率表,频率计damage 【`dQmidÎ】损坏、破坏danger zone 危险区【z« un】danger 【`deindΫ 】危险、危险物dangerous 【`deindÎr«s】危险的dank 【dQNk】潮湿data base 数据库【beis】底部,基层,灯座data pool 数据库【pu:l】data 【`deit«】数据deactivate 【di:`Qktiveit】使无效dead band 死区【ded】【bQnd】区,队debugging 【di:`bÃgiN】 n.调试deceleration 【di:.sel«`reiS«n】 n. 减速,减速度decrease 【di:`kri:s】 DEC 减少deep 【di:p】深度、深的、深default 【di`f•:lt 】 n. 默认(值),缺省(值)degree 【di`gri:】度、等级delay time 延时【di`lei】延迟,滞后 relay 【`ri:lei】继电器delay 【di`lei】延迟,滞后delete 【di`li:t】删除,作废defective 【di`fektiv】有缺陷的,损坏,次品,不完全description 【dis`kripS«n】说明、描述detect 【di`tekt】发现、检定detector 【di`tekt«】检测器,探测器deviate 【`di:vieit】背离、偏差device 【di`vais】设备、仪器,装置diagnosis 【.dai«g`n«usi s】诊断diagram 【`dai«grQm】图形、图表diameter 【dai`Qmit«】直径dielectric 【 .daii`lektrik】介质、绝缘的diesel generator 柴油发电机【`di:z«l】【`dÎen«reit«】发电机,振荡器differential 【.dif«`renS«】差别的,差动的,微分differential pressure DP/DSP 差压【`preS«】digital input/output 数字量输入/输出【`didÎitl】数字的,数字digital signal 数字信号【`didÎitl】【`signl】digital 【`didÎitl】数字的digital-to-analog D/A 数/模转换【`Qn«l•g 】direct current DC 直流(电) 【di`rekt】直接的disassembly 【.dis«`sembli】拆卸disaster shutdown 事故停机【`SÃtdaUn】停工(机),关机disaster 【di`za:st«】事故、故障discharge 排除、放电、卸载disconnect switch 隔离开关disconnect 断开,分离disconnector 隔离器、隔离开关discrete 【dis`kri:t】 adj.不连续的 ,离散的discrete input 开关量输入discrete output 开关量输出disk 【disk】磁盘diskette 【dis`ket】磁盘,磁碟display 【di`splei】显示、列屏dissipation 【.disi`peiS«n】 n. 分配,分发distance 【`dist«n s】距离,间隔distilled water DISTL WTR 蒸馏水【dis`tild】由蒸馏得来的distributed control system DCS 集散控制系统distributed 【dis`tribju:tid】分布的distributing board 配电盘【dis`tribju:tiN】【b•:d 】double 【`dÃbl】两倍的,双重的dowel pin 定位销【`dau«l】销子【pin】down 【daun】向下的 , 向下download 下载downtime 停机时间drain DRN 疏水、排放drawing 【`dr•:iN 】画图.制图 , 图样、牵引drill 【dril】钻孔、钻头、钻床drive nail 钉钉子drive 【draiv】驱动、强迫drop 【dr•p 】滴,点滴,落下dry 【drai】干、干燥duct 【dÃk t】风道、管道dust catcher 除尘器、吸尘器【`kQtS«】捕捉器dust 【dÃs t】灰尘duty 【`dju:ti】责任,义务dynamic 【dai`nQmik】动态的dynamometer 【.dain«`m•mi t« 】功率表earth connector 接地线、接地【« :T】【k«`n«kt«】earth fault 接地故障【f•:lt 】earth lead 接地线、接地【li:d】引线,领导earth 大地【« :T】eccentricity 【eksen`trisiti】偏心、扰度edit 【`edit】编辑efficiency 【i`fiS«ns】效率ejected 【i`dÎekt】喷射,驱逐,被放出的ejection 【i`dÎekS«n】弹出,排出,喷出,喷射electric failure 触电【i`lektrik】电的【`feilj«】故障,失败electric spark 电火化【spa:k】electric 【i`lektrik】电的、电动的、导电的electrical machine 电机【m«`Si:n】机器,机械electrical service 供电【`s«:vis】维修,服务,管理electrical 【i`lektrikl】电的、电气的electric-hydraulic control 电/液控制【hai`dr•:lik 】【k«n`trol】electrician 【ilek`triSn】电工electrode 【i`lektreUd】电极electronic 【ilek`tr•nik 】电子的、电子学的electrostatic 【i`lektr«u`stQtik】静电的electrotechnics 【i`lektr«u`tekniks】电工学、电工技术element 【`elim«nt】元件、零件、单元elevator 【`eliveit«】 n. 电梯,升级机emergency 【i`m«:dÎnsi】 EMERG 紧急事故empty 【`empti】排空enable 【i`neibl】使能够,允许enclosure 【in`kl«uΫ 】 n.密封,外壳,包围encoder 【in`k«ud«】编码器end cover 端盖end 末端、终结energy meter 电度表energy 【`en«dÎi】能、能量engineer 【.endÎi`ni«】工程师enter 【`ent«】开始、使进入entry 【`entri】输入equipment 【i`kwipm«】设备error 【`er«】错误escape valve 安全阀【is`keip】event 【i`vent】事件exceed 【ik`si:d】超过excess 【ik`ses】超过、过度exciter 【ik`sait«】励磁机exit 【`eksit】出口expansion 【iks`pQnS«n】 EXP 膨胀explosion 【iks`pl«uΫ n】爆炸external 【eks`t«:n l】外部的、表面的extra-high voltage 超高压【`ekstr«】额外的,特大的factor 【`fQkt«】因素、因数factory 【`fQkt«ri】工厂、制造厂failure 【`feilj«】 FAIL 失败,故障false 【f•:ls 】假的、错误的fan 【fQn】风扇、风机fault 【f•:lt 】故障faultless 【`f•:lt lis 】没有缺陷、完美的faulty operation 误操作【`f•:lti 】【.•p« `reiS«n】运算,工作features 【`fi:tS«】特点feed 【fi:d】馈、供给feedback 【`fi:dbQk】反馈fiber optic 光纤【`faib«】光纤,纤维【`•ptik 】光学上的,视觉的field 【fi:ld】 n.现场,原野file 【fail】文件、锉刀fill 【fil】装填filter 【`filt«】 n. 过滤器,滤波器,滤网,filter differential pressure FILTR DP 滤网压差final 【`fain«l】最后的fire pump 消防水泵fire 【`fai«】燃烧、火焰fireproof 【`fai«pru:f】防火的、阻燃的fixed 【fikst】固定的、固定、确定、保护屏flank 【flQNk】侧翼、侧面flash lamp 闪光灯flash light 闪光flash 【flQS】闪光、闪烁、闪蒸float-charge 浮充电【fl«ut】浮动【tSa:dÎ】充电,电荷flow 【fl«u】流量、流动flowmeter 【`fl«umi:t«】流量计flue gas 烟气【gQs】气体,煤气,毒气,汽油flue 【flu:】烟道fluid 【`fluid】液体flux 【flÃks】 n. 流量,通量forbid 【f«`bid】禁止force draft fan 送风机【drA:ft】通风force 【f•:s 】强制form 【f•:m 】形式、形状、形成、构成format 【`f•:mQ t 】形式、格式frequency 【`fri:kw«nsi】频率friction 【`frikS«n】 n. 摩擦,摩擦力from 【fr•m 】从、来自、今后full speed 额定频率fully 【`fuli】充分的、完全的fume 【fju:m】烟,冒烟function 【`fÃNkS« n】功能fuse holder 保险盒【`h«uld«】fuse 【fju:z】保险丝、熔断器fusible cutout 熔断开关【`fju:z«bl】溶解的 ,可融的【`kÃtaut】断流 ,保险装置gauge 【gedÎ】仪表、标准gear pump 齿轮泵【gi«】【pÃm p】gear shift housing 变速箱【Sift】换挡,变化【`h«uziN】外壳,套gear 【gi«】齿轮gearbox 齿轮箱general control panel 总控制屏【`dÎen«r«l】普通的,全面的,综合的generator 【`dÎen«reit«】 n. 发电机gland seal 轴封【glQnd】填料函盖,密封压盖【si:l】封,密封,填料glass-paper 砂纸go on 继续goal 【g« ul】目的、目标graphics 【`grQfiks】调节阀grease 【gri:s】图形green 【gri:n】绿色ground 【graUnd】地面,场所、接地 earth【« :T】地球,接地、大地,泥土guide 【gaid】领路人、向导half 【hA:f】一半、一半的halt instruction 停机指令【h•:lt 】停机 , 中断,暂停【in`strÃkS« n】halve 【ha:v】 vt. 二等分,平分hammer 【`hQm«】锤子hand 【hQnd】手,指针handle【`hQndl】vt.触摸,运用,买卖,处理,操作 vi.搬运,易于操纵handwheel 【`hQndwi:l】手轮,驾驶盘hardware 【`hA:dwE«】硬件havoc 【`hQv«k】 n.严重破坏 vt.损害heat 【hi:t】热、加热heater 【`hi:t«】加热器heating 【`hi:tiN】加热,供暖hertz 【`h«:ts】 HZ 赫兹high pressure HP 高压history 【`hist«ri】历史hold 【h«uld】保持hopper 【`h•p« 】漏斗、料斗hose 【h«u z】软管、水龙带hot circuit 通电线路【`s«:kit】hot start 热态启动【stA:t】hot 【h•t 】热的,热情的,辣的hydraulic 【hai`dr•:lik 】水力的,液压的,油压的,水压的I/O point 输入/输出点inboard 【`inb•:d 】内侧idle 【`aidl】空闲的,空载的、无效的ignitor 【ig`nait«】点火,点燃,点火器impedance 【im`pi:d«ns】阻抗import 【im`p•:t 】进口、输入、引入impulse 【`impÃls】脉冲、冲击、冲量inch 【intS】 IN 英寸inching 【`intSiN】缓动、点动increase 【in`kri:s】 INC 增加increment 【`inkrim«nt】增量,加 1,递增index 【`indeks】索引、指标,指针,指数indicate 【`indikeit】指示,显示,表明indicator 【`indikeit«】指示器inductance 【in`dÃkt« ns】电感, 自感应induction motor 异步电动机【in`dÃkS« n】感应【`m«u t«】inductive reactance 感抗【in`dÃktiv】电感的,感应的【ri`Qkt«ns】电抗inductor 【in`dÃkt« 】 n. 电感器,感应器inhibit 【in`hibit】禁止,抑制,约束init 初使化initial 【i`niS«l】初始的,最初的inlet 【`inlet】入口input/output I/O 输入/输出insert 【in`s«:t】插入inside 【`in`said】内侧、内部inspection 【in`spekS«n】观察、检查inspector 【in`spekt«】 n.检测install 【in`st•:l 】安装instruction 【in`strÃkS« n】 n. 指令,指导,指示,说明书,instrument panel 仪表盘【`pQnl】instrument 【`instrum«nt】仪器insufficient 【.ins«`fiS«n t】不足的,不够的insulate 【`insjuleit】绝缘、隔离insulation 【.insju`leiS«n】绝缘insulator 【`insjuleit«】 n.绝缘体integer 【`intidΫ 】整数integral 【`intigr«l】积分,积分的interface 【`int« .feis】 n.分界面 ,界面,接口interface 【`int« .feis】接口interference 【.int«`fi«r«n s】干扰、干涉intermediate relay 中间继电器【.int«`mi:dj«t】中间的,中级,中频internal 【in`t«:nl】内部的 , 内部interrupt 【.int«`rÃpt】中断into 【`intu】向内、进入 ,到…里,进入到…之内inverter 【in`v«:t«】逆变器、反相器、非门isolator 【`ais«leit«】隔离器、刀闸,分离器,绝缘体job 【dΕb 】工作jumper 【`dÎÃmp« 】跳线、跨接junction box 接线盒【`dÎÃNk S« n】key 【ki:】键销、钥匙、键槽keyboard 【`ki:b•:d 】键盘kilovolt-ampere KVA 千伏安【`kil«Uv«Ult`Qmpe«】kink 【kiNk】弯曲、缠绕knack 【nQk】技巧、窍门、诀窍knife-switch 闸刀开关label 【`leibl】标号、标签,商标,标志laboratory 【l«`b•r« t«ri】实验室ladder diagram 梯形图【`lQd«】【`dai«grQ m】ladder logic Diagram 逻辑梯形图【`l•dÎ ik】【`dai«grQm】ladder 【`lQd«】梯子、阶梯lamp 【lQmp】 n.灯、光源last 【la:st】最后的 ,末尾的leak 【li:k】泄漏,漏,漏洞(动词)leakage 【li:kidÎ】 n. 漏,泄漏,渗漏least 【li:st】最少的、最小的left 【left】左length 【leNT】长度level 【`levl】液位、水平lever 【`li:v«】杆,杠杆,控制杆lifebelt 【laifbelt】安全带、保险带lift 【lift】提、升light run 空转【lait】【rÃn】light 【lait】光,灯,轻,淡, 日光,光亮,点,点燃,照亮lightning 【`laitniN】雷电limit 【`limit】 LMT 极限、限制limit switch 【`limit】限位开关limiter 【`limit«】限制器、限位开关line 【lain】线、直线list 【list】列表、目录liter 【`li:t«】公升little 【`litl】小的,少许,少的load 【l«ud】 n. 负荷,负载load thrown on 带负荷【Tr«un】local attendant 现场值班员【«`tend«nt】维护人员,值班人员,服务员local repair 现场检修【ri`pE«】修理,修补local 【`l«uk«l】当地的 ,局部,本地location 【l«u`keiS«n】位置,定位,单元,场所lock 【l•k 】闭锁、密封舱、固定logger 【`1•g« 】记录器、拖车logic 【`l•dÎ ik】逻辑long 【l•N 】长loop 【lu:p】环、回路loose 【lu:s】松的、不牢固的loosen 【`lu:sn】松开、松动loss 【l•s 】损失、减少low 【l«u】低lower 【`l«u«】较低的、降低low-half 下半【hA:f】lub oil pump 润滑油泵lub oil 润滑油lubricate 【`lu:brikeit】 LUB 润滑machine 【m«`Si:n】机器,机械magnet 【`mQgnit】磁main wire 电源线【`wai«】main 【mein】主要的 ,主群组maintain 【men`tein】维修、维持、保养maintenance manual 检修手册【`mQnju«l】maintenance 【`meintin«ns】维护、维护,检修、小修make 【meik】制造 ,是成为make sure 确定【Su« 】的确,对…有把握make up 补充(补给)malfunction 【mQl`fÃNkS« n】故障, 出错、误动、失灵management 【`mQnidÎm« n t】管理、控制、处理man-machine interaction 人机对话【mQn】【m« :`Si:n】【.int«`QkS«n】man-machine interface MMI 人机接口【`int« .feis】界面,接口manometer 【m«`n•mit« 】压力表manual reject MRE 手动切换【ri`dÎekt】拒绝,排斥manual 【`mQnju«l】手动、手册manual/Auto station M/A STATION 手动/自动切换站mark 【mA:k】型号、刻度、标志、特征master control room 主控室、中央控制室【k«n`trol】master 【`mA:st«】主人,主要,控制,师傅,正版material 【m«`ti«ri«l】 n. 材料,原料maximum 【`mQksim«m】最大,最大值,最高,mean 【mi:n】平均,平均值、中间的measure 【`meΫ 】度量、测量,量,尺寸mechanical trip vlv 机械跳闸阀【mi`kQnikl】【trip】脱扣,解扣mechanical 【mi`kQnikl】机械的、力学的mechanism 【`mek«niz« m】机械、力学、方法、装置、机构medial 【`mi:dj«l】中间的、平均的medium 【`mi:dj«m】中间的、中等的、装置、介质、工质melt 【melt】溶解,熔化memory 【`mem«ri】存储 ,存储器,记忆menu 【`menju:】 n. 菜单metal 【`metl】金属meter 【`mi:t«】 n.仪表,米,表meter switch 仪表开关method of operation 运行方式【. •p« `reiS«n】操作,运转method 【`meT«d】方法、规律、程序microphone 【`maikr«f« Un】麦克风、话筒 ,传声器,扩音器microprocessor 【maikr«u`pr«uses«】 n.微处理器middle 【`midl】mid中间的 , 中间,当中,中型mill 【mil】磨、磨粉机、压榨机,铣刀mind 【maind】头脑、精神、介意minimum 【`minim«m】最小的minor overhaul 小修【main«】次要,副修科目【.auv«`h•:l 】检修,大修minute 【mai`nju:t】分钟misfill 误装mishandle 【`mis`hQndl】胡乱操作、误操纵misread 【mis`ri:d】错读miss 【mis】过错,避免,小姐,姑娘,故障,失败miss operation 误动作、误操作【. •p« `reiS«n】mistake 【mis`teik】错误、事故mixer 【`miks«】 n. 搅拌器,混合器 ,混频器modem 【`m«ud«m】调制解调器modify 【`m•difai 】修改、更改modulating valve 调节阀【`m•djuleit 】【vQlv】module 【`m•dju:l 】 n.模块,组件,模数moisture 【`m•istS« 】湿度、湿汽mold 【m«uld】模具monitor 【`m•nit« 】 n.监听器,监视器,监控器 vt.&vi.监控month 【mÃn T】月more than 超过【m•: 】更多的【D«n】与…相比较,比motor MTR 马达【`m«u t«】motor winding 电动机组绕组【`waindiN】绕组,线圈,绕,缠mount 【maunt】安装、固定mouse 【maus】鼠标move 【mu:v】移动multimeter 【`mÃltimit« 】万用表nail 【neil】钉子、钉钉子naught line 零线【`n•:t 】零,无neck 【nek】颈,管颈needlepoint vlv 针阀【`ni:dlp•int 】negative pressure NEG PRESS 负压negative 【`neg«tiv】负的network 【`netw«:k】网络neutral line 中性线【`nju:tr«l】中性的newly 【`nju:li】最近,重新、新地nipper 【`nip«】钳子、镊子noise remove 消音器【n•iz 】【ri`mu:v】noise 【n•iz 】噪音no-loading 空载nominal power 额定功率【`n•minl 】标称的,额定的【`pau«】nominal 【`n•minl 】标称的、额定的normal closed contact 常闭触点【`k•ntQkt 】触头,触点,接点normal 【`n•:m« l】正常的、常规的normally 【`n•:m« li】正常地not available 无效、不能用【«`veil«bl】可用的,有用的nozzle 【`n•zl 】喷嘴number 【`nÃmb« 】数字、号码、数目nut 【nÃt】螺母、螺帽occur 【«`k«:】发生ohm 【« um】 n.欧姆oil breaker 油开关【`breik«】oil gun 油枪【gÃn】oil level 机油平面【`levl】oil 【 il】油oiler 【`•il« 】注油器 ,油商oilless 【 illes】缺油的on/off 开/关online 【 nlain】联机的,在线的open circuit 开路【`«up«n】【`s«:kit】open-loop 开环【lu:p】operating panel 操作盘【`•p« reitiN】【`pQnl】operation 【.•p« `reiS«n】操作、运行operational log 运行记录【Ñ .•p« `reiS«n】【l•g 】operator keyboard 操作员键盘【`ki:b•:d 】operator station 操作员站【`steiS«n】operator 【`•p« reit«】操作员option switch 选择开关optional 【`•pS« n«l】可选的 ,选择orbit 【`•:bit 】 n. 轨道,轨迹orientation 【 .•rien`teiS« n】方位,定向,定位original 【«`ridÎ « n«l】初始的、原始的out 出、出口outboard 【`autb•:t 】外侧的outage 【`autidÎ】断电,停机,出故障outlet 【`autlet】出口output 【`autput】产量、产品、输出oven 【`Ãvn】 n.烤箱over current 过流【`kÃr« nt】over loading 过载【`l«udiN】over voltage 过压【`v«Ulti dÎ】over 【`«uv«】结束,上面的 ,过分的overcool 【`«uv«ku:l】过冷却overflow 【`«uv«`fl«u】溢流overhaul 【. « uv«`h•:l 】大修,检修overhead 【`«uv«hed】顶部,高空,架空overheat 【. « uv«`hi:t】使过热overload 【`«uv«`l«ud】 n.过载overload protection 过载保护【`«uv«`l«ud】【pr«`te kS«n】package 【`pQkidÎ】组件、包 ,插件packaging 【`pQkidÎiN】 n.包装panel 【`pQnl】屏、盘parameter 【p«`rQmit«】参数part 【pA:t】部分、部件password 【`pA:sw«:d】口令,密码peak 【pi:k】峰值percent 【p«`sent】 PCT 百分数percentage 【p«`sentidÎ】百分比perfect 【`p«:fikt】完全的、理想的performance 【p«`f•:m« ns】完成、执行、性能periodic inspection 定期检查【in`spekS«n】periodic 【pi«ri`•dik 】周期的、循环的peripheral equipment 外围设备【i`kwipm«nt】peripheral 【p«`rif«r«l】周围的,外围设备,周边的permanent 【`p«:m«n« nt】永久的、持久的permit 【p«`mit】允许PG 编程器phase not together 缺相、失相【feiz】相【t«`geD«】共同phase 【feiz】 PH 阶段、状态、方面、相phase sequence 相序【`si:kw«ns】次序,顺序,时序phase voltage 相电压phase-failure protection 断相保护【`feilj«】phase-in 同步photoelectricity 【.f«ut«uilek`trisiti】光电piezometer 【.pai«`z•mit« 】压力计pilot 【`pail«t】导向、辅助的、控制的pipe 【paip】管、管道plan 【plQn】计划plant 【plA:nt】工场、车间plastic 【`plQstik】塑料PLC(programmable Logic Controller) 可编程序逻辑控制器pliers 【`plai«z】钳子、老虎钳plug socket 插座【`s•kit 】plug 【plÃg】塞子、栓、插头plus 【plÃs】加pneumatic 【nju`mQtik】气动的point 【p•int 】点pointer 【`p•int« 】指针,指示器pole 【p« ul】极、柱,极点,电极,电杆pollution 【p«`lu:S«n】污染portion 【`p•:S« n】一部分position 【p«`ziS«n】 POS 位置potential 【p«`tenS l】电势,电位potential transformer PT 电压互感器【p«`tenS l】【trQns`f•:m« 】power failure 停电【`pau«】【`feilj«】故障,失败power 【`pau«】 PWR 功率、电源 ,能力,动力PPI(point-to-point Interface) 点对点接口preblow 预吹preferential 【.pref«`renS«l】 n. 优先的,优先权perform 【p«`f•:m 】预先形成,预制,预成型坯,粗加工的成品preheat 【`pri:hi:t】预热preheater 【`pri:hi:t«】预热器preliminary 【pri`limin«ri】准备工作present 【pri`zent】出现preset 【`pri:`set】预设、预置press 【pres】压,按,压力pressure 【`preS«】 PRES 压力primary 【`praim«ri】初级的、一次的principle 【`prins«pl】原理、原则printer 【`print«】打印机probe 【pr«u b】探头process 【pr«`ses】过程、方法production 【pr«`dÃkS« n】生产、产品、作品program 【`pr«ugrQm】程序programmable 【`pr«ugrQm«bl】 adj.可设计的,可编程的prohibit 【pr«`hibit】禁止proportional / integral / derivative PID 比例/积分/微分protection 【pr«`tekS«n】 PROT 保护、预防protocol 【`pr«ut«k•l 】 n.协议pull 【pul】拖 ,拉pulse 【pÃls】脉冲、脉动pump body 泵体pump 【pÃmp】泵purge 【p«:dÎ】净化、吹扫push and pull switch 推拉开关push button 按钮push 【puS】推pushbutton 【puS`bÃtn】 n. 按钮pyod 【`pai«d】热电偶quality 【`kw•liti 】质量quit 【kwit】停止、离开、推出rack earth 机壳接地【rQk】机架,机柜,导轨【« :T】radiation fin 散热片【.reidi`eiS«n】辐射,发散 fin】散热片radiator 【`reidieit«】 n. 散热器,冰箱raise 【reiz】升高range 【reindÎ】范围、量程rate 【reit】速度,速率rated power 【`reitid】额定功率rated 【`reitid】额定的、比率的ray 【rei】光线、射线read out 读出、结果传达reading 读数real time 实时的【`ri:«l】receive tank 回收箱、接收箱【ri`si:v】【tQNk】receive 【ri`si:v】收到,接到,接收,接待recipe 【`resipi】处方、配方reclosing 重合闸recovery time 恢复时间【ri`kÃv« ri】recovery 【ri`kÃv« ri】恢复、再生rectification 【.rektifi`keiS«n】整流、检波、调整rectifier 【`rektifai«】 n.整流器,矫正器red 红色reduction 【ri`dÃkS« n】还原、缩小、降低redundancy 【ri`dÃnd« ns i】冗余、多余reference 【`refr«ns】 REF 参考、参照、证明书reflux 【`ri:flÃk s】倒流、回流register 【`redÎis t«】寄存器regulate 【`regjuleit】调节、控制relay 【`ri:lei】 n. 继电器release 【ri`li:s】释放reliability 【i«`biliti】可靠性、安全的relief 【ri`li:f】去载、卸载、释放、解除relieve valve 安全阀、减压阀【ri`li:v】【vQlv】remove 除去、拆卸renewal 【ri`nju«l】更新、更换repair 【ri`pE«】修理repairer 修理工、检修工repeat 【ri`pi:t】重复、反复replace 【ri`pleis】重新、启动、更换、替换replacement parts 备件、替换零件【ri`pleism«nt】【pA:t】request 【ri`kwest】 REO 请求require 【ri`kwai«】要求reserve parts 备件【ri`z«:v】reserved 【ri`z«:vd】备用的reset 【`ri:set】复位resist 【ri`zist】 n. 阻抗resistance 【ri`zist«ns】 n. 电阻、阻抗resolution 【.rez«`lju:S«n】 n. 分辨率response 【ris`p•ns 】响应restart 【ri:`stA:t】重新启动retighten 【ri`tait«n】重新紧固retract 【ri`trQkt】可伸缩的、缩回return oil 回油【ri`t«:n】return 【ri`t«:n】返回reverse rotation 反转【ri`v«:s】rig 【rig】安装、装配、调整right 【rait】右right-of-way 公用线路ring 【riN】环roller 【`r«u l«】滚筒、辊子rotary switch 转换开关【`r«ut«ri】rotate 【r«u`tei t】旋转rotation 【r«u`teiS«n】旋转,转动,回转rotor 【`r«ut«】转子routine 【ru:`ti:n】例行的、日常的routing inspection 日常检查、日常检测【in`spekS«n】routing maintenance 日常维护【`ru:tiN】【`meintin«ns】rubber 【`rÃb« 】橡胶run back 返回run 运行safe 【seif】安全的、可靠的、稳定的safety cap 安全帽safety 【`seifti】安全sample 【`sQmpl】取样、举例sampling 【`sA:mpliN】采样、抽样、取样saw 【s•: 】锯scale 【skeil】刻度、衡量、比例尺、测量、铁锈水垢scan 【skQn】扫描schedule 【`Sekju:l】时间表、计划表screen 【skri:n】】屏幕screw driver 螺丝刀screw socket 螺口插座screw 【skru:】螺杆、螺丝、旋转seal 【si:l】密封search 【s«:t S】寻找、查找second 【`sek«nd】秒、第二seep 【si:p】渗出、渗漏seepage 【`si:pidÎ】渗漏现象select 【si`lekt】选择selector 【si`lekt«】选择器self-hold 【self】【h« uld】自保持self-running 自启动send 【send】发送,寄,发射sensor 【`sens«】传感器sequence 【`si:kw«ns】顺序、序列service manual 维修说明书series 【`si«ri:z】 n.连续,串联service 【`s«:vis】维修.保养.服务、伺服servo 【`s«:v«u】伺服servomotor 【`s«:v«u.m«ut«】伺服电机set up 安装、调整、建立set 【set】设定shaft 【SA:ft】轴、手柄、矿井shake 【Seik】摇动、振动shield 【S i:ld】屏蔽shift 【S ift】值、替换shock 【S•k 】震动,使受电击short circuit 短路short 【S •:t 】短的、短路、使短路should 【S ud】应该 ,将要show 【S « u】展览,显示,指示shut off 关闭【S Ãt】关闭,关上shut 【SÃt】关上,更加shutdown 【`SÃtdaUn】停止、停机siccative 【`sik«ti v】干燥剂 ,使干燥的,side 【said】侧边siemens 【`si:m«z】西门子sifter 【`sift«】筛子、滤波器sign 【sain】标记、注册signal lamp 信号灯signal 【`signl】信号,发信号silencer 【`sail«ns«】消音器simulation 【.simju`leiS«n】 n.仿真,模拟simulator 【`simjuleit«】仿真机single blade switch 单刀开关【bleid】刀刃,刀片single 【`siNgl】单个的、个体的site 【sait】现场size 【saiz】尺寸、大小skip 【skip】空指令、跳跃smoke 【sm«uk】烟、冒烟smokes-stack 烟囱【stQk】烟囱,堆,堆栈smooth 【smu:D】平滑的、光滑的socket wrench 套筒扳手socket 【`s•kit 】插座software 【`s•ftwE« 】软件solenoid 【`s«ulin•id 】电磁线圈solid wrench 呆扳手solid 【`s•lid 】固体、坚固的、固体的source 【s•:s 】源、电源spanner 【`spQn«】扳手spare 【spΫ 】备用的、空余的spare parts 备件、备品spark 【spA:k】火花special tool 专用工具special 【`speS«l】特别的、专门的specification 【.spesifi`keiS«n】技术要求,说明书speed 【spi:d】速度spray nozzle 喷嘴【sprei】喷雾,喷射spring clutch 弹簧离合器【klÃtS】离合器spring 【spriN】弹簧、春天stack 【stQk】烟囱,堆栈stall 【st•:l 】停车、阻止standard 【`stQnd«d】标准standby 【`stQndbai】备用、待机star 【stA:】星、星形连接start up 启动start 【stA:t】启动、开始starter 【`stA:t«】 n.启动器,启动钮starting conditions 启动条件【`sta:tiN】启动,开始,出发start-up sequence 启动程序【`si:kw«ns】程序,次序,顺序,序列state 【steit】状态statement 【`steitm«nt】声明、语句station 【`steiS«n】站、台,岗位,身份,地点,发电厂,位置stator coil 定子线圈stator core 定子铁芯【k•: 】stator 【`steit«】定子status display 状态显示status 【`steit«s】状态stability 【st«`bilit i】稳定性steam 【sti:m】 STM 蒸汽step 【step】步,步幅step-by-step 步进式,逐步,按部就班的step-by-step motor 步进电动机step-down transformer 降压变压器step-up transformer 升压变压器still 【stil】仍然,还,更stop 【st•p 】停止storage battery 蓄电池storage 【`st•ridÎ 】储存strainer 【`strein«】滤网,过滤器streamline 【`stri:mlain】流水线stretching 【`stretS iN】拉伸,伸长suction pump 真空泵【`sÃkS « n】吸入,抽气,superheater 【`sju:p«hi:t«】过热器supply 【s«`pla i】供给support 【s«`p•:t 】支持、支撑sure 【S u«】确信的、可靠的switch 【switS】 n. 开关,电闸switch blade 开关闸刀【bleid】刀刃,刀片switch 【switS】开关、切换switching off 断开【`switS iN】switching on 接通switching push button 开关按钮symbol 【`simb«l】符号。

