回归分析练习题与参考答案
统计学:相关回归分析习题与答案
一、单选题1、下列哪种关系属于相关关系而非函数关系?()A.销售总额与销售量B.价格与销售量C.工资总额与人均工资D.圆的面积与半径正确答案:B解析: B、函数关系是指现象之间存在的确定性的数量依存关系。
2、若两个变量之间的线性相关系数为0.9,则()。
A.回归系数为0.81B.判定系数为0.81C.回归估计标准误为0.81D.判定系数为0.95正确答案:B3、下列指标一定非负的是()。
A.回归系数bB.相关系数rC.回归估计标准误S yxD.回归常数a正确答案:C4、在回归直线方程中y c=a+bx,b 是直线的斜率,表明()。
A.当x 增加一个单位时,y 增加a的数量B.当y 增加一个单位时,x 的平均增加量C.当y 增加一个单位时,x 增加b的数量D.当x 增加一个单位时,y 的平均增加量正确答案:D5、相关系数r与回归系数b的关系是()。
A. b=r×S x/S yB. b=r×S y/S xC. r=b×S y/S xD. 以上都不对正确答案:B6、当所有的观察值y都落在直线y c=a+bx上时,x与y之间的相关系数是()。
A. r=1B.r=-1C. |r|=1D.r=0正确答案:C解析:当r=1或r=-1时,表示变量之间为完全相关7、相关系数r=0表示()。
A.不存在相关关系B.两变量独立C.不存在线性相关关系D.存在平衡关系正确答案:C8、对相关系数的显著性检验,通常采用的是()。
A.Z检验B.F检验C.χ2检验D.T检验正确答案:D9、线性回归的检验中,检验整个方程显著性的是()。
A.F检验B.DW检验C.t检验D.R检验正确答案:A10、下列现象的相关密切程度高的是A.商品销售额与商业利润率之间的相关系数是0.62B.商品销售额与流通费用率之间的相关系数为-0.76C.某商店职工人数与商品销售额之间的相关系数为0.79D.流通费用率与商业利润率之间的相关系数是-0.89正确答案:D二、多选题1、下列属于负相关的现象是()。
第七章回归与相关分析练习及答案
第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值X围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
12.判断一条回归直线与样本观测值拟合程度好坏的指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。
回归分析练习试题和参考答案解析
1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
α=)。
(5)检验回归方程线性关系的显著性(0.05(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:系数a模型非标准化系数标准系数t Sig.相关性B标准误差试用版零阶偏部分1(常量).003人均GDP.309.008.998.000.998.998.998 a. 因变量: 人均消费水平有很强的线性关系。
(3)回归方程:734.6930.309y x=+系数a模型非标准化系数标准系数t Sig.相关性回归系数的含义:人均GDP没增加1元,人均消费增加元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t显著性B标准误Beta1(常量)人均GDP(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1.998a.996.996a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
模型摘要模型R R 方调整的 R 方估计的标准差1.998(a)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F检验:Anova b模型平方和df均方F Sig.1回归.6801.680.000a 残差5总计.7146a. 预测变量: (常量), 人均GDP。
回归分析练习题及参考答案
1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元北京辽宁上海江西河南贵州陕西 224601122634547485154442662454973264490115462396220816082035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
回归分析时间序列分析答案
回归分析时间序列分析答案一、单项选择题1、下面的关系中不是相关关系的是(D )A、身高与体重之间的关系B、工资水平与工龄之间的关系C、农作物的单位面积产量与降雨量之间的关系D、圆的面积与半径之间的关系2、具有相关关系的两个变量的特点是(A )A、一个变量的取值不能由另一个变量唯一确定B、一个变量的取值由另一个变量唯一确定C、一个变量的取值增大时另一个变量的取值也一定增大D、一个变量的取值增大时另一个变量的取值肯定变小3、下面的假定中,哪个属于相关分析中的假定(B)A、两个变量之间是非线性关系B、两个变量都是随机变量C、自变量是随机变量,因变量不是随机变量D、一个变量的数值增大,另一个变量的数值也应增大4、如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,则称这两个变量之间为(A )A、完全相关关系B、正线性相关关系C、非线性相关关系D、负线性相关关系 5、根据你的判断,下面的相关系数取值哪一个是错误的( C )A、–0.86B、0.78C、1.25D、0x6、某校经济管理类的学生学习统计学的时间()与考试成绩(y)之间建立线性回归方程yx=a+b。
