概率论与数理统计--第二章 随机变量及其分布练习

合集下载

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P ;=>)3(X P ;=>=)04(X X P .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x xa x f ,则=a π1;=>)0(X P ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为 , ,,则()E X =15.设X 为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=,则n= 。

概率论与数理统计练习册-第二章答案

概率论与数理统计练习册-第二章答案

第二章 随机变量及其分布基础训练Ⅰ一、选择题1、下列表中( A )可以作为离散型随机变量的分布律。

A) X 1 -1 0 1 B) X 2 0 1 2P 1/4 1/2 1/4 P -1/4 3/4 1/2C) X 3 0 1 2 D) X 4 1 2 1P 1/5 2/5 3/5 P 1/4 1/4 1/2 2、常数b =( B )时,),2,1()1( =+=k k k bp k 为离散型随机变量的概率分布。

A )2B )1C )1/2D )33、设⎪⎩⎪⎨⎧≥<<≤=1,110,2/0,0)(x x x x x F ,则( D )A )是随机变量的密度函数 B) 不是随机变量的分布函数 C )是离散型随机变量的分布函数 D )是连续型随机变量的分布函数4、设)(1x F 和)(2x F 分别为随机变量21,X X 的分布函数,为使)()()(21x bF x aF x F -=是某一随机变量的分布函数,在下列给定的各组数值中应取( A )A )a =3/5,b =-2/5 B) a =2/3,b =2/3 C )a =-1/2,b =3/2 D )a =1/2,b =-3/25、设随机变量),(~2σμN X ,且}{}{c X P c X P >=≤,则=c ( B )A) 0 B)μ C) μ- D) σ二、填空题1、连续型随机变量取任何给定值的概率为 0 。

2、设离散型随机变量X 分布律为⎪⎪⎭⎫⎝⎛5.03.02.0210,则P (X ≤1.5) = 0.5 。

3、设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F ,则A = 1 ,X 落在(-1,1/2)内的概率为 1 / 4 。

4、设K 在(0, 5)上服从均匀分布,则方程02442=+++K Kx x 有实根的概率为0.6 。

5、随机变量X 的分布函数)(x F 是事件}{x X ≤的概率。

概率论与数理统计第二章测习题

概率论与数理统计第二章测习题

第 2 章一维随机变量及其分布一、选择题1.设 F(x)是随机变量X的分布函数,则以下结论不正确的选项是(A)若 F(a)=0 ,则对任意 x≤a 有 F(x)=0(B)若 F(a)=1 ,则对任意 x≥a 有 F(x)=1(C)若 F(a)=1/2 ,则 P( x≤a)=1/2(D)若 F(a)=1/2 ,则 P( x≥a)=1/22.设随机变量 X 的概率密度 f(x) 是偶函数,分布函数为 F(x) ,则(A)F(x)是偶函数(B)F(x) 是奇函数(C)F(x)+F(-x)=1(D)2F(x)-F(-x)=1 3.设随机变量 X1, X 2的分布函数、概率密度分别为 F1 (x) 、F2 (x) ,f 1 (x)、f 2 (x) ,若 a>0, b>0, c>0,则以下结论中不正确的选项是(A)aF (x)+bF2(x)是某一随机变量分布函数的充要条件是a+b=11(B)cF1(x) F 2(x)是某一随机变量分布函数的充要条件是c=1(C)af 1(x)+bf2(x)是某一随机变量概率密度的充要条件是a+b=1(D)cf 1(x) f 2(x)是某一随机变量分布函数的充要条件是c=14.设随机变量 X1, X2是任意两个独立的连续型随机变量,它们的概率密度分别为 f 1 (x)和 f 2 (x) ,分布函数分别为 F1 (x) 和 F2 (x) ,则(A)f 1 (x) +f 2 (x)必为某一随机变量的概率密度(B)f 1(x) f 2(x)必为某一随机变量的概率密度(C)F1(x)+F 2(x)必为某一随机变量的分布函数(D)F1(x)F 2 (x)必为某一随机变量的分布函数5.设随机变量 X 遵从正态分布N (1,12),Y遵从正态分布N (2,22) ,且P(|X1| 1) P(|Y 2| 1) ,则必有(A)1 2(B)1 2(C)1 2(D)1 26.设随机变量 X 遵从正态分布N ( ,2 ) ,则随σ的增大,概率P(|X|)(A)单调增大(B)单调减小(C)保持不变(D)增减不定7.设随机变量 X1,X2的分布函数分别为 F1 (x) 、F2(x) ,为使 aF1 (x) -bF2 (x)是某一随机变量分布函数,在以下给定的各组数值中应取(A)a3 , b2(B)a2 , b2(C)a1 , b3(D)a1 , b3 553322228.设 f(x)是连续型随机变量 X 的概率密度,则 f(x)必然是(A)可积函数(B)单调函数(C)连续函数(D)可导函数9.以下陈述正确的命题是(A)若P(X1) P(X 1), 则 P(X 1)12(B)若 X~b(n, p),则 P(X=k)=P(X=n-k), k=0,1,2,,n(C)若 X 遵从正态分布 , 则 F(x)=1-F(-x)(D)lim [ F (x) F ( x)]1x10.假设随机变量X遵从指数分布,则随机变量Y=min{X,2} 的分布函数(A)是连续函数(B)最少有两其中止点(C)是阶梯函数(D)恰好有一其中止点二、填空题1.一实习生用同一台机器连接独立的制造了 3 个同种零件,第i个零件不合格的概率为 p i1个零件中合格品的个数,则 P X2i 1,2,3 ,以 X 表示3i12.设随机变量X的概率密度函数为 f x2x0 x 1以 Y 表示对 X 的三次重复观察中0其他事件 X 1出现的次数,则 P Y2 23.设连续型随机变量X的分布密度为 f x axe 3x x 0,则 a,X的分布0x0函数为4.设随机变量的分布函数b , x0, 则 a =, b =,cF ( x)ax) 2(1c,x 0,=。

概率论与数理统计第二章答案

概率论与数理统计第二章答案

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:0X0 P2、一袋中有55,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

) x1 2 O P(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = k - k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