外文文献

外文文献

Fault diagnosis for temperature, flow rate and pressuresensors in V A V systems using wavelet neural network Zhimin Du, a, , Xinqiao Jina and Y unyu YangaaSchool of MechanicalEngineering, Shanghai Jiao TongUniversity,800,Dongchuan Road,Shanghai,ChinaReceived 30 April 2008; revised 14 January 2009;accepted14January2009. Available online 5 March 2009.Abstract Wavelet neural network, the integration of wavelet analysis and neural network, is presented to diagnose the faults of sensors including temperature, flow rate and pressure in variable air volume (V A V) systems to ensure well capacity of energy conservation. Wavelet analysis is used to process the original data collected from the building automation first. With three-level wavelet decomposition, the series of characteristic information representing various operation conditions of the system are obtained. In addition, neural network is developed to diagnose the source of the fault. To improve the diagnosis efficiency, three data groups based on several physical models or balances are classified and constructed. Using the data decomposed by three-level wavelet, the neural network can be well trained and series of convergent networks are obtained. Finally, the new measurements to diagnose are similarly processed by wavelet. And the well-trained convergent neural networks are used to identify the operation condition and isolate the source of the fault.Keywords Wavelet analysis; Neural network; Fault diagnosis; Sensor ; Variable air volumeIntroductionVariable air volume (V A V) systems are widely used in actual buildings to save energy through employing some optimal control strategies. Obviously, energy conservation capacity of a real V A V system deeply depends on the executing efficiency of various control loops including outdoor air flow rate, supply air temperature, supply air static pressure and zone temperature controllers. These controllers modulate related components after comparing the measurements of the control variables with the optimal setpoints. With the effective control, energy conservation and better indoor air quality can be achieved. During the control process, however, one premise can never be ignored: the measurements are accurate. If the sensors are biased, the controller may be misled and give incorrect commands. The related components may be incorrectly modulated. Finally the energy consumption of the system may be unreasonably increased greatly. In summer conditions, for example, the positive biases (the measurements are larger than the true values) of supply air temperature mislead the controller to open the water valve at a larger position. The quantity of chilled water is increased incorrectly, which wastes more energy of the pumps. Similarly, the biases of outdoor air flow rate sensors may increase the chilled water flow rate or decrease the chilled water temperature that may increase energy consumption of the pumps or chillers. The faults of supply air static pressure sensor may require higher rotational speed of the supply fan,which means more energy consumption of the fan. Consequently, the waste of energy is always inevitable under those various faulty conditions although optimal control strategies are applied in the system. Finding a suitable method to detect and diagnose the faults occurred in the V A V system, to avoid the waste of energy, is a significant target.Recently, the study of fault detection and diagnosis (FDD) for sensors in heating, ventilation and air conditioning field are more active than ever after the popularity of research on faults of facilities including chillers [1], [2], [3] and [4] and air-handling units [5], [6], [7], [8], [9] and [10]. Two typical diagnosis methods for sensor faults have been developed. One is the model-based, and the other is the data-driven.The model-based method [11], [12], [13] and [14] is to obtain predicted values of the parameters calculated by the mathematical models first. Then the differences between the outputs of real process and those of predicted ones, so-called residuals, are calculated and used as the fault indexes to diagnose. Stylianou and Nikanour [1] used a first-order model to detect faults of temperature sensors by comparing the actual temperature decay with the model output using the hypothesis testing. Wang and Wang [15] developed model-based strategies to diagnose the faults of commonly used temperature and flow rate sensors in chilling plant. The premise of model-based method is that accurate mathematical models must be built. And this premise is also the difficult point for the application. The model-based method is efficient to discover the abrupt faults of sensors such as the complete failure through analyzing the great change of operation conditions caused by the abrupt faults. Limited by the precision of the prediction models, however, it is insensitive to detect the small fixed or drifting biases since not abrupt change but slow degradation of the operation or control efficiency happens.The data-driven approaches [16], [17] and [18], on the other hand, never construct physical models but just learn the intrinsic relations among variables or parameters through employing the process data including normal and faulty conditions. Recently, principal component analysis [19] and [20] and Fisher discriminant analysis [21] were presented to diagnose the sensor faults in heating, ventilation and air conditioning systems. Besides the statistic method, neural network and wavelet analysis also began to apply in this field. Lee [22] presented general regression neural network models to diagnose the abrupt and performance degradation faults in an air-handling unit. Wang and Chen [23] developed a neural network trained by lots of running data to diagnose the faults of outdoor, supply and return air flow rate sensors. Later, Chen et al. [18] employed wavelet analysis to diagnose the faults of flow rate sensors in central chilling systems. Obviously, the data-driven method highly relies on the quantity and quality of the data obtained. Fortunately, with the popularity of building automation and energy management and control systems, the various historical operation data including normality and fault can be collected and obtained easily.A data-driven diagnosis method combining wavelet analysis with neural network is presented in this paper that can be used to diagnose the faults in the V A V systems. Wavelet decomposition is used to process the original data and then the characteristic data representing the main operation information of the system are obtained. Employing these data decomposed, the neural networks are well trained and then they can identify various faults of commonly used sensors including temperature, flow rate and pressure in the V A V systems2. Wavelet neural networkNeural network technique is a valuable pattern recognition method in theory and application. It is widely used in engineering application [24], [25] and [26] especially to deal those issues concerned in non-linear or complicated systems. It is efficient to learn the certain status or operation condition of the objective systems. And then the well-trained network can recognize these various conditions. Actually, the process of fault diagnosis is essentially a kind of recognition classification or recognition. Therefore, the neural network can be used as a diagnosis method. In fact, it has been well applied to detect and diagnose faults in many fields [27], [28], [29] and [30].2.1. Application opportunity in VAV systemsAs a complicated non-linear system, the VAV system includes many control components and measuring sensors.According to the different control strategies, the variables have changeable control relations. Also, the variables have implicit physical relations because of the physical principles. For this complex system, it is difficult to construct not only general but also precise models for so many variables. As a data-driven method, however, neural network never construct detailed models but continually learn the operation data. Through lots of training, the neural network can capture the important physical and control relations among the different variables in the VAV system. Once the networks obtain the main information of different operation conditions, they can be used for fault diagnosis.Though neural network is capable of learning and judging various operation conditions, its capacity of data processing or analyzing is not satisfied. Especially for the VAV system, there are large quantities of samples for many measuring and control points. Since the noises are always included in the measurements and some uncertainty factors usually disturb the control actions, the pure neural network method may be affected or disturbed. As a result, its diagnosis efficiency is limited. Themistaken-warnings or missing-warnings may happen inevitably. To solve this problem, the data selected for training must be preprocessed to remove those disturbing information.Wavelet analysis, originally developed from the Fourier transform at the end of 1980s [31] and [32], is widely used in various engineering [33], [34] and [35] systems. The wavelet analysis, also called wavelet transform, employs two opposite time intervals: shorter and longer. The shorter time interval can be used by wavelet analysis to analyze the high frequency characteristics of the signals. While the longer one is used to analyze the low frequency characteristics of the signals. Since it is capable of data processing, it can be used as the complement for neural network.Through analyzing the time-varying signals of variables in the VAV system, the wavelet can capture the local time-frequency domain information. The main important information of the system can be seized. Simultaneously, the disturbing factors can be removed. Indeed, the data after processing are much better than those initial signals for related trainings of the networks. Wavelet analysis can improve the diagnosis process of neural network. Consequently, wavelet neural network, the integration of wavelet analysis and neural network that the former is to process data and the latter to diagnose, is a valuable approach.2.2. Wavelet decompositionAccording to wavelet analysis, the measurements signals from sensors in the VAV systems can be decomposed using three-level wavelet packets shown in Fig. 1. S is the original signal from various sensors.S ij means the j th node or decomposition coefficient in the i th level. Consequently, the original signal S can be reconstructed using all of the nodes in the 3rd level and expressed asSince the characteristic of frequency domain representing operation condition is captured using the wavelet packets, the original signal can be replaced by thesedecomposed wavelets. And the eigenvector matrix concluded by the wavelet decomposition can be used as the training data for neural network to diagnose.Description of the VAV systemA typical VAV system, including air-handling unit, supply fan, VAV terminals, return fan, controllers and various sensors,is shown in Fig. 5. The supply air, a mixture of outdoor air and recycle air, is cooled down (in summer condition) in the air-handling unit using the chilled water coming from the chillers. The supply air is circulated to the VAV terminals to meet the demand of zones. The return air from the zones, on the other hand, is divided into two branches: one is circulated as the recycle air to join the next circulation, and the other is exhausted out of the building.In this VAV system, five kinds of controllers are included to improve the operation efficiency of the system so as to save more energy. Outdoor air flow rate (M OA) controller adjusts the air dampers to ensure enough outdoor air for the users. The supply air temperature (T SA) controller modulates the chilled water valve to maintain suitable supply air temperature through comparing the feedback information of T SA sensor with its optimal setpoint. The P SA controller adjusts the variable-speed supply fan to ensure the proper supply air static pressure. The variable-speed return fan is modulated to ensure the positive indoor air pressure. Moreover, many VAV terminal controllers located in multi-zones adjust the terminal dampers to ensure the heat comfort through monitoring the temperature and air flow rate in each zone.The diagnosis capacity of wavelet neural network may be limited if only separated measuring data of the variables are selected and used for training. After all the pure data-driven method does not directly describe the physical relations among variables. Actually, some of the variables are correlated and they influence each other because of the physical models and control relations. The relevant variables can be defined as one data group. Through classifying various groups, the diagnosis process can beimproved greatly. Therefore, some physical balances representing strong relevant relations among variables are employed to improve the diagnosis efficiency.ConclusionThe faults in the V A V system may not only worsen the operation efficiency but also waste the energy of system. To ensure the capacity of energy conservation, wavelet neural network integrating wavelet analysis with neural network is presented to diagnose the faults of sensors in the V A V system.Wavelet analysis is used to process the original data so as to seize the essential operation information of the V A V system. With three-level wavelet decomposition, the characteristic information of the system is obtained. Using these processed data, the neural networks are easily trained and recognize the system well. Once the convergent networks are obtained, the new data to diagnose are decomposed similarly using three-level wavelet. Finally, the new operation conditions, including normality and faults, can be diagnosed one by one using the well-trained networks.Two main contributions have been made in this paper. Firstly, wavelet neural network is used to diagnose the faults in the V A V systems, which is the combination of wavelet analysis and neural network. The actual V A V and its control systems are very complex that include many measuring points and control components. The efficiency of pure neural network may be not satisfied because its prediction or recognition may be disturbed by some uncertain or subordinate factors such as the measuring noises. As a result, more mistaken-warnings or missing-warnings may happen during the diagnosis process. With the wavelet analysis, however, the main information can be seized and those disturbing factors can be well removed. After the wavelet-based data processing, the diagnosis efficiency of neural network can be improved.As the universal mathematic methods, in addition, neither wavelet analysis nor neural network can well describe the physical relations between the variables in the V A V systems. Ifonly separated data are used for training, its diagnosis efficiency may be inevitably limited. The second contribution in this paper is the construction of various data groups using the essential conservation relations and models in the V A V system. Once the data are classified according to those physical models, the recognition for the relevant relations among variables is strengthened. Consequently, the diagnosis capacity of wavelet neural network is improved.。

