基于PLC的燃油锅炉控制系统设计毕业设计论文
基于PLC的燃油锅炉控制系统设计毕设设计说明书论文
目录1绪论错误!未定义书签。
1.1锅炉的定义与发展现状错误!未定义书签。
1.2P L C控制燃油锅炉的目的和意义错误!未定义书签。
1.3P L C控制燃油锅炉的设计容错误!未定义书签。
1.4预期实现的目标错误!未定义书签。
2系统总体设计方案错误!未定义书签。
2.1燃油锅炉控制系统基本组成部分错误!未定义书签。
2.2燃油锅炉的工作过程错误!未定义书签。
2.3燃油锅炉工艺控制要求错误!未定义书签。
3燃油锅炉控制系统的硬件设计错误!未定义书签。
3.1P L C机型的选择与各硬件性能指标分析错误!未定义书签。
3.1.1方法1.按以下条件选择机型错误!未定义书签。
3.1.2 方法2 ............................................ 错误!未定义书签。
3.1.3P L C容量估算错误!未定义书签。
3.2燃油锅炉的控制过程分析错误!未定义书签。
3.3燃油锅炉的运行流程图设计错误!未定义书签。
3.4系统的I/O接口以与硬件接线图设计错误!未定义书签。
3.5系统供电电源设计错误!未定义书签。
4燃油锅炉控制系统的软件设计错误!未定义书签。
4.1控制系统各部分控制的梯形图错误!未定义书签。
4.1.1起动错误!未定义书签。
4.1.2停止错误!未定义书签。
4.1.3异常状况自动关火错误!未定义书签。
4.1.4锅炉水位控制错误!未定义书签。
4.2基于P L C的燃油锅炉控制系统总梯形图错误!未定义书签。
4.3对系统控制总梯形图的分析错误!未定义书签。
4.4系统的示警电路分析错误!未定义书签。
5燃油锅炉控制系统程序调试结果错误!未定义书签。
5.1程序调试过程错误!未定义书签。
5.2程序调试时序图错误!未定义书签。
6总结错误!未定义书签。
附录指令表错误!未定义书签。
参考文献错误!未定义书签。
致错误!未定义书签。
1 绪论随着科技的不断进步,自动化技术以与电力电子技术快速提高,国外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
PLC在锅炉控制系统中的应用毕业设计
华东交通大学理工学院Institute of Technology.East China Jiaotong University毕业设计Graduation Design(2010—2014年)题目PLC在锅炉控制系统中的应用分院:电气与信息工程分院专业:电力系统及其自动化班级:电力2010-3学号:20100210470436学生姓名:吴伟指导教师:李房云起讫日期:2014.1——2014.4华东交通大学理工学院毕业设计原创性申明本人郑重申明:所呈交的毕业设计是本人在导师指导下独立进行的研究工作所取得的研究成果。
设计中引用他人的文献、数据、图件、资料,均已在设计中特别加以标注引用,除此之外,本设计不含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。
本人完全意识到本申明的法律后果由本人承担。
毕业设计作者签名:日期:年月日毕业设计版权使用授权书本毕业设计作者完全了解学院有关保留、使用毕业设计的规定,同意学校保留并向国家有关部门或机构送交设计的复印件和电子版,允许设计被查阅和借阅。
本人授权华东交通大学理工学院可以将本设计的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编毕业设计。
(保密的毕业设计在解密后适用本授权书)毕业设计作者签名:指导教师签名:签字日期:年月日签字日期:年月摘要80年代开始到90年代中期,PLC开始迅速地被开发,在这段时间内,PLC 在模拟量处理,数字运算,人机接口和网络容量的能力大幅改善,PLC慢慢深入过程控制的领域,在一些应用过程控制领域支配性的位置替换掉了可编程控制器强的DCS系统。
PLC拥有通用性强,方便使用,广阔的适应性,高信赖性强,抗干扰性强等的优点,PLC在一般工业自动化编程,特别是时序控制,位置,可预见的未来中,无可替代。
本论文引进锅炉作为对象,被控的主要参数是锅炉出口水温控制,以炉内温度控制作为参数,加热电阻线的电压,控制装置的可编程控制器,用锅炉温度控制系统构成用PID算法,用PLC梯形图程序语言的使用编程控制,实现锅炉的温度控制。
PLC锅炉触摸屏控制系统系统方案设计
毕业设计(论文)学生:学号:专业:系(院):毕业设计题目:基于PLC的锅炉控制系统设计指导教师:职称:讲师摘要目前,在锅炉行业中,它们的控制结构大多采用按钮和继电器或程序控制器来实现,这种控制方式智能化程度低,只能简单地对锅炉的燃烧状态和水位进行即时控制,无法对锅炉工作时的运行参数、启动时间及校正时间进行灵活地设置和修改,不能动态地反映出锅炉的当前工作状态,也无法对锅炉以前发生的故障和总点火次数、风机运行时间及燃烧器运行时间进行准确地累积记录,影响锅炉的管理和维护。
此外,现有锅炉如需多台联网控制,则需增加控制台,加大成本,设备结构也更趋复杂。
PLC 和触摸屏联合控制的智能锅炉,它包括有锅炉本体,本体上设的控制柜,其特征在于在控制柜设有可编程序控制器PLC,在控制柜表面设有触摸屏,PL C的通讯端口通过通讯电缆与触摸屏的通讯端口相连,PLC的多路输入端分别与设置在锅炉本体的各水位开关、温度开关、电导率开关、压力开关、火焰检测探头及过载开关的输出相连,PLC的多路输出端口分别接锅炉本体的各对应电磁阁及对应控制器。
采用西门子的S7--200PL控制,不仅简化了系统,提高了设备的可靠性和稳定性,同时也大幅地提高了燃烧能的热效率。
通过触摸屏操作面板修改系统参数可以满足不同的工况要求,机组的各种信息,如工作状态、故障情况等可以声光报警及文字形式表示出来,主要控制参数(温度值)的实时变化情况以趋势图的形式记录显示,方便了设备的操作和维护,该系统通用性好、扩展性强,直观易操作。
关键词锅炉 PLC 智能化触摸屏目录第1章绪论 ........................................................................................................................................ - 1 -1.1 锅炉控制系统概述.............................................................................................................. - 1 -1.2 国外研究现状...................................................................................................................... - 1 -1.3 本课题研究背景及意义...................................................................................................... - 3 -1.3.1 基于PLC锅炉控制系统的背景 ............................................................................... - 3 -1.3.2 本课题研究意义......................................................................................................... - 3 -1.3.3本章小结...................................................................................................................... - 4 - 第2章PLC分布式监控系统 ........................................................................................................ - 5 -2.1 PLC概述 ................................................................................................................................ - 5 -2.2PLC监控技术 ......................................................................................................................... - 6 -2.3 PLC监控系统的结构 ............................................................................................................ - 6 -2.4 PLC监控系统的功能组成 .................................................................................................... - 7 - 第3章触摸屏技术 .......................................................................................................................... - 8 -3.1 