浙江大学《概率论与数理统计》(第4版)教材的配套题库(第2章 随机变量及其分布)【圣才出品】

浙江大学《概率论与数理统计》(第4版)教材的配套题库(第2章 随机变量及其分布)【圣才出品】

1 P{X1 x, X 2 x} 1 P{X1 x}P{X 2 x}
1[1 F (x)]2
1 e2x ,
x0
0, x 0
即 min(X1,X2)服从参数为 2λ 的指数分布。
4.设 X,Y 为随机变量,P{XY≤0}=3/5,P{max(X,Y)>0}=4/5,则 P(min(X,Y) ≤0)=( )。 A.1/5 B.2/5 C.3/5 D.4/5 【答案】D 【解析】设 A={X≤0},B={Y≤0},则 {XY≤0}=AB∪BA,{max{X,Y}>0}=AB,{min(X,Y)≤0}=A∪B 于是 P{min(X,Y)≤0}=p(A∪B)=p(AB∪BA∪AB)=P(AB∪BA)+P(AB)= p{XY≤0}+1-p{max(X,Y)>0}=3/5+1-4/5=4/5。
5.对任意正整数 m,n,随机变量 X 都满足 P{X>m+n|X>m}=P{X>n},记 P{X<1}= p,则下列结论中一定不正确的是( )。 A.p=0 B.p>0 C.p<1
3 / 50
圣才电子书

D.p=1
十万种考研考证电子书、题库视频学习平台
【答案】D
【解析】离散型随机变量中的几何分布与连续型随机变量中的指数分布都满足题设条件,若
2.设随机变量 X 服从参数为 λ(λ>0)的指数分布,事件 A={X≥0},B={X≥2},C={X <2},D={X=5},则下列结论一定正确的是( )。 A.A,B,C 相互独立 B.A,B,D 相互独立 C.B,C,D 相互独立 D.A,B,C,D 两两独立 【答案】B
1 / 50
圣才电子书 十万种考研考证电子书、题库视频学习平台
X 服从几何分布,则 P=P{X<1}=0,若 X 服从指数分布,则 P=P{X<1}=1-e-λ,且 0