经计算,方程为y =200—0.8x,该方程参数的计算(C) ccA a值是明显不对的B b值是明显不对的C a值和b值都是不对的D a值和b值都是正确的 7、在回归分析中,描述因变量y如何依赖于自变量x和误差项ε的方程称为(B)A、回归方程B、回归模型C、估计回归方程D、经验回归方程,,,x,,8、在回归模型y=中,ε反映的是(C ) 01A、由于x的变化引起的y的线性变化部分B、由于y的变化引起的x的线性变化部分C、除x和y的线性关系之外的随机因素对y的影响D、由于x和y的线性关系对y的影响9、如果两个变量之间存在负相关关系,下列回归方程中哪个肯定有误(B),,A、=25–0.75xB、= –120+ 0.86x yy,,C、=200–2.5xD、= –34–0.74x yy10、说明回归方程拟合优度的统计量是(C )A、相关系数B、回归系数C、判定系数D、估计标准误差211、判定系数R是说明回归方程拟合度的一个统计量,它的计算公式为(A ) SSRSSRSSESSTA、 B、 C、 D、 SSTSSESSTSSR12、为了研究居民消费(C)与可支配收入(Y)之间的关系,有人运用回归分析的方法,得到以下方程:在该方程中0.76的含义是(B ) LnC,2.36,0.76LnY,A、可支配收入每增加1元,消费支出增加0.76元B、可支配收入每增加1%,消费支出增加0.76%C、可支配收入每增加1元,消费支出增加76%D、可支配收入每增加1%,消费支出增加76%13、年劳动生产率z(千元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均(A)A增加70元 B减少70元 C增加80元 D减少80元14、下列回归方程中哪个肯定有误(A),,A、y=15–0.48x,r=0.65B、y= –15 - 1.35x,r=-0.81,,C、yy=-25+0.85x,r=0.42D、=120–3.56x,r=-0.96215、若变量x与y之间的相关系数r=0.8,则回归方程的判定系数R为(C )A、0.8B、0.89C、0.64D、0.40 16、对具有因果关系的现象进行回归分析时(A)A、只能将原因作为自变量B、只能将结果作为自变量C、二者均可作为自变量D、没有必要区分自变量二、多项选择题1(下列哪些现象之间的关系为相关关系(ACD)A家庭收入与消费支出关系 B圆的面积与它的半径关系C广告支出与商品销售额关系 D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2(相关系数表明两个变量之间的(DE)A线性关系 B因果关系 C变异程度 D相关方向 E相关的密切程度3、如下的现象属于负相关的有(BCD)。
专题05 回归分析(解析版)
专题5 回归分析例1.已知回归方程y=5x+1,则该方程在样本(1,4)处的残差为()A.﹣2B.1C.2D.5【解析】解:当x=1时,y=5x+1=6,∴方程在样本(1,4)处的残差是4﹣6=﹣2.故选:A.例2.研究变量x,y得到一组样本数据,进行回归分析,有以下结论①残差平方和越小的模型,拟合的效果越好;②用相关指数R2来刻画回归效果,R2越小说明拟合效果越好;③在回归直线方程y=−0.2x+0.8中,当解释变量x每增加1个单位时,预报变量y平均减少0.2个单位;④若变量y和x之间的相关系数为r=﹣0.9462,则变量y和x之间的负相关很强.以上正确说法的是①③④.【解析】解:①可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故①正确;②用相关指数R2来刻画回归效果,R2越大说明拟合效果越好,故②错误;③在回归直线方程y=−0.2x+0.8中中,当解释变量x每增加1个单位时,预报变量y平均减少0.2个单位,故③正确;④若变量y和x之间的相关系数为r=﹣0.9462,r的绝对值趋向于1,则变量y和x之间的负相关很强,故④正确.故答案为:①③④.例3.下列命题中,正确的命题有②③.①回归直线y=b x+a恒过样本点中心(x,y),且至少过一个样本点;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适;④两个模型中残差平方和越大的模型的拟合效果越好.【解析】解:①回归直线y=b x+a恒过样本点中心(x,y),不一定过样本点,故①正确;②用相关指数R2来刻画回归效果,表示预报变量对解释变量变化的贡献率,R2越接近于1说明模型的拟合效果越好,正确;③残差图中残差点比较均匀的落在水平的带状区域中,说明选用的模型比较合适,正确;④两个模型中残差平方和越大的模型的拟合效果越差.故④错误,故正确的是②③,故答案为:②③例4.下列命题:①相关指数R2越小,则残差平方和越大,模型的拟合效果越好.②对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越大.③残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越高.④两个随机变量相关性越强,则相关系数的绝对值越接近0.其中错误命题的个数为4.【解析】解:对于①,相关指数R2越小,则残差平方和越大,此时模型的拟合效果越差,所以①错误;对于②,对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”可信程度越小,所以②错误;对于③,残差点比较均匀地落在水平带状区域内,带状区域越宽,说明模型拟合精度越低,所以③错误;对于④,两个随机变量相关性越强,则相关系数的绝对值越接近1,所以④错误.综上知,错误命题的序号是①②③④,共4个.故答案为:4.例5.垃圾是人类日常生活和生产中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,所以需要无害化、减量化处理.