触摸屏技术概述.................................................................................................................... - 8 -3.2 触摸屏的工作原理................................................................................................................ - 9 -3.3触摸屏技术工程应用........................................................................................................... - 10 - 第4章锅炉控制系统技术............................................................................................................... - 12 -4.1 锅炉系统基本工艺过程...................................................................................................... - 12 -4.2 系统监控对象及系统工艺要求.......................................................................................... - 12 -4.2.1系统监控对象及子系统划分.................................................................................... - 12 -4.2.2各子系统的工艺要求.............................................................................................. - 13 -4.3系统总体性能及监控要求................................................................................................... - 13 -4.3.1锅炉监控系统的总体性能........................................................................................ - 13 -4.3.2锅炉监控系统的总体功能...................................................................................... - 14 -4.3.3系统的监控要求...................................................................................................... - 14 - 第5章结论 .................................................................................................................................... - 16 - 致 ........................................................................................................................................................ - 17 - 参考文献 ............................................................................................................................................ - 18 -第1章绪论锅炉作为重要的动力设备,已广泛应用于化工、炼油、发电等工业生产中,同时锅炉又是工业生产及采暖供热中一次能源转换为二次能源的重要设备。
基于PLC的锅炉燃烧控制系统设计_毕业设计论文正文 精品
基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。
锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。
工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。
作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。
而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。
1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。
这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。
因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。
(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。
在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。
毕业设计(论文)-基于plc控制的燃油锅炉加药系统设计[管理资料]
摘要本文介绍了用于锅炉加药的PLC控制系统,对系统控制原理进行了详细的分析,包括加药系统配电图,加药系统电气控制系统图等。
对所使用的硬和软件的有点进行了简单的介绍,使用触摸屏作为人机界面,对系统进行监控和操作,进行参数设定。
介绍了触摸屏的制作过程和实现各个功能的方法。
加强了整个系统的可操作性,使整个系统变得简单、可靠性高。
最终有效地提高锅炉水质的稳定和锅炉内部的清洁。
关键词锅炉加药系统;可编程控制器;触摸屏AbstractThis article describes for boiler dosing of PLC control system, the system control theory has made a detailed analysis, including dosing system distribution map, dosing system, electrical control system, etc. On the use of hard-and software is a bit of a simple introduction to using the touch screen and man-machine interface, system monitoring, and operation, setting parameters. Describes the process of making a touch screen and all function. Enhanced operability of the entire system, so that the whole system becomes simple, high reliability. On the external control cabinet for a simple design that can make the entire control system external appearance.Keywords Boiler dosing system Programmable logic controller Touch screen目录摘要 (I)Abstract (II)第1章绪论 (1)蒸汽锅炉的汽水循环系统和危害 (1)蒸汽锅炉的汽水循环系统 (1)锅炉结垢的主要危害与用水要求 (2)锅炉自动加药系统的工艺过程及控制要求 (2)锅炉自动加药系统的工艺过程 (2)锅炉自动假药系统的控制要求 (3)可编程控制器和触摸屏概述 (4)本章小结 (5)第2章电器配电及控制系统及硬件选型 (6)电器配电及控制系统及硬件选型 (6)电器配电及控制 (6)自动控制设备的硬件选型 (10)PLC选型 (10)触摸屏选型 (11)本章小结 (13)第3章 PLC地址变量的配置和程序设计 (14)PLC地址变量配置 (14) (14)PLC的接线 (16)应用软件程序设计 (18)本章小结 (26)第4章触摸屏的设计 (27)西门子人机界面的介绍 (27)触摸屏的设计 (28)本章小结 (34)第5章触摸屏及PLC控制系统及加药系统的联动调试 (35)结论 (38)致谢 (39)参考文献 (40)附录1 (41)附录2 (43)附录3 (46)第1章绪论蒸汽锅炉的汽水循环系统和危害蒸汽锅炉的汽水循环系统锅炉作为提供热动力的系统设备,被广泛地用于各行各业的生产、生活。
基于PLC的锅炉燃烧控制系统设计
基于PLC的锅炉燃烧控制系统设计【摘要】锅炉作为将一次能源转化成二次能源的重要设备之一,其控制和管理水平也日趋提高。
燃烧器是锅炉燃烧系统的核心和最大能耗部件,有必要设计先进的燃烧控制系统实现锅炉在最优的空燃比下高效燃烧,从而实现节能环保。
本文探讨了基于PLC的锅炉燃烧控制系统设计,以期对相关人员有所借鉴意义。
【关键词】PLC;锅炉;燃烧控制系统一、PLC的涵义与性能特点PLC是随着科学技术的进步与现代社会生产方式的转变,为适应多品种、小批量生产的需要而产生、发展起来的一种工业控制装置。