概率论与数理统计+第二章+随机变量及其分布+练习题答案

概率论与数理统计+第二章+随机变量及其分布+练习题答案

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题 10.712设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p = 0.0003 .3⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=≤=.若,;,若;,若;,若 3 1 324544 21 51 1 0 }{)(x x x x x X x F P 4{}12525.032)05.0()02(25.0=-=---=<≤F F X P . 例2.11设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 . 【[1,3]】例2.13 设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = . 【24310】 例2.14若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 【4】2.22 (1)24310;(2)4;(3)2922;(4)649;(5))0(2)1(ln 221)(+∞<<--=y y Y I e y y f π〖选择题〗1 [ C ]2 [ C ]3 [ C ]例2.1 【C 】例2.2 【A 】 例2.3 【B 】例2.5 【A 】例2.16设随机变量X ,Y 相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则(A)1,2==b a(B) 2,1==b a(C) 1,2=-=b a(D) 2,1-==b a 【A 】例2.18 设X 为随机变量, 若矩阵⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数的概率为0.5, 则(A)X 服从区间[0,2]上的均匀分布 (B) X 服从二项分布B(2, 0.5) (C) X 服从参数为1的指数分布 (D) X 服从标准正态分布 【A 】2.23 (1)A ;(2)B ;(3)C ;(4)C ;(5)B 解答题〗 〖解答题〗例2.30解 不妨假设正立方体容器的边长为1.引进事件:{}0==X A ,即事件A 表示“小孔出现在容器的下底面”.由于小孔出现在正立方体的6个侧面是等可能的,易见 61)(=A P .从而,{}61===)(0A X P P.对于任意x <0,显然()=x F 0;而()610=F .由于小孔出现的部位是随机性,可见对于任意)75.0,0(∈x ,有(){}{}.641646100xx x X X x F +=+=≤<+≤=P P 该式中4x 表示容器的四个侧面x 以下的总面积,而容器6个侧面的总面积为6.对于任意x ≥0.75,显然()1=x F.于是,最后得()⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.若若若 75.0 , 1 , 75.00 , 641, 0 , 0 x x x x x F例2.31(分布函数)解 因X 服从指数分布,且21==λX E (百小时),故分布参数λ=0.5,故X的分布函数为()⎩⎨⎧≤>-=-.,若;,若0 0 0 e 15.0x x x G x 易见,{}1.0min ,X Y=.设)(y F 是Y 的分布函数,则对于y <0,)(y F =0;对于y >0.1,)(y F =1;对于1.00≤≤y ,有{}{}.,y y G y X y X y Y y F 5.0e 1)(}1.0 min{}{)(--==≤=≤=≤=P P P 于是,{}.10 min ,X Y=的分布函数为()⎪⎩⎪⎨⎧≥<≤-<=-.,若,若,,若 1.0 1 , 1.00 e 1 0 0 5.0y y y y F y例2.33解 试验次数X 是一随机变量.为求X 的概率分布,引进事件:j B ={第j 次试验成功}(j =1,2,…,n ).显然P(j B ) = p .而由于试验的独立性,知事件n B B B ,,,21 …相互独立.设试验进行到成功或n 次为止,则X 的可能值为1,2,…,n 且1}1{B X==;对于2≤k ≤n-1,.;;;,111111112111)(}{ )(}1{)12()(}{}{ }{------======-≤≤=======k n k k k n k k q B B n X p B X n k pq B B B k X B B B n X B B B k X P P P P P P于是,X 的概率分布为有限几何分布:⎪⎪⎭⎫ ⎝⎛---1121321~n n q pq pq pq pn n X . 例2.35解 以ν表示抽到的30件产品中不合格品的件数,则ν服从参数为(30,0.02)的二项分布:.;;4545.0}0{1}1{3340.002.098.030}1{5455.098.0}0{2930==-=≥=⨯⨯=====ννννP P P P1) 不合格品不少于两件的概率.1205.002.098.03098.01}1{}0{1}2{2930=⨯⨯--==-=-=≥=ννναP P P2) 在已经发现一件不合格品的条件下,不合格品不少于两件的条件概率{}.2652.0}1{}2{}1{}2,1{12≈≥≥=≥≥≥=≥≥=νννννννβP P P P P 例2.36解 由条件知每台设备出现故障的概率为0.08.以ν表示10台设备中同时出现故障的台数,则ν服从参数为(10,0.08)的二项分布.需要安排的值班人数k 应满足条件:95.0}{≥≤k νP .需要对不同的k 进行试算.首先,设k =1和k =2,相应得{}{}{}{}{}{}.,95.09599.008.092.008.092.01092.021281.008.092.01092.010128210910910≥≈⨯⨯+⨯⨯+==+≤=≤≈⨯⨯+==+==≤C ννννννP P P P P P因此,至少需要安排2个人值班.例2.37解 设X ——一周5个工作日停用的天数;Y ——一周所创利润.X 服从参数为(5,0.2)的二项分布.因此,有.,,,057.0205.0410.0328.01}3{205.08.02.010}2{410.08.02.05}1{328.08.0}0{3245=---=≥=⨯⨯===⨯⨯=====X X X X P P P P一周所创利润Y 是X 的函数:⎪⎪⎩⎪⎪⎨⎧≥-====3.,若2,,若1,,若,,若X X X X Y 2 2 7 0 10 ⎪⎪⎭⎫ ⎝⎛-328.0410.0205.0057.010722~Y . 例2.38(二项分布)解 设n ——至少出现一件不合格品所要生产产品的件数,则n 件产品中不合格品的件数n ν服从参数为(n ,0.01)的二项分布;按题意,n 应满足条件., 0729.29899.0ln 05.0ln 95.099.01}0{1}1{≈≥≥-==-=≥n nn n ννP P 于是,为至少出现一件不合格品的概率超过95%,最少需要298.0729×3≈895分,将近14小时55分.例3.41解 由条件知X +Y 是一日内到过该商店的顾客的人数,服从参数为λ的泊松分布.设X ——一日内到过该商店的顾客中购货的人数.由条件知,在一日内有n 个顾客到过该商店的条件下,购货人数的条件概率分布为{}().;),2,1,0(1m n m p p C n Y X m X mn m m n ≥=-==+=- P由全概率公式可见,对于m =0,1,2,…,有{}{}{}()[]()()()()[]()()[]()()().p mp mk km m n mn m mn nmn mm nmn n mn mm nmn m p m p p k m p p m n m p n p p C n p p Cn Y X n Y X m Xm X λλλλλλλλλλλλλλλ---∞=-∞=--∞=--∞=--∞===-=--=-=⎥⎦⎤⎢⎣⎡-==+=+===∑∑∑∑∑e ! e e ! 1!1e!1!1e!!1ee ! 110P P P于是,一日内到过该商店的顾客中购货的人数X 服从参数为p λ的泊松分布.同理,Y 服从参数为)1(p -λ的泊松分布.例2.44 解 以()t ν表示t =90天内售出的电冰箱台数.可以假设()t ν服从参数为t λ的泊松分布.由条件知()λν77E ==56,从而λ=8(台).这样,()t ν服从参数为t λ=8t 的泊松分布: (){}()() ,2,1,0 e !88===-k k t k t tkνP .随机变量X 的可能值为自然数m =0,1,2,….记t a λ=.由全概率公式,有{}(){}(){}()()()()()()()(), pa m pa a a m k k a m m n mn ammn a n m n m m nmn m pa m pa k qa m pa m n qa m pan a q p C n a n a m X m X ---∞=-∞=--∞=--∞====-=======∑∑∑∑e !e e ! ! e!! e ! e ! 0ννP P P 其中6.390805.0=⨯⨯==t p pa λ.因此返修件数X 服从参数为3.6的泊松分布:{}() ,2,1,0 e !6.36.3===-m m m X m P .例2.47解 由条件知{}{}{}{},⎪⎭⎫ ⎝⎛--≈⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=≤-≤--=≤--=>-=310821)36(310821310823108310812011 1 025.0a a a X a X a a X a a a X a a X ΦΦΦP P P P P其中()x Φ是标准正态分布函数.由熟知的事实()975.096.1=Φ,可见.;;94.5696.131082 0.975031082≈≈-≈⎪⎭⎫⎝⎛-a a a Φ 例2.48 解 由条件知()210,0~N X.设ν为100次独立重复测量中事件{}6.19 >X 出现的次数,则{}05.096.1106.19 =⎭⎬⎫⎩⎨⎧>=>=X X p P P .易见ν服从参数为(100 , 0.05)的二项分布,近似服从参数为5的泊松分布.因此{}{}{}{}{}().87.05.125115.125105.095.0299100 05.095.010095.012101313555529899100≈++-=---≈⨯⨯⨯-⨯⨯--==-=-=-=<-=≥=----e e e e ννννναP P P P P 〖证明题〗例2.52(分布函数)证明 只需验证)()()(21x bF x aF x F +=满足分布函数的三条基本性质.由条件知a 和b 非负且a +b =1.由于)(1x F 和)(2x F 都是分布函数,可见对于任意,有1)()()(021=+≤+=≤b a x bF x aF x F对于任意实数21x x <,由于)2,1)(()(21=≤i x F x F i i ,可见,)()()()()()(2222112111x F x bF x aF x bF x aF x F =+≤+=即)(x F 单调不减.由)(1x F 和)(2x F 的右连续性,可见)(x F 也右连续.最后,.;1)(lim )(lim )(lim 0)(lim )(lim )(lim 2121=+==+=+∞→+∞→+∞→-∞→-∞→-∞→x F b x F a x F x F b x F a x F x x x x x x于是)()()(21x bF x aF x F +=也是分布函数.例2.53(分布函数) 证明 指数分布函数为)0(e 1)(≥-=-x x F x λ设}{P )(y Y y G ≤=为Y=)(X F 的分布函数.由于分布函数)(x F 的值域为(0,1),可见当0≤y时0)(=y G ;当1≥y 时1)(=y G .设10<<y ,有.y y F y X y y Y y G X =⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=≤=-)1ln(1)1ln(1}e 1{}{)(λλλP P P 于是,)(y G 是区间(0,1)上的均匀分布函数,从而Y=例2.4 【π2=C ;5)arctan 2(πe】例2.6 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.【(1)π1,21==B A ;(2)21;(3))1(12x +π】 例2.7 设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3) ))(1(2)|(|a F a X P -=>问题3: 已知实际背景, 求随机变量的分布律与分布函数(或密度函数)例2.8 一袋中装有4个球,球上分别记有号码1,2,3,4。