某市为调査产生的垃圾数量,采用简单随机抽样的方法抽取20个县城进行了分析,得到样本数据(x i,y i)(i=1,2,……,20),其中x i和y i分别表示第i个县城的人口(单位:万人)和该县年垃圾产生总量(单位:吨),并计算得∑20i=1x i=80,∑20i=1y i=4000,∑20i=1(x i−x)2=80,∑20i=1(y i−y)2=8000,∑20i=1(x i−x)(y i−y)=7000.(1)请用相关系数说明该组数据中y与x之间的关系可用线性回归模型进行拟合;(2)求y关于x的线性回归方程;(3)某科研机构研发了两款垃圾处理机器,如表是以往两款垃圾处理机器的使用年限(整年)统计表:1年2年3年4年5年使用年限台数款式甲款520151050乙款152010550某环保机构若考虑购买其中一款垃圾处理器,以使用年限的频率估计概率.根据以往经验估计,该机构选择购买哪一款垃圾处理机器,才能使用更长久?参考公式:相关系数r=∑n i=1i−x)(y i−y)√∑i=1(x i−x)∑i=1(y i−y)2.对于一组具有线性相关关系的数据(x i,y i)(i=1,2,……,n),其回归直线y=b x+a的斜率和截距的最小二乘估计分别为:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2,a=y−b x.【解析】解:(1)由题意知相关系数r=∑20i=1i−x)(y i−y)√∑i=1(x i−x)2∑i=1(y i−y)2=√80×8000=78=0.875,因为y与x的相关系数接近1,所以y与x之间具有较强的线性相关关系,可用线性回归模型进行拟合.(2)由题意可得,b=∑20i=1(x i−x)(y i−y)∑20i=1(x i−x)2=70080=8.75,a=y−b x=400020−8.75×8020=200−8.75×4=165,所以y=8.75x+165.(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X(单位:万元)的分布列为X﹣50050100P0.10.40.30.2E(X)=﹣50×0.1+0×0.4+50×0.3+100×0.2=30(万元)购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y(单位:万元)的分布列为:Y﹣302070120P0.30.40.20.1E(Y)=﹣30×0.3+20×0.4+70×0.2+120×0.1=25(万元)因为E(X)>E(Y),所以该县城选择购买一台甲款垃圾处理机器更划算.例6.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.据统计该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,请计算相关系数r(精确到0.01),并以此判定是否可用线性回归模型拟合y 与x的关系?若是请求出回归直线方程,若不是请说明理由;(2)过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:周光照量X(单位:小时)30<X<5050≤X≤70n≥2光照控制仪最多可运行台数542若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了5台光照控制仪,求商家在过去50周每周利润的平均值.附:对于一组数据(x1,y1),(x2,y2),……,(x n,y n),其相关系数公式r=∑n i=1i−x)(y i−y)√∑i=1i−x)2∑i=1i−y)2,回归直线y=b x+a的斜率和截距的最小二乘估计分别为:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nxy∑n i=1(x i−x)2,a=y−b x,参考数据√0.3≈0.55,√0.9≈0.95.【解析】解:(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+55=4,因为∑5i=1(x i−x)(y i−y)=(−3)×(−1)+0+0+0+3×1=6,√∑5i=1(x i−x)2=√(−3)2+(−1)2+02+12+32=2√5,√∑5i=1(y i−y)2=√(−1)2+02+02+02+12=√2.所以相关系数r=∑n i=1i−x)(y i−y)√∑i=1i −x)2√∑i=1i−y)2=2√5⋅√2=√910≈0.95,因为r>0.75,所以可用线性回归模型拟合y与x的关系,因为b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=620=0.3,a=y−b x=2.5,所以回归直线方程y=0.3x+2.5.(2)记商家周总利润为Y元,由条件可得在过去50周里:X>70时,共有10周,只有2台光照控制仪运行,周总利润Y=2×3000﹣3×1000=3000元,当50≤X≤70时,共有35周,有4台光照控制仪运行,周总利润Y=4×3000﹣1×1000=11000元,当X<50时,共有5周,5台光照控制仪都运行,周总利润Y=5×3000=15000元,所以过去50周每周利润的平均值Y=3000×10+11000×35+15000×550=9800元,所以商家在过去50周每周利润的平均值为9800元.例7.湖南省从2021年开始将全面推行“3+1+2”的新高考模式,新高考对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.