其特点有:1、抗干扰能力强PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。
此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。
在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。
这样,整个系统具有极高的可靠性也就不奇怪了。
2、功能完善,适用性强PLC不仅可以连接传统的编程与通用输输出设备,还可以通过总线构成网络系统,其应用范围涉及工业自动化的全部领域。
除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。
近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。
加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。
3、使用简单PLC是面向工矿企业的工控设备。
它接口容易,编程语言易于为工程技术人员接受。
梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC 的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。
为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。
4、维护方便,容易改造PLC技术因为其控制比较方便,也具有很强的灵活性,其采用内部编程进行对电路的控制,如果需要改进,只需要对其内部的程序重新写入就可以实现新的控制要求。
基于PLC的燃油锅炉控制系统设计论文
基于PLC的燃油锅炉控制系统设计摘要目前燃油锅炉的应用越来越广泛,对燃油锅炉的科学研究也越来越多。
为解决我国燃油锅炉产业现状存在的主要问题,采用PLC等控制技术和设备对我国燃油锅炉控制系统进行适当改造。
FX2N系列PLC改造的燃油锅炉控制系统,根据自动控制基本原理实现了锅炉更高效率和更高可靠性的启动、停止、暂停和异常处理;在此控制系统中对锅炉燃烧各项参数等可进行高效检测、校正和调节;其中锅炉水位、压力等参数控制亦可由PLC实现控制。
首先是对燃油锅炉基本结构组成和运行原理进行研究和分析;主要研究WN型卧式燃油锅炉,根据燃油锅炉控制系统的工艺要求设计控制方案;设置好具体参数,进行PLC的I/O 口的估算和分配,选择三菱FX2N 系列PLC 作为控制系统核心,在此基础上设计出控制系统外部接线图,并对其它组成部件如变频器、电机等进行选择;最后根据系统流程图进行主电路接线图的设计,完成梯形图,最后进行程序的校验和仿真。
关键词:PLC, 燃油锅汽包水位Design of the boiler burner control system based on plcAbstractThe application of fuel boiler is more and more extensive, scientific study of the oil-fired boiler is also more and more. In order to solve the current problems of fuel boiler industry in China, using PLCcontrol technology and equipment appropriate modification of control system of fuel boiler in china. Fuel boiler control system of FX2N series PLC transformation, according to the basic principle of the automatic control of boiler high efficiency and high reliability of the start, stop, pause and exception handling; the boiler combustion parameters can effectively detect, correction and adjustment in the control system of boiler water level; wherein, parameters such as pressure control can realize control by PLC.The first is the research and Analysis on the basic structure of fuel boiler components and operating principle; the main research WNS horizontal oil-fired boiler, according to the process control system of fuel boiler design requirements ofcontrol scheme; set up specific parameters, estimation and allocation of PLCI/O port, select the Mitsubishi FX2Nseries PLC as the core of control system, based on the control system design of external wiring diagram, and other components such as the inverter, motor selection; finally, according to the design of main circuit wiring diagram for the system flow chart, complete ladder diagram, verification and simulation step procedure.Key words :PLC, fuel boiler, the drum water level第一章 绪论1.1 课题研究的背景及意义 (1)1.2 国内外研究现状 (1)1.3 本设计研究的意图 (2)1.4 本文所做工作 (2)第二章 锅炉燃烧的分析 (3)2.1 燃油锅炉的基本组成部分 (3)2.2 锅炉系统的结构 (3)2.3 燃油锅炉的工作过程 (4)2.4 设计方法 (5)第三章 锅炉燃烧控制系统的设计3.1 燃油锅炉系统控制要求 (6)3.2 燃烧过程、水位高低控制 (6)3.3 燃油锅炉系统工艺流程 (7)3.4 确定燃油锅炉的设计方案 (7)3.5 工艺参数控制 (8)3.6 总体设计思路 (9)第四章 硬件选择及设计 4.2 PLC 机型的选择 ............................124.2.1 PLC 容量估算 (12)4.2.2 其它器件的选型 (13)4.2.3 系统的 I/O 接口以及硬件接线图 ....................13 4.3 锅炉水位控制图 (16)4.4 系统主电路接线图 ............................ 17 目录4.1 PLC 控制系统的设计步骤 .........................11104.5 电机及驱动控制选型 (18)4.5.1 电机及喷油泵的选型 (18)4.5.2 变频器选型 (18)4.5.3 检测元件选型 (18)第五章系统软件设计 (19)5.1 系统流程图 (19)5.2 系统控制的梯形图 (20)5.2.1 起动 (20)5.2.2 停止 (20)5.2.3 异常自动关火 (21)5.2.4 锅炉水位控制 (21)5.3 系统总梯形图 (22)5.3.1 系统运行控制 (22)5.3.2 系统水位运行控制 (24)第六章结论 (28)6.1 成果评价 (28)6.2 作用意义 (28)6.3 应用范围和前景 (28)6.4 需要进一步改进之处 (28)参考文献 (29)谢辞 ......................... 错误!未定义书签。
基于plc的锅炉监控系统的设计--大学毕业设计论文
基于PLC的锅炉监控系统的设计摘要本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。
本文分别就燃煤锅炉的控制系统工作原理,温度变送器的选型、PLC配置、组态软件程序设计等几方面进行阐述。
通过改造燃煤锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。