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第二章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第二章

第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9,从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.解答:由P{X=1}=P{X=2},得λe-λ=λ22e-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52;(2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c,试确定常数c,并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1,即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110,P{X=4}=C32⋅1C53=310,P{X=5}=C42⋅1C53=35,所以X的分布律为(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4,解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X,它可能的值只有两个,即0和1. X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品),则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p),若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p),所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数,n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2},即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量. 解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0,F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:试求:(1)系数A与B;(2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1),所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它,求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1};(3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1,∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0,∴B=-1.(2)P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣,求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1,即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X,则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X,则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C,使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22),所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12,所以c-32=0,故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102),先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1,即1-Φ(x-400060)=0.1,所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122).在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x,使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36),问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36),则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01,而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99,查标准正态表得x-1706>2.33,故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102);第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42),求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为Y-101P2*******习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数. 解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e),其反函数为x=lny,可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1,于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x),分布函数为F(x),求下列随机变量Y的概率密度:(1)Y=1X;(2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0,综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0,这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0,综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2),已知θ=5(T-32)/9,试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2).θ=59(T-32),反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0,其分布函数为FY(x),又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0,故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z),因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k,P(Ak)=ck,k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20}=1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7,求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7,故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7),而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:(1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X,则X∼b(2500,0.002),则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A,则P(A)=0.03,显然X∼b(300,0.03),即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计),求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2,P{X=0}=e-3/2≈0.223;X-101pi1/22-13/2-2(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0,故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x).显然,当x<0时,F(x)=0,当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a,而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它,计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1.证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0,分布函数F(x)满足:(1)F(-a)=1-F(a);(2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5),所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去),所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取. 习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率.解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1,P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1),则Y的取值范围为[1,2).当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。

《概率论与数理统计》第二章习题解答

《概率论与数理统计》第二章习题解答

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:0,概率为所以2、一袋中有5只乒乓球,编号为1、2X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = k -k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

二、随机变量及其分布(答案)

二、随机变量及其分布(答案)

概率论与数理统计练习题系第二章专业班姓名随机变量及其分布(一)学号一.选择题:1 .设X是失散型随机变量,以下可以作为X的概率分布是[B]X x1x2x3x4X x1x2x3x4( A)1111(B)1111 p p248162488X x1x2x3x4(D)X x1x2x3x4( C)1111p1111 p23412234122 .设随机变量ξ的分布列为X0123C ] p0.10.30.4F ( x) 为其分布函数,则 F ( 2) = [0.2( A)(B)( C)(D)1二、填空题:1 .设随机变量X的概率分布为X012,则 a = p a0.20.52 .某产品 15 件,其中有次品 2 件。

现从中任取3 件,则抽得次品数X 的概率分布为P(X 0)C13366, P( x1)C21 C13236, P( xC22 C1313 C153105C1531052)105C1533 .设射手每次击中目标的概率为, 连续射击10 次,则击中目标次数X 的概率分布为P( X k ) C10k(0.7)k (0.3)10 k(k0,1, 2,L ,10)三、计算题:1 .同时掷两颗骰子,设随机变量X为“两颗骰子点数之和”求:( 1)X的概率分布;(2)P( X3) ;(3)P( X12)解:(1)P( X2)1P( X3)2P( X4)3P(X 5)4,,,,36363636P( X6)5,P( X7) 6 , P( X5 436 8), P(X 9)363636P( X10)3 ,P( X11)2 ,P( X 1363612)36所以 X 的概率分布列:X 2 34 5 6 7 89 10 11 12P12 34 5 6 5 4 3 2 1363636363636 3636363636(2) P(X3) 336( 3) P(X>12)=02 .产品有一、 二、三等品及废品四种, 其中一、 二、三等品及废品率分别为 60%,10%,20%及 10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。

概率论与数理统计习题及答案-第二章

概率论与数理统计习题及答案-第二章
P( X 15) 1 0.000069
k0 k !
(2) P(保险公司获利不少于 10000)
P(30000 2000X 10000) P(X 10)
10 e5 5k
0.986305
k0 k !
即保险公司获利不少于 10000 元的概率在 98%以上
5
分别为随机变量 X,Y 的概率分布,如果已知 P{X≥1}= ,试求 P{Y≥1}.
9
5
4
【解】因为 P( X 1) ,故 P( X 1) .
9
9

P( X 1) P(X 0) (1 p)2
故得
(1 p)2 4 ,
9
1

p .
3
从而
P(Y 1) 1 P(Y 0) 1 (1 p)4 65 0.80247
3 0.512
4.(1) 设随机变量 X 的分布律为
2
k P{X=k}= a ,
k!
其中 k=0,1,2,…,λ>0 为常数,试确定常数 a. (2) 设随机变量 X 的分布律为
P{X=k}=a/N, k=1,2,…,N, 试确定常数 a. 【解】(1) 由分布律的性质知
1

P( X
习题二
1.一袋中有 5 只乒乓球,编号为 1,2,3,4,5,在其中同时取 3 只,以 X 表示取出的 3 只
球中的最大号码,写出随机变量 X 的分布律.
【解】
X 3, 4, 5
故所求分布律为
1 P( X 3) 0.1
C35 3 P( X 4) 0.3 C35 P( X 5) C24 0.6 C35