某校的一次年级统考中,政治、生物两选考科目的原始分分布如表:等级A B C D E比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]生物学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]现从政治、生物两学科中分别随机抽取了20个原始分成绩数据,作出茎叶图:(1)根据茎叶图,分别求出政治成绩的中位数和生物成绩的众数;(2)该校的甲同学选考政治学科,其原始分为82分,乙同学选考生物学科,其原始分为91分,根据赋分转换公式,分别求出这两位同学的转化分;(3)根据生物成绩在等级B的6个原始分和对应的6个转化分,得到样本数据(Y i,T i),请计算生物原始分Y i与生物转换分T i之间的相关系数,并根据这两个变量的相关系数谈谈你对新高考这种“等级转换赋分法”的看法.附1:等级转换的等级人数占比与各等级的转换分赋分区间等级A B C D E原始分从高到低排序的等级人数占比约15% 约35% 约35% 约13% 约2%转换分T 的赋分区间[86,100] [71,85][56,70] [41,55] [30,40]附2:计算转换分T 的等比例转换赋分公式:Y 2−Y Y−Y 1=T 2−T T−T 1.(其中:Y 1,Y 2别表示原始分Y 对应等级的原始分区间下限和上限;T 1,T 2分别表示原始分对应等级的转换分赋分区间下限和上限.T 的计算结果按四舍五入取整).附3:∑ 6i=1(Y i −Y )(T i −T )=74,√∑ 6i=1(Yi −Y)2∑ 6i=1(T i −T)2=√5494≈74.12,r =∑n i=1i −Y)(T i −T)√∑i=1i −Y)2∑i=1i −T)2.【解析】解:(1)根据茎叶图知,政治成绩的中位数为72,生物成绩的众数为73; (2)甲同学选考政治学科的等级为A ,由转换赋分公式:98−8282−81=100−T T−86,解得T =87;乙同学选考生物学科的等级为A ,由赋分转换公式:100−9191−90=100−T T−86,解得T =87;所以甲、乙两位同学的转换分都是87分. (3)由题意知,r =∑n i=1i −Y)(T i −T)√∑ i=1(Y i −Y)2∑ i=1(T i −T)2=7474.12≈0.998, 说法1:等级转换赋分公平,因为相关系数十分接近1,接近函数关系,因此高考这种“等级转换赋分”具有公平性与合理性.说法2:等级转换赋分法不公平,在同一等级内,原始分与转化分是确定的函数关系,理论上原始分与转化分的相关系数为1,在实际赋分过程中由于数据的四舍五入,使得实际的转化分与应得的转化分有一定的误差,极小部分同学赋分后会出现偏高或偏低的现象. (只要说法有道理,都可以得分).例8.某市房管局为了了解该市市民2018年1月至2019年1月期间买二手房情况,首先随机抽样其中200名购房者,并对其购房面积m (单位:平方米,60≤m ≤130)进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价y (单位:万元/平方米),制成了如图2所示的散点图(图中月份代码1﹣13分别对应2018年1月至2019年1月).(Ⅰ)试估计该市市民的购房面积的中位数m0;(Ⅱ)现采用分层抽样的方法从购房面积位于[110,130]的40位市民中随机抽取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在[120,130]的概率;(Ⅲ)根据散点图选择y=a+b√x和y=c+d lnx两个模型进行拟合,经过数据处理得到两个回归方程,分别为y=0.9369+0.0285√x和y=0.9554+0.0306lnx,并得到一些统计量的值如表所示:y=0.9369+0.0285√x y=0.9554+0.0306lnx ∑13i=1(y i−y i)20.0005910.000164∑13i=1(y i−y)20.006050请利用相关指数R2判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出2019年12月份的二手房购房均价(精确到0.001).【参考数据】ln2≈0.69,ln3≈1.10,ln23≈3.14,ln25≈3.22,√2≈141,√3≈1.73,√23≈4.80.【参考公式】R2=1−∑ni=1(y i−y i)2∑n i=1(y i−y)2.【解析】解:(I)由频率分布直方图,可得,前三组频率和为0.05+0.1+0.2=0.35,前四组频率和为0.05+0.1+0.2+025=0.6,故中位数出现在第四组,且m0=90+10×0.150.25=96.(Ⅱ)设从位于[110,120)的市民中抽取x人,从位于[120,130]的市民中抽取y人,由分层抽样可知:440=x30=y10,则x=3,y=1,在抽取的4人中,记3名位于[11,120)的市民为A1,A2,A3,位于[120,130]的市民为B则所有抽样情况为:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B)共6种.而其中恰有一人在位于购房面积[120,130]的情况共有3种,故所求概率P=36=12,(III)设模型y=0.9369+0.0285√x和y=0.955+0.0306lnx的相关指数分别为R12,R22,则R12=1−0.0005910.006050,R22=1−0.0001640.006050,显然R12<R22,故模型y=0.9554+0.0306lnx的拟合效果更好.由2019年12月份对应的代码为24,则y=0.9554+0.0306ln24=0.9554+0.0306(3ln2+ln3)≈1.052万元/平方米.例9.某汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(亿元)与科技改造直接收益y(亿元)的数据统计如表:x2346810132122232425y1322314250565868.56867.56666当0<x≤16时,建立了y与x的两个回归模型:模型①:y=4.1x+11.8;模型②:y=21.3√x−14.4;当x>16时,确定y与x满足的线性回归方程为:y=−0.7x+a.