关键词:燃煤锅炉的控制系统,温度控制,串级控制,PLC,PIDPLC-based boiler control systemDesignABSTRACTThis paper introduces the boiler is controlled object to the boiler outlet water main parameter to be controlled to within the furnace temperature was deputy accused of parameters to the furnace resistance wire voltage of the control parameters, PLC as controller, constitute the boiler temperature cascade level control system; using PID algorithm, using PLC ladder programming language programming, automatic control of the boiler temperature.This paper on the coal-fired boiler control system works, temperature transmitters selection, PLC configuration, the configuration software program design and other aspects to elaborate. Through the transformation of coal-fired boiler control system has fast response, good stability, high reliability, control accuracy and good features, the industrial control has practical significance.Key words:Coal-fired boilers control system,temperature control,cascade control PLC ,PID目录1 绪论 (1)1.1 课题背景及研究目的和意义 (5)1.2 国内外研究现状 (5)1.3 项目研究内容 (6)2 锅炉控制系统总体设计 (8)2.1 燃煤锅炉的组成 (8)2.2 燃煤锅炉的工作过程 (8)2.3 系统功能分析 (9)2.4 控制方案的设计 (10)2.5 控制系统结构 (11)2.6 电路的保护 (12)3 PLC控制系统的硬件设计 (14)3.1 可编程控制器基础 (14)3.1.1 PLC概述 (14)3.1.2 PLC的历史 (14)3.1.3 现今的PLC (16)3.1.4 PLC的设计标准 (17)3.2 可编程控制器的产生和应用 (19)3.2.1 可编程控制器的组成和工作原理 (19)3.2.2 可编程控制器的分类及特点 (21)3.3 组态软件的基础 (22)3.3.1 组态的定义 (22)3.3.2 组态王软件的特点 (22)3.3.3 组态王软件仿真的基本方法 (23)3.4 PLC控制系统设计的基本原则和步骤 (23)3.4.1 PLC控制系统设计的基本原则 (23)3.4.2 PLC控制系统设计的一般步骤 (23)3.4.3 PLC程序设计的一般步骤 (24)3.4.2 PLC控制系统设计的一般步骤 (23)3.4.3 PLC程序设计的一般步骤 (24)3.5 PLC的选型和硬件配置 (26)3.5.1 PLC型号的选择 (26)3.5.2 温度传感器 (26)3.6 系统整体设计方案与电气接线图 (26)3.7 PLC控制器的设计 (27)3.8 控制系统数学模型的建立 (27)4 PLC控制系统的软件设计 (29)4.1 PLC程序设计常用方法 (29)4.2 编程软件FPWIN-GR概述 (29)4.3 梯形图 (29)4.4 文本显示图 (34)参考文献 (36)致谢 (37)1 绪论1.1 课题背景及研究目的和意义燃煤锅炉的应用领域相当广泛,燃煤锅炉的性能优劣决定了产品的质量好坏。
基于PLC的锅炉供热控制系统的设计
基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。
作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。
本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。
文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。
然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。
在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。
通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。
也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。
二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。
该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。
锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。
其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。
锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。
燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。
燃烧器的性能直接影响到锅炉的热效率和污染物排放。
燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。
热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。
热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。
基于PLC的燃油锅炉电气控制系统设计【文献综述】
文献综述电气工程及其自动化基于PLC 的燃油锅炉电气控制系统设计1.前言锅炉是一种能量转换设备,向锅炉输入的能量有燃料中的化学能、电能、高温烟气的热能等形式,而经过锅炉转换,向外输出具有一定热能的蒸汽、高温水或者有机热载体。
用油做燃料的锅炉叫燃油锅炉,燃油锅炉的使用是油的开发利用的一种重要方法。
燃油锅炉工作过程中涉及到的理论知识:(1)燃烧学(2)传热学(3)流体力学和工程热力学GX Developer 是三菱PLC 的编程软件。
适用于Q 、QnU 、QS 、QnA 、AnS 、AnA 、FX 等全系列可编程控制器。
支持梯形图、指令表、SFC 、 ST 及FB 、Label 语言程序设计,网络参数设定,可进行程序的线上更改、监控及调试,具有异地读写PLC 程序功能。
2.发展现状能源是人类社会和经济发展的基本条件之一,我国过去基本上依赖单一能源维持国民经济增长,能源的消费结构长期以来一直跟不上我国国民经济的发展和人民生活水平的提高。
我国能源生产和消费的主要特点是以煤炭为主。
一次能源生产的年平均增长率为2010年全国原煤产量约32亿吨,比2005年增长了1.5倍,‘十一五’期间原煤产量以6-7%的平均增速增长;2010年发电装机容量突破9.5亿千瓦,‘十一五’五年间扩建了4亿多千瓦,是过去50年装机容量的总和;同时,‘十一五’期间石油、天然气产量稳定在1.8-1.9亿吨之间,海外资源合作有突破性进展,国内炼油能力突破5亿吨。
”这种以煤为主的能源结构带来的问题是防止污染的费用日益增长;其次,对铁路运输业造成了压力。
据预测,到2020年我国能源需求量将至少增加t 标志煤。
因此,如何减少煤炭资源的消耗及不断开发可再生能源已经成810为我国解决能源矛盾的主要方向。
但是由于可再生能源,如太阳能、生物能、地热能等本身条件的限制,至少在21世纪前半叶,我国能源结构将不会做出很大改变。
同时,随着经济和科学技术的发展,特别是人类对生活质量和生存环境要求的日益增加,油作为优质洁净的燃料和原料,越来越引起人们的重视。
基于PLC的锅炉燃烧控制系统毕业设计正文
基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。
锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。
工业过程中对于锅炉燃烧控制系统的要非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。
作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在的参数,参数之间有着复杂的关系,并且相互关联[2]。
而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。
1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。
这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。
因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。
(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。
在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。
基于PLC和变频技术的锅炉电气控制系统
毕业设计(论文) 题目基于PLC和变频技术的锅炉电气控制系统学生姓名曲忠安专业班级自动化112所在院系电气信息学院指导教师好老师职称副教授所在单位自动化教研室教研室主任好老师完成日期2015年6 月26 日摘要本系统是基于PLC和变频技术的锅炉电气控制系统,在设计中有水压检测、水位监测、水温检测、气压检测、故障检测、水压控制、水位控制、水温控制、气压控制、循环控制、显示部分、报警部分等多部分组成来实现锅炉电气控制。
系统用液位传感器检测水位,用温度传感器来检测水温,用压力传感器来检测出水压力以及炉膛气体压力,并用相应的变送器转换成电压信号送给PLC模拟输入端。
这些信号与PLC程序中的给定值相比,以判断PLC需要进行何种操作,比如是否需要加大鼓风机功率,是否需要减小补水泵功率,是否需要改变循环泵配用电机的转速等操作。
操作信号会传送给变频器,变频器根据操作信号会输出相应频率的电压,从而控制配用电机的输出功率,最终实现自动控制的目的。
另外还会用八个控制按键来实现按健控制,电铃实现故障报警,用16个指示灯来完成显示部分。