概率论与数理统计-第二章习题附答案

概率论与数理统计-第二章习题附答案

概率论与数理统计-第二章习题附答案习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律. 解X0 1P1-p p2. 已知随机变量X 只能取-1,0,1,2四个值,且取这四个值的相应概率依次为c c c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =.所求概率为P {X <1| X≠}=258167852121}0{}1{=++=≠-=cc c c X P X P .3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}. 解 注意p{x=k}=kk n knC p q -,由题设5{9P X =≥21}1{0}1,P X q =-==- 故213q p =-=. 从而{P Y≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 X 的分布律是X3 4 5 P 110 31035 习题2-3X -1 01P0.15 0.200.65求分布函数F (x ), 并计算概率P {X <0}, P {X <2},P {-2≤X <1}.解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1;(4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩(2){11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+- 11111().24242ππππ=+⋅---= 3. 设随机变量X 的分布函数为F (x )=0, 0, 01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41. 选择题(1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A) 13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C)22()2,0,()20,0.≥x x f x x μσπσ--=<⎧⎪⎨⎪⎩ (D)e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1<μ2. (D) μ1 >μ2.答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u . (C) 1-2u α.(D)α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ? 解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k kP k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是34d 0.5ax x =⎰, 因此42a =. 4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )= 2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X≤12201112d 2240}x x x ===⎰; 1{4P X <≤12141152}2d 1164x x x ===⎰.6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得1222011201111d ()d []122x x A x x x Ax x A =+-=+-=-⎰⎰, 于是 2A =; (2) 由公式()()d x F x f x x -∞=⎰可得(过程简略)220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率. 解 2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=.8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 若方程有实根, 则 21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{22}P X =--<<21d 5x =-215=-10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--, 于是22()10.3Φσ-=, 从而2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,2μσ==所以Z ~(5,8)N .概率密度为()f z =2(5)16,4x x π---∞<<+∞. 3. 已知随机变量X 的分布律为X-1137P 0.37 0.05 0.2 0.13 0.25(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律.解 (1)2-X-5 -1 1 2 3P 0.25 0.13 0.2 0.05 0.37 (2) 3+X 23 4 12 52P 0.05 0.57 0.13 0.254. 已知随机变量X 的概率密度为()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 )(y F Y={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x--∞⎰. 于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解 因为对于0<y <4,(){Y F y P Y=≤2}{y P X =≤}{y P y =-X y ()()XX F y F y =--.于是随机变量2Y X =的概率密度函数为()Y f y ()22X X f y f y yy=-0 4.4y y=<< 即 ()04,40,.其它f y y y=<<⎩。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

(完整版)概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

(完整版)概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P 0.6 ;=>)3(X P 0.1 ;=>=)04(X X P 0.125 .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则()P AB =____________.(0.18)5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 0.16. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x x a x f ,则=a π1;=>)0(X P 0.5 ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为0.6 , 0.3 ,0.1,则()E X = 0.515.设X为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=4.8,则n= 。

自考概率论与数理统计第二章习题

自考概率论与数理统计第二章习题

二、随机变量及其分布08年1月3. 设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是( ) A.f(x)=.;11,0,其它<<-⎩⎨⎧x xB.f(x)=.;11,,02其它<<-⎩⎨⎧x x C.f(x)=.;11,0,21其它<<-⎪⎩⎪⎨⎧xD.f(x)=.;11,0,2其它<<-⎩⎨⎧x4.设随机变量X~N(1,4),5.0)0(,8413.0)1(=Φ=Φ,则事件{13X ≤≤}的概率为( ) A.0.1385 B.0.2413C.0.2934D.0.341316.设随机变量X 服从区间[0,5]上的均匀分布,则P {}3≤X = ___________.28.袋中装有5只球,编号为1,2,3,4,5,现从袋中同时取出3只,以X 表示取出的3只球中的最大号码,试求:(1)X 的概率分布;(2)X 的分布函数;(3)Y=2X +1的概率分布。

08年4月2.下列各函数中,可作为某随机变量概率密度的是( ) A .⎩⎨⎧<<=其他,0;10,2)(x x x fB .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f3.某种电子元件的使用寿命X (单位:小时)的概率密度为⎪⎩⎪⎨⎧<≥=,100,0;100,100)(2x x x x f 任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21 D .32 4.下列各表中可作为某随机变量分布律的是( ) A .B .C .D .5.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=,x ,;x ,ce f(x)x -0005则常数c 等于( )A.-51B .51 C .1 D .514.已知随机变量X 服从参数为λ的泊松分布,且P {}0=X =e -1,则λ=_________. 15.在相同条件下独立地进行4次射击,设每次射击命中目标的概率为0.7,则在4次射击中命中目标的次数X 的分布律为P {}i X ==________,i =0,1,2,3,4.16.设随机变量X 服从正态分布N (1,4),Φ(x )为标准正态分布函数,已知Φ(1)=0.8413, Φ(2)=0.9772,则P {}=<3X ___________. 17.设随机变量X ~B (4,32),则P {}1<X =___________. 18.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x X x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩; 则当-6<x <6时,X 的概率密度f (x )=______________.19.设随机变量X 的分布律为 Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)=_________________.全国2008年7月5.已知随机变量X 的分布函数为001012()213313x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩,则P }{1X ==( )A .61B .21C .32 D .114.设随机变量X 服从区间[]10,0上的均匀分布,则P (X>4)=________________. 15.在[]T ,0内通过某交通路口的汽车数X 服从泊松分布,且已知P (X=4)=3P (X=3),则在[]T ,0内至少有一辆汽车通过的概率为________________.28.甲在上班路上所需的时间(单位:分)X~N (50,100).已知上班时间为早晨8时,他每天7时出门,试求:(1)甲迟到的概率;(2)某周(以五天计)甲最多迟到一次的概率. (Φ(1)=0.8413,Φ(1.96)=0.9750,Φ(2.5)=0.9938)08年10月3.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31B .3eC .11--eD .1311--e4.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31C .3D .413.设离散型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤--<=,2,1,21,31,1,0)(x x x x F 则{}==2X P _______.14.设随机变量)1,1(~-U X ,则=⎭⎬⎫⎩⎨⎧≤21X P _______.15.设随机变量)31,4(~B X ,则{}=>0X P _______.16.设随机变量)4,0(~N X ,则{}=≥0X P _______09年1月3.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x 1,x 2;1x 0,x 其它 则P{0.2<X<1.2}的值是( )A.0.5B.0.6C.0.66D.0.7 15.已知随机变量X 的分布函数为F(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<3x 13x 1321x 0210x 0 则P{2<X ≤4}=___________。