(Ⅰ)根据下列表格中的数据,比较当0<x≤16时模型①、②的相关指数R2,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为16亿元时的直接收益.回归模型模型①模型②回归方程y=4.1x+11.8y=21.3√x−14.4∑7i=1(y i−y i)2182.479.2(附:刻画回归效果的相关指数R2=1−∑n i=1(y i−y i)2∑n i=1(y i−y)2.)(Ⅱ)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入16元与20亿元时公司实际收益的大小;(附:用最小二乘法求线性回归方程y=b x+a的系数公式b=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2;a=y−b x)(Ⅲ)科技改造后,“东方红”款汽车发动机的热效率X大幅提高,X服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%但不超过53%,不予奖励;若发动机的热效率超过50%但不超过53%,每台发动机奖励2万元;若发动机的热效率超过53%,每台发动机奖励4万元.求每台发动机获得奖励的数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6827,P(μ﹣2σ<ξ<μ+2σ)=0.9545.)【解析】解:(Ⅰ)由表格中的数据,有182.4>79.2,即182.4∑7i=1(y i−y)2>79.2∑7i=1(y i−y)2,∴模型①的R2小于模型②的R2,说明模型②的刻画效果更好.∴当x=16亿元时,科技改造直接收益的预测值为y=21.3×√16−14.4=70.8(亿元);(Ⅱ)由已知可得,x−20=0.5+2+3.5+4+55=3,则x=23,y−60=8.5+8+7.5+6+65=7.2,则y=67.2,∴a=y−0.7x=67.2+0.7×23=83.3,∴当x>16亿元时,y与x满足线性回归方程y=−0.7x+83.3,当x=20亿元时,科技改造直接收益的预测值为y=−0.7×20+83.3=69.3.∴当x=20亿元时,实际收益的预测值为69.3+10=79.3亿元>70.8亿元.∴科技改造投入20亿元时,公司的实际收益更大;(Ⅲ)∵P(0.52﹣0.02<X<0.52+0.02)=0.9545,∴P(X>0.50)=1+0.95452=0.97725,P(X≤0.50)=1−0.95452=0.02275,∵P(0.52﹣0.01<X<0.52+0.01)=0.6827,∴P(X>0.53)=1−0.68272=0.15865,∴P(0.50<X≤0.53)=0.97725﹣0.15865=0.8186.设每台发动机获得的奖励为Y(万元),则Y的分布列为:Y024P0.022750.81860.15865∴每台发动机获得的奖励的数学期望为:E(Y)=0×0.02275+2×0.8186+4×0.15865=2.2718(万元).例10.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的 频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2 +77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为 r =0.99→1,线性相关很强,故可以用线性回归直线来 刻画中学生身高与体重的相关, x =145+155+165+175+1855=165,y =45+75+60+53.6+66.45=60,b =∑ 8i=1x i y i −8x⋅y ∑ 8i=1x i 2−8x2=38608+175×66.4−5×165×601000=0.728, a =y −b x =60−0.728×165=−60.12, 所以回归直线方程为:y =0.728x −60.12,(3)残差平方和越小或相关指数 R 2 越接近于1,线性回归模型拟合效果越好.例11.2019年的“金九银十”变成“铜九铁十”,国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.如图是该地某小区2018年11月至2019年1月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1~13分别对应2018年11月~2019年11月)根据散点图选择y =a +b √x 和y =c +dlnx 两个模型进行拟合,经过数据处理得到两个回归方程分别为y ^=0.9369+0.0285√x和y^=0.9554+0.0306lnx,并得到以下一些统计量的值:y^=0.9369+0.0285√x y^=0.9554+0.0306lnx ∑13i=1(y i−y^i)20.0005910.000164∑13i=1(y i−y)20.006050(1)请利用相关指数R2判断哪个模型的拟合效果更好;(2)某位购房者拟于2020年4月购买这个小区m(70≤m≤160)平方米的二手房(欲购房为其家庭首套房).若购房时该小区所有住房的房产证均已满2但未满5年,请你利用(1)中拟合效果更好的模型解决以下问题:(i)估算该购房者应支付的购房金额;(购房金额=房款+税费,房屋均价精确到0.001万元/平方米)(ii)若该购房者拟用不超过100万元的资金购买该小区一套二手房,试估算其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格(计税价格=房款)进行征收的.