汽车维修中英文对照表

汽车维修中英文对照表

汽车维修专业术语的英语对照表1汽车维修养护专业英语对照表,学汽车维修的英语都不太好,搞来个对照表可参考一下。

汽车维修管理Ad ministration of Vehicle Maintenance汽车维护方法Method of vehicle maintenance汽车维护流水作业法Flow method of vehicle maintenance汽车维护定位作业法Method of vehicle main tenance on universal post汽车修理方法Method of vehicle repair汽车修理流水作业法Flow method of vehicle repair汽车修理定位作业法Method of vehicle repair on universal post总成互换修理法Unit exchange repairing method周转总成Reversible unit混装修理法D epersonalized repair method就车修理法Personalized repair method汽车维修指标Indices o f vehicle maintenance and repair汽车维护生产纲领Production program of vehicle maint enance汽车修理生产纲要Production program of vehicle repair汽车维修周期Period of vehi cle maintenance汽车诊断周期Period of vehicle diagnosis汽车维修竣工辆次Number of vehi cle being received from maintenance or repair汽车大修平均在厂车日Average days in p lant during major of vehicles汽车大修平均在修车日Average days during major repair of vehicles汽车大修平均工时Average man-hours of vehicle maintenance and repair汽车维修平均费用Average costs of vehicle maintenance and repair汽车大修返修率Returnin g rate of major repair of vehicle汽车小修频率Frequency of current repair of vehi cles汽车大修间隔里程Average interval mileage of major repair of vehicles汽车修理工人实物劳动生产率Labour productivity of repair—man汽车维护企业Enterprise of vehicle mai ntenance and repair汽车维护场(站)Maintenance depot (station)of vehicles汽车停车场(库)Park汽车修理厂Vehicle repair plant汽车总成修理厂Unit repair plant for vehicle汽车诊断站Vehicle diagnosis station汽车检测站Detecting test station of vehicle汽车维修网点Network of vehicle maintenance and repair汽车维修工具和设备Instrument and Devic e for Vehicle Maintenance and Repair螺丝刀Screwdriver花扳手Ring spanner锉刀File双头扳手Double—ended spanner鲤鱼钳Combination pilers轮胎螺栓扳手Wheel wrench厚度规Feele r gauge杆式气缸量规Bar-type cylinder gauge气缸压力表Cylinder compressor gauge活塞台钳Piston vice活塞加热器Piston heater活塞环工具Piston ring tool活塞环钳(活塞环拆装钳)Pis ton ring pliers (piston ring tongs)压环器Piston ring compressor活塞环锉Piston rin g file活塞销拉器Piston—pin extractor连杆校正器Connecting rod alignment fixture气门座刀具Valve seat cutter气门弹簧压缩器Valve spring compressor气门研磨工具Valve grindin g tool (valve lapper)调整气门间隙扳手Tappet wrench浮子室液面仪Float level gauge歧管压力表Manifold pressure gauge set点火正时灯(正时观测灯)Ignition timing light (strob oscope)燃烧分析仪Combustion tester断电器触点闭合角Dwell meter火花塞间隙量规Plug gap ga uge火花塞套筒扳手Spark plug box (socket)spanner蓄电池液体比重计Battery hydrometer 汽车架Car stand (jack stand)轮轴架Axle stand前束量尺Toe—in gauge外倾测量器Camber g auge制动踏板压下器Brake depressor制动器放气软管Hose for brake bleeding车架量规Frame g auge轮毂拆卸器Hub puller车轮拆卸器Wheel wrench拆装轮胎用撬杠Tire—lever打气筒Tire pum p螺旋千斤顶Screw jack轮胎压力计Pressure gauge油壶Oil can手油泵Manual fuel pump黄油枪Grease gun起动摇把Starting crank工具袋Tool bag车身修整工具Body bumping tool发动机测功机Engine dynamometer发动机综合试验机Engine analyzer发动机示波器Engine scope (osci llograph)电子诊断式发动机试验仪Electronic—diagnostic engine tester滚筒式测功试验台Rolle r type dynamometer (test bed)发动机加速测功仪Free acceleration engine tester容积式油耗计Volumetric fuel meter红外线废气分析仪Infrared rays exhaust gas analyzer异响诊断仪Abnormal engine noise diagnosis equipment气缸漏气率检验仪Cylinder leak tester发动机分析仪Engine analysis apparatus进气歧管真空度表Intake manifold vacuum meter气缸压力表Cylinder pressure gauge调整用的试验检测仪Tune-up tester底盘测功机Chassis dynamometer底盘润滑机Chassis lubricator曲轴箱窜气量测定仪Blow—by meter反作用力制动试验台Reaction ty pe brake tester惯性式制动试验台Inertia type brake tester转向盘间隙测量仪Steering whe el freeplay gauge测滑试验台Side-slip checking stand前照灯检验仪Head light checking e quipment气缸孔垂直检验仪Cylinder perpendicularity gauge主轴承座孔同轴度检验仪Main beari ng aligning gauge移动式车轮平衡机Portable wheel balancer固定式车轮平衡机Wheel balance r车轮动平衡机Dynamic wheel balancer镗缸机Cylinder boring machine气缸珩磨机Cylinder h oning machine直线镗削机Line borer气门修整机Valve reseater(活塞)销孔珩磨机Pinhole hone r曲轴磨床Crankshaft grinding machine气门研磨机Valve grinding machine气门面磨光机Valv e refacer气门座磨光机Valve seat grinder气门座偏心磨光机Eccentric valve seat grinder 研磨机Lapping machine电子点火试验器Electronic ignition tester点火线圈试验器Ignition co il tester氖管火花试验器Neon spark tester电容器试验器Condenser tester电枢试验器Armatur e tester制动盘专用车床Disc lathe制动蹄片磨削装置Brake shoe grinder制动鼓车床Brake dr um lathe制动液自动更换装置Brake flusher(液压)制动系空气排除器Brake bleeder汽车维护Vehi cle maintenance汽车修理Vehicle repair汽车维修制度System of vehicle maintenance and r epair汽车维修性Maintainability of vehicle汽车技术状况Technical Condition of Vehicle汽车完好技术状况Good condition of vehicle汽车不良状况Bad condition of vehicle汽车工作能力Working ability of vehicle汽车技术状况参数Parameters for technical condition of v ehicle汽车极限技术状况Limiting condition of vehicle汽车技术状况变化规律Regularity for change of technical condition of vehicle运行缺陷Operational defect制造缺陷Manufac turing defect设计缺陷Design defect事故性缺陷Accidental defect汽车耗损Vehicle wear—ou t汽车零件磨损Wear of vehicle part磨损过程Wear process正常磨损Normal wear极限磨损Lim iting wear允许磨损Permissible wear磨损率Wear rate机械磨损Mechanical wear化学损耗Chem ical wear热磨损Thermic wear疲劳磨损Fatigue wear腐蚀性磨损Corrosion wear故障磨损Failu re wear故障Malfunctioning断裂Breakdown损坏Damage汽车维修专业术语的英文对照表2更换(零件)Replacing擦伤Scratching刮伤Scoring点蚀Pitting粘附Adhesion咬粘Seizure烧伤Bu rning穴蚀Cavitation老化Aging疲劳Fatigue 变形Deformation缺陷Defect汽车故障Vehicle fa ilure完全故障Complete failure局部故障Partial failure致命故障Critical failure严重故障M ajor failure一般故障Minor failure汽车故障现象Symptom of vehicle failure抢气Mixture r obbery呛油Fuel fouling盘车Turning飞车Run way工作粗暴Rough running早燃Preignition回火Back fire自燃现象Dieseling (after run)爆震(爆燃)Detonation火花(点火)爆燃Spark knock 燃料爆燃Fuel knock (gas knock)不发火(不点火)Misfiring调速不匀Hunting过度停顿Flat spot 调速器工作不匀Governor hunting回流Backflow窜气Blow-by稀释Dilution滤清器阻塞Clogged fil ter润滑超量Overlubrication(气缸)上油Oil pumping(柴油喷射系)渗漏滴油After dripping(燃料系)气阻Vapor lock结胶Gum deposit敲缸Knock拉缸Cylinder score咬缸Cylinder sticking 轴颈擦伤Journal score刮伤Scuff拉瓦Bearing score(化油器)汽湿现象Percolation化油器结冰Ca rburetor icing活塞敲缸Piston knock (piston slap)活塞裙部挤扁Collapse of piston skirt 气门挺杆发响Tappet noise (valve knock)气门弹簧颤动Valve spring surge(蓄电池)硫化Sul phation(蓄电池)过度放电Over discharge(火花塞)铅沉积Lead fouling(火花塞)积碳Carbon f ouling真空提前失效Defective vacuum advance高压线跳火错乱Secondary wire crossfiring转向反冲Steering kickback离合器炸裂Clutch explosion制动踏板发软Spongy brake pedal制动踏板费力Hard pedal制动器发响Noisy brake制动踏板过低Low brake pedal制动盘摆动Disc runout制动失效Brake fade减振器失效Defective shock absorber轮胎烧耗Burn rubber轮胎急速磨耗Pe el rubber漂滑效应Hydro—planning (aqua-planning)(由于紧急制动)紧急滑行Impending skid 充气不足Under—inflation异响Abnormal knocking泄漏Leakage过热Overheat失控Out of contro l乏力Lack of power污染超限Illegal exhaust and noise费油Excessive consumption of f uel and oil振抖Fluttering故障率Failure rate平均故障率的观察值Observed mean failure r ate故障树型分析法Fault tree analysis汽车维护类别Class of vehicle maintenance定期维护P eriodic maintenance季节性维护Seasonal maintenance技术保养Technical service清洗Washing 技术检查Check—up保养周期Service cycle保养里程Mileage between services每日保养Daily s ervice防护Preserving冬季保养Winter check—up夏季保养Summer check—up走合维护Running—i n maintenance汽车修理类别Class of vehicle repair汽车大修Major repair of vehicle汽车中修Medium repair of vehicle汽车小修Current repair of vehicle总成修理Unit repair零件修理Parts repair计划修理Scheduled repair定期修理Regulating repair视情修理Repair o n technical condition非计划修理Unscheduled repair修复Reconditioning修理里程Mileage be tween repair拆开Separating拆下Withdrawing拆卸Disassembling校正Aligning装配Fitting重新装配Reassembling调整Adjusting单独修理Individual repair汽车报废Motor vehicle liquidatio n报废Scrapping汽车维护工艺Technology of Vehicle Maintenance汽车维护作业Operation of v ehicle maintenance汽车维护工艺过程Technological process of vehicle maintenance汽车修理工艺Technology of vehicle repair汽车修理工艺过程Technological process of vehicle rep air技术检验Technical checking检视Inspection 零件检验分类Inspection and classificatio n of parts走合,磨合Running-in冷磨合Cold running—in热磨合Hot running-in修理尺寸Repa ir size走(磨)合期Running-in period走(磨)合过程Running-in process走(磨)合工况Runni ng-in conditions加速磨损期Period of accelerated wear极限间隙Limiting clearance允许间隙Permissible clearance装配间隙Assembling clearance汽车维修工艺设备Technological equipm ent of vehicle maintenance and repair汽车修理技术标准Technical standard of vehicle repair汽车诊断Vehicle diagnosis汽车检测Detecting test of vehicle诊断参数Diagnosti c parameters诊断规范Diagnostic norms汽车维修专业词汇中英文对照表3散热器芯radiator core之字形管散热器芯film core管—片式散热器芯fin and tube core散热器加水口盖radiator filter cap压力式水箱盖radiator-pressure cap蒸气-空气泄放阀vapor-air release valve散热器护罩radiator cowl散热器百叶窗radiator shutter散热器保温帘radiator roller blind散热片cooling fin缸盖散热片cylinder head fin缸体散热片cylinder block fin控温装置temperature regulating device恒温器thermostat恒温器主阀thermostat main valve恒温器旁通阀thermostat by-pass valve恒温器挠性波纹筒thermostat flexible bellows液体冷却设备liquid cooling equipment水泵water pump水泵体pump casing 水泵叶轮water pump impeller旁通进水口water by—pass inlet neck循环泵circulating pump主进水口water main inlet port出水口water outlet port自调式水封self—adjusting seal unit溢流管overflow pipe导流板deflector风扇fan(blower)轴流式风扇axial flow fan离心式风扇centrifugal fan风扇壳体blower casing风扇导流罩fan cowl风扇毂fan hub 风扇叶片fan blade风扇叶轮blower impeller风扇导流定子blower stator风扇皮带轮fan pulley三角皮带v-belt风扇护罩fan shroud风扇叶轮叶片impeller vane冷却用空气cooling air风扇导流叶片stator vane强制风冷forced-air cooling自然风冷natural air cooling风道air ducting润滑系lubrication system润滑lubrication气缸上部润滑upper cylinder lubrication 压力润滑pressure-feed lubrication 压力润滑法forced lubrication 自动润滑automatic lubrication 飞溅润滑splash lubrication 润滑周期lubrication interval 边界润滑borderline lubrication 曲轴箱机油油盘crankcase oil pan油底壳oil pan机油盘放油塞sump plug集油器oil collector机油泵oil pump计量式机油泵metering oil pump齿轮式机油泵gear type oil pump转子式机油泵rotor-type oil pump机油泵出油管oil pump outlet pipe放油口oil drain hole油道oil duct断油开关cut—off cock机油散热器oil cooler机油滤清器oil filter机油粗滤器primary oil filter机油精滤器secondary oil filter全流式机油滤清器full-flow oil filter 分流式机油滤清器by-pass oil filter离心式机油滤清器centrifugal oil filter整体式滤芯integral filtering element 细滤器滤芯filter element滤清器壳filter box滤片filtering disc机油减压器oil pressure relief valve旁通阀by-pass oil filter机油滤网oil strainer加机油孔oil filter cap滤芯轴filter shaft刮片组件cleaning edge机油量尺dipstick机油滤网oil strainer增压器supercharger增压和扫气装置pressure—charging and scavenging unit 增压装置supercharging device汽车维修专业词汇中英文对照表4加机油孔tank-mounted eletric fuel pump机械式燃油泵mechanical fuel pump膜片式燃油泵diaphragm fuel supply pump叶片式供油泵vane fuel supply pump活塞式输油泵piston type fuel supply pump 齿轮式输油泵gear fuel supply pump电动燃油泵eletric fuel pump带真空泵的汽油泵vacuum pump with fuel pump 起动加油器primer起动给油杆primer lever燃油泵上体fuel pump body燃油泵下体fuel pump base燃油泵盖bowl cover进油口接头fuel inlet neck出油口接头fuel discharge port输出阀delivery valve泵油元件pump element回油阀部件fuel return valve assembly化油器carburetor化油器系统carburetor circuit简单化油器elementary carburetor单腔化油器single—barrel carburetor双腔并动化油器two-barrel dual carburetor双腔分动化油器two-barrel duplex carburetor四腔化油器four—barrel carburetor上吸式化油器updaught carburetor下吸式化油器downdraught carburetor平吸式化油器horizontal carburetor侧吸式化油器side—draft-carburetor高海拔补偿式化油器altitude compensating carburetor化油器附加器adaptor carburetor双腔式化油器twin-choke carburetor固定喉管式化油器fixed venturi carburetor可变喉管化油器variable venturi carburetor化油器接头carburetor adaptor阻风门choke valve阻风活塞choke piston阻风板choke plate自动阻风门automatic choke阻风门拉钮choke button电控自动阻风门electric-assisted choke阻风管choke tube喉管venturi双重或三重喉管double & triple venturi阻风门拉线choke cable化油器小喉管booster venturi浮子系float system浮子float环形浮子annular float 同心式浮子concentric float浮子支销float hinge pin浮子针阀float needle valve阀针valve needle浮子油面float level浮子臂float arm侧置浮子室式side float type怠速阀idle valve怠速针阀idle needle省油器economizer省油器阀economizer valve辅助空气阀auxiliary air—valve加速油井accelerating well加速泵accelerating pump加速泵喷嘴accelerating pump nozzle油门throttle手油门hand throttle节气门操纵手柄throttle control lever真空加浓器vacuum booster加浓器excess fuel device量孔体jet block怠速量孔idle metering jet主量孔main metering jet 剂量阀活塞dosage valve piston空气量孔air jet燃油滤清器fuel filter沉淀杯sediment bowl串联过滤器in-line filter燃油箱内装过滤器in-tank filter调速器governor飞球式调速器flyball governor调速器governor 飞球式调速器flyball governor液压调速器hydraulic governor真空转速调速器vacuum speed governor惯性调速器inertia governor离心调速器centrifugal governor调速器重锤governor weight空气滤清器及进排气系统air cleaner and intake and exhaust sytem空气滤清器air filter冲压式空气滤清器ram air clearner恒温控制式空气滤清器thermostatic controlled air cleaner油浴式空气滤清器oil bath air cleaner纸质空气滤清器paper air clearner旋流管式空气滤清器swirl tube air filter滤清器滤芯filter element空气滤清器壳体air filter housing空气滤清器盖air filter cover滤清器密封圈filter seal ring滤网sieve滤纸盘或膜filter paper disc or membrane进气和排气系统intake and exhaust system排气管exhaust pipe排气抽气管exhaust extraction duct扫气泵scavenging pump进气预热装置intake preheater进气歧管intake manifold进气歧管真空度intake manifold vacuum冷式进气歧管cold manifold冲压式进气歧管ram intake manifold排气歧管exhaust manifold脉冲式排气歧管pulse exhaust manifold等压排气歧管constant pressrue exhaust manifold 排气歧管热量控制阀exhaust manifold heat control valve超高度歧管high-rise manifold升温横跨管道heat crossover排气横跨管道exhaust crossover预热点hot spot阻风门加热器choke heater热空气导流管hot air duct隔热板heat shield排气再循环阀exhaust -gas—recirculation 消声器silencer进气消声器intake silencer排气消声器exhaust silencer金属垫片式消声器steel pack muffler玻璃丝消声器glass pack muffler空洞消声器gutted muffler前排气管front exhaust pipe尾管tail pipe消声器联接管intermediate pipe热空气管hot air pipe曲轴箱通风管crankcase bleed pipe隔声罩acoustic hood进气消声器元件silencer element真空泵vacuum pump指示功率indicated power指示热效率indicated thermal efficiency指示油耗率indicated specific energy consumption示功图indicator diagram冷却系cooling system风冷air cooling 水冷water-cooling循环流冷却系cooling recovery system自然循环液冷却系统natural circulation type cooling system热流循环液冷却系统thermo-siphon circulation type cooling system温差循环液冷却系统gravity circulation water cooling system压力式水冷却系统positive circulation cooling system 加压式冷却法pressure type cooling 水泵循环冷却系统pump circulation cooling system强制循环式化冷系统forced—feed water circulation system封闭式液冷系统sealed cooling system散热器radiator片式散热器finned radiator管式散热器tubular radiator蜂窝式散热器cellular radiator哈里逊式散热器Harrison type radiator 带板式散热器ribbon type radiator上水箱upper tank下水箱lower tank涨溢箱expansion tank。

天然气输送离心式压缩机组故障诊断方法研究

天然气输送离心式压缩机组故障诊断方法研究

天然气输送离心式压缩机组故障诊断方法研究作者:李娟来源:《价值工程》2013年第20期摘要:文章介绍了天然气输送离心式压缩机组的常见故障,分析了故障原因及特征,进而对其故障诊断技术现状进行了总结和比较,在此基础上针对输气动力设备故障的复杂性提出了应用数据挖掘技术对离心式压缩机组进行故障诊断的初步设想。

Abstract: The article describes the common faults on natural gas centrifugal compressor unit,analyses the causes and characteristics, and then analyzes the current situation of fault diagnosis technology. On this basis, it puts forward the preliminary ideas on the fault diagnosis of centrifugal compressor unit by using data mining technique.关键词:天然气输送;离心式压缩机组;故障分析;故障诊断Key words: natural gas transmission;centrifugal compressor unit;failure analysis;fault diagnosis中图分类号:TH452 文献标识码:A 文章编号:1006-4311(2013)20-0046-020 引言为使管道长距离输送天然气能连续进行,必须经增压站的输气动力设备对天然气增压,以克服其在管道流动中的摩擦阻力。