概率论与数理统计(茆诗松)第二版课后第二章习题参考答案

概率论与数理统计(茆诗松)第二版课后第二章习题参考答案
1
2× 2 4 1× 2 2 = , P{Y = 5} = 2 = , 2 6 36 6 36 故 Y 的分布列为 P{Y = 4} =
Y P
0 6 36
1 10 36
2 8 36
3 6 36
4 4 36
5 2 . 36
3. 口袋中有 7 个白球、3 个黑球. (1)每次从中任取一个不放回,求首次取出白球的取球次数 X 的概率分布列; (2)如果取出的是黑球则不放回,而另外放入一个白球,此时 X 的概率分布列如何. 解: (1)X 的全部可能取值为 1, 2, 3, 4,
且 P{ X = 1} =
X P
1 2 3 4 . 0.7 0.24 0.054 0.006
4. 有 3 个盒子,第一个盒子装有 1 个白球、4 个黑球;第二个盒子装有 2 个白球、3 个黑球;第三个盒 子装有 3 个白球、2 个黑球.现任取一个盒子,从中任取 3 个球.以 X 表示所取到的白球数. (1)试求 X 的概率分布列; (2)取到的白球数不少于 2 个的概率是多少? 解:设 A1 , A2 , A3 分别表示“取到第一个、第二个、第三个盒子” , (1)X 的全部可能取值为 0, 1, 2, 3, 且 P{X = 0} = P (A1) P{X = 0 | A1} + P (A2) P{X = 0 | A2} + P (A3) P{X = 0 | A3}且 P{ X = 1}Fra bibliotek=X P
1 11 36
2 9 36
3 7 36
4 5 36
5 3 36
6 1 ; 36
(2)Y 的全部可能取值为 0, 1, 2, 3, 4, 5, 且 P{Y = 0} =
6 6 5 × 2 10 = , P{Y = 1} = 2 = , 6 2 36 6 36 4× 2 8 3× 2 6 P{Y = 2} = 2 = , P{Y = 3} = 2 = , 6 36 6 36

《概率论与数理统计》第二章习题解答

《概率论与数理统计》第二章习题解答

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45 k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

概率论与数理统计第二章习题 (1)

概率论与数理统计第二章习题 (1)

这样, 我们对随机事件的研究就可以转化成对随机 变量的研究.
正如研究随机试验那样, 我们不仅要知道随机试验可能 出现哪些结果, 更要了解这些结果出现的概率有多大.
同样对随机变量, 我们不仅要知道它取哪些值, 还要知道它取这些值的概率, 也就是该随机变量 的概率分布.
概率分布的定义
随机变量X的可能取值和它取这些值的概率称为X 的概率分布. 本章的重点就是考察随机变量的概率分布. 概率分 布由于随机变量的特点有不同的表达方式, 下面首 先介绍一个通用的工具:随机变量的分布函数.
当1≤x<2时, F(x)=P(X≤x)=P(X=0)+P(X=1)=1/2 当2≤x<3时, F(x)=P(X≤x)=P(X=0)+P(X=1)+P(X=2)=7/8
当x≥3时, F(x)=P(X≤x)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=1 综上所述, X的分布函数为:
0 1/8 F ( x ) 1/2 7 /8 1 当 x 0 当0 x 1 当1 x 2 当2 x 3 当3 x

P ( x i 1 X x i )
i 1

[ F ( x i ) F ( x i 1 )]
i 1
F ( x1 ) l imF ( x n )
n
所以,
F ( x0 ) lim F ( xn ) F ( x0 0) .
n
从例二中X的F(x)图象, 可以清楚地看出分布函数的 这三条性质.
因为一个离散随机变量只取有限个或可列无限个值, 所以我 们可以定义其取每个值的概率, 即给出该变量的概率分布列.

《概率论与数理统计》第二章习题解答 2

《概率论与数理统计》第二章习题解答 2

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为;投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X2、,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P:106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

)(3)一篮球运动员的投篮命中率为45%,以X表示他首次投中时累计已投篮的次数,写出X的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k-1p ﻩk=1,2,……(2)Y =r+n={最后一次实验前r+n-1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k}= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45 ﻩk=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