房产证满2年但未满5年的征收方式如下:首套面积90平方米以内(含90平方米)为1%;首套面积90平方米以上且140平方米以内(含140平方米)1.5%;首套面积140平方米以上或非首套为3%.参考数据:ln2≈0.69,ln3≈1.10,ln17≈2.83,ln19≈2.94,√2≈1.41,√3≈1.73,√17≈4.12,√19≈4.36.参考公式:相关指数R2=1−∑ni=1(y i−y^i)2∑n i=1(y i−y)2.【解析】解:(1)模型一中,y=0.9369+0.0285√x的残差平方和为0.000591,相关指数为R21−0.0005910.006050≈0.923,模型二中,y=0.9554+0.0306lnx的残差平方和为0.000164,相关指数为 R 21−0.0001640.006050≈0.973,∴ 相关指数较大的模型二拟合效果好些. (2)通过散点图确定2020年4月对应的 x =18, 代入(1)中拟合效果更好的模型二,代入计算 y =0.9554+0.0306ln18 =0.9554+0.0306×(ln 2+2ln 3) =0.9554+0.0306×(0.69+2×1.10) ≈1.044 (万元/平方米),则2020年4月份二手房均价的预测值为1.044(万元/平方米).(i )设该购房者应支付的购房金额 h 万元,因为税费中淵方只需缴纳契税, ①当70⩽m ⩽90 时,契税为计税价格的 1%, 故h =m ×1.044×(1%+1)=1.05444m ; ②当90<m ⩽144 时,契税为计税价格的 1.5%, 故h =m ×1.044×(1.5%+1)=1.05966m ; ③当144<m ⩽160 时,契税为计税价格的 3%, 故h =m ×1.044×(3%+1)=1.07532m ;∴ℎ={1.05444m ,70⩽m ⩽901.05966m ,90<m ⩽1441.07532m ,144<m ⩽160;∴ 当 70⩽m ⩽90 时购房金额为 1.05444m 万元, 当 90<m ⩽144 时购房金额为 1.05966m 万元, 当 144<m ⩽160 时购房金额为 1.07532m 万元.(ii )设该购房者可购买该小区二手房的最大面积为 t 平方米,由(i ) 知,当70⩽m ⩽90时,应支付的购房金额为 1.05444t ,又1.05444t ⩽1.05444×90<100, 又因为房屋均价约为1.044万元/平方米,所以 t <100,所以90⩽t <100, 由1.05966t ⩽100,解得 t ⩽1001.05966,且1001.05966≈94.4,所以该购房者可购买该小区二手房的最大面积为94平方米.例12.某新兴科技公司为了确定新研发的产品下一季度的营销计划,需了解月宣传费x (单位:万元)对月销售量y(单位:千件)的影响,收集了2020年3月至2020年8月共6个月的月宣传费x和月销售量y的数据如表:月份345678宣传费x5678910月销售量y0.4 3.5 5.27.08.610.7现分别用模型①y=b x+a和模型②y=e m x+n对以上数据进行拟合,得到回归模型,并计算出模型的残差如表:(模型①和模型②的残差分别为e1和e2,残差=实际值﹣预报值)x5678910y0.4 3.5 5.37.08.610.7e1﹣0.60.540.280.12﹣0.24﹣0.1e2﹣0.63 1.71 2.10 1.63﹣0.7﹣5.42(1)根据上表的残差数据,应选择哪个模型来拟合月宣传费x与月销售量y的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(x,y)剔除,根据剩余的5组数据,求该模型的回归方程,并预测月宣传费为12万元时,该公司的月销售量.(剔除数据前的参考数据:x=7.5,y=5.9,∑6i=1x i y i=299.8,∑6i=1x i2=355,z=lny.z≈−1.41,∑6i=1x i y i=−73.10,ln10.7≈2.37,e4.034≈56.49.)参考公式:b=∑ni=1x i y i−nxy∑n i=1x i2−nx2,a=y−b x.【解析】解:(1)应选择模型①,因为模型①每组数据对应的残差绝对值都比模型②的小,残差波动小,残差点比较均匀地落在水平的带状区域内,说明拟合精度高.(2)由(1)知,需剔除第一组数据,则剔除后的x=7.5×6−55=8,y=5.9×6−0.45=7,5xy=280,5x2=320,∑5i=1x i y i=299.8−5×0.4=297.8,∑5i=1x i2=355−25=330.∴b=∑5i=1x i y i−5xy∑5i=1x i2−5x2=297.8−280330−320=1.78,a=y−b x=7−1.78×8=−7.24.得①的回归方程为y=1.78x−7.24,则当x=12时,y=1.78×12−7.24=14.12.故月宣传费为12万元时,该公司的月销售量为14.12千件.例13.新型冠状病毒肺炎COVID﹣19疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.如表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.日期代码x12345678累计确诊人数y481632517197122为了分析该国累计感染人数的变化趋势,小王同学分别用两种模型:①y=bx2+a,②y=dx+c对变量x和y的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差e î=y i−y î):经过计算得它∑8i=1(x i−x)(y i−y)=728,∑8i=1(x i−x)2=42,∑8i=1(z i−z)(y i−y)=6868,∑8i=1(z i−z)2=3570,其中z i=x i2,z=18∑8i=1z i.