离心式压缩机组以其结构紧凑、重量轻、体积小、稳定工况范围宽等优点广泛用于天然气管道输送过程的增压。

压缩机组大多是从国外进口,价格昂贵,由于输气工况变化较大,生产要求压缩机在重负荷下连续运转、性能安全可靠。

工控常用英文单词

工控常用英文单词

英文全称缩写中文Aabort 中断,停止abnormal 异常abrader 研磨,磨石,研磨工具absence 失去Absence of brush 无(碳)刷Absolute ABS 绝对的Absolute atmosphere ATA 绝对大气压AC Lub oil pump 交流润滑油泵absorptance 吸收比,吸收率acceleration 加速accelerator 加速器accept 接受access 存取accomplish 完成,达到accumulator 蓄电池,累加器Accumulator battery 蓄电池组accuracy 准确,精确acid 酸性,酸的Acid washing 酸洗acknowledge 确认,响应acquisition 发现,取得action 动作Active power 有功功率actuator 执行机构address 地址adequate 适当的,充分的adjust 调整,校正Admission mode 进汽方式Aerial line 天线after 以后air 风,空气Air compressor 空压机Air duct pressure 风管压力Air ejector 抽气器Air exhaust fan 排气扇Air heater 空气加热器Air preheater 空气预热器Air receiver 空气罐Alarm 报警algorithm 算法alphanumeric 字母数字Alternating current 交流电Altitude 高度,海拔Ambient 周围的,环境的Ambient temp 环境温度ammeter 电流表,安培计Ammonia tank 氨水箱Ampere 安培amplifier 放大器Analog 模拟Analog input 模拟输入Analog-to-digital A/D 模拟转换Analysis 分析Angle 角度Angle valve 角伐Angle of lag 滞后角Angle of lead 超前角anthracite 无烟煤Anion 阴离子Anionic exchanger 阴离子交换器Anode 阳极,正极announce 通知,宣布Annual 年的,年报Annual energy output 年发电量anticipate 预期,期望Aph slow motion motor 空预器低速马达Application program 应用程序approach 近似值,接近Arc 电弧,弧光architecture 建筑物结构Area 面积,区域armature 电枢,转子衔铁Arrester 避雷器Ash 灰烬,废墟Ash handling 除灰Ash settling pond 沉渣池Ash slurry pump 灰浆泵assemble 安装,组装Assume 假定,采取,担任Asynchronous motor 异步马达atmosphere 大气,大气压Atomizing 雾化Attempt 企图Attemperater 减温器,调温器Attention 注意Attenuation 衰減,减少,降低Auto reclose 自动重合闸Auto transfer 自动转移Autoformer 自耦变压器Automatic AUTO 自动Automatic voltage regulator自动调压器Auxiliary AUX 辅助的Auxiliary power 厂用电Available 有效的,可用的Avoid 避免,回避Avometer 万用表,安伏欧表计Axial 轴向的Axis 轴,轴线Axis disp protection 轴向位移,保护Axle 轴,车轴,心捧BBack 背后,反向的Back pressure 背压Back wash 反冲洗Back up 支持,备用Back ward 向后Baffle 隔板Bag filter 除尘布袋Balance 平衡Ball 球Ball valve 球阀Bar 巴,条杆Bar screen material栅形滤网classifierbase 基础、根据Base load 基本负荷Base mode 基本方式Batch processing unit 批处理单元Battery 电池Bearing BRG 轴承before 在…之前bell 铃Belt 带,皮带Bend 挠度,弯曲Besel 监视孔BLAS 偏置,偏压Binary 二进制,双Black 黑色Black out 大停电,全厂停电blade 叶片Bleed 放气,放水Blocking signal 闭锁信号Blow 吹Blow down 排污Blowlamp 喷灯blue 蓝色Bms watchdog Bms看门狗,bms监视器boiler BLR 锅炉Boiler feedwater pump BFP 锅炉给水泵Boil-off 蒸发汽化bolt 螺栓bore 孔,腔boost BST 增压,提高Boost centrifugal pump BST CEP 凝升泵Boost pump BP 升压泵Boot strap 模拟线路,辅助程序bottom 底部Bowl mill 碗式磨brash 脆性,易脆的bracket 支架,托架,括号breadth 宽度break 断开,断路breaker 断路器,隔离开关Breaker coil 跳闸线路breeze 微风,煤粉Brens-chluss 熄火,燃烧终结bridge 电桥,跨接,桥形网络brigade 班,组,队,大队broadcast 广播brownout 节约用电brush 电刷,刷子Brush rocker 电刷摇环Brown coal 褐煤Buchholtz protecter 瓦斯保护bucket 斗,吊斗Buffer tank 缓冲箱built 建立bulletin 公告,公报bump 碰,撞击bunker 煤仓burner 燃烧器Burner management system 燃烧器管理系统Bus section 母线段busbar 母线Busbar frame 母线支架buscouple 母联button 按钮Bypass/by pass BYP 旁路Bypass valve 旁路阀Ccabinet 柜cable 电缆calculator 计算器caliber 管径、尺寸、大小calorie 卡caloric 热的、热量Caloric value 发热量、热值calorific 发热的、热量的Calorific efficiency 热效率cancel 取消、省略capacitance CAPAC 电容Capacitive reactance 容抗capacity 容量、出力、能量card (电子)板、卡carrier 搬运机、载波、带电粒子Carrier protection 高频保护cascade CAS 串级Case pipe 套管casine 壳、箱casual 偶然的、临时、不规则的Casual inspection 不定期检查、临时检查casualty 人身事故、伤亡、故障catastrophe 灾祸、事故Catastrophe failure 重大事故Cat-pad 猫爪cathode 阴板、负极Cathode ray tube CRT 显示器Cation exchanger 阳离子交换器caution 注意Center 中心centigrade 摄氏温标Central control room 中控室Central processing unit CPU 中央处理器Centrifugal 离心的Certificate 证明书、执照Centrifugal fan 离心风机Certification of fitness 合格证书、质量证书Chamber 办公室、会议室Change 改变Channel 通道、频道Character 字符Characteristics 特性、特性曲线Charge 负荷、充电、加注Charge indicator 验电器、带电指示器Chart 图、图线图chassis 底座、机壳Chassis earth 机壳接地Check 检查Check valve CK VLV 截止线、止回线Chemical 化学Chemical dosing 化学加药Chest 室Chief 主要的、首长、首领Chief engineer 总工程师Chief operator 值班长Chimney 烟囱、烟道Chlorine 氯Circuit 电路Circuit breaker 电路断路器Circuit diagram 电路图Circular current 环流Circulating 循环Circulating water pump 循环水泵Circulating cooling water 循环冷却水Clamp 夹具、钳Clarification 澄清Class 类、等级、程度Class of insulation 绝缘等级Clean 清洁的、纯净的Cleanse 净化、洗净、消毒Clear 清除CLEARING OF FAULT 故障清除Clock interface unit CIU 时钟接口单元Clockwise 顺时针、右旋的Close 关闭Closed cooling water 闭式冷却水Closed-loop 闭环Cluster 电池组、组、群Coal 煤Coal ash 煤灰Coal breaker 碎煤机Coal consumption 耗煤量、煤耗Coal crusher 碎煤机Coal handling 输煤设备、输煤装置Coal dust 煤粉Coal-fired power plant 燃煤发电厂Coal hopper 煤斗Coal yard 煤场Coarse 粗的、不精确的Coaxial cable 同轴电缆Code 代号、密码Coil 线圈Coil pipe 蛇形管Cold 冷Cold air 冷风Cold reheater CRH 再热器冷段Cold reserve 冷备用(锅炉)Cold start 冷态启动Cold test 冷态试验Collect 收集Collecting pipe 集水管Collector 收集器Colour 颜色Colour library 颜色库Combin 合并、联合Combustion 燃烧Command 命令、指挥Commission 使投入、使投产Common 共同的、普通的Communication 联系、通讯Commutator 换向器Compensation 补偿Company CO 公司Company limited CO LTD 有限公司Complexity 复杂Complete 完成Component 元件Compress 压缩Compress air 压缩空气Compresser 压缩机Computer 计算机Concrete 混凝土制的Concurrent 同时发生的、一致的Concurrent boiler 直流锅炉Cond press 凝结器压力Condensate 冷凝、使凝结Condensate extraction pump CEP 凝结水泵Condenser COND/CNDER 凝结器Condensive reactance 容抗Condition 条件、状况Conduct 传导Conductivity 导电率Conference 会议、商讨、谈判Congealer 冷却器、冷冻器Configure 组态Connection 联接Connector 联接器、接线盒Console 控制台Consult 商量、咨询、参考Consumption 消费、消耗Consumption steam 汽耗Constant 恒定的Contact 触点Contactor 接触器、触头Contact to earth 接地、触地、碰地Content 目录Contin blwdwn 连排Continuous 连续的Contract 合同Control CNTR/CNTPL 控制Control & instrument 仪控Control loop 控制环Control oil 控制油Control panel 控制盘Controller 控制器Control stage 调节级、控制级Control valve 调节阀Conve cton sh 低温过热器Convection 对流Convertor 运输机、传输机Cool 冷的Cooler 冷却器Cooling 冷却Cooling fan 冷却风机Cooling water pump 冷却水泵Cooling tower 冷却塔Coordinate COORD 协调Coordinate boiler follow协调的锅炉跟随方式modeCoordinate control system 协调控制系统Coordinate turbine follow协调的汽机跟随方式modeCopy 拷贝Core 铁心、核心、磁心Core loss 铁(芯损)耗Corner 角落Correction 修正、改正Corrosion 腐蚀Cost 价格、成本、费用Cost of fuel 燃料费用Cost of upkeep 日常费用、维护费用Coupler 联轴器Coupling 耦合、联轴Couple CPL 联轴器Crane 起重机Critical 临界的Critical speed 临界速度Crusher 碎渣机Current transformer CT 电流互感器Cube 立方(体)Cubicle illumination 箱内照明Curdle 凝固Current 电流、当前Cursor 光标Curve 曲线Custom 习惯、海关Custom keys 用户键Cutter 切削工具Cyanic 青色、深蓝色Cycle 循环、周期、周波Cymometer 频率表Cyclome classifier 旋风分离器Cylinder CYL 汽缸DDaily load curve 日负荷曲线Daily load 日负荷Damage 损坏、破坏Damper DMPR 阻尼器、挡板Danger 危险、危险物Dank 潮湿Danger zone 危险区Data 数据Data base 数据库Data acquisition system DAS 数据采集系统Data highway 数据高速公路Date 日期Data pool 数据库Dc lub oil pump 直流润滑油泵Dead band 死区DEA/DEAE/DDeaerator除氧器EAERDecimeter 分米Decrease DEC 减少Deep 深度、深的、深Default 默认、缺席Degree 度、等级Demand 要求、查问Delay 延迟Delay time 延时Delete 删除Demineralized water 除盐水Demineralizer 除盐装置Deposit 沉积结垢Desalt 除盐设备Description 说明、描述Destination 目标、目的地Desuperheater 减温器Desuperheater water DSH WTE 减温水Detail 细节Detect 发现、检定Deviate 偏离、偏差Device 设备、仪器Diagnosis 诊断Diagram 图形、图表Diagram directory 图目录Diagram number 图形号Diameter 直径Diaphragm 膜片、隔板Dielectric 介质、绝缘的Diesel generator 柴油发电机Difference 差异、差别、差额Differential protection 差动保护Diff press 差压Diff expansion DIFF EXP 胀差Differential pressure DP/DSP 差压Digital 数字的Digital electric hydraulic 电调Digital input/output 数字量输入/输出Digital-to-analog D/A 数/模转换Dioxde 二氧化碳Direct current DC 直流(电)Direct digital control DDC 直接数字控制Disassembly 拆卸Disaster 事故、故障Disc 叶轮Disaster shutdown 事故停机Discharge 排除、放电、卸载Discharge current 放电电流、泄漏电流Disconnector 隔离器、隔离开关Disconnect switch 隔离开关Discrete input/output 离散输入/输出Disk 磁盘Disk manage commands 磁盘管理命令Dispatch 调度、发送派遣Dispatcher 调度员Dispatching station 调度站(局)Disconnector 隔离器、隔离开关Discrete input/output 离散输入/输出Disk 磁盘Displacement 位移Displacement pump 活塞泵Display 显示、列屏Distance 距离Distilled water DISTL WTR 蒸馏水Distributed 分布\分配\配电(水、汽)Distributed control system DCS 集散控制系统Distributed processing unit DPU 分布处理单元Distributing board 配电盘Distribution network 配电网络Distribution substation 二次变电站Disturbance 扰动Diverter vlv 切换线Divided by 除以Design 设计、发明Division 分界、部门Division wall 分割屏Documentation 文件Door 门Dosing pump 加药泵Dowel pin 定位销Down pipe 下降管Download 下载Downtime 停机时间Dozer 推土机Draft 通风、草图Drain DRN 疏水、排放Drain pump 疏水泵Drain tank 疏水箱Drawing 图样、牵引Drill 钻孔、钻头、钻床Drive 驱动、强迫Drn collector 疏水收集器Drop 站Drowned pump 潜水泵Drum 汽包Drum-type boiled 汽包式锅炉Dry 干、干燥Dual 双重的Duct 风道、管道Dust 灰尘Dust helmet 防尘罩Dust catcher 除尘器、吸尘器Duty 责任Dynamic 动态的Dynamometer 功率表EEarth 大地Earth fault 接地故障Earth connector 接地线、接地Earth lead 接地线、接地Eccentricity 偏心、扰度Econ recirc vlv 省煤器再循环线Economizer ECON 省煤器Edit 编辑Efficiency 效率Eject pump 射水泵Ejection 射出Ejector 抽气器Electric 电的Elbow 弯管、弯头Electric-hydraulic control 电/液控制Electrical 电的、电气的Electrical lockout solenoid 电磁阀锁阀vlvElectrical machine 电机Electrical service 供电Electric power industry 电力工业Electrode 电极Electric power company 电力公司Electric power system 电力系统Electronic 电子的、电子学的Electrotechnics 电工学、电工技术Electrostaic precipitator 静电除尘器Electrostatic 静电的Element 元件、零件、单元Elevation ELEV 标高Elevator 升降机Ellipse 椭圆Emergency decree 安规Emerg lub oil 事故润滑油Emerg off 事故停/关闭Emerg seal oil 事故密封油Emergency EMERG 紧急事故Emergency drain 事故疏水Emergency governet/危急遮断器intercepterEmployee 雇员Empty 排空Enclosure 外壳、包围End 末端、终结End cover 端盖Energize 激励、加电Energy 能、能量Energy meter 电度表Energy source 能源Engineer keyboard 工程师键盘Engineer station 工程师站Engineer's console 工程师操作站Engineering 工程Enter 开始、使进入Entry 输入Equalizer valve 平衡线Equipment 设备Erase 删除Error 错误Escape valve 安全线Evaporate 蒸发、冷化Evaporating 蒸发量Event 事件Excess 超过、过度Excess combustion air 过剩燃烧空气Excitation 励磁Exciter 励磁机Exhaust EXH 排汽Exhaust portion 排汽段Exit 出口Expansion EXP 膨胀Expansion tank 扩容箱Expenditure 费用Expert 专家、能手Explosion 爆炸Exponent 指数幂External 外部的、表面的Extinguisher 灭火器Extinguishing medium 灭弧介质Extraction check valve EXTR CHK 抽汽逆止阀VLVExtra-high voltage 超高压Extend 扩展、延伸Exteral 外部的、表面的Extr press 抽汽压力Extr temp 抽汽温度Extraction EXTR 抽汽FFactor 因素、因数Fahrenheit 华式温标Failure FAIL 失败FALSE 假的、错误的Fan 风扇、风机Fan duty 风机负荷Fast cut back FCB 快速切回Fault 故障Faulty operation 误操作Features 特点Feed 馈、供给Feedback 反馈Feed forward 前馈Feed water 给水Feed-water makeup 补给水Fiber optic 光纤Field 磁场、现场Field operator 现场运行人员Figure 数字、图案File 文件Filter 滤网、过滤器Filter differentialFILTR DP 滤网压差pressureFinal 最后的Final super-heater FSH 末级过热器、高过Fine ash silo 细灰库Fire 燃烧、火焰Fire-proof 耐火的、防火的Fire-extinguisher 灭火器Fire-hose 消防水带Fire hydrant 消防栓Fire-fight 灭火Fireproof 防火的、阻燃的Fire pump 消防水泵First stage 第一级、首级First stage guide vane 第一级导叶Flame 火焰Flame check 火检Flame detect cable FLM DET CAB火检电缆Flange 法兰Flange joint 法兰结合面Flank 侧翼、侧面Flash 闪光、闪烁、闪蒸Flash lamp 闪光灯Flash light 闪光Flasher 闪光装置Flexible 灵活的、柔性的Flexible joint 弹性联接器Flip-flop 触发器、双稳态电路Float-charge 浮充电Floppy disk 软磁盘Floppy driver 磁盘机Flow 流量、流动Flowmeter 流量计Flue 烟道Format 形式、格式Flue gas 烟气Fluid 液体Fly ash 飞灰Follow 跟随Forbid 禁止Force 强制Force circulation 强制循环Force draft fan 送风机Forney 福尼(公司)Forward 向前Free end 自由端Frequency 频率From 从、来自Front 前面的Fuel 燃料Fuel safety 燃料保护Full speed 额定频率Fully 充分的、完全的Function 功能Function group 功能组Furnace 炉膛Fuse 保险丝、熔断器Fuse holder 保险盒Fusible cutout 熔断开关Fw bypass 给水旁路GGAIN 增益Gang 班、组Gas 气体、烟气Gate 闸门Gate damper 闸门式挡板Gateway 入口、途径Gauge 仪表、标准Gauge float 水位、指示、浮标Gear 齿轮Gear pump 齿轮泵Gear shift housing 变速箱Gen main breaker 发电机出口总开关General control panel 总控制屏General vlv 总阀Generate 引起、产生Generator 发电机、发生器Gland 密封套Gland heater GLAND HTR 轴封加热器Gland seal 轴封Glass-paper 砂纸Goal 目的、目标Go on 继续Govern vlv GV 调速器、调节器Graphics 调节阀Grease 图形Green 绿色Grid 高压输电网、铅板Grid system 电网系统Gross rating 总出力、总额定值Ground/earth 地、大地Group 组、群Group library 组库HHalt instruction 停机指令Hangers 悬吊管Hardware 硬件Hardness 硬度、困难的Hazardous 危险的、冒险的Header 联箱Heat 热、加热Heater 加热器Heating 加热Heat rate 热效率Heat soak 暖机Hertz HZ 赫兹Hesitate HESI 暂停、犹豫High 高的、高等的、高大的High pressure HP 高压High pressure heater HPH 高压加热器History 历史Historical date reporter HDR 历史数据报告Historical storage &retrieval unit HSR 历史数据报告存储与检索单元Hold 保持Home 家、处所Hopper 漏斗、料斗Hori vib(vibration) 水平振动Horizontal 水平的、横式Horse power 马力Hose 软管、水龙带Hot 热的Hot air 热风Hot rh 再热(器)热段Hot start 热态启动Hot well 热水井Hour 小时Hp cyl cross pipe 高压缸短管Hp turb exh press 高压缸排汽压力Hybrid 混合物Hydraulic 液压Hydrogen 氢(H)Hydrogen purity 氢气纯度Hydrobin/ dewatering bin 脱水仓IIdiostaic 同电位的Idle 空载的、无效的Ignition light oil 轻油点火Ignition 引燃、电火Ignitor 电火器Ignore 忽视Illustrate 说明Impeller 推进器、叶轮Impedance 阻抗Import 进口、引入Impulse 脉冲、冲击、冲量Inch IN 英寸Inching 缓动、点动Income 进线Increase INC 增加Index 索引、指示Indicator 指示器Individual 单个的、独立的Inductive reactance 感抗Input/output I/O 输入/输出Induced draft fan IDF 引风机Inductance 电感Induction motor 异步电动机Industrial water 工业水Industry 工业Inflatable seal 充气密封Inhibit 禁止Initial 最初的Inlet 入口Input group 输入组Insert 插入Inside 内侧、内部Inspection 观察、检查Install 安装Inspection hole 检查孔、人孔Installed capacity 装机容量Instantaneous 即时的、瞬时的Instantaneous power 瞬时功率Instruction 说明书、指南、指导Instrument 仪器Instrument panel 仪表盘Insulate 绝缘、绝热、隔离Insulator 绝缘子Intake 输入端、进线Integer 整数Integral 积分Intensity 强度Interpole 换向板Inter-stage extraction 中间抽头Interface 接口Interference 干扰、干涉Interlock 联锁Intermediate 中间的Internal 内部的Interrogation 质问、问号Interrupt 中断Interval 间隔Interlock auto on 联锁投自动Inverter 逆变器、反向器、非门Invoice INV 发票、发货单、托运Intermediate pressure IP 中压Intermediate relay 中间继电器Invalid 无效的、有病的Investment 投资Ion-exchange 离子交换器IP.cyl 中压缸Isolation 隔离Isolator 隔离、刀闸JJacking oil 顶轴油Jacking pump 顶轴泵Job 工作Jumper 跳线、跨接Junction box 接线盒KKey 键销、钥匙、键槽Keyboard 键盘Key library 键库Key switch 键开关Kilovolt-ampere KVA 千伏安Kink 弯曲、缠绕Knack 技巧、窍门、诀窍Knife-switch 闸刀开关LLabel 标号、标签Laboratory 实验室Labyrinth seal 迷宫密封Ladder 梯子、阶梯Ladder diagram 梯形图Lamp 灯、光源Large platen LARGE PLT 大屏Last 最后的Latch 止动销、挂闸、插锁Leak 泄漏(动词)Leakage 泄漏(名词)Left 左Length 长度Level 液位、水平Lifebelt 安全带、保险带Lift 提、升Light 光亮、点、点燃、照亮Lightning 雷电Light run 空转Lightning arrestor 避雷器Limit LMT 极限、限制Limiter 限制器、限位开关Line 线、直线Line impedance 线路阻抗Lining 衬层、内衬Linkage 连杆List 列表Liter 公升Ljungstrom trisector air容克式空预器preheatersLoad 负荷Load demand compute LDC 负荷指令计算Load impedance 负荷阻抗Load limit 负荷限制Load rejection 甩负荷Load shedding 甩负荷Loading 加负荷Load thrown on 带负荷Local 局部Local attendant 现场值班员Local repair 现场检修Local start 就地启动Local stop 就地停止Location 处所、位置Lock 闭锁、密封舱、固定Logger 记录器、拖车Logic 逻辑Long 长Loop 环、回路Loss 损失、减少Loss of excitation 励磁损失Loss of phase 失相Low 低Low press LP 低压Low press heater LPH 低压加热器Low-half 下半Lower 较低的、降低Lower heating value 低位发热量Low pressure cylinder LPC/LP CYL低压缸Low temperature superheater LT SH 低温过热器Lub oil 润滑油Lub oil pump 润滑油泵Lubricate LUB 润滑MMagenta 品红色Magnet 磁Main 主要的/主蒸汽的/电力网Main oil tank 主油箱Main screen 主屏Main steam 主蒸汽Main transformer 主变压器Maintenance 维护、检修、小修Maintenance manual 检修手册Major overhaul 大修Make up 补充(补给)Makers works 制造厂Malfunction 出错、误动、失灵Management 管理、控制、处理Manhole 人孔、检查孔、出入孔Manifold 各式各样的联箱、集气管Manometer 压力表Man-machine interaction 人机对话Manual 手动、手册Manual reject MRE 手动切换Manual/Auto station M/A STATION手动/自动切换站Mark 型号、刻度、标志、特征Mass memory 大容量存储器Master 主要、控制者Master control room 主控室、中央控制室Master fuel trip MFT 主燃料跳闸Maximum 最高的、最大Maximum continue rate MCR 最大连续率Mechanocaloric 热机的Mean 平均值、中间的Mean water level 平均水位Measure 量度、测量Mechanical 机械的、力学的Mechanical trip vlv 机械跳闸阀Mechanism 机械、力学、方法Medial 中间的、平均的Mediate 间接的、调解Medium 装置、介质、工质Megawatt 兆瓦Memory 存储Metal 金属Meter 集量器、仪表、米Meter switch 仪表开关Method 方法、规律、程序Method of operation 运行方式Mica 云母Mica dielectric 云母电介质Microcallipers 千分尺Microphone 麦克风、话筒Middle MID 中间的Middle-temperature rh MT RH 中温再热器Mill 磨、磨煤机、铣刀Minimum 最小的Minor overhaul 小修Minus 减、负号Minus phase 负相位Minute 分钟Miss operation 误动作、误操作Miss trip 拒跳闸Mistake 错误、事故Mixed bed 混床Mixture 混合物Man-machine interface MMI 人机接口Modem 调制解调器Modify 修改Modulating control 调节控制Modulating valve 调节阀Module 模件Moisture 湿度、湿汽Monitor 监视器、监视Monoxide 一氧化物Month 目Motor MTR 马达Motor control center MCC 马达控制中心Motor winding 电动机组绕组Mouldproof 防霉的Mount 安装、固定Mountain cork 石棉Mouse 鼠标Move 移动Multidrop 多站Multispeed 多速Mult-multi 多、多倍Multimeter 万用表Multiplication 乘Multivibrator 多谐振荡器NName 名、名字Natural 自然的Naught line 零线Needlepoint vlv 针阀Negative 负的Negative pressure NEG PRESS 负压Neon tester 试电表Net ratine/net output 净出力Network 网络Neutral line 中性线Neutral 中性的Neutral point 中性点Next 其次的Night shift 夜班Nipper 钳子、镊子Noise 噪音No-loading 空载Nominal 标称的、额定的Nominal power 额定功率Nominal rating 标称出力、额定出力Non-return vlv 逆止线Non-work 非工作的Normal 正常的、常规的Normal closed contact 常闭触点Normal makeup wtr 正常补水Not available 无效、不能用No touch relay 无触点继电器Non-work pad / n-work pad 非工作瓦Nozzle 喷嘴Number 数字、号码、数目Number of turns 匝数Nut 螺母、螺帽OOccur 发生Odd 奇数Office 办公室Oil 油Oil breaker 油开关Oiler 注油器Oil fuel trip OFT 油燃料跳闸Oil gun 油枪Oil immersed natural 油浸自然冷却coolingOil purifier 油净化装置On-line 在线、联机的On-load test 带负荷试验On/off 开/关Onset 开始、发作Open 开、打开Open-air 露天的、开启的Open-loop 开环Open work 户外作业Operating panel 操作盘Operation 操作、运行Operational log 运行记录Operator 操作员Operator keyboard 操作员键盘Operator station 操作员站Operator's alarm console 操作员报警台Optimal 最优的、最佳的Optimal value 最佳值Optional 可选的Option switch 选择开关。