本设计用PLC和变频控制不仅可节约能源,促进环保,而且可以提高生产自动化水平,具有显著的经济效益和社会效益。
关键词:PLC 锅炉变频器温度水位ABSTRACTThis system is based on PLC and frequency conversion technology, electrical control system of boiler, mainly in the design have water detection, water level, water temperature, air pressure detection, fault detection, water pressure, water level, water temperature control, pressure control, loop control, display, alarm, part of several parts, such as to implement the control of heating boiler water supply.System with a liquid level sensor detection water level, with a temperature sensor to detect the water temperature, with pressure sensor to detect the water pressure and the gas pressure, and the corresponding transmitter converted into a voltage signal to the PLC analog input.These signals compared with the PLC program in a given value, to determine whether PLC need to undertake the corresponding operations, such as whether to need to increase the power of blower, whether to need to reduce the pump power, whether to need to speed up the circulation pump motor speed, and so on.Operation signal will be transmitted to the frequency converter, frequency converter according to the operation will output the corresponding frequency of the voltage signal, to control the output power of the motor, finally achieve the goal of automatic control.And control with up to eight buttons to implement according to national health control, implement fault alarm bell, with 16 indicators to complete the display part.This design with PLC control, and has low cost, easy to implement the boiler heating process is easy to debug, part of a failure will not affect other parts of the work, easy maintenance, etc.Key words:PLC boiler transducer temperature waterlevel目录第一章绪论 (1)1.1 本课题的来源及意义 (1)1.2 本课题的研究目标 (1)1.3 本课题的研究内容 (2)1.4 本课题的研究方法 (2)第二章变频调速在电气控制中的应用 (3)2.1 变频调速的基本概念 (3)2.2 变频调速的原理 (3)2.3 变频器的主要功能 (4)2.3.1 频率给定功能 (4)2.3.2 升速、降速和制动控制 (4)2.4 变频器和PLC的关系 (5)第三章锅炉供水系统总体设计 (6)3.1 系统功能介绍 (6)3.2 系统结构 (6)第四章系统硬件设计 (8)4.1 主电路图 (8)4.1.1循环泵控制部分 (8)4.1.2 补水泵控制部分 (8)4.1.3 风机控制部分 (8)4.2 PLC系统选型 (9)4.2.1 S7-200主机模块 (9)4.2.2 I/O扩展模块 (10)4.2.3 CPU与I/O扩展模块选型 (10)4.3 PLC的配置 (11)4.3.1 控制系统的I/O点及地址分配 (11)4.3.2 PLC外围接线图 (13)4.4 变频器配置 (15)4.4.1 变频器接口 (15)4.4.2 变频器参数设定 (16)4.5 锅炉供水的应用实例 (19)4.5.1 基本指标计算 (19)4.5.2 变送器量程计算 (19)4.5.3 水泵、风机指标计算 (20)4.6 传感器与变送器 (21)4.6.1 压力变送器 (21)4.6.2 温度变送器 (23)4.6.3 液位变送器 (24)4.7 水泵、风机的选择 (24)4.7.1 循环泵及其配用电机 (24)4.7.2 补水泵及其配用电机 (25)4.7.3 鼓风机及其配用电机 (26)4.7.4 引风机及其配用电机 (26)4.8 电气器件选择 (27)4.8.1 电气器件额定电流计算 (27)4.8.2 低压断路器 (28)4.8.3 交流接触器 (29)4.8.4 热继电器 (29)4.8.5 指示灯、电铃 (29)第五章系统软件设计 (31)5.1 PID控制原理 (31)5.1.1 PID控制规律 (31)5.1.2 数字PID控制算法 (34)5.2 数字PID参数整定 (35)5.2.1 采样周期T的确定 (35)5.2.2 扩充临界比例带法 (36)5.3 系统梯形图的设计 (37)5.3.1 主程序的设计 (38)5.3.2 子程序的设计 (51)5.3.3中断程序的设计 (55)结论 (62)谢辞 (63)参考文献 (64)大连交通大学2015届本科生毕业设计第一章绪论1.1 本课题的来源及意义我国北方地区冬季寒冷,冬季要采取相应的取暖方式。
基于PLC的锅炉燃烧控制系统的设计-毕业论文
摘要随着社会经济的飞速发展,城市建设规模的不断扩大,以及人们生活水平的不断提高,对城市生活供暖的用户数量和供暖质量提出了原来越高的要求。
结合现状,本论文供暖锅炉监控系统,设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。
该控制系统以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。
上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。
下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。
本文设计的变频控制系统实现了锅炉燃烧过程的自动控制,系统运行稳定可靠。
采用锅炉的计算机控制和变频控制不仅可大大节约能源,促进环保,而且可以提高生产自动化水平,具有显著的经济效益和社会效益。
关键字:锅炉控制;变频调速;组态软件;PLCAbstractAlong with social economy’s swift development, the urban construction scale’s unceasing expansion , as well as the peple living standard’s unceasing enhancement , set more and more high request to the city life heating’s user quantity and the heating quality. The union present situation, the present paper heating boiler supervisory sysem, has designed a set based on PLC and the frequency conversion velocity modulation technology heating boiler control system.This control system takes the superior machine by one Industry cybertrons , west of family household S7-300 programmable controller for lower position machine ,system through frequency changer control motor’s start , movement and vclocity modulation .the superior machine monitoring software uses the three dimensional strength to control the WinCC design , mainly completes the system operation contract surface design ,realizes the system to open/stops functions and so on control ,parameter hypothesis ,warning