概率论与数理统计+第二章+随机变量及其分布+练习题

概率论与数理统计+第二章+随机变量及其分布+练习题

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题1.假设X 是在区间(0,1)内取值的连续型随机变量,而X Y -=1,已知{}75.029.0=≤X P ,则满足{}25.0=≤K Y P 的常数k= .2.设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p= .3.设10件产品中恰好有2件不合格品,从中一件一件地抽出产品直到抽到合格品为止,则最后抽出产品件数X 的分布函数为 .4.设随机变量X 的分布函数为()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=,,若;,若;,若;,若3 131 210 20 0x x x x x x F ,则P {}25.0<≤X = .5.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 .6.设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = .7.若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 8 .设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = .9.若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 10.已知离散型随机变量X 的可能取值为5202,,,-,相应的概率依次为a 1,a 23,a45,a87,求)0|2|(|≥≤X X P = . 11.设随机变量X 的概率密度函数为⎩⎨⎧<<=其它0102)(x x x f ,Y 表示对X 的3次独立重复观察中事件}21{≤X 出现的次数,则)2(=Y P = . 12.已知随机变量X 服从正态分布)4,2(N ,则2/X e Y =的概率密度)(y f Y = .二、选择题1.设随机变量X 和Y 相互独立,其分布函数相应为)(1x F 和)(2y F ,则随机变量{}Y X U ,max =的分布函数为=)(u F ( ). (A) {})(),(max 21u F u F ; (B) {})(1),(1min 21u F u F --; (C) )()(21u F u F ; (D) ()[]()[]u F u F 211 11---.2.设随机变量),(~2σμN X ,则随σ的增大,概率{}σμ≤-X P ( ). (A) 单调增大; (B) 单调减小; (C) 保持不变; (D) 增减不定.3.假设X 是只有两个可能值的离散型随机变量,Y 是连续型随机变量,且X 和Y 相互独立,则随机变量Y X +的分布函数( ).(A) 是阶梯函数; (B) 恰好有一个间断点;(C) 是连续函数; (D) 恰好有两个间断点. 4.下列函数中,可以做随机变量的分布函数的是( ). (A)211)(x x F +=; (B)x x F arctan 2143)(π+=;(C)⎪⎩⎪⎨⎧>+≤=0,10,0)(x x x x x F ; (D) x x F arctan 21)(π+=.5.设函数⎪⎩⎪⎨⎧≥<≤<=1110200)(x x xx x F ,则)(x F ( ). (A )是随机变量的分布函数 ; (B )不是随机变量的分布函数; (C )是离散型随机变量的分布函数;(D )是连续型随机变量的分布函数 .6.已知随机变量X 的分布列为: ,2,1,0,!2)(===k k Ck X P k ,则常数C 等于( ). (A )1-e ; (B )2-e ; (C )3-e ; (D )4-e .7.设21,X X 是任意两个连续型随机变量,它们的概率密度函数分别为)(),(21x f x f ,分布函数分别为)(),(21x F x F ,则( ).(A ))(32)(3121x f x f +必为某一随机变量的概率密度; (B ))()(21x f x f 必为某一随机变量的概率密度; (C ))()(21x F x F +必为某一随机变量的分布函数; (D ))()(21x F x F -必为某一随机变量的分布函数.8.设随机变量Y X ,相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则( ).(A)1,2==b a ; (B) 2,1==b a ; (C) 1,2=-=b a ; (D) 2,1-==b a .⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数9.设X 为随机变量, 若矩阵的概率为0.5, 则( ).(A) X 服从区间[0,2]上的均匀分布; (B) X 服从二项分布B(2, 0.5); (C) X 服从参数为1的指数分布; (D) X 服从标准正态分布.10.设函数⎪⎩⎪⎨⎧≥<≤<=1110200)(x x xx x F ,则)(x F ( ). (A )是随机变量的分布函数; (B )不是随机变量的分布函数; (C )是离散型随机变量的分布函数; (D )是连续型随机变量的分布函数 .11.已知随机变量X 的分布列为: ,2,1,0,!2)(===k k Ck X P k ,则常数C 等于( ). (A )1-e ; (B )2-e ; (C )3-e ; (D )4-e .12.设随机变量X 服从参数为0>λ的泊松分布, 设8.0)11(=≤=X X P ,则λ等于( ).(A ) 0.8; (B ) 2 ; (C ) 4 ; (D ) 0.25.13.已知)7,1(~23N X ,则)21(<<X P 等于( ).(A ))1()2(Φ-Φ; (B ))1()2(3Φ-Φ; (C )21)1(-Φ; (D ))2()3(33Φ-Φ.14.设随机变量X 的任一线性函数0,≠+=a b aX Y 则下面命题不成立的是( ). (A) 如果X 是连续型随机变量, 则Y 也是连续型随机变量; (B) 如果X 是泊松分布, 则Y 也是泊松分布; (C) 如果X 是均匀分布, 则Y 也是均匀分布;(D) 如果X 是正态分布, 则Y 也是正态分布. 三、解答题1.一个正立方体容器盛有3/4的液体, 假设在其6个侧面(含上、下两个底面)的随机部位出现了一个小孔,液体经此小孔流出.求剩余液体液面的高度X 的分布函数)(x F .2.假设一装置启动后无故障工作的时间X (小时)服从指数分布,平均无故障工作的时间为2百小时;每次启动(在无故障的情形下)只需工作10小时便自行关机.试求该装置每次启动无故障工作的时间Y 的分布函数.3.设试验E 是一伯努利试验,其成功的概率为p, 而失败的概率为q=1-p .现在将E 独立地一次接一次地进行直到成功或完成n 次试验为止,其中n ≥2是给定的自然数.试求所作试验次数X 的概率分布.4.假设某自动生产线上产品的不合格品率为0.02,试求随意抽取的30件中, (1) 不合格品不少于两件的概率α;(2) 在已经发现一件不合格品的条件下,不合格品不少于两件的概率β.5.假设有10台设备,每台的可靠性(无故障工作的概率)为0.92,每台出现故障时需要由一人进行调整.问为保证在95%的情况下当设备出现故障时都能及时得到调整,至少需要安排几个人值班?6.假设一部机器在一个工作日因故停用的概率为0.2.一周使用5个工作日可创利润10万元;使用4个工作日可创利润7万元;使用3个工作日只创利润2万元;停用3天及多于3天亏损2万元.求所创利润的概率分布.7.某生产线平均每三分钟生产一件产品,假设不合格品率为0.01.问为使至少出现一件不合格品的概率超过95%最少需要多长时间?8.假设一日内到过某商店的顾客数服从参数为λ的泊松分布,而每个顾客实际购货的概率为p .分别以X 和Y 表示一日内到过该商店的顾客中购货和未购货的人数,分别求X 和Y 的概率分布.9.假设一商店每周(7天)平均售出56台电冰箱,其中因为质量问题要求返修的占5‰ .试求一个季度(90天)售出的电冰箱中返修件数X 的概率分布.10.假设随机变量X 服从正态分布)9 108(,N ,求满足{}01.0 =≥-a a X P 的常数a . 11.假设随机测量的误差()210,0~N X ,求在100次独立重复测量中,至少三次测量的绝对误差大于19.6的概率α的近似值.12.