机械类外文翻译-声发射检测初生空化及其应用—60KW离心泵最佳效率点案例研究

机械类外文翻译-声发射检测初生空化及其应用—60KW离心泵最佳效率点案例研究

The application of Acoustic Emission for detectingincipient cavitation and the best efficiency point of a60KW centrifugal pump; case studyL. Alfayez, D. Mba, G. Dyson July 2005 AbstractPumps play a significant role in Industrial plants and need continuous monitoring to minimize loss of production. To date, there is limited published information on the application of Acoustic Emission (AE)to incipient pump cavitation. This paper presents a case study where AE has been applied for detecting incipient cavitation and determining the best efficiency point (BEP)of a 60KW centrifugal pump. Results presented are based on NPSH (Net Positive Suction Head)and performance tests. In conclusion the AE technique was shown to offer early detection of incipient cavitation, furthermore, the technique has demonstrated the ability to determine the BEP of a pumpKeywords:Acoustic Emission; best efficiency point; cavitation; condition monitoring;Pump performance1.IntroductionTypically the pump manufacturer will undertake performance and NPSH(Net Positive Suction Head)tests on supplied pumps, the significance of the latter is to determine the 3%drop in head at which serious cavitations will occur. The NPSH can be expressed as the difference between the suction head and the liquids vapour head. The concept of NPSH was developed for the purpose of comparing inlet condition of the system with the inlet requirement of the pump. Cavitation causes a loss of pump efficiency and degradation of the mechanical integrity of the pump. It must be noted that cavitation starts to develop before the3%drop in head. It is generally accepted that the critical pressure for inception of cavitation is not constant and varies with operation fluid physical properties and the surface roughness of the hydraulic equipment.Application of the high frequency Acoustic Emission (AE)technique in condition monitoring of rotating machinery has been growing over recent years[1-9].Typical frequencies associated with AE activity range from 20 KHz to 1MHz.The most commonly used method for identifying the presence of cavitation is based on observations of the drop in head. Whilst other techniques such as vibration analysis and hydrophone observations for pump fault diagnosis are well established, the application of AE to this field is still in its infancy. In addition, there are a limited number of publications on the application of AE to pump health and cavitation monitoring. Derakhshan et al [10]investigated the cavitation bubble collapse as a source of acoustic emission and commented that the high amplitude pressure pulse associated with bubble collapse generated AE. With the AE sensor was placed on the actual specimen experiencing cavitation Derkhshan observed increasing AE r.m.s levels with increased pressure of flow and cavitation. However, with the AE sensor mounted on the tank wall the reverse was observed, decreasing AE r.m.s levels with increasing pressure and cavitation. This was attributed to a visible bubble cloud that increased with pressure. It was commented that this cloud attenuated the AE signature prior to reaching the transducer on the wall casing. Neill et al[11,12]assessed the possibility of early cavitation detection with AE and also noted that the collapse of cavitation bubbles was an impulsive event of the type that could generate AE. It was observed that when the pump was under cavitation the AE operational background levels dropped in comparison to non-cavitating conditions. In conclusion Neill stated that loss in NPSH before the 3%drop-off criterion was detectable with AE and evidence of incipient cavitation was detectable in the higher frequency band(0.5 to 1MHz).The papers reviewed above have clearly associated AE with the collapse of cavitation bubbles. The presence of cavitation has been shown to increase or decrease operational AE noise levels[10,11,12].This paper presents a case study to ascertain the applicability of the AE technique for detecting incipient cavitation, and, to access the opportunities offered by the AE technique for determining the best efficiency point(BEP)of a pump.2. Experimental setupA series of performance and NPSH tests were undertaken on a two stage‘ DavidBrown’60KW centrifugal pump(Model DB22)with a maximum capacity of 204m ³/h at an efficiency of 70.6%.These tests were undertaken using a closed loop arrangement with a vacuum facility in accordance with BS 9906.It must be noted that best endeavours were undertaken to reduce the time taken to reach the required flow rate during performance and NPSH tests.Acoustic Emission sensors were located at a distance of 0.5 m from suction flange; at the suction flange; on the pump casing in the vicinity of impeller suction eye; on the casing in the vicinity of the impeller discharge tip;0.5m from discharge flange, see figure 1.3. Data acquisition systemsThe AE sensors used for all of the experiments were broadband type sensors with a relative flat response in the region between 100 KHz to 1MHz (Model:WD,‘Physical Acoustics Corporation’).The output signal from the AE sensors was pre-amplified at 40dB.Continuous AE r.m.s values were calculated in real time by the Analogue to Digital Converter(ADC).The sampling rate for acquisition was set at 100ms for all tests and the time constant for calculating the AE r.m.s was also set at 100 ms.4. Experimental results and observation4.1 Performance testFigure 2 details the performance characteristics of the pump, highlighting the BEP at94.5m/hr. The performance test were undertaken twice to ensure repeatability. Observationsof AE r.m.s activity during the performance test are displayed in figure 3.During the performance test, AE activity from the sensor located in the vicinity of impeller on pump casing was found to have the largest magnitude, providing the best position for correlating AE activity to pump performance. It was observed that the minimum AE r.m.s value was obtained for a flow rate of 94.5m/hr. At this flow rate the AE activity generated from the fluid flow within the pump and pipes was lowest in comparison to other flow rates. Either side of this flow rate resulted in increasing AE r.m.s activity with increased flow rates. Based 3 3on these observations it was concluded that the BEP must occur where there was minimal flow turbulence in the system, and hence minimum AE activity. The predicted efficiency point of 94.5m/hr was checked with the manufacturer’s performance test and was found to be accurate. Interestingly this is the first known correlation between AE activity and the BEP and agrees with observations of McNulty [13], though McNulty’s investigation was centred at frequencies in the audible range; lower than the AE range. The advantage offered by the AE technique is the inherent rejection of typical mechanical and process operational background noise(less than 20 KHz)4.2 NPSH testA total of three NPSH tests were undertaken at flow rates of 101,141 and 180m/hr, see figure4.As with the performance tests, the best AE signature response was located on the pump casing in the vicinity of the impeller eyeFigures 5 to 7 detail the associated AE r.m.s levels for the three flow rates considered.The following observations were noted:At a flow rate of 101m/h an increase of 165%in AE r.m.s levels was observed from an NPSH value of 8.2m to 7m.Relatively constant levels followed until an NPSH of 5.8 m when a rapid decrease in AE r.m.s levels was noted. With further reductions in NPSH, spikes in AE r.m.s signal vels associated with cavitation was also observed by Neill[11].Observations of AE levels from the suction and discharge pipes mirrorthis observation.a flow rate of 141m/h an increase of 43%in AE r.m.s was observed at NPSH value of 12.7m to 9.3m.A rapid decrease in level was noted at an NPSH of 9.3m.With further reductions in NPSH, spikes in AE r.m.s signal were observed as with the test a flow rate of 101m/hr. Again, observations of AE levels from the suction and discharge pipes mirrored this observation.At a flow rate of 181m/h an increase in AE r.m.s of 223%was observed at NPSH value of 11m to 7.3m.A gradual decrease in the AE levels followed to an NPSH of 1.7 m, where an increase in the r.m.s value was observed.5.Discussions5.1Performance testThe observations of AE activity during the performance test were very encouraging. The ability to predict a systems BEP by observing variations in the AE r.m.s response offer process engineers a powerful tool for monitoring plant performance. Whilst further research is still required the opportunities offered by such a tool could be applied to determining system BEP irrespective of the type of medium (liquid, gases, semi-solids, etc )in the system. The observations noted in this investigation correlate with hydrophone measurements undertaken by McNulty [13],where the minimum sound intensity coincided with the pump BEP.5.2 NPSH testIt is essential to understand the cavitation sequence if it is to be correlated to observed AE activity. Once the suction pressure starts to decrease, vortexes start to occur at the impeller blade tips. With further reduction in pressure these vortexes take the form of travelling bubbles in the liquid. These bubbles are initially created in lower pressure area on the suction surface of the blades. Eventually the bubbles move to higher-pressure areas where they collapse. With even further reduction in the suction pressure, the bubbles combine into larger cavities. These cavities are usually formed on the impeller blade suction surface.For all NPSH tests an increase in AE r.m.s levels was noted as values of NPSH started to decrease. A maximum level of AE r.m.s was reached after which further reductions in NPSH resulted in a decrease in AE r.m.s levels. This was also observed on the sensors located on the suction and discharge flanges. It is postulated that at the start of the NPSH test the increase in AE r.m.s levels was attributed to the onset of cavitation. The drop in AE r.m.s with decreasing NPSH values was attributed to the attenuation caused by bubble clouds. Following the creation of bubbles, and the eventual formation of the bubble cloud, the AE r.m.s levels were expected to drop. The loss in AE strength due to the presence of cavitation and the bubble cloud was noted by Neill[11,12]and Derakhshan [10]respectively.5.3 ConclusionsThe results from acoustic emission analysis have shown a clear relationship between AE activity measured from the pump casing, suction and discharge pipes, and incipient cavitation. At a relatively high NPSH value, when incipient cavitation is known to occur, an increase in AE r.m.s levels was observed.However, as cavitation developed a reduction in AE r.m.s levels due to attenuation was noted This would suggest that the AE technique is more suited to detecting incipient, and not developed, cavitation.AE was also found to have enormous potential in determining the BEP of a pump and/or process employing pumps though further research on this observation is required.6.References1.Mba, D. and Bannister, R.H.(1999).Condition monitoring of low-speed rotatingmachinery using stress waves:Part1 and Part 2.Proc Inst Mech Engrs.213(3),Part E,153-185.2.Morhain, A, Mba, D, Bearing defect diagnosis and acoustic emission Journal of Engineering Tribology, I Mech E, Vol 217,No.4,Part J,p257-272,2003.ISSN1350-6501Mba,D.(20023.Mba,D.(2002).Applicability of acoustic emissions to monitoring the mechanicalintegrity of bolted structures in low speed rotating machinery: case study. NDT andEInternational.35(5),293-3004. D. Mba, A. Cooke, D. Roby ,G. Hewitt, Detection of shaft-seal rubbing in large-scalepower generation turbines with Acoustic Emissions; Case study. Journal of Powerand Energy-Part A,I Mech E, Vol 218,No.2,Part A,p 71-82,March 2004.ISSN0957-6509. 5. Toutountzakis, T. and Mba, D.(2003).Observation of Acoustic Emission Activity duringGear Defect Diagnosis. NDT and E International.36(7),471-477.6. Kristoffer Bruzelius D. Mba(2004),An initial investigation on the potentialA pplicability of Acoustic Emission to rail track fault detection. NDT&EInternational,37(7),507-516.7. L. D. Hall and D. Mba,(2004)Diagnosis of continuous rotor–stator rubbing in largescaleturbine units using acoustic emissions,Ultrasonics,41(9),765-773.8 .L. D. Hall and D. Mba,(2004),Acoustic emissions diagnosis of rotor-stator rubsusing the KS statistic, Mechanical Systems and Signal Processing,18(4),849-868.9. D. Mba,N, Jamaludin, Monitoring extremely slow rolling element bearings: Part IandII,NDT and E International,35(60),349-366,2002.10. O. Derakhshan, J.Richard Houghton, R. Keith Jones(1989).Cavitation Monitoring ofHydro turbines with RMS Acoustic Emission Measurements. World Meeting onAcoustic Emission,p305-315,March 1989.11. G D Neill, R L Reuben, P M Sandford (1997).Detection of Incipient cavitationin Pumps Using Acoustic Emission. Journal of Process MechanicalEngineering,ImechE,211(4),267.12. G D Neil, et al.(1996)Detection of Incipient cavitation in Pumps UsingAcoustic Emission. In proceedings of COMADEM 96.Sheffield University, July 16-18,391-401.13. P.J. McNulty(1981)Measurement Techniques and Analysis of Fluid-Borne Noisein Pumps. National Engineering Laboratory. NEL Report No声发射检测初生空化及其应用-60KW离心泵最佳效率点案例研究L.法浦亚斯,D.姆巴,G.戴森 2005年7月摘要泵在工业领域发挥着显著的作用,需要持续监控,以尽量减少生产损失。

三相异步电动机故障诊断中英文翻译、外文翻译、外文文献翻译

三相异步电动机故障诊断中英文翻译、外文翻译、外文文献翻译

翻译部分英文原文Fault Diagnosis of Three Phase Induction Motor Using Neural NetworkTechniquesAbstract:Fault diagnosis of induction motor is gaining importance in industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown.Due to environmental stress and many others reasons different faults occur in induction motor. Many researchers proposed different techniques for fault detection and diagnosis.However,many techniques available presently require a good deal of expertise to apply them successfully.Simpler approaches are needed which allow relatively unskilled operators to make reliable decisions without a diagnosis specialist to examine data and diagnose problems.In this paper simple,reliable and economical Neural Network(NN)based fault classifier is proposed,in which stator current is used as input signal from motor.Thirteen statistical parameters are extracted from the stator current and PCA is used to select proper input.Data is generated from the experimentation on specially designed 2 Hp,4 pole 50 Hz.three phase induction motor.For classification,NNs like MLP,SVM and statistical classifiers based on CART and Discriminant Analysis are verified.Robustness of classifier to noise is also verified on unseen data by introducing controlled Gaussian and Uniform noise in input and output.Index Terms: Induction motor, Fault diagnosis, MLP, SVM,CART, Discriminant Analysis, PCAI.INTRODUCTIONINDUCTION motors play an important role as prime movers in manufacturing,process industry and transportation due to their reliability and simplicity in construction.In spite of their robustness and reliability,they do occasionally fail,and unpredicted downtime is obviously costly hence they required constant attention.The faults of induction motors may not only cause the interruption of product operation but also increase costs,decrease product quality and affect the safety of operators.If the lifetime of induction machines was extended, and efficiency of manufacturing lines was improved,it would lead to smaller production expenses and lower prices for the end user.In order to keep machines in good condition, some techniques i.e.,fault monitoring, fault detection, and fault diagnosis have become increasingly essential.The most common faults of induction motors are bearing failures, stator phase winding failures ,broken rotor bar or cracked rotor end-rings and air-gap irregularities.The objective of this research is to develop an alternative neural network based incipient fault-detection scheme that overcome the limitations of the present schemes in the sense that,they are costly, applicable for large motors, furthermore many design parameters are requested and especially concerning to long time operating machines, these parameters cannot be available easily.As compared to existing schemes, proposed scheme is simple, accurate, reliable and economical. This research work is based on real time data and so proposed neural network based classifier demonstrates the actual feasibility in a real industrial situation. Four differentneural network structures are presented in this paper with all kinds of performances and about 100%classification accuracy is achieved.II.FAULT CLASSIFICATION USING NNThe proposed fault detection and diagnosis scheme consists of four procedures as shown in Fig.1:1. Data collection & acquisition2. Feature extraction3. Feature selection4. Fault classificationA. Data Collection and Data acquisitionIn this paper the most common faults namely stator winding interturn short(I),rotor dynamic eccentricity(E)and both of them(B)are considered.Fig.1.General Block Diagram of proposed classifierFor experimentation and data generation the specially designed 2 HP, three phase,4 pole,415V,50 Hz induction motor is selected. Experimental set up is as shown in Fig.2.Fig.2.Experimental SetupThe load of the motor was changed by adjusting the spring balance and belt.Three AC current probes were used to measure the stator current signals for testing the fault diagnosis system. The maximum frequency of used signal was 5 kHz and the number of sampled data was 2500.From the time waveforms of stator currents as shown in Fig.3,no conspicuous difference exists among the different conditions.Fig.3.Experimental Waveforms of Stator currentB. Feature ExtractionThere is a need to come up with a feature extraction method to classify faults.In order to classify the different faults,the statistical parameters are used.To be precise, ‘sample’ statistics will be calculated for current data.Overall thirteen parameters are calculated as input feature space.Minimum set of statistics to be examined includes the root mean square (RMS)of the zero mean signal(which is the standard deviation),the maximum, and minimum values the skew ness c oefficient and kurtosis coefficient. Pearson’s coefficient of skew ness,2g defined by:xS x x g ~32-= (1) Where x denotes mean,x denotes median and x S denotes the sample standard deviation.The sample coefficient of variation r v is defined by;xS v x r = (2) The th r sample moment about the sample mean for a data set is given by;nx x m r n i i r ∑=-=1)( (3) m 2 denotes spread about the center,m3 refers to skewness about the center;m4 denotes how much data is massed at the center. Second,third and fourth moments are used to define the sample coefficient of skewness,3g and the sample coefficient of kurtosis,4g as follows.()3233m m g = (4) ()4244m m g = (5)The sample covariance between dimensions j and k is defined as;)1())((1---=∑=n x x x x c n i k ik j ij jk (6)The ordinary correlation coefficient for dimensions j and k ,jk r is defined as;k j jkjk S S c r -= (7)C. Feature SelectionBefore a feature set is fed into a classifier,most superior features providing dominant fault-related information should be selected from the feature set,and irrelevant or redundant features must be discarded to improve the classifier performance and avoid the curse of dimensionality.Here Principal Component Analysis(PCA)technique is used to select the most superior features from the original feature set.Principal Components(PCs)are computed by Pearson rule.The Fig.4 is related to a mathematical object,the eigenvalues,which reflect thequality of the projection from the 13-dimensional to a lower number of dimensions.Fig.4.Principal Component, Eigenvalues and percent variabilityD. Fault Classifier(1)MLP NN Based ClassifierSimple Multilayer Perceptron(MLP)Neural Network is proposed as a fault classifier.Four Processing Elements are used in output layer for four conditions of motor namely Healthy, Inter turn fault,Eccentricity and Both faults. From results as shown in Fig.5,five PCAs are selected asinputs;hence number of PEs in input layer is five.Fig.5(a).Variation of Average MSE on training and CV with number of PCs as inputFig.5(b).Variation of Average Classification Accuracy on Testing on Testdata, Training data and CV data with number of PCs as input The randomized data is fed to the neural network and is retrained five times with different random weight initialization so as to remove biasing and to ensure true learning and generalization for different hidden layers.This also removes any affinity or dependence of choice of initial connection weights on the performance of NN.It is observed that MLP with a single hidden layer gives better performance.The number of Processing Elements(PEs)in the hidden layer is varied.The network is trained and minimum MSE is obtained when 5 PEs are used in hidden layer as indicated in Fig.6.Fig.6.Variation of Average MSE with number of PEs in Hidden Layer VariousTransferfunctions,namely,Tanh,Sigmoid,Liner-tanh,Linear-sigmoid,Softmax,Bias axon, Linear axon and learning rules, namely, Momentum, Conjugate-Gradient, Quick Propagation, Delta Bar Delta, and Step are verified for training, cross validation and testing.Minimum MSE and average classification accuracy on training and CV data set are compared . With above experimentations finally,the MLP NN classifier is designed with following specifications,Number of Inputs:5;Number of Hidden Layers:01;Number of PEs in Hidden Layer:04;Hidden Layer:Transfer function:tanh Learning Rule:MomentumStep size:0.6 Momentum:0.5Output Layer:Transfer function:tanh Learning Rule:MomentumStep size:0.1 Momentum:0.5Number of connection weights:44Training time required per epoch per exemplar:0.0063 ms(2) SVM NN Based ClassifierThe support vector machine(SVM)is a new kind of classifier that is motivated by two concepts. First , transforming data into a high-dimensional space can transform complex problems (with complex decision surfaces)into simpler problems that can use linear discriminant functions. Second, SVMs are motivated by the concept of training and using only those inputs that are near the decision surface since they provide the most information about the classification. It can be extended to multi-class.SVMs training always seek a global optimized solution and avoid over fitting,so it has ability to deal with a large number of feature.Generalized Algorithm for the classifier:x(i=1…N) this algorithm can be easily extended to For N dimensional space datainetwork by substituting the inner product of patterns in the input space by the kernel function, leading to the following quadratic optimization problem:∑∑∑===--=N i Nj j i j i j i N i i x x G d d J 1121)2,(21)(σαααα (8) Subject to01=∑=N i i id α {}N i i ,...1,0∈∀≥α (9)where ()2,σx G represents a Gaussian function, N is the number of samples,i αare a set of multipliers(one for each sample),∑=+-=N i j i j j i i b x x G d d x J 12))2,(()(σα (10)and)(m i n i ix g M = (11) and choose a common starting multiplier i α,learning rate η, and a small threshold. Then, while M>t, we choose a pattern i x and calculate an update ))(1(i i x g -=∆ηαand perform the update If 0)(>∆+i i n αα)()()1(n n n i i i ααα∆+=+i i d n b n b α∆+=+)()1( (12)And if 0)(≤∆+i i n αα)()1(n n i i αα=+)()1(n b n b =+ (13)After adaptation only some of the i αare different from zero (called the support vectors). It is easy to implement the kernel Adatron algorithm since )(i x g can be computed locally to each multiplier,provided that the desired response is available in the input file.In fact,the expression for )(i x g resembles the multiplication of an error with an activation,so it can be included in the framework of neural network learning.The Adatron algorithm essentially prunes the RBF network so that its output for testing is given by,))2,(s g n ()(2∑∈--=Nv e c t o r s s p p o r t i i i i i b x x G d x f σα (14)And cost function in error criterion is∑=-12))))(,(t a n h ()((21)(i i t y t d t J (15) Number of PCs as input and step size is selected by checking the average minimum MSE and average classification accuracy; results are shown in Fig 7.Fig.7(a).Variation of Average MSE on training and CV with number of PCs as inputFig.7(b).Variation of Average Classification Accuracy on Testing on Testdata,Training data and CV data with number of PCs as inputFinaly the SVM based classifier is designed with following specifications,Number of Inputs:5; Step Size:0.7Time required per epoch per exemplar:0.693 msNumber of connection weights:264Designed classifier is trained and tested using the similar datasets and results are as shown in Fig.8 and Fig.9F ig.8.Variation of Average Minimum MSE on Testing on Test data,CV data and Training data with number of rows shifted(n)Fig.9.Variation of Average Minimum MSE on Training and CV withvarious groups(3)Classification and Regression Trees(CART)CART induces strictly binary trees through a process of binary recursively partitioning of feature space of a data set. The first phase is called tree building,and the other is tree pruning.Classification tree is developed using XLSTAT-2009.Various methods, measures andmaximum tree depth are checked and results are shown in Fig.10.It is observed that optimum average classification accuracy on testing on test data and CV data is found to be 90.91 and 80 percent,respectively.Fig.10(a).Variation of Average Classification Accuracy on Testing onTest data and CV data with Method and Measure of TreesFig.10(b).Variation of Average Classification Accuracy on Testing onTest data and CV data with Depth of Trees(4) Discriminant AnalysisDiscriminant analysis is a technique for classifying a set of observations into predefined classes.The purpose is to determine the class of an observation based on a set of variables known as predictors or input variables.The model is built based on a set of observations for which the classes are known. Based on the training set,the technique constructs a set of linear functions of the predictors,known as discriminant functions ,such that c x b x b x b L n n ++++=...2211, where the s b 'are discriminant coefficients, the s x 'are the input variables or predictors and c is a constant. Discriminant analysis is done using XLSTAT-2009.Various models are checked and results are shown in Fig.11.It is observed that optimum average classification accuracy on testing on test data and CV data is found to be 91.77 and 80 percent,respectively.Fig.11.Variation of Average Classification Accuracy on Testing on Testdata and CV data with Model of DAIII.NOISE SUSTAINABILITY OF CLASSIFIERSince the proposed classifier is to be used in real time,where measurement noise is anticipated,it is necessary to check the robustness of classifier to noise.To check the robustness,Uniform and Gaussian noise with mean value zero and variance varies from 1 to 20%is introduced in input and output and average classification accuracy on testing data i.e.unseen data is checked.It is seen that SVM based classifier is the most robust classifier in the sense that it can sustain both uniform and Gaussian noise with 14%and 20%variance in input and output, respectively. Results are as shown in Table IG-Gaussian NoiseU-Uniform NoiseIV.RESULTS AND DISCUSSIONIn this paper,the authors evaluated the performance of the developed ANN based classifiers for detection of four fault conditions of three phase induction motor and examined the results.MLP NN,and SVM are optimally designed and after completion of the training,the learned network is tested to detect different types of faults. Similarly step size is varied in SVM and 0.7 step size is found to be optimum. These confirm our idea that the proposed feature selection method based on the PCA can select the most superior features from the original feature set,and therefore,is a powerful feature selection method.Also proposed classifier is enough robust to the noise,in the sense that classifier gives satisfactory results for Uniform and Gaussian noise with 14%variance in input and with 20% variance in parative results are shown in Fig.12 and Table II.parative analysis of various classifier w.r.t.Averageclassification accuracy.TABLE IICOMPARATIVE RESULTS OF NN BASED CLASSIFIERS中文译文基于神经网络技术的三相异步电动机故障诊断摘要:异步电机故障诊断在工业中十分重要,因为需要提高可靠性和降低由于机器故障造成的生产损失。

振动泵,使用模糊技术的故障诊断

振动泵,使用模糊技术的故障诊断

Abstract
This paper focuses on a problem of vibration-based condition monitoring and fault diagnosis of pumps used in oil field to recover petroleum. The vibration-based machine condition monitoring and fault diagnosis incorporate a number of machinery fault detection and diagnostic techniques. Many machinery fault diagnostic techniques utilize automatic signal classification in order to increase accuracy and reduce errors caused by subjective human judgment. In this paper, fuzzy logic principle is used as a fault diagnostic technique to describe the uncertain and ambiguous relationship between different fault symptoms and the events, analyze the fuzzy information existing in the different phases of fault diagnosis and condition monitoring of the pumps, and classify frequency spectra representing various pump faults. The diagnostic features are extracted from frequency spectra of the vibration signals of the pump. The frequency spectra representing a number of different fault conditions are then processed using fuzzy membership function, which is established by means of dynamic signal processing based on the condition variables. Correct classification and condition recognition of different pump fault spectra are realized when fuzzy comprehensive discrimination according to the defuzzy diagnosis rules is applied. The work conducted, proposing the new method of the pump fault identification based on fuzzy logic technique, shows the great potentiality and the strong ability to classify and identify machinery faults. Ó 2005 Elsevier Ltd. All rights reserved.