linkage,historical data inquiry. The lower position machine control procedure uses Siemen’s STEP7 programming software design , mainly completes the simulation quantity signal processing , temperature and pressure signal functions and so on PID control , and receives the superior machine control command to complete the air blower to open/stops the control , the parameter hypothesis, the circulating pump control and other electric motor’s control.This article designs the frequency conversion processs automatic control, the systems operation is stable, is reliable. Uses boiler’s computer control and the frequency converseon control noe only may save the energy greatly, the promotion environmental protection moreover may raise the production automation level, has the remarkable economic efficiency and the social efficiency.Key Words:Boiler control;Frequency conversion velocity modulation ;Configuration Software;PLC目录摘要 0Abstract (1)第1章概述 (4)1.1 项目背景及课题的研究意义 (4)1.2 供暖锅炉控制的国内外研究现状 (5)1.3锅炉控制系统的发展趋势 (6)1.4本文所做工作 (7)第2章系统方案设计 (9)2.1锅炉控制研究简介 (9)2.2 总体设计思路 (9)2.3方案比较 (10)2.3.1方案1 (10)2.3.2 方案2 (10)2.4方案论证与方案确定 (11)第3章硬件设计 (12)3.1 用户系统框图 (12)3.2 锅炉系统的理论分析 (13)3.2.1变频调速基本原理 (13)3.2.2变频调速在供暖锅炉中的应用 (13)3.2.3变频调速节能分析 (14)3.3燃烧过程控制 (19)3.4锅炉控制系统设计 (20)3.5控制系统构成介绍 (21)第4章软件设计 (25)4.1 S7-300系列PLC简介 (26)4.2 PLC编程语言简介 (28)4.2.1 PLC编程语言的国际标准 (28)4.2.2复合数据类型与参数类型 (29)4.2.3系统存储器 (29)4.2.4 S7-300 CPU中的寄存器 (30)4.3 STEP7 的原理 (31)4.3.1 STEP7概述 (31)4.3.2 硬件组态与参数设置 (32)4.3.3 符号表 (36)4.3.4 逻辑块 (37)4.3程序设计 (38)4.4通信系统 (41)4.5人机界面 (43)4.5.1监控软件WinCC介绍 (43)4.5.2监控系统设计 (45)4.5.3锅炉监控界面设计 (49)第5章结论 (53)5.1 成果的创造性和先进性 (53)5.2作用意义(经济效益和社会意义) (53)5.3 推广应用范围和前景 (53)5.4 需要进一步改进之处 (54)参考文献 (55)外文资料翻译 (56)外文翻译原文 (56)外文翻译译文 (68)致谢 (75)附录 (76)附录1 程序清单 (76)附录2 I/O点数分配表 (96)附录3 物理参数比较表 (97)第1章概述1.1 项目背景及课题的研究意义工业锅炉是工业生产和集中供热过程中重要的动力设备。
基于PLC的锅炉控制系统的设计
基于PLC的锅炉控制系统的设计本文介绍基于PLC的锅炉控制系统的设计的背景和目的。
锅炉控制系统是基于PLC(可编程逻辑控制器)的设计,采用了分布式控制策略。
整体架构包括以下几个组成部分:1.控制器控制器是锅炉控制系统的核心部分,由PLC实现。
PLC具备高速计算能力和强大的输入输出功能,可以对各个设备进行监控和控制。
它接收来自传感器的输入信号,并根据预设的逻辑和算法进行实时处理,向执行器发送输出信号以控制设备运行。
2.传感器传感器负责将锅炉系统的各个参数转化为电信号,并传输给PLC进行处理。
常见的传感器包括温度传感器、压力传感器、流量传感器等。
3.执行器执行器根据PLC的控制信号来执行相应的操作,如调节燃料供给、控制排放阀等。
它们与PLC之间通过信号线或总线进行连接。
4.人机界面人机界面提供给操作员与锅炉控制系统进行交互的界面。
它可以是触摸屏、计算机软件等形式,用于监视系统运行状态、设定参数以及显示报警信息等。
5.通信模块通信模块用于实现锅炉控制系统与外部设备的数据传输和通信。
它可以连接到局域网或远程服务器,实现与其他系统或监控中心的数据交互。
6.电源供应为了保证锅炉控制系统的稳定运行,需要提供可靠的电源供应。
这可以通过备用电源或UPS(不间断电源)来实现。
综上所述,基于PLC的锅炉控制系统采用分布式控制策略,通过控制器、传感器、执行器、人机界面、通信模块和电源供应等组成部分协同工作,实现对锅炉设备的监控和控制。
本文介绍基于PLC的锅炉控制系统所采用的控制策略和算法。
控制策略是指通过采取不同的控制方法和算法,在锅炉运行中实现温度、压力、流量等参数的稳定控制。
基于PLC的锅炉控制系统采用了以下主要的控制策略:PID控制:PID(比例、积分、微分)控制是一种常用的控制方法。
它通过根据控制对象的偏差来调节控制器的输出,使得偏差逐渐趋向于零,从而实现控制目标。
在锅炉控制系统中,PID控制常用于调节温度、压力和流量等参数。
基于PLC的燃油锅炉控制系统设计设计
本科学生毕业设计基于PLC的燃油锅炉控制系统设计院系名称:电气与信息工程学院专业班级:电气工程及其自动化08-2班学生姓名:范琳琳指导教师:***职称:讲师黑龙江工程学院二○一二年六月The Graduation Design for Bachelor's DegreeDesign of Oil Burning Boiler Control System Based on PLCCandidate:Fan LinlinSpecialty:Electrical Engineering and AutomationClass:08-2Supervisor:Lecturer Xu LumeiHeilongjiang Institute of Technology2012-06·Harbin摘要随着我国工业的不断发展,能源消费日益增大,环境污染日益恶化。
锅炉作为重要的能源转换设备,其节能降耗更显得尤为重要。
由于燃煤锅炉对环境的污染严重,使得高效清洁的燃油锅炉得到很大的发展。
鉴于燃油锅炉所用燃料的快速爆发性及负荷的多变性,燃油锅炉采用自动控制。
燃油锅炉自动控制的主要任务是维持锅炉的水位、温度、压力、烟气含氧量等物理参数在设定的范围内,并能自动适应负荷的变化,从而使锅炉安全可靠经济的运行。
本设计首先介绍的是燃油锅炉的组成结构、生产过程及系统工艺。
在分析燃油锅炉对象的动态特性的基础上,对燃油锅炉的燃烧控制系统,温度控制系统以及恒压供油控制系统进行研究,并实现锅炉的远程监控。
温度控制是以锅炉炉膛温度作为主调节参数,利用S7-200 PLC的PID功能指令对温度进行实时控制,使锅炉炉温在设定的范围内。
在燃烧控制方面主要保证锅炉燃烧的三项调节任务,即蒸汽压力稳定,燃烧的经济性和炉膛负压在一定范围内。
恒压供油控制部分采用PLC∕变频器混合控制方案,将变频调速技术应用于油泵的控制。
本设计通过分析燃油锅炉的控制要求,确定符合燃油锅炉控制要求的控制方案。
基于PLC的油泵控制系统设计毕业论文
基于PLC的油泵控制系统设计毕业论文基于PLC的油泵控制系统设计毕业论文目录前言................................................................ - 1 - 第一章绪论 ......................................................... - 2 -1.1引言 ......................................................... - 2 -1.2课题研究背景和研究意义 ....................................... - 2 -1.3课题主要研究容 ............................................... - 3 -1.3.1 变频恒压供油的实现 ..................................... - 3 -1.3.2 S7-300与MM440间DP通信................................ - 4 -1.3.3 WINCC监控系统.......................................... - 4 -1.3.4 压力传感器 ............................................. - 5 -1.3.5串行通信模板CP340的MODBUS RTU通信协议................. - 5 - 第二章油泵的基本参数及其工作特性 ................................... - 7 -2.1 油泵理论及油泵工况点分析..................................... - 7 -2.1.1 流体输送设备 ........................................... - 7 -2.1.2 油泵的工作参数 ......................................... - 7 -2.1.3 油泵的基本特性曲线 ..................................... - 8 -2.1.4 油泵的工况点 ........................................... - 9 -2.2 变频调速分析及供油系统的理论模型............................. - 9 -2.2.1 变频调速的原理 ......................................... - 9 -2.2.2 工况点调节 ............................................. - 9 -2.2.3 节能分析 .............................................. - 10 -2.2.4 恒压供油系统的理论模型 ................................ - 11 - 第三章硬件系统设计 ................................................ - 12 -3.1 硬件选型.................................................... - 12 -3.1.1 PLC选型............................................... - 12 -3.1.2 变频器选型 ............................................ - 13 -3.1.3 S7-300与STM32进行点对点通讯模块选型.................. - 13-3.1.4 HMI ................................................... - 14 -3.2 硬件接线图.................................................. - 15 -3.2.1 系统网络结构示意图 .................................... - 15 -3.2.2 电源电路的设计 ........................................ - 15 -3.2.3 数字量接口设计 ........................................ - 16 -3.2.4 模拟量接口设计 ........................................ - 17 -3.2.5 CP340接口设计......................................... - 17 - 第四章软件系统设计 ................................................ - 18 -4.1 软件设计简介................................................ - 18 -4.1.1 PLC工作方式........................................... - 18 -4.1.2 S7-300数据类型........................................ - 18 -4.1.3 S7-300数据高位低位.................................... - 20 -4.1.4 地址重叠问题 .......................................... - 21 -4.1.5 IW和PIW的区别........................................ - 21 -4.1.6 功能模块FB和FC的区别 ................................ - 21 -4.1.7 背景数据块和全局数据块的区别 .......................... - 22 -4.1.8 模拟量输入及参数值整定 ................................ - 22 -4.1.9 模拟量输出及参数值整定 ................................ - 23 -4.2 自动控制系统的性能要求...................................... - 23 -4.3程序流程图设计 .............................................. - 24 -4.3.1 模块化编程简介 ........................................ - 24 -4.3.2 程序结构图 ............................................ - 25 -4.3.3 主要程序流程图 ....................................... - 25 -4.3.4 关键程序设计 .......................................... - 29 - 第五章系统联调 .................................................... - 30 -5.1 PLC与MM440通信测试 ........................................ - 30 -5.1.1 PROFIBUS网络通信简介.................................. - 30 -5.1.2 Step 7硬件组态........................................ - 30 -5.1.3 报文介绍 .............................................. - 31 -5.1.4 变频器参数设置 ........................................ - 37 -5.1.5 报文收发测试 .......................................... - 37 -5.2 S7-300与STM32 Modbus—RTU通信 ............................. - 44 -5.2.1 CP340编写Modbus—RTU通信介绍......................... - 44 -5.2.2 CP340的Modbus—RTU通信组态........................... - 45 -5.2.3 Modbus—RTU的通信帧................................... - 46 -5.2.4 CP340的Modbus—RTU通信测试........................... - 47 -5.3 WinCC组态界面分析 .......................................... - 50 -5.3.1 HMI控制任务........................................... - 50 -5.3.2 工艺界面 .............................................. - 51 -5.3.3 手动操作界面 .......................................... - 52 -5.3.4 报警界面 .............................................. - 52 -5.3.5 趋势界面 .............................................. - 54 -5.3.6 历史数据 .............................................. - 54 -5.3.7 登录与退出快捷键分配 .................................. - 57 -5.3.8 水流动画脚本介绍 ...................................... - 57 -5.4 系统稳态分析................................................ - 59 -5.4.1 PID算法的实现......................................... - 59 -5.4.2 PID死区............................................... - 59 -5.4.3 PID参数整定........................................... - 60 -5.4.4 系统稳态分析 .......................................... - 61 -5.5 故障分析.................................................... - 62 -5.5.1 调用程序块无能流通过 .................................. - 62 -5.5.2 变频器断电启动后报A0703伴随着F0070,复位后,恢复正常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科学生毕业设计基于PLC的燃油锅炉控制系统设计The Graduation Design for Bachelor's DegreeDesign of Oil Burning Boiler Control System Based on PLCCandidate:Fan LinlinSpecialty:Electrical Engineering and AutomationClass:08-2Supervisor:Lecturer Xu LumeiHeilongjiang Institute of Technology2012-06·Harbin毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它摘要随着我国工业的不断发展,能源消费日益增大,环境污染日益恶化。