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;(2)根据(1)问选定的模型求出相应的回归方程(系数均保留两位小数);(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数做出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少?附:回归直线的斜率和截距的最小二乘估计公式分别为:b=∑8i=1(x i−x)(y i−y)∑8i=1(x i−x)2,a=y−b x.【解析】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①的估计值和真实值相对比较接近,模型②的残差相对比较大,所以模型①的拟合效果相对较好;(2)由(1)可知y关于x的回归方程为y=bx2+a,令z=x2,则y=bz+a,由所给的数据可得:z=18(1+4+9+16+25+36+49+64)=25.5,y=18(4+8+16+31+51+71+97+122)=50,b=∑8i=1(z i−z)(y i−y)∑8i=1(z i−z)2=68683570≈1.92,则a=y−b z≈50﹣1.92×25.5=1.04,所以y关于x的回归方程为y=1.92x2+1.04;(3)将x=9代入回归方程,可得y=1.92×92+1.04=156.56≈157(人),所以预测该地区第9天新型冠状病毒感染确诊的累计人数约为157人.例14.H市某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x(吨)与相应的生产总成本y(万元)的五组对照数据.产量x(件)12345生产总成本y(万元)3781012(Ⅰ)根据上达数据,若用最小二乘法进行线性模拟,试求y关于x的线性回归方程y=b x+a;参考公式:b=∑ni=1x i y i−nxy∑n i=1x i2−nx2,a=y−b x.(Ⅱ)记第(Ⅰ)问中所求y与x的线性回归方程y=b x+a为模型①,同时该企业科研人员利用计算机根据数据又建立了y与x的回归模型②:y=12x2+1.其中模型②的残差图(残差=实际值﹣预报值)如图所示:请完成模型①的残差表与残差图,并根据残差图,判断哪一个模型更适宜作为y关于x的回归方程?并说明理由;(Ⅲ)根据模型①中y与x的线性回归方程,预测产量为6吨时生产总成本为多少万元?【解析】解:(Ⅰ)计算x=15(1+2+3+4+5)=3,y=15(3+7+8+10+12)=8,∑5i=1x i2=12+22+32+42+52=55,∑5i=1x i y i=1⋅3+2⋅7+3⋅8+4⋅10+5⋅12=141,b=∑5i=1x i y i−nxy∑5i=1x i2−nx2=141−5×3×855−5×9=2.1,a=y−b x=8−2.1×3=1.7,因此,回归直线方程为y=2.1x+1.7.(Ⅱ)模型①的残差表为:x12345y3781012 y 3.8 5.9810.112.2 e﹣0.8 1.10﹣0.1﹣0.2画出残差图,如图所示;结论:模型①更适宜作为y关于x的回归方程,因为:理由1:模型①的4个样本点的残差点落在的带状区域比模型②的带状区域更窄;理由2:模型①的4个样本点的残差点比模型②的残差点更贴近进x轴..(不列残差表不扣分,写出一个理由即可得分.)(Ⅲ)根据模型①中y与x的回归直线方程,计算x=6时,y=2.1×6+1.7=14.3,所以预测产量为6吨时生产总成本为14.3万元.例15.为了解某企业生产的某产品的年利润与年广告投入的关系,该企业对最近一些相关数据进行了调查统计,得出相关数据见表:23456年广告投入x(万元)346811年利润y(十万元)根据以上数据,研究人员分别借助甲.乙两种不同的回归模型,得到两个回归方程,方程甲:方程甲:y(1)=b(x﹣1)2+2.75,方程乙:y(2)=c x﹣1.6.(1)求b(结果精确到0.01)与c的值.(2)为了评价两种模型的拟合效果,完成以下任务.①完成下表(备注:e î=y i−y î,e î称为相应于点(x i,y i)的残差;年广告投入x(万元)23456年利润y(十万元)346811模型甲估计值y î(1)残差e î(1)模型乙估计值y î(2)残差e î(2)②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.【解析】解:(1)设t=(x﹣1)2,则t=15(1+4+9+16+25)=11.∵y=6.4,∴6.4=b×11+2.75,解得b≈0.33.又x=4,∴6.4=c×4−1.6,即c=2.(2)①经计算,可得下表:年广告投入x(万元)23456年利润y(十万元)346811模型甲估计值y î(1) 3.08 4.07 5.728.0311残差e î(1)﹣0.08﹣0.070.28﹣0.030模型乙估计值y î(2) 2.4 4.4 6.48.410.4残差e î(2)0.6﹣0.4﹣0.4﹣0.40.6②Q1=(−0.08)2+(−0.07)2+0.282+(−0.03)2=0.0906.Q2=0.62×2+(−0.4)2×3=1.2.∵Q1<Q2,∴模型甲的拟合效果更好.。
相关分析与回归分析练习试卷1(题后含答案及解析)
相关分析与回归分析练习试卷1(题后含答案及解析) 题型有:1. 单选题 2. 多选题单项选择题以下每小题各有四项备选答案,其中只有一项是正确的。
1.根据散点图8-1,可以判断两个变量之间存在( )。
A.正线性相关关系B.负线性相关关系C.非线性关系D.函数关系正确答案:A 涉及知识点:相关分析与回归分析2.假设某品牌的笔记本市场需求只与消费者的收入水平和该笔记本的市场价格水平有关。