汽车维修中英文对照表

汽车维修中英文对照表

汽车维修中英文对照表汽车维修专业术语的英语对照表1汽车维修养护专业英语对照表,学汽车维修的英语都不太好,搞来个对照表可参考一下汽车维修管理Administration of Vehicle Maintenance汽车维护方法Method of vehicle maintenance汽车维护流水作业法Flow method of vehicle maintenance汽车维护定位作业法Method of vehicle maintenance on universal post汽车修理方法Method of vehicle repair汽车修理流水作业法Flow method of vehicle repair汽车修理定位作业法Method of vehicle repair on universal post总成互换修理法Unit exchange repairing method周转总成Reversible unit混装修理法Depersonalized repair method就车修理法Personalized repair method汽车维修指标Indices of vehicle maintenance and repair汽车维护生产纟冈领Production program of vehicle maintenance汽车修理生产纲要Production program of vehicle repair汽车维修周期Period of vehicle maintenance汽车诊断周期Period of vehicle diagnosis汽车维修竣工辆次Number of vehicle being received from maintenance or repair 汽车大修平均在厂车日Average days in plant during major of vehicles汽车大修平均在修车日Average days during major repair of vehicles汽车大修平均工时Average man-hours of vehicle maintenance and repair汽车维修平均费用Average costs of vehicle maintenance and repair汽车大修返修率Returning rate of major repair of vehicle汽车小修频率Frequency of current repair of vehicles汽车大修间隔里程Average interval mileage of major repair of vehicles汽车修理工人实物劳动生产率Labour productivity of repair-man汽车维护企业Enterprise of vehicle maintenance and repair汽车维护场(站)Maintenance depot (station) of vehicles汽车停车场(库)Park汽车修理厂Vehicle repair plant汽车总成修理厂Unit repair plant for vehicle汽车诊断站Vehicle diagnosis station汽车检测站Detecting test station of vehicle汽车维修网点Network of vehicle maintenance and repair汽车维修工具和设备Instrument and Device for Vehicle Maintenance and Repair 螺丝刀Screwdriver花扳手Ring spanner锉刀File双头扳手Double-ended spanner鲤鱼钳Combination pilers轮胎螺栓扳手Wheel wrench活塞环钳(活塞环拆装钳) Piston ring pliers (piston ring tongs)压环器 Piston ring compressor 活塞环锉 Piston ring file 活塞销拉器 Piston-pin extractor连杆校正器 Connectingrod alignment fixture气门座刀具 Valve seat cutter 气门弹簧压缩器Valve springcompressor气门研磨工具 Valve grinding tool (valve lapper) 调整气门间隙扳手Tappet wrench 浮子室液面仪Float level gauge 歧管压力表 Manifold pressuregauge set点火正时灯(正时观测灯) Ignition timing light (stroboscope)燃烧分析仪 Combustion tester 断电器触点闭合角 Dwell meter 火花塞间隙量规Pluggapgauge火花塞套筒扳手 Spark plug box (socket) spanner车轮拆卸器Wheel wrench 拆装轮胎用撬杠Tire-lever 打气筒Tire pump 螺旋千斤顶Screw jack 轮胎压力计 Pressure gauge油壶Oil can 手油泵 Manual fuel pump黄油枪Grease gun 起动摇把 Starting crank 工具袋Tool bag车身修整工具Body bumping tool 发动机测功机 Engine dynamometer 发动机综合试验机 Engine analyzer厚度规 Feeler gauge杆式气缸量规 Bar-type cylinder gauge 气缸压力表 Cylinder compressor gauge 活塞台钳Piston vice 活塞加热器Piston heater活塞环工具 Piston ring tool发动机示波器Engine scope (oscillograph)电子诊断式发动机试验仪Electronic-diagnostic 滚筒式测功试验台Roller type dynamometerengine tester (test bed)发动机加速测功仪Free acceleration engine tester 容积式油耗计Volumetric fuel meter红夕卜线废气分析仪Infrared rays exhaust gas analyzer 异响诊断仪Abnormal engine noise diagnosis equipment 气缸漏气率检验仪Cylinder leak tester发动机分析仪Engine analysis apparatus进气歧管真空度表Intake manifold vacuum meter气缸压力表Cylinder 调整用的试验检测仪底盘测功机Chassis 底盘润滑机Chassispressure gauge Tune-up tester dynamometer lubricator曲轴箱窜气量测定仪Blow-by meter反作用力制动试验台Reaction type brake tester惯性式制动试验台Inertia type brake tester转向盘间隙测量仪Steering wheel freeplay gauge 测滑试验台Side-slip checking stand前照灯检验仪Head light checking equipment 气缸孔垂直检验仪Cylinder perpendicularity gauge主轴承座孔同轴度检验仪Main bearing aligning gauge移动式车轮平衡机Portable wheel balancer固定式车轮平衡机Wheel balancer 车轮动平衡机Dynamic wheel balancer 镗缸机Cylinder boring machine 气缸珩磨机Cylinder honing machine 直线镗削机Line borer气门修整机Valve reseater(活塞)销孔珩磨机Pinhole honer曲轴磨床Crankshaft grinding machine 气门研磨机Valve grinding machine 气门面磨光机Valve refacer 气门座磨光机Valve seat grinder气门座偏心磨光机Eccentric valve seat grinder研磨机Lapping 电子点火试验器点火线圈试验器氖管火花试验器machineElectronic ignition tester Ignition coil testerNeon spark tester电容器试验器Condenser tester电枢试验器Armature tester制动盘专用车床Disc lathe制动蹄片磨削装置Brake shoe grinder 制动鼓车床Brake drum lathevehicle制动液自动更换装置 Brake flusher (液压)制动系空气排除器 Brake bleeder 汽车维护 Vehicle maintenance 汽车修理 Vehiclerepair汽车维修制度 System of vehicle maintenance and repair 汽车维修性 Maintainability of vehicle 汽车技术状况 Technical Condition of Vehicle 汽车完好技术状况 Good condition of vehicle 汽车不良状况 Bad condition of vehicle 汽车工作能力 Working ability of vehicle汽车技术状况参数 Parameters for technical condition of vehicle 汽车极限技术状况 Limiting condition of vehicle汽车技术状况变化规律 Regularity for change of technical condition of 运行缺陷 Operational defect 制造缺陷 Manufacturing defect 设计缺陷 Design defect 事故性缺陷 Accidentaldefect汽车耗损 Vehicle wear-out 汽车零件磨损 Wear of vehicle part磨损过程Wear process 正常磨损Normal wear 极限磨损Limiting wear 允许磨损 Permissible wear 磨损率Wear rate机械磨损 Mechanical wear 化学损耗Chemical wear 热磨损 Thermic wear 疲劳磨损Fatigue wear 腐蚀性磨损Corrosion wear 故障磨损Failure wear 故障 Malfunctioning 断裂 Breakdown 损坏Damage汽车维修专业术语的英文对照表2更换(零件)Replacing 擦伤 Scratching 刮伤 Scoring 点蚀 Pitting 粘附 Adhesion 咬粘 Seizure烧伤Burning穴蚀Cavitation老化Aging疲劳Fatigue变形Deformation缺陷Defect汽车故障Vehicle failure完全故障Complete failure局部故障Partial failure致命故障Critical failure严重故障Major failure一般故障Minor failure汽车故障现象Symptom of vehicle failure 抢气Mixture robbery 呛油Fuel fouling盘车Turning飞车Run way工作粗暴Rough running早燃Preignition回火Back fire自燃现象Dieseling (after run)爆震(爆燃)Detonation火花(点火)爆燃Spark knock燃料爆燃Fuel knock (gas knock)不发火(不点火)Misfiring调速不匀Hunting过度停顿Flat spot调速器工作不匀Governor hunting回流Backflow窜气Blow-by稀释Dilution滤清器阻塞Clogged filter润滑超量Overlubrication(气缸)上油Oil pumping(柴油喷射系)渗漏滴油After dripping(燃料系)气阻Vapor lock结胶Gum deposit敲缸Knock拉缸Cylinder score咬缸Cylinder sticking轴颈擦伤Journal score刮伤Scuff拉瓦Bearing score(化油器)汽湿现象Percolation化油器结冰Carburetor icing异响 Abnormal knocking泄漏 Leakage过热 Overheat失控Out of control乏力Lack ofpower污染超限1ll egal exhaust and noise 费油 Excessiveconsumptionoffuel振抖 Fluttering故障率Failure rateoilmean failurerate活塞敲缸 Piston knock (piston slap )活塞裙部挤扁 Collapse of piston skirt 气门挺杆发响 Tappet noise (valve knock )气门弹簧颤动 Valvespring surge(蓄电池)硫化 Sulphation(蓄电池)过度放电 Over discharge (火花塞)铅沉积 Lead fouling (火花塞)积碳Carbon fouling真空提前失效 Defective vacuum advance 高压线跳火错舌 L Secondary wire crossfiring 转向反冲 Steering kickback离合器炸裂Clutch explosion 制动踏板发软Spongy brake pedal 制动踏板费力Hard pedal 制动器发响Noisy brake 制动踏板过低 Low brake pedal 制动盘摆动Disc runout 制动失效Brake fade减振器失效 Defective shock absorber 轮胎烧耗Burn rubber 轮胎急速磨耗Peel rubber漂滑效应 Hydro-planning (aqua-planning ) (由于紧急制动)紧急滑行 Impending skid充气不足 Under-inflationand平均故障率的观察值 Observed故障树型分析法Fault tree analysis汽车维护类另U Class of vehicle maintenance 定期维护Periodic maintenance季节性维护Seasonal maintenance技术保养Technical service清洗Washing技术检查Check-up保养周期Service cycle保养里程Mileage between services每日保养Daily service防护 Preserving冬季保养 Winter check-up 夏季保养 Summer check-up 走合维护 Running-in maintenance 汽车修理类别Class of vehicle repair汽车大修 Major repair of vehicle 汽车中修 Medium repair of vehicle 汽车小修 Current repair of vehicle 总成修理Unit repair 零件修理Parts repair 计划修理 Scheduled repair 定期修理 Regulatingrepair视情修理 Repair on technical condition 非计划修理 Unscheduled repair 修复 Reconditioning修理里程 Mileage between repair 拆开 Separating 拆下 Withdrawing单独修理 Individual repair 汽车报废Motor vehicle 报废 Scrappingliquidation汽车维护工艺Technology 汽车维护作业Operation 汽车维护工艺过程 Technological 汽车修理工艺Technology of 汽车修理工艺过程 Technologicalof Vehicle Maintenance of vehicle maintenance process ofvehicle repair process of vehiclevehicle maintenancerepair技术检验 Technical checking 检视 Inspection零件检验分类Inspection 走合,磨合Running-in 冷磨合 Cold running-in andclassification of parts热磨合 Hot running-in 修理尺寸Repair size 走(磨)合期Running-in 走(磨)合过程 Running-in 走(磨)合工况Running-inperiodprocess conditions力口速磨损期 Period of accelerated wear 极限间隙 Limiting clearance 允许间隙 Permissible clearancerepair汽车诊断Vehicle 汽车检测Detecting 诊断参数Diagnostic diagnosis test of vehicle parameters装配间隙Assembling clearance汽车维修工艺设备Technological equipment of vehicle maintenance and汽车修理技术标准Technical standard of vehicle repair诊断规范Diagnostic norms汽车维修专业词汇中英文对照表3散热器芯radiator core之字形管散热器芯film core管-片式散热器芯fin and tube core散热器加水口盖radiator filter cap压力式水箱盖radiator-pressure cap蒸气-空气泄放阀vapor-air release valve散热器护罩radiator cowl散热器百叶窗radiator shutter散热器保温帘radiator roller blind散热片cooling fin缸盖散热片cylinder head fin缸体散热片cylinder block fin控温装置temperature regulating device恒温器thermostat恒温器主阀thermostat main valve恒温器旁通阀thermostat by-pass valve恒温器挠性波纹筒thermostat flexible bellows 液体冷却设备liquid cooling equipment 水泵water pump水泵体pump casing水泵叶轮water pump impeller旁通进水口water by-pass inlet neck循环泵circulating pump主进水口water main inlet port出水口water outlet port自调式水圭寸self-adjusting seal unit溢流管overflow pipe导流板deflector风扇fan(blower)轴流式风扇axial flow fan离心式风扇centrifugal fan风扇壳体blower casing风扇导流罩fan cowl风扇毂fan hub风扇叶片fan blade风扇叶轮blower impeller风扇导流定子blower stator风扇皮带轮fan pulley三角皮带v-belt风扇护罩fan shroud风扇叶轮叶片impeller vane冷却用空气cooling air风扇导流叶片stator vane强制风冷forced-air cooling自然风冷natural air cooling风道air ducting润滑系lubrication system润滑lubrication气缸上部润滑upper cylinder lubrication 压力润滑pressure-feed lubrication压力润滑法forced lubrication自动润滑automatic lubrication飞溅润滑splash lubrication润滑周期lubrication interval边界润滑borderline lubrication曲轴箱机油油盘crankcase oil pan油底壳oil pan机油盘放油塞集油器oil collector机油泵oil pump计量式机油泵metering oil pump齿轮式机油泵gear type oil pump转子式机油泵rotor-type oil pump机油泵岀油管oil pump outlet pipe放油口oil drain hole油道oil duct断油开关cut-off cock机油散热器oil cooler机油滤清器oil filter机油粗滤器primary oil filter机油精滤器secondary oil filter全流式机油滤清器full-flow oil filter分流式机油滤清器by-pass oil filter离心式机油滤清器centrifugal oil filter整体式滤芯integral filtering element 细滤器滤芯filter element滤清器壳filter box滤片filtering disc机油减压器oil pressure relief valveby-pass oil filter机油滤网oil strainer加机油孔oil filter cap滤芯轴filter shaft刮片组件cleaning edge机油量尺dipstick机油滤网oil strainer增压器supercharger增压和扫气装置pressure-charging and scavenging unit 增压装置supercharging device汽车维修专业词汇中英文对照表4加机油孔tank-mounted eletric fuel pump机械式燃油泵mechanical fuel pump膜片式燃油泵diaphragm fuel supply pump叶片式供油泵vane fuel supply pump活塞式输油泵piston type fuel supply pump齿轮式输油泵gear fuel supply pump电动燃油泵eletric fuel pump带真空泵的汽油泵vacuum pump with fuel pump起动加油器primer起动给油杆primer lever燃油泵上体fuel pump body燃油泵下体fuel pump base燃油泵盖bowl cover进油口接头fuel inlet neck岀油口接头fuel discharge port输出阀delivery valve泵油元件pump element回油阀部件fuel return valve assembly化油器carburetor化油器系统carburetor circuit简单化油器elementary carburetor单腔化油器single-barrel carburetor双腔并动化油器two-barrel dual carburetor双腔分动化油器two-barrel duplex carburetor四腔化油器four-barrel carburetor上吸式化油器updaught carburetor下吸式化油器downdraught carburetor平吸式化油器horizontal carburetor侧吸式化油器side-draft-carburetor高海拔补偿式化油器altitude compensating carburetor 化油器附加器adaptor carburetor双腔式化油器twin-choke carburetor固定喉管式化油器fixed venturi carburetor可变喉管化油器variable venturi carburetor 化油器接头carburetor adaptor阻风门choke valve阻风活塞choke piston阻风板choke plate自动阻风门automatic choke阻风门拉钮choke button电控自动阻风门electric-assisted choke阻风管choke tube喉管venturi双重或三重喉管double & triple venturi阻风门拉线choke cable化油器小喉管booster venturi浮子系float system浮子float环形浮子annular float同心式浮子concentric float浮子支销float hinge pin浮子针阀float needle valve阀针valve needle浮子油面float level浮子臂侧置浮子室式side float type怠速阀idle valve怠速针阀idle needle省油器economizer省油器阀economizer valve辅助空气阀auxiliary air-valve加速油井accelerating well加速泵accelerating pump加速泵喷嘴accelerating pump nozzle 油门throttle手油门hand throttle节气门操纵手柄throttle control lever真空加浓器vacuum booster加浓器excess fuel device量孔体jet block怠速量孔idle metering jet主量孔main metering jet剂量阀活塞dosage valve piston空气量孔air jet燃油滤清器fuel filter沉淀杯sediment bowl串联过滤器燃油箱内装过滤器in-tank filter调速器governor飞球式调速器flyball governor调速器governor飞球式调速器flyball governor液压调速器hydraulic governor真空转速调速器vacuum speed governor惯性调速器inertia governor离心调速器centrifugal governor调速器重锤governor weight空气滤清器及进排气系统air cleaner and intake and exhaust sytem 空气滤清器air filter冲压式空气滤清器ram air clearner恒温控制式空气滤清器thermostatic controlled air cleaner油浴式空气滤清器oil bath air cleaner纸质空气滤清器paper air clearner旋流管式空气滤清器swirl tube air filter滤清器滤芯filter element空气滤清器壳体air filter housing空气滤清器盖air filter cover滤清器密封圈filter seal ring滤网sieve滤纸盘或膜filter paper disc or membrane进气和排气系统intake and exhaust system排气管exhaust pipe排气抽气管exhaust extraction duct扫气泵scavenging pump进气预热装置intake preheater进气歧管intake manifold进气歧管真空度intake manifold vacuum冷式进气歧管cold manifold冲压式进气歧管ram intake manifold排气歧管exhaust manifold脉冲式排气歧管pulse exhaust manifold等压排气歧管constant pressrue exhaust manifold 排气歧管热量控制阀exhaust manifold heat control valve 超高度歧管high-rise manifold升温横跨管道heat crossover排气横跨管道exhaust crossover预热点hot spot阻风门加热器choke heater热空气导流管hot air duct隔热板heat shield排气再循环阀exhaust -gas-recirculation消声器silencer进气消声器intake silencer排气消声器exhaust silencer金属垫片式消声器steel pack muffler玻璃丝消声器glass pack muffler空洞消声器gutted muffler前排气管front exhaust pipe尾管tail pipe消声器联接管intermediate pipe热空气管hot air pipe曲轴箱通风管crankcase bleed pipe隔声罩acoustic hood进气消声器元件silencer element真空泵vacuum pump指示功率indicated power指示热效率indicated thermal efficiency指示油耗率indicated specific energy consumption 示功图indicator diagram冷却系cooling system风冷air cooling水冷water-cooling循环流冷却系cooling recovery system自然循环液冷却系统natural circulation type cooling system热流循环液冷却系统thermo-siphon circulation type cooling system温差循环液冷却系统gravity circulation water cooling system压力式水冷却系统positive circulation cooling system 加压式冷却法pressure type cooling水泵循环冷却系统pump circulation cooling system强制循环式化冷系统forced-feed water circulation system 封闭式液冷系统sealed cooling system散热器radiator片式散热器finned radiator管式散热器tubular radiator蜂窝式散热器cellular radiator哈里逊式散热器Harrison type radiator带板式散热器ribbon type radiator上水箱upper tank下水箱lower tank涨溢箱expansion tank。

离心压缩机故障诊断与处理分析

离心压缩机故障诊断与处理分析

Internal Combustion Engine &Parts0引言离心压缩机是一种叶片旋转式压缩机,主要是通过叶轮对气体做功,从而使得气体的压力和速度升高,完成气体运输的压缩机设备。

相较于往复式压缩机为主,离心压缩机具有结构紧凑、尺寸小、重量轻的优势,可以在较多的工业生产中使用。

同时离心压缩机除轴承之外,不需要内部润滑,所以不会污染被压缩的气体,因此在工业生产中被广泛应用。

而在实际的生产制造中,离心压缩机的应用容易受到各种因素的影响而产生故障,影响正常的生产秩序。

对此下文展开离心压缩机故障诊断与处理分析具有现实意义。

1离心压缩机运行常见故障1.1离心压缩机故障现象分析通常情况下,离心压缩机的工作动力主要来自电动机或是透平机,通过多机并联压缩的方式,从而启动离心压缩机,实现气体压缩。

在运行过程中,离心压缩机正是通过控制油温、油压以及瓦温等信号控制,使其处于正常的工作指标,一般情况下,若是某一个信号超出工作参数,则就会呈现出故障问题。

其故障主要表现形式多样,有开启后无法进行加载,压缩机并没有正常工作;还有就是在离心压缩机正常运行中,压缩机出现喘振现象,剧烈的振动使得压缩机各个部件出现严重的损坏。

另外离心压缩机在运行中,进水过滤器出现不正常的肮脏现象。

通过对这些故障现象的分析总结,可以归纳出导致离心压缩机常见故障原因如下所示。

1.2离心压缩机故障类型分析基于对离心压缩机的实际生产应用可知,当前有90%的故障是振动故障,另外还因离心压缩机的辅助系统故障所导致的。

①离心压缩机机组运行中不正常振动带来的故障。

第一,离心压缩机组件中存在的转子不平衡问题。

在离心压缩机安装和制作过程中,需要对材料、加工技术等进行多角度的分析、设计,如此才不会导致离心压缩机的各个元件的质量分布问题。

如,离心压缩机的材料磨损严重,生产中会导致转子元件出现变形或是质量问题而产生偏移,从而导致离心压缩机机组在正常运行中出现不正常振动现象。

工控常用英文单词

工控常用英文单词
casual
偶然的、临时、不规则

Casual inspection 不定期检查、临时检查
casualty 人身事故、伤亡、故障
catastrophe 灾祸、事故
Catastrophe failure 重大事故
Cat-pad 猫爪
cathode 阴板、负极
Cathode ray tube CRT 显示器
Centrifugal fan 离心风机
Certification of fitness 合格证书、质量证书
Chamber 办公室、会议室
Change 改变
Channel 通道、频道
Character 字符
Characteristics 特性、特性曲线
Charge 负荷、充电、加注
Charge indicator 验电器、带电指示器
智能传感器——Smart Sensor
智能变送器——Smart Transducer
虚拟仪器 ——Virtual Instrument
主站/从站——Master Station/Slave station
操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station
burner 燃烧器
Burner management system 燃烧器管理系统
Bus section 母线段
busbar 母线
Busbar frame 母线支架
buscouple 母联
button 按钮
Bypass/by pass BYP 旁路
Bypass valve 旁路阀

电气英文翻译全称中文翻译缩写

电气英文翻译全称中文翻译缩写

Carrier protection 高频保护
cascade CAS 串级
Case pipe 套管
casine 壳、箱
casual 偶然的、临时、不规则的
Casual inspection 不定期检查、临时检查
casualty 人身事故、伤亡、故障
catastrophe 灾祸、事故
Catastrophe failure 重大事故
Cat-pad 猫爪
cathode 阴板、负极
Cathode ray tube CRT 显示器
Cation exchanger 阳离子交换器
caution 注意
Center 中心
centigrade 摄氏温标
Central control room 中控室
Air preheater 空气预热器
Air receiver 空气罐
Alarm 报警
algorithm 算法
alphanumeric 字母数字
Alternating current 交流电
Altitude 高度,海拔
Ambient 周围的,环境的
Ambient temp 环境温度
Check valve CK VLV 截止线、止回线
Chemical 化学
Chemical dosing 化学加药
Chest 室
Chief 主要的、首长、首领
Chief engineer 总工程师
Chief operator 值班长
Chimney 烟囱、烟道
Chlorine 氯
Axis disp protection 轴向位移,保护