锅炉作为重要的能源转换设备,其节能降耗更显得尤为重要。
由于燃煤锅炉对环境的污染严重,使得高效清洁的燃油锅炉得到很大的发展。
鉴于燃油锅炉所用燃料的快速爆发性及负荷的多变性,燃油锅炉采用自动控制。
燃油锅炉自动控制的主要任务是维持锅炉的水位、温度、压力、烟气含氧量等物理参数在设定的范围内,并能自动适应负荷的变化,从而使锅炉安全可靠经济的运行。
本设计首先介绍的是燃油锅炉的组成结构、生产过程及系统工艺。
在分析燃油锅炉对象的动态特性的基础上,对燃油锅炉的燃烧控制系统,温度控制系统以及恒压供油控制系统进行研究,并实现锅炉的远程监控。
温度控制是以锅炉炉膛温度作为主调节参数,利用S7-200 PLC的PID功能指令对温度进行实时控制,使锅炉炉温在设定的范围内。
在燃烧控制方面主要保证锅炉燃烧的三项调节任务,即蒸汽压力稳定,燃烧的经济性和炉膛负压在一定范围内。
恒压供油控制部分采用PLC∕变频器混合控制方案,将变频调速技术应用于油泵的控制。
本设计通过分析燃油锅炉的控制要求,确定符合燃油锅炉控制要求的控制方案。
完成以S7-200 PLC为控制中心的硬件电路设计与控制程序设计,并进行程序的模拟调试等工作。
模拟调试结果表明,所设计的控制软件能完成对燃油锅炉点火、燃烧、送风、喷油等一系列控制要求。
整个系统采用了西门子编程软件及监控软件,使系统控制灵活、方便。
关键词:燃油锅炉;可编程序控制器;变频器;自动控制;组态软件ABSTRACTWith the development of industry, energy consumption is growing lager and environment pollution is going from bad to worse. However, boiler is an important energy conversion device, The energy saving more appear particularly important. Due to coal burning boiler’s serious pollution, oil burning boilers have get well developed. Due to the fuel used by the oil burning boiler has characteristics of vast explosion and various load, oil burning boiler adopts auto control. The duties of control system ale keeping water level、temperature、pressure、oxygen content in smoke, etc physical parameters within the setting range, and automatically adjusting the load’s change, so that making the boiler reliable and economical operation.In this design, the composition and structure of oil burning boiler and its production process and technology is first introduced. Then the dynamic behaviors of oil boiler object are studied. In the end, burning control system, temperature control system and constant pressure oil supply system are introduced.Temperature control is to the boiler fire box temperature as the main adjustable parameter, make use of S7-200 PLC PID introductions to control the temperature in real-time, make the boiler fire box temperature in the set range. For burning control system, mainly maintaining the steam pressure、burning economy and furnace pressure in a certain range. Constant pressure oil supply control system adopts PLC∕Converter scheme.This design analyzes oil burning boiler’s control requirements, chooses the control scheme accord with the boiler’s control requirements. Finished the hardware circuit and control program design with S7-200 PLC for the control center, and finished simulative debugging of program. The simulation and debugging results show that the design of control software can finish the control requirements of oil burning boiler.The system applies advanced siemens programmable and configuration software. This system is of simple structure, reliable operation.Key words:Oil Burning Boiler;PLC;Transducer;Automatic Control;Configuration Software目录摘要 (Ⅰ)Abstract (Ⅱ)第1章引言 (1)1.1 PLC控制燃油锅炉的目的和意义 (1)1.2 PLC控制燃油锅炉的研究现状及发展前景 (1)1.3 研究设想及方法 (4)1.4 预期成果及意义 (4)第2章系统整体方案设计 (5)2.1 燃油锅炉结构分析 (5)2.2 燃油锅炉工作过程 (5)2.3 燃油锅炉控制系统 (6)2.3.1 燃烧控制系统 (6)2.3.2 水位控制系统 (7)2.3.3 恒压供油控制系统 (7)2.3.4 炉温PID控制系统 (8)2.4 燃油锅炉系统工艺 (8)2.5 燃油锅炉热工参数检测 (9)2.6 燃油锅炉的自动调节任务 (10)2.7 系统整体控制方案 (11)2.8 本章小结 (12)第3章控制系统硬件设计 (13)3.1 PLC概述 (13)3.1.1 PLC的发展历程 (13)3.1.2 PLC的工作原理 (13)3.1.3 控制系统的I/O通道地址分配 (14)3.1.4 PLC系统选型 (16)3.2 扩展模块选型 (18)3.2.1 数字量输出扩展模块EM222 (18)3.2.2 数字量输入/输出扩展模块EM223 (19)3.2.3 模拟量输入扩展模块EM231 (19)3.2.4 模拟量输出扩展模块EM232 (20)3.2.5 模拟量输入/输出扩展模块EM235 (21)3.3 电机及驱动器选型与应用设计 (22)3.3.1 电机及油泵选型 (22)3.3.2 变频器选型 (23)3.3.3 电机主电路设计 (23)3.4 检测元件选型与应用设计 (24)3.4.1 温度传感器选型 (24)3.4.2 压力传感器选型 (24)3.4.3 液位传感器选型 (26)3.4.4 火焰检测器选型 (26)3.4.5 检测传感器类开关选型 (27)3.5 低压电器选型 (27)3.5.1 接触器选型 (27)3.5.2 继电器选型 (28)3.5.3 断路器选型 (28)3.5.4 熔断器选型 (28)3.5.5 电磁阀选型 (30)3.5.6 主令电器选型 (30)3.5.7 信号电器选型 (30)3.6 系统配电及电源设计 (32)3.7 人机接口设计 (33)3.8 本章小结 (34)第4章控制系统软件设计 (35)4.1 总体设计思想 (35)4.2 控制程序设计 (36)4.3 组态界面设计 (38)4.3.1 WinCC flexible组态软件仿真的基本方法 (38)4.3.2 监控主界面设计 (39)4.3.3 报警窗口设计 (39)4.3.4 设定画面设计 (41)4.3.5 组态变量的建立及设备连接 (41)4.4 程序调试 (43)4.5 本章小结 (47)结束语 (48)参考文献 (49)致谢 (51)附录A (52)附录B (53)第1章引言1.1 PLC控制燃油锅炉的目的和意义随着我国经济的日益发展和人民生活水平的不断提高,能源消费日益增大,环境污染日益恶化,我国的现代化面临严峻挑战,因此节约能源和环境保护目前在我国显得尤为重要。