设)(1x F 和)(2x F 都是随机变量的分布函数,a 和b 是非负常数且1=+b a ,证明)()()(21x bF x aF x F +=具有随机变量的分布函数的基本性质.13.假设随机变量X 服从参数为λ的指数分布,)(x F 是其分布函数,证明随机变量Y =)(X F 在区间(0,1)上服从均匀分布.14.设随机变量X 的概率密度函数为xx e e Cx f -+=)(试求:(1)常数C ;(2)在对X 进行的5次独立观察中,X 的取值都小于1的概率. 15.连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.16.设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3)))(1(2)|(|a F a X P -=>17.一袋中装有4个球,球上分别记有号码1,2,3,4.从中任意取2个球,以X 记取出的球中小的号码.求X 的分布列与分布函数.18.使用了t 小时的计算机,在以后t ∆小时内损坏的概率等于)(t o t ∆+λ,其中λ为不依赖于t 的常数,假设在不相重叠的时间内,计算机损坏与否相互独立,求计算机在T 小时内损坏的概率.19.过平面上一点)1,0(任作一直线L 与x 轴的夹角为α,设α服从区间),0(π上的均匀分布,求(1)此直线在x 轴上的截距Z 的概率密度; (2)截距Z 在1到2之间的概率.20.设离散型随机变量X 的概率分布为 ,2,1,0,)(===n ap n X P n ,而且X 取奇数值的概率为73,试求常数a, p 的值. 21.设随机变量t 服从数学期望为21的指数分布,求方程042=++tx x 有实根的概率. 22.设随机变量X 的概率密度为∞<<∞-=-+-x e x f x x,1)(122π试求:(1)2X Y =的概率密度;(2))211(+<<X P 23. 设随机变量X 的概率密度为+∞<<∞-=-x e x f x ,21)(||, 求(1)||X Y =的分布函数)(y F Y ; (2)证明对任意的实数0,0>>b a ,均有 )()|(b Y P a Y b a Y P ≥=≥+≥. 24.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=其他08131)(32x x x f()x F 是X 的分布函数,求随机变量()x F Y =的分布函数.25.假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间为5小时, 设备定时开机, 出现故障时自动关机, 而无故障的情况下工作2小时便关机, (1)试求该设备每次开机无故障工作的时间Y 的分布函数)(y F Y ,(2) 求Ye Z =的分布函数,并判断Z 是否为连续型随机变量.26.设随机变量X 的可能取值为 ,,,2,1k ,且 ,2,1,21)(===k k X P k ,令 ⎩⎨⎧-=是奇数如果是偶数如果X 1X 1Y试求二次方程022=++Y t t 无实根的概率.27. 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x , 试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度. 28.设随机变量X 的概率密度函数为xx ee Cx f -+=)( 试求:(1)常数C ;(2)在对X 进行的5次独立观察中,X 的取值都小于1的概率;(3)求)0(>X P .29.过平面上一点)1,0(任作一直线L 与x 轴的夹角为α,设α服从区间),0(π上的均匀分布,求(1)此直线在x 轴上的截距Z 的概率密度; (2)截距Z 在1到2之间的概率.30. 设X X 1n ,, 为i.i.d. ~ 0-1分布(即贝努利分布),参数为p. 试对固定正整数k ≤ n ,求(1)P X k i i n ()==∑1;(2)P X k X i n i n(,)===∑11;(3)P( min{n: )},2,1,0k n X n ==≠. 31.设X 为只取正整数值的随机变量,则下列命题等价: (1)X 服从几何分布.(2) ,1,0,)()|(=>=>+>n m m X P n X n m X P . (3) ,1,0,,2,1)()|(====>+=n m m X P n X n m X P .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计--第二章随机变量及其分布练习
概率练习二
1、设随机变量X ~()πλ,且{2}{4}P X P X ===,则参数λ=( )
2、已知随机变量的分布律为
分布函数为 ,1,10()0.75,01,1c x d x F x x e x -∞<<-⎧⎪-≤<⎪
=⎨≤<⎪⎪≤<+∞
⎩,
则常数a =( ),b =( ),c =( ),d =( ),e =( ) 3、设X ~(2,)
b p ,Y ~(3,)b p ,若5
{1}9P X ≥=,则{1}P Y ≥=( )
4、某人投篮命中率为5
4
,直到投中为止,所用投球数为4的概率为( ) 5、设X ~2(,)N μσ,且关于y 的方程240y y X ++=无实根的概率是0.5,则参数μ=( )
6、离散型随机变量X 的分布函数为0,1
0.4,10()0.7,011,1
X x x F x x x <-⎧⎪-≤<⎪
=⎨≤<⎪⎪≥⎩,则X 的分布函数为( )
7、随机变量X 的密度函数为2
,0()0,
0x ke x f x x -⎧⎪>=⎨⎪≤⎩,则k =( );
{12}P X <≤=( );{1}P X ==( );{1}P X <=( )
8、随机变量X 的密度函数为,01()0,0)0,b kx x f x b k ,(其它⎧<<=>>⎨
⎩,且1
{}0.752P X >=, 则k =( ),b =( ) 9、设~(2),X N 且5.0)40(=<<X P ,则(0)P X
( )
(A) 0.65
(B) 0.45 (C) 0.95 (D) 0.25
10、下列函数中可以作为某个随机变量的分布函数的是( ) A.()
sin F x x B.22
()
2
x F x e ,()x
R C. 21
,0()11,1x F x x x ⎧<⎪
=+⎨⎪≥⎩ D. 0,0()0.3,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩
11、设随机变量X ~(0,1)N ,则随机变量Y X =的密度函数当0y >时是( )
A .
22
y -
B.
22
y -
C.
22
y -
D.
24
y -
12、设X 的分布函数是()F x ,则21Y X =+的分布函数为( )
A.11()22F y -
B. (21)F y +
C. 2()1F y +
D. 11()22
F y -
13、设)1,1(~N X ,概率密度函数为()f x ,下述选项正确的是( ).
A.5.0)0()0(=≤=≥X P X P ;
B.5.0)1()1(=≥=≤X P X P ;
C.
()()f x f x ,),(+∞-∞∈x ; D.)(1)(x F x F --=,),(+∞-∞∈x .
14、设随机变量X 的密度函数为)
1(1
)(2x x f +=
π,则X Y 2=的概率密度函数为( ).
A.
)
41(1
2x +π B.
)
4(2
2x +π C.
)
1(2
2x +π D.
)
4(1
2x +π.
15、随机变量),(~2σμN X ,其概率密度函数为
6
4
42
61)(+--=
x x e
x f π
(+∞<<∞-x )
试求2,σμ;若已知⎰
⎰∞
-+∞
=C
C
dx x f dx x f )()(,求C .
16、设连续型随机变量X 的概率密度为
⎩⎨
⎧≤≤=其他,
01
0,2)(x x x f 以Y 表示对X 的三次独立重复观测试验中“21≤X ”出现的次数,试求:概率)2(=Y P .
17、设某种电子元件的寿命(单位:小时)具有密度函数 290
,90()0,90
x f x x x ⎧>⎪
=⎨⎪≤⎩,求:
装有4只这种电子元件的仪器在开初使用的 120 小时内至少有一个需要更换的概
率.
18、设连续型随机变量X 的分布函数为()arctan ,()F x A B x x =+-∞<<+∞,
求:(1)常数,A B;(2)X的密度函数。

相关文档
最新文档