Fault Diagnosis of an Electro-pneumatic Valve Actuator Using Neural Networks With Fuzzy Cap

Fault Diagnosis of an Electro-pneumatic Valve Actuator Using Neural Networks With Fuzzy Cap

1. Introduction
Process modelling has limitations, especially when the system is complex and uncertain and the data are ambiguous i.e. not information rich. Computational Intelligence (CI) methods (Neural Networks (NN), Fuzzy Logic (FL), Evolutionary Algorithms (EA) are known to overcome some of the above mentioned problems [1]. Neural networks are known to approximate any non-linear function, given suitable weighting factors and architecture. NN can generalise when presented with inputs not appearing in the training data and make intelligent decisions in cases of noisy or corrupted data. However, the NN operates as a “black box” with no qualitative information available of the model it represents [2]. Fuzzy logic systems on the other hand have the ability to model a non-linear system and to express it in the form of linguistic rules making it more transparent i.e. easier to interpret. Neuro-fuzzy (NF) model is a combination of neural network and fuzzy logic to exploit the advantages of both. This paper provides a tutorial study of the use of NF structure identification and clustering methods with application to a non-linear model of an electro-pneumatic valve system. It is well known that for non-linear systems the problem of discriminating between uncertain model behaviour and faults present a significant challenge. This paper describes a multiple-model strategy, taking care of multiple operating points through the NF modelling framework. Section 2 introduces NF

多级离心泵维修常见故障分析及处理措施

多级离心泵维修常见故障分析及处理措施

个离心力可以将叶轮内部的液体甩向四周,并且在这种力的作用下可以带动下一级的叶轮转动。

这种两级叶轮转动的方式,能够将离心泵内部叶轮里面的液体不断增压,进而实现提升液体,实现泵做功的原理。

离心泵的工作原理主要依托的是离心力带动叶轮进而带动液体提升的方式做功,与传统的往复泵相比,其做功效率更高,在现阶段高速工业生产下能够有着更好的应用效果。

2 多级离心泵维修技术分析在面对高压的工业化生产下,离心泵的工作效率相比较往复泵而言会有着很大的提高,但是在长期的做功情况下,其难免会出现这样或那样的故障,在针对多级离心泵故障维修的时候,需要根据离心泵的具体构成零件进行对应的维修。

并且,由于离心泵结构相对复杂,在针对其故障维修的时候也需要有着更高的技术,针对不同结构问题进行科学的维修,保证其正常做功。

因此,下文就针对多级离心泵维修技术展开分析,研究以怎样的维修注意技术能够更好地对多级离心泵进行维修。

0 引言在目前中国工业化生产的阶段中,离心泵与多级离心泵的应用越来越多,特别是多级离心泵在工业生产中强大的应用性能,给中国的工业化生产带来了巨大便利。

但与此同时,是机械就会出现故障,多级离心泵在工业生产中也会出现故障,或者是在维修的时候,由于多级离心泵的复杂性,会给维修造成一定的难度。

因此针对这种情况,要想确保多级离心泵的科学维修,进而不影响中国的工业化进程,则必须要针对其维修难度与维修中遇到的问题进行深入的分析,提高多级离心泵的维修效率与维修科学性。

采取科学的多级离心泵维修,能够更好地对多级离心泵进行维修,延长其使用寿命,减少相关工业生产企业不必要的经济损失。

1 多级离心泵的工作原理多级离心泵的工作原理与往复泵的工作原理有着很大的区别,在多级离心泵做功中,其主要依靠的是内部电机,进而通过电机带动叶轮转动,实现基本的做功。

在电机运转的时候,其叶片会跟随电机的转速一起转动,并且产生强大的离心力,这多级离心泵维修常见故障分析及处理措施杨亮(中海石油宁波大榭石化有限公司,浙江 宁波 315812)摘要:目前阶段中国的科技有着较快的进步,并且随着科技进步的趋势,中国的工业生产也随之发生了很大的改变,其工业化发展正在朝着现代化与高新技术化的趋势发展。

汽车部件英语词汇

汽车部件英语词汇

汽车部件英语词汇:Cable高压线Caliper卡钳,夹钳Cam bearing凸轮轴轴承A/C空调压缩机Absorber缓冲器Acceleration 力口速Accessories 附件Accumulator 蓄压器Actuator作动器Adjusting washer 调整垫片Adjustment 调整Advance plate点火提前作用板Air brakes空气煞车Air chamber 空气室Air cleaner空气滤清器Air-conditioner compressor 空调压缩机Air filter空气滤清器Air-flow sensor空气流量感知器Air-fuel mixture空气燃油混合汽Air-fuel ratio空气燃油混合比Air hose空气管Air-pollution 空气污染Air-reserve tank 储气筒Air spring 空气弹簧Air supply system空气供给系统Air suspension 空气悬吊Alternator 发电机Annulus内齿轮,环轮Anti-lock brake system防止煞车死锁系统Antifreeze compounds 防冻剂Armature 电枢Asbestos 石棉Aspect ratio 高宽比Atmosphere 大气Automatic transmission 自动变速箱Automatic transmission fluid 自动变速箱油Automobile 汽车Automotive 汽车的Auxiliary-air device 辅助空气装置Axle车轴Axle bearing车轴轴承Backlash后座力Baffle plate 导流板Balance weight 平衡配重Ballast resistor 外电阻Ball joint球接头Battery 电瓶Battery voltage 电瓶电压BDC下死点Bearing 轴承Bearing cap 轴承盖Bias ply偏角线层Bleeding放空气Block汽缸体Blow-by gas 吹漏气Boost增压Bore缸径Bowl vent valve球形通风阀Bracket 支架Brake band制动带Brake drum煞车鼓Brake fluid 煞车油Brake horsepower 制动马力Brake hose煞车软管Brake lights 煞车灯Brake light switch 刹车灯开关Brake line煞车油管Brake pedal煞车踏板Brake shoe刹车蹄片Braking lining煞车来令片Breaker cam白金的凸轮Breaker plate白金底板Bucket valve tappet桶状的汽门挺杆Bumpers保险杆Bypass hose旁通水管Camber夕卜倾Cam set assembly 凸轮总成Camshaft凸轮轴Camshaft sensor凸轮轴位置感知器Camshaft sprocket凸轮轴正时炼轮Camshaft timing gear凸轮轴正时齿轮Cap clamp set分电盘盖弹簧夹组Carbon point 碳棒Carburetor 化油器Caster后倾Catalytic converters 触媒转换器Centrifugal advance 离心提前Centrifugal advance mechanism 离心点火提前机构Chain炼条Charcoal活性碳Charcoal canister 活性碳罐Chassis 底盘Check valve 止回阀Circuit电路,油路Clamp束环Clearence 间隙Clearence volume 余隙容积Clutch离合器Clutch disc (disk)离合器片Clutch fork离合器拨叉Clutch input shaft离合器输入轴Clutch pedal离合器踏板Clutch pedal free travel离合器踏板自由间隙Clutch pressure plate 离合器压板Clutch shaft离合器轴Coilpack点火线圈总成Coil spring圈状弹簧Coil wire主高压线Cold-start冷车起动Cold-start valve冷车起动阀Combustion 燃烧Combustion chamber 燃烧室Combustion pressure 燃烧压力Combustion process 燃烧过程Combustion-ignition engine 压缩点火引擎Combustion ratio 压缩比Combustion ring 压缩环Combustion stroke 压缩行程Components 组件Compound planetaty复合行星齿轮Compressor 压缩机Computer计算机Condenser电容器Connecting rod 连杆Connecting-rod bearing 连杆轴承Connecting-rod bolt连杆轴承螺丝Connecting-rod cap 连杆轴承盖Constant velocity joint 等速万向接头Contact-point ignition system 白金式点火系统Contact-point set 白金组Control arm 控制臂Control pulse控制脉冲Coolant冷却液Coolant control engine vacuum switch 温控真空开关Coolant gallery 冷却水道Coolant temperature indicator 水温指示表Coolant temperature sensor 水温感知器Cooling system 冷却系统Coupling point 耦合点Crankcase曲轴箱Crankpin曲轴销Crankshaft 曲轴Crankshaft main bearing 曲轴主轴承Crankshaft sensor曲轴位置感知器Crankshaft sprocket曲轴正时炼轮Crankshaft timing gear 曲轴正时齿轮Cross flow横流式Cylinder 汽缸Cylinder head 汽缸盖Cylinder head bolt hole 汽缸盖螺丝孔Cylinder head screw 汽缸盖螺丝Cylinder liner 汽缸套Cylinder wall 汽缸壁Detonation control system 爆震控制系统Dial gauge or indicator 千分表Diameter 直径Diaphragm 膜片Diesel Engine柴油引擎Differential 差速器Differential case 差速器壳Differential pinion差速器小齿轮Differential side gear 差速器边齿轮Dipstick机油量量尺Direct drive直接驱动Disk brake碟式煞车Distributor 分电盘Distributor-cap 分电盘盖Distributor drive gear分电盘驱动齿轮Distributor housing 分电盘外壳Distributorless ignition system(DLI)无分电盘的点火系统Distributor shaft 分电盘轴Diverter valve紧急控制阀Diverter valve vacuum supply hose 紧急控制阀的真空管DOHC双顶上凸轮轴式Drive line驱动系Drive pinion驱动小齿轮Drive shaft 驱动轴Drop center type 落心式Drum煞车鼓Drum brake鼓式煞车Dry cylinder liner 干式汽缸套Dump valve释放阀Dust seal 尘封Dust shield 防尘罩Dynamic balance 动平衡Dynamometer 动力计Earth wire搭铁线Eccentric偏心轮Economizer 省油器EGR control valve EGR 控制阀EGR delay solenoid EGR 延迟线圈EGR delay timer EGR 时间延迟阀EGR temperature valve EGR 温控阀EGR valve EGR 阀Electronic control unit(ECU)电子控制单位,计算机Electronic devices 电子设备Electronic fan 电动风扇Electronic ignition system 电子点火系统Electronic sensor 电子感知器Electronic spark timing(E.S.T.)电子点火正时Electric fuel pump 电动汽油泵Emission control system 废气控制系统End play端间隙Engine引擎Engine fan引擎风扇Ethylene glycol 乙烯乙二醇Evaporative emission control(EEC)汽油蒸汽控制系统Exhaust camshaft排汽门凸轮轴Exhaust emission 废气Exhaust gases 废气Exhaust-gas recirculation(EGR)废气再循环系统Exhaust manifolds 排汽歧管Exhaust port排汽门孔Exhaust stroke 排汽行程Exhaust valve 排汽门Exhaust wastegate 排汽旁道阀Expander 衬环Expansion tank副水箱,油汽膨胀室Expansion valve 膨胀阀External-combustion engine 夕卜燃机Fan belt风扇皮带Fast-idle快怠速Fault diagnosis 故障诊断Feedback-control 回馈控制Final drive最终传动Fires点火Firing mate点火相对缸Firing order点火顺序Fitting 接头Fixed pin固定式活塞销Fixing plate 固定板Flame arrester火焰抑制器Fluid液体Fluid coupling液体耦合器Flywheel 飞轮Formula 公式Four-stroke-cycle Engine 四行程引擎Four wheel alignment 四轮校正Four wheel steering 四轮转向Freezing point 冰点Fresh air inlet新鲜空气入口Friction disk磨擦片,离合器片Friction horsepower 摩擦马力Front oil seal 前油封Front suspension 前悬吊Front-wheel alignment 前轮校正Front-wheel drive 前轮驱动Fuel燃油Fuel enrichment function 燃油增浓功能Fuel filter汽油滤清器Fuel metering system燃油计量系统Fuel pump 汽油泵Fuel pump gasket汽油泵垫片Fuel rail汽油分供管Fuel-system 燃油系统Fuel supply system燃油供给系统Fuel tank 油箱Fuel-tank cap 油箱盖Full-floating pin全浮式活塞销Full-load全负荷Fuse保险丝Gasket垫片(圈)Gasoline engine 汽油引擎Gear齿轮Gear box齿轮箱Gear lubricant齿轮润滑油Gear oil齿轮油Gear oil pump齿轮油泵Gear ratio齿轮比Gearshift变速排档杆Governor调速器Governor spring离心配重弹簧Governor weight 离心配重Grease黄油Ground搭铁Hall effect霍尔效应Head gasket 汽缸床Heat-control valve 热控阀Heat energy 热能Heat range热度等级Heater control valve 暖气控制阀Heater core暖气风箱Heater fan暖气马达Heater hose暖气水管High speed cam高速凸轮High-voltage surge 高压电Horsepower 马力Hose水管,橡皮油管Housing 外壳Hub assembly轮毂总成Hydraulic 液压Hydraulic brake 液压煞车Hydraulic brake booster液压煞车增压器Hydraulic valve lifter液压式汽门举杆Ignition coil点火线圈Ignition distribution 点火分配Ignition module点火计算机Ignition signal 点火讯号Ignition switch 点火开关Ignition system 点火系统Ignition timing 点火正时Indicated horsepower 指示马力Inertia 惯性Injection valve 喷油嘴In-line four cylinder engine 线列四缸引擎Inside diameter 内径Insulated plier 绝缘夹Intake air temperature sensor 进气温度感知器Intake camshaft进汽门凸轮Intake manifolds 进汽歧管Intake port进汽门孔Intake stroke进汽行程Intake valve 进汽门Integral steering 整体式转向Interference angle 干扰角Internal-combustion engine 内燃机Internal gear内齿轮,环齿轮Jack千斤顶Joint constant velocity 等速接头Journal 轴颈Jumper wire 跨线Kickdown switch强迫换档开关Kingpin大王销Kingpin inclination 大王销倾斜Knock sensor爆震感知器Knuckle steering 转向节。

基于故障树分析法(FTA)的供水泵站故障诊断分析及应用

基于故障树分析法(FTA)的供水泵站故障诊断分析及应用

净水技术2017,36(4) :95-99W a t e r Purification T e c h n o l o g y严克平,朱海峰,吕玉龙,等•基于故障树分析法(F T A)的供水泵站故障诊断分析及应用[J]•净水技术,2017,6(4) : 95-99.Y a n Keping,Zhu Haifeng,Lu Yulong,et al.Analysis and application of fault diagnosis for water supply pumping station based on fault tree analysis (F T A)[J].Water Purification Technology, 2017, 36(4) : 9^-99.基于故障树分析法(FTA)的供水泵站故障诊断分析及应用严克平,朱海峰,吕玉龙,张乐华,叶建明(上海城投水务(集团)有限公司制水分公司,上海200086)摘要以供水泵站系统为研究对象,采用故障树分析技术(F T A),分析供水泵站的主要故障模式、发生的原因和产生的影响。

并结合现有的测试能力,确定故障检测方案,制定故障应对策略,降低故障发生概率及其影响,提高泵站运行可靠性,并 为供水泵站系统制定维修计划、改善设计方案提供参考。

关键词供水泵站故障树分析法(F T A)故障诊断安全性中图分类号:T U991 文献标识码:B文章编号:1009 - 0177( 2017) 04 - 0095 - 05D O I:10.15890/ki.jsjs.2017.04.018Analysis and Application of Fault Diagnosis for Water Supply Pumping Station Based on Fault Tree Analysis (FTA)Y a n K e p i n g,Z h u H a i f e n g,L u Y u l o n g,Z h a n g L e h u a,Y e J i a n m i n g(SM IW Water Production B ranch,Shanghai200086, China)A b s t r a c t W a t e r p u m p i n g station system is taken as the research object,a n d the m a i n failure m o d e s,causes a n d influence of water supply p u m p i n g station are analyzed b y F T A(fault tree analysis technique).B a s e d o n present ability of testing,system can supply the detection m e t h o d of faults a n d schedule relevant strategies.It can help us to reduce the failure probability a n d effect,improving the reliability of the p u m p i n g station,a n d providing the reference of m a k i n g maintenance plan a n d modifying the design.K e y w o r d s water supply p u m p i n g station fault tree analysis (F T A)fault diagnosis security1概述供水泵站在城市供水系统中承担着水量调蓄、水压保持和水质(余氯)维持三大重要任务,是供水管网的重要环节[1]。

Fault diagnosis

Fault diagnosis

专利名称:Fault diagnosis发明人:Nyberg, Mattias申请号:EP07108631.8申请日:20070522公开号:EP1870808A2公开日:20071226专利内容由知识产权出版社提供专利附图:摘要:The invention relates to status estimation of an entity (150) having a plurality of components (c1, ..., cn), which each is assumed to be in a fault-free mode or be in exactly one of at least one fault mode. An original disjunction of diagnostic expressions (D)indicating at least one of said modes for at least one of said components (c1, ..., cn) iscopied into to a temporary disjunction of diagnostic expressions (Dold) in a first storage area (120). A test result (P) of a set of diagnostic tests (T) in respect of the entity (150) are also received, wherein the result of each test (t1, ..., tx) is a disjunction of statements (P11v... vP1x; ...; PR1v... vPRz) and each statement (PJj) indicates at least one of said modes for one of said components (c1, ..., cn). For each diagnostic expression in the temporary disjunction of diagnostic expressions (Dold) it is investigated whether or not a currently investigated diagnostic expression (Di) implies the test result (PJ). If not so, the expression (Di) is removed from the temporary disjunction of diagnostic expressions (Dold). Further, for each statement (PJj) in the test result, a joint diagnostic expression (Dnew) is generated, which represents a conjunction of the statement (PJj) and the currently investigated diagnostic expression (Di). The joint diagnostic expression (Dnew) is compared with each diagnostic expression in the original disjunction of diagnostic expressions (D) except for the currently investigated diagnostic expression (Di). If an original diagnostic expression (Dk) is found, where the joint diagnostic expression (Dnew) implies the original diagnosis expression (Dk), the joint diagnostic expression (Dnew) is discarded. Otherwise, the joint diagnostic expression (Dnew) is added to an updated disjunction of diagnostic expressions (Q) in a second storage area (130). After that, all remaining diagnostic expressions in the temporary disjunction of diagnostic expressions (Dold) are added to the updated disjunction of diagnostic expressions (Q), and a status report (R[Q]) is produce based on the updated disjunction of diagnostic expressions (Q).申请人:Scania CV AB (PUBL)地址:151 87 Södertälje SE国籍:SE代理机构:Wihlsson, Joakim Per Magnus更多信息请下载全文后查看。

国务院安委办召开重点行业领域中央企业安全防范工作专题会议

国务院安委办召开重点行业领域中央企业安全防范工作专题会议

・98・中国安全生产科学技术第16卷noegy,2020(9)&214-216.*6+姚安林,黄亮亮,蒋宏业,等•输油气站场综合风险评价技术研究*J+•中国安全生产科学技术,2015,11(1):138-144.YAO AnOn,HUANG LiangOang,JING Hongyc,et ol.Research on compeehensieeeis'asesmenttechniqueoeoil&gasteansmission station*J+.Journal of Safety Science and Technology,2015,11(1): 138-144.*7+姜洪权,王金宇,高建民,等•面向复杂系统故障溯源的SDG-G 模型建模方法*J+•计算机集成制造系统,2015,21(3):749-757.JIANG Hongquan,WANG Jinyu,GAO Jianmin,etal.Modeling method eoeSDG-FG modeloeiented toeaulteootcauseteacinganaly-sis of complex electromechanical system*J+.Computes Integrated Manu eactu eing Sy stem s,2015,21(3):749-757.*8+ZHANG S,ASAKURA T,XU X,et aO Fault diagnosis system for ro­tary machines based on fuzzy neural neteor's*C+//IEEE/ASMEInternational Conference on Advanced Intelligent Mechatronics.Kv-be:IEEE,2003:20-249*9+SAKTHIVEL N R,SUGUMARAN V,BABUDEVASENAPATI S.Vi­bration based fault diagnosis of monobloc'centrifugal pump usingdecision tree* J+.Expert Systems with Applications,2010,37(6):4040-4049.*10+AZADEH A,EBRAHIMIIOUR V,BAVAR P.A fuzzy inference system far pump failure diagnosis to improve maintenance precess:thccese of a petrochemical industry*J+.Expert Systems with Ap­plications,2010,37(1):627-639.*11+田志刚,毛翠英•地方财政风险内控制度的量化管理研究——基于等级全息建模HHM框架*J+.国家行政学院学报,2015(6):103-106.TIN Zhigang,MAO Cuiying.Research on the quantitative manage­ment of the internal central system of local fiscal ris's:based on theHHM framewor'*J+.Journal of Chinese Academy and Gavarn-ance,2015(6):103-106.*12+卓东,刘黎明,起晓星,等•基于层次全息模型的农业土地利用环境风险识别*J+•生态与农村环境学报,2013,29(3):364-369.ZHUO Dong,LIU Liming,QIXiaoxing,etal.Eneieonmentaleis'i-dentieication oeageicultuealland usebased on hieeaechicalholo-graphic model*J+.Journal of Ecology and Rural Environment,2013,29(3):364-369.*13+苏青福•生态工业园风险识别与废弃物交换价格研究*D]•天津:天津大学,2012.*14+HAIMES Y Y,LI D,PET-EDWARDS J,et aO Ran'ing of space shuttle FMEA/CIL items:the ris'ran'ing and filtering(RRF)method*R].Charlottesville, America:University of Viroinio,1991•*15+曾庆虎,邱静,刘冠军,等•小波相关特征尺度爛在滚动轴承故障诊断中的应用*J]•国防科技大学学报,2007,29(6):102­105,111.ZENG Qinghu,QIU Jing,LI Guanjun,et al.Application of wavaletcoeelation eeatueescaleenteopytoeaultdiagnosisoeeoleebeaeings* J+.Journal of National University of Defense Technology,2007,29(6):102-105,111.(责任编辑:刘贵丽)国务院安委办召开重点行业领域中央企业安全防范工作专题会议2020年12月8日上午,国务院安委会办公室召开重点行业领域中央企业安全防范工作专题会议,深入贯彻落实习近平总书记关于安全生产重要指示精神,通报中央企业安全生产形势和典型事故,分析存在的突出问题,督促进一步树牢安全发展理念,强化安全风险管控和隐患排查治理,坚决遏制重特大事故发生%国务院安委会办公室副主任、应急管理部副部长孙华山,国务院国资委党委委员、秘书长彭华岗出席会议并讲话%会议要求,各中央企业要切实把思想和行动统一到习近平总书记重要指示批示精神和党的十九届五中全会重大决策部署上来,始终坚持“人民至上、生命至上”,统筹好发展和安全“两件大事”,从全局高度认识做好当前安全生产工作的重要性和紧迫性,时刻绷紧安全生产这根弦,狠抓责任落实、措施落地,充分发挥中央企业排头兵、主力 军作用%会议指出,当前中央企业事故多发、频发的势头仍未得到有效遏制,暴露出部分中央企业特别是基层单位安全发展理念树立不牢、安全生产专项整治三年行动推进不力、重大风险防控能力不足、安全生产管理辐射不够、应对新问题新挑战的准备不充分等问题%会议强调,各中央企业要进一步增强系统思维,把新发展理念贯穿安全生产全过程全领域,全力打好防范化解重点行业领域安全风险攻坚战%要以安全生产专项整治三年行动统领安全生产各项工作,狠抓矿山、危化品、建筑施工、工贸等重点行业领域安全风险防控;要加强先进适用技术与装备的推广应用,提升安全生产标准化工作水平,提高从业人员安全素质,不断提升企业本质安全水平%国家铁路集团和部分中央企业负责人以及安全生产部门主要负责人,应急管理部、国务院国资委、国家矿山安全监察局有关司局负责人参加会议%信息来源:应急管理部网站。

离心泵故障诊断及实例分析

离心泵故障诊断及实例分析

高位联通1引言机械设备运行状态的优劣直接影响企业的经济效益,冶炼系统中运行着很多离心泵这样的动力机械设备,由于受到电、热、机械、环境等各种因素的影响,其性能逐渐劣化,威胁着自身和其它设备的正常使用。

所以,提高离心泵的可靠性,一是提高离心泵设备本身的质量,使其在工作寿命内不发生故障;二是设备在运行过程中,对设备进行必要的检查和维修[1-10]。

本文以迁钢离心泵的实际运行情况为背景,分析其在工作过程中的典型故障及解决方案,为离心泵故障的诊断提供参考。

2离心泵常见故障离心泵产生的故障种类很多,表现形式也多种多样,离心泵的常见故障一般可分为转子故障、轴承故障、联轴器故障、转轴横向裂纹故障等[11-14]。

(1)转子故障可分为以下几类:转子不平衡、转子不对中、转子弯曲、转子与定子摩擦,转子支承部件松动等故障。

(2)滚动轴承的主要故障形式:疲劳剥落、磨损、塑性变形、锈蚀、断裂、胶合、保持架损坏等。

(3)齿式联轴器故障主要是联轴器允许轴系存在一定的不对中,但对中量超过联轴器许用位移或联轴器内零件润滑不当,联轴器便会处于卡死状态,使转轴之间变为刚性连接引起振动。

(4)转轴裂纹故障,如各种因素造成的应力集中、复杂的受力状态、恶劣的工作条件及环境等,而且裂纹对振动的响应不够敏感,有可能发生断轴事故,因此危害是很大的。

3故障实例及分析迁钢公司二联合泵站二、三段高压冷却循环水量3250m 3/h ,出铁场标高零米处压力1.1MPa ,主要供给炉体二、三段冷却壁用水,其冷却循环水系统见图1。

图1二联合泵站冷却循环水系统TS400-710B 水泵4台,流量1369m 3/h ,扬程134m ,额定功率710kW ,三用一备,DN700管道单进单出。

此水泵额定转速为1450r/s ,转子的转速f=离心泵故障诊断及实例分析侯志广(首钢股份公司迁安钢铁公司,河北唐山064404)【摘要】以迁钢离心泵的实际运行情况为背景,通过举例分析了离心泵在工作过程中的典型故障及解决方案,为离心泵故障的诊断提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters Fault Diagnosis of Centrifugal Pump Using Symptom Parameters inFrequency DomainH. Q. Wang 1, 2 and P. Chen 11Graduate School of Bioresources, Mie University 1577 Kurimamachiya-cho, Tsu, 514-8507,Mie, Japan2Diagnosis and Self-recovery Engineering Research Center, Beijing University of ChemicalTechnology, Beijing, ChinaWanghq_buct@, chen@bio.mie-u.ac.jpABSTRACTThis paper presents a fault diagnosis method for a centrifugal pump system with frequency-domain symptom parameters by using the wavelet transform, rough sets and a fuzzy neural network to detect faults and distinguish fault types at an early stage. The wavelet transform is used for feature extraction across an optimum frequency region. The diagnosis knowledge for the training of neural network can be acquired by rough sets. A fuzzy neural network called “partially-linearized neural network” is proposed, by which the fault types of machinery can be quickly and effectively distinguished on the basis of the possibility grades of symptom parameters. The non-dimensional symptom parameters that can reflect the characteristics of signals are also described in frequency-domain. Practical examples of diagnosis for a centrifugal pump system are shown to verify the efficiency of the method.Keywords: Fault diagnosis, symptom parameter, frequency domain, neural network, rough sets, centrifugal pump, Japan1. INTRODUCTIONThe condition diagnosis technology of plant machinery is very important for guaranteed production efficiency and safety of a machine (Lin Jing and Qu Liangsheng, 2000; B. S. Blackmore et al ., 2004). Condition diagnosis depends largely on the feature analysis of vibration signals measured for condition diagnosis, so it is important that the feature of the signal should be sensitively extracted when fault occurs at the state change of a machine. However, the feature extraction for the fault diagnosis is difficult since the vibration signals measured at a point of the machine often contains strong noise. Stronger noise than the actual failure signal may lead to misrecognition of the useful information for diagnosis. Therefore, it is important that the noise be canceled from the measured signal as far as possible forsensitively identifying the failure type (Liu and Ling, 1999; Matuyama, 1991; Zhu QB. 2006). Furthermore, in the case of condition diagnosis of pump machinery, the knowledge for distinguishing failures is ambiguous because definite relationships between symptoms and fault types cannot be easily identified. The main reasons can be explained as follows. (1) It is difficult to identify the symptom parameters for diagnosis by which all fault types can be distinguished perfectly. (2) In the early stages of a fault, effects of noise are so strong that the symptoms of a fault are not evident.The Neural Network (NN) has been used for automated detection and diagnosis of machine conditions (Samanta and Al-Balushi, 2003; M. Diamantopoulou, 2006; R. Q. et al., 2006; V. Schetinin and J. Schult. 2006; Su H. and Chong KT. 2007), but the conventional neural network cannot reflect the possibility of ambiguous diagnosis problems. The NN will never converge when the first-layer symptom parameters have the same values in different states (Bishop, 1995).Figure 1. Flowchart of intelligent diagnosis methodFor the above reasons, we propose an intelligent diagnosis method for a pump system using the WT, RS and PNN with frequency domain features to detect faults and distinguish fault types at an early stage. The flowchart in Figure 1 shows the method of intelligent diagnosis. The WT performs noise cancellation for feature extraction of the vibration signal across an optimum frequency region. The diagnostic details for the training of the PNN are acquired by _________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters the RS (Pawlak, 1982). The fault types of machinery can be automatically distinguished on the basis of the possibility grades of symptom parameters by the PNN. Practical examples of fault diagnosis of a pump system will verify the efficiency of the method.2. CENTRIFUGAL PUMP SYSTEM FOR CONDITION DIAGNOSISThe centrifugal pump system for condition diagnosis is shown in Figure 2. The motor is employed to drive the pump through a coupling, and the rotation speed can be varied through a speed controller. The flow rate of pump can be also adjusted by the valve control system. Six accelerometers are used to measure vibration signals for fault detection. The sensor locations are shown in Figure 3. Two sensors are put at the pump inlet; two sensors at the pump outlet and other two sensors are placed at the motor and the pump housing respectively. The sampling frequency of the vibration signals for the measurement is 50 kHz, and the sampling time is 10s. The vibration signals are measured at a constant rotation speed of 3500rpm and a constant water flow rate of 19m 3h -1. In this work, we divided the signal into 100 signal parts, and the sampling number of per signal part is 5000 (the sampling time is 0.1s (5.83 shaft rotations)).Figure 2. The experiment system of centrifugal pump in the fieldCavitations phenomenon is one of the sources of instability in a centrifugal pump. Cavitations within a centrifugal pump can cause more undesirable effects, such as deterioration of the hydraulic performance, damage of the pump by pitting and erosion and structure vibration and resulting noise (Cudina, 2003). Other faults to be discriminated that often occur in pump systems are shaft misalignment between the motor and the pump, and impeller damage. These faults can cause serious machine accidents and bring great production losses. Diagnosis results of these states will be discussed in a later section. Original vibration signals measured in each state are shown in Figure 4.MotorPumpTankPipe_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom ParametersFigure 3. The location of the sensorsFigure 4. Original signals measured in each state: (a) Normal state, (b) Cavitation state, (c) Impeller damage state, (d) Misalignment state3. FEATURE EXTRACTION USING WTWavelet transform is a method of signal analysis in time-frequency domain. It has the local characteristic of time-domain as well as frequency domain. In the field of machinery diagnosis, wavelet analysis has been used in rolling bearing, gearbox and compressor diagnosis and detail mathematical description of WT has been previously formulated (Daubechie, 1990; Prabhakar et al ., 2002). A brief mathematical summary of WT is provided in this section in relation to the proposed method.The continuous wavelet transform (CWT) of ()f t is a time-scale method of signal processing that can be defined as the sum over all time of the signal multiplied by scaled, shifted versions of the wavelet function ()t ψ. Mathematically,,)dt a b R +∞, ( ∈ (1) Pump_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters where, ()t ψdenotes the mother wavelet. The parameter a represents the scale factor that is a reciprocal of frequency. The parameter b indicates the time shifting factor. An efficient way to implement this scheme using filters was developed by Mallat (Mallat, 1989).Using wavelet function a signal can be decomposed into many low frequency [approximations (A)] and high frequency [details (D)] signals. The decomposition process can be iterated, with successive approximations being decomposed in turn, so that a signal can be decomposed into many lower-resolution components. By using reconstruction function, the signal constituents at each level of the decomposition can be reconstructed in time-domain.In order to extract feature signals in an optimum frequency area, we used the Daubechies (db9) wavelet function (shown in Figure 5) to decompose the signals into six levels in approximations in this work. The Frequency region of each level is shown in Table 1. As an example, the recomposed time signals of each state in level 2 are shown in Figure 6respectively.Figure 5. Daubechies (db9) wavelet functionTable 1. Frequency region of each levelOriginal signal 0~50 kHz Approximations (A)Range of frequencyLevel A 1 0~25 kHz Level A 2 0~12.5 kHzLevel A 30~6.25 kHz Level A 4 0~3.125 kHzLevel A 5 0~1.5625kHz Level A 6 0~781.25Hz_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom ParametersFigure 6. Recomposed signals in level 2 of each state: (a) Normal state, (b) Cavitation state,(c) Impeller damage state, (d) Misalignment state4. SYMPTOM PARAMETERS FOR CONDITION DIAGNOSISFor automatic diagnosis, symptom parameters by which the fault types can be sensitively distinguished are required. A large set of symptom parameters have been defined in the pattern recognition field (Fukunaga, 1972). Here, seven of these parameters in frequency-domain, commonly used for the fault diagnosis of plant machinery, are considered.∑∑==⋅=Ni iNi i if S f S fp 1121)()( (2)∑∑==⋅⋅=Ni i iNi i i f S ff S f p 12142)()( (3)∑∑∑===⋅⋅=Ni i iNi iNi i if S ff S f S fp 141123)()()( (4)fp σ=4 (5)Nf S f fp Ni i i⋅⋅−=∑=3135)()(σ (6)_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters Nf S f fp Ni i i⋅⋅−=∑=4146)()(σ (7)Nf S f f p Ni i i ⋅⋅−=∑=σ17)( (8)where, N is the number of spectrum line, f i is the frequency, S(f i ).is the power of spectrum,1)()(12−⋅−=∑=N f S f fNi i iσ and ∑∑==⋅=Ni iNi i if S f S f f 11)()(.5. KNOWLEDGE ACQUISITION BY ROUGH SETSRough set theory, a mathematical tool to deal with vagueness and uncertainty, has found many interesting applications. The rough set approach is of fundamental importance to AI and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, and knowledge discovery from databases (ton et al ., 2004; Pawlak, 1982).To diagnose states accurately, decrease the number of NN parameter inputs, and increase the efficiency of NN learning, rough sets are used to acquire diagnosis knowledge. The values of symptom parameters j j ls ms p p ⋅⋅⋅can be calculated by Eq. (2)-(8). Here, j=1 to J, and J is the total number of measurement for the acquisition of the diagnosis knowledge. The j is p must be digitized as the teacher data for the PNN by the following formula.{}{}{}0int[/(max min )/1]jj j j is pi is is is pi p to A p p p N = =−+ (9)where int[*] is the function which gives the integral values of *.{}12,,,m p p p p =⋅⋅⋅ (10)is the initial symptom parameter set (mentioned in part 4). j S P is the set of the symptom parameter values measured in the state S .{}12,,,jj j j S S S mS p p p p =⋅⋅⋅ (11)_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters where [j p is ] is defined as follows:}][&|{][is y is x is k is y is x is k ks k k p p p p p p p r =→∈== (12)The symptom parameters set P ij selected from P shown in Eq. (10), which can discriminate between r i and r j , is:})()(;;|{****j i j i kj k ik k k k k ij r r r r p r p or r p p of value the is p P p p P ∩−∪∈→∈∈∈= (13)For distinguishing r i ( i =1 to Q ) from r j ( j =1 to Q , j ≠i ), there may be the redundant symptom parameters in the initial set P . In order to remove the redundant symptom parameters the following algorithm is proposed. (a) Removing p i from P ;(b) Calculating P ij shown in Eq. (13); (c) If P ij ≠Φ (empty set), then p i is the redundant symptom parameter. Removing p i from P . Returning to (a) and repeating from (a) to (c) and from i =1 to i =Q ;(d) After removing all of the redundant symptom parameters, the new set of the symptom parameters {}12',,,()l p p p p l m =⋅⋅⋅ ≤ is obtained and the value set of P ′ of r i is :12'{,,}riri ri ri s s ls p p p p =L (14)The possibility S ri β of state S expressed by r i can be calculated by%)()(j j S ri Sy card y card =β (15)where, card (y) is the element number of y . 'S ri j y p ∈ is y j obtained from state S .According to the principle above, the input data and the teacher data (diagnosis knowledge) for PNN are as follows:The input data :The value sets 'ri p of the symptom parameters of r i , from which redundant symptom parameters have been removed.The teacher data: The possibility S ri β ofstate S .6. PARTIALLY-LINEARIZED NEURAL NETWORK (PNN)The complex relationship between faults and symptoms is difficult to establish the model of_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters condition diagnosis with traditional analysis method. PNN can learn the knowledge acquired by the RS, and the learned PNN automatically distinguishes each state when the value of symptom parameters was inputted. A back propagation (BP) neural network is only used for training the data, and the PNN is used for testing the learned NN.Here, we describe the principle of the PNN for the fault diagnosis. The neuron numbers of m -th layer of a NN is N m . The set }{),1()1(j i X X = expresses the pattern inputted to the 1st layer and the set }{),()(k M i M X X = is the trainer data to the last layer (M -th layer). Here,11,1N to j P to i ==, M N to k 1=, and,),1(j i X : The value inputted to the j -th neuron in the input (1st) layer;),(k M i X : The output value of k -th neuron in the output (M -th) layer; M N to k 1=.Even if the NN converges by learning )1(X and )(M X , it cannot deal well with the ambiguous relationship between the new (1)*X and ()*M X , which had not been learned. In order to predict ()*M X according to the probability distribution of (1)*X , a partially linear interpolation of the NN is introduced in Figure 7 as "Partially-linearized Neural Network (PNN)".Figure 7. The partial linearization of the sigmoid functionIn the NN which has converged by the data )1(X and )(M X , the symbols are used as follows.),(t m i X : The value of t -th neuron in the hidden (m -th) layer; m N to t 1= )(m uvW : The weight between the u -th neuron in the m -th layer and the v -th neuron in the (m+1)-th layer;11;1;1+===m m N to v N to u M to m .If these values are all remembered by the computer, then when new values *),1(u j X ((1,)(1,)*(1,)1u u u i j i X X X +<<) are inputted to the first layer, the predicted value of the v-th neuron (v=1 to N m ) in the (m+1)th layer (m=1 to M-1) will be estimated by_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters ∑∑=+=+++++++−−−−=Nmu u m i u m i m uv Nmu v m i v m i u m j u m i m uv m i m j X X WX X X X W X X 1),(),(1)(1),1(),1(1),(),(1)(),1(1),1()())}(({νν (22)By using the operation above, the sigmoid function is partially linearized, as shown in Figure 7. If a function must be learned, the PNN will learn the points indicated by the symbols (●) shown in Figure 8. When new data (s 1', s 2') are inputted into the converged PNN, the value indicated by the symbols (■) corresponding to the data (s 1', s 2') will be quickly identified as P e . Thus, the PNN can deal with ambiguous diagnosis problemsPFigure 8. Interpolation by the PNN7. DIAGNOSIS AND VERIFICATIONVibration signals measured in each state are processed by the Daubechies wavelet function. The original vibration signals are decomposed into six levels in low frequency. The symptom parameters of the recomposed signals are calculated in frequency domain by Eq. (2)-(8). They are digitized as the training data for the PNN by Eq. (9). The redundant symptomparameters removed by the algorithm shown from step (a) to (d) in chapter 5. Table 2 shows the redundant symptom parameters in each level marked with “×”. For example, we can distinguish each sated by only using p 2, p 5 and p 7 in level A 1.A back propagation (BP) neural network is only used for training the data, and the PNN is used for testing the learned NN. Figure 9 shows the PNN built on the basis of method proposed in this paper, it consists of the first layer, the hidden layers and the last layer. The neurons in the first layer are inputted the symptom parameters processed by the rough sets. The number of neurons in the hidden layer is eighty. The outputs in the last layer are N βri , C βri ,Mβri , and D βri which are the possibility grades of normal state, cavitation state, misalignment_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters state and impeller damage respectively.Table 2. Redundant symptom parameters in each levelSymptom ParametersP 1 P 2 P 3 P 4 P 5 P 6 P 7 Original× × O × O × O Level A 1× O × × O × O Level A 2 ×O × × O O O Level A 3 × × ×O O × × Level A 4 × × ×O O O × Level A 5 O ××× × O O Level A 6 × ×× × O O OFigure 9. Paritially-linearized neural networkTable 3. Examples of training data for the PNN learning(a) Data using original signalsP 3 P 5 P 7 N βri C βri M βri D βri13 19 2 1 0 0 0 3 12 13 0 1 0 0 19 2 13 0 0 1 0 … … … … … … …(b) Data using the recomposed signals in level A 1P 2 P 5 P 7 N βri C βri M βri D βri6 1 4 1 0 0 0 1 19 18 0 1 0 0 19 9 1 0 0 1 0 … … … … … … …N ri β C ri β M ri β D ri βFirst layer Hidden layer Last layerP 1P 2… P mThe knowledge of diagnosis for PNN learning can be acquired by the RS in each level. Parts of the training data are shown in Table 3. The PNN are quickly convergent by learning the training data. We used which data measured in each state had not been learned by the PNN in order to verify the diagnostic capability of the PNN. When inputting the test data, the learned PNN can correctly and quickly diagnose those faults with the possibility grades Sβri. Figure 10 shows a comparison between original signals and the decomposed signals for detection rate in each state; the detection rates are different for different levels.According to the verification results by the PNN using the original signal (in level A o), the probabilities of correct judgment in normal state, cavitation state, misalignment state and impeller damage state are 95%, 79%, 98.8%, and 89% respectively. The different features of the states have appeared in different frequency levels, so we used the recomposed signals and obtained the highest detection rate of 99% at level A6 for distinguishing the normal state from abnormal states; the highest detection rate of 99% at level A6 for distinguishing the misalignment state from other states; the higher detection rate (more than 98%) at level A2, A3 or A5 for distinguishing the cavitation state from other states; the higher detection rate of 98.8% at level A o and A4 for distinguishing the impeller damage state from other states. Those results verified the efficiency of the intelligent diagnosis method for diagnosing pump system faults.Figure 10. Detection rates in each state. N: Normal state, C: Cavitation state, D: Impellerdamage state, M: Misalignment state.8. CONCLUSIONMachinery diagnosis depends largely on the feature extraction of machinery signals, so it is important that the extracted features should be both sensitive to fault occurrence and reliable against disturbances. In order to effectively diagnose faults, this paper proposes an intelligent _________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parametersdiagnosis method with the symptom parameters in frequency domain based on the wavelet transform (WT), the rough sets (RS) and the partially-linearized neural network (PNN). The wavelet transform is used for feature extraction across an optimum frequency region. The diagnosis knowledge for the training of the PNN can be acquired by using the RS. The PNN, having acquired the diagnosis knowledge, can represent complex relationships between symptoms and fault types that are difficult to model with traditional physical methods. The PNN can quickly converge when learning, and can quickly and high-accurately distinguish fault types on the basis of the probability distributions of the symptom parameters when diagnosing. The decision method of optimum frequency area for the feature extraction of the signals is also discussed using real plant data. The non-dimensional symptom parameters are also described in frequency domain, and these parameters can reflect the characteristics of the signals measured for the condition diagnosis of the pump. This method is suitable for different rotating machinery, and has been successfully applied to the condition diagnosis of a centrifugal pump system.9. REFERENCESBishop Christopher M. I. 1995. Neural Networks for Pattern Recognition. Oxford University PressB. S. Blackmore. et al. 2004. System requirements for a small autonomous tractor.Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, Manuscript PM 04 001, July, 1-13.Cudina, M. 2003. Detection of cavitation phenomenon centrifugal pump using audible sound.Mechanical Systems and Signal Processing,17:1335-1347.Daubechie, I. 1990. The wavelet transform time–frequency localization and signal analysis.IEEE, Transactions on Information Theory, 36:961-1005.Fukunaga, K. 1972. Introduction to Statistical Pattern Recognition. Academic Press.Lin Jing, Qu Liangsheng. 2000. Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration, 234:135-148.Liu, B. and Ling, S. F. 1999. On the selection of informative wavelets for machinery diagnosis. Mechanical Systems and Signal Processing, 13:145-162.M. Diamantopoulou. 2006. Tree-Bole Volume Estimation on Standing Pine Trees Using Cascade Correlation Artificial Neural Network Models. Agricultural Engineering International: th CIGR Ejournal,Manuscript IT 06 002 .Vol VIII: 1-13.Mallat, S. G. 1989. A theory for Multi-resolution signal decomposition: the wavelet representation, IEEE Transaction on pattern analysis and machine intelligence, _________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters_________________________________________________________________________ H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters 1411:674-693.Matuyama, H. 1991. Diagnosis Algorithm. Journal of JSPE 75:35-37.Pawlak. Z. 1982. Rough sets. International Journal of Computer Information Science ,11:344-356.Prabhakar, S. et al. 2002. Application of discrete wavelet transform for detection of ballbearing race faults. Tribology International , 35:793–800.Samanta, B. and Al-Balushi, K.R. 2003. Artificial neural network based fault diagnostics ofrolling element bearings using time-domain features. Mechanical Systems and Signal Processing , 17:317-328.Su H, and Chong KT. 2007. Induction machine condition monitoring using neural networkmodeling. IEEE Transactions on Industrial Electronics , 54(1):241-249.ton. et al. 2004. Rough Sets and Relational Learning, Lecture Notes in ComputerScience , 3100:321-337.R. Q. et al. 2006. Fault diagnosis of rotating machinery using knowledge-based fuzzy neuralnetwork, Appl. Math. Mech-Engl ., 27(1):99-108.V . Schetinin and J. Schult. 2006. Learning polynomial networks for classification of clinicalelectroencephalograms. Soft Comput , 10(4): 397-403.Zhu QB. 2006. Gear fault diagnosis system based on wavelet neural networks. Dynamics ofContinuous Discrete and Impulsive Systems-series A-Mathematical Analysis , 13: 671-673, Part 2 Suppl S.。

相关文档
最新文档