则在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的相关关系就是一种( )。
A.单相关B.复相关C.偏相关D.函数关系正确答案:C解析:在某一现象与多种现象相关的场合,假定其他变量不变,专门考察其中两个变量的相关关系称为偏相关。
在假定消费者的收入水平不变的条件下,该笔记本的市场需求与其市场价格水平的关系就是一种偏相关。
知识模块:相关分析与回归分析3.相关图又称( )。
A.散布表B.折线图C.散点图D.曲线图正确答案:C解析:相关图又称散点图,是指把相关表中的原始对应数值在乎面直角坐标系中用坐标点描绘出来的图形。
知识模块:相关分析与回归分析4.下列相关系数取值中错误的是( )。
A.-0.86B.0.78C.1.25D.0正确答案:C解析:相关系数r的取值介于-1与1之间。
知识模块:相关分析与回归分析5.如果相关系数r=0,则表明两个变量之间( )。
A.相关程度很低B.不存在任何关系C.不存在线性相关关系D.存在非线性相关关系正确答案:C解析:相关系数r是根据样本数据计算的度量两个变量之间线性关系强度的统计量。
如果相关系数r=0,说明两个变量之间不存在线性相关关系。
知识模块:相关分析与回归分析6.当所有观测值都落在回归直线上,则两个变量之间的相关系数为( )。
A.1B.-1C.+1或-1D.大于-1,小于+1正确答案:C解析:当所有观测值都落在回归直线上时,说明两个变量完全线性相关,所以相关系数为+1或-1。
回归分析习题及答案.doc
1.1回归分析的基本思想及其初步应用例题:1.在画两个变量的散点图时,下面哪个叙述是正确的()(A)预报变量在x轴上,解释变量在y轴上(B)解释变量在X轴上,预报变量在y轴上(0可以选择两个变量中任意一个变量在x轴上(D)可以选择两个变量中任意一个变量在y轴上解析:通常把自变量X称为解析变量,因变量y称为预报变量.选B2,若一组观测值(xi, yi) (x2, y2) ••- (x…, y n)之间满足 y-bxi+a+e;(i=l> 2. •••!!)若巳恒为0,则仁为_____________解析:e』亘为0,说明随机误差对方贡献为0.答案:1.3.假设关于某设备的使用年限x和所支出的维修费用y (万兀),有如下的统计资料:X 2 3 4 5 6y 22 38 55 65 70若由资料可知y对x呈线性相关关系试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?解:(1)列表如下:i 1 2 3 4 5X] 2 3 4 5 622 38 55 65 70时•44 114 220 325 420X; 4 9 16 25 36_ _ 5 5x = 4, y = 5,»;=9o, »,北=112.3z'=l z'=l5 ___况一5xy干旱,仃112.3-5x4x5 …c十正方= ------------- = ------------ -- = 1.23,S,厂2 90 —5x42小「- 5x<=|a = y -bx = 5-1.23x4 = 0.08线性回归方程为:y =bx + a = 1.23x + Q.QS ( 2 )当 x=10 时,y = 1.23x10 + 0.08 = 12.38 (万兀)即估计使用10年时维修费用是1238万元课后练习:1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7. 19x+73.93 用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145. 83cm;B.身高在145. 83cm以上;C.身高在145. 83cm以下;D.身I W J在 145. 83cm 左右.2.两个变量y与x的回归模型中,分别选择了 4个不同模型,它们的相关指数人2如下,其中拟合效果最好的模型是()A.模型1的相关指数人2为0. 98B.模型2的相关指数R2为。
回归分析练习题及参考答案
1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元北京辽宁上海江西河南贵州陕西 224601122634547485154442662454973264490115462396220816082035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
回归分析习题及答案
回归分析习题及答案回归分析习题及答案回归分析是统计学中一种常用的分析方法,用于研究变量之间的关系。
它可以帮助我们了解变量之间的相关性,并预测未来的趋势。
在本文中,我们将提供一些回归分析的习题及其详细解答,帮助读者更好地理解和应用这一方法。
习题一:某公司想要了解其销售额与广告投入之间的关系。
公司收集了过去12个月的数据,包括每个月的广告投入(单位:万元)和当月的销售额(单位:万元)。
请利用这些数据进行回归分析,并给出相关的统计结果。
解答一:首先,我们需要将数据导入统计软件,比如SPSS或Excel。
然后,我们可以使用线性回归模型来分析销售额与广告投入之间的关系。
在SPSS中,可以选择“回归”分析,将销售额作为因变量,广告投入作为自变量,进行线性回归分析。
回归分析的结果包括回归方程、相关系数、显著性检验等。
回归方程可以用来描述销售额与广告投入之间的关系。
相关系数可以告诉我们这两个变量之间的相关程度,取值范围为-1到1,越接近1表示相关性越强。
显著性检验可以告诉我们回归方程是否显著,即广告投入是否对销售额有显著影响。
习题二:某研究人员想要了解学生的考试成绩与他们的学习时间之间的关系。
研究人员随机选择了100名学生,记录了他们的学习时间(单位:小时)和考试成绩(百分制)。
请利用这些数据进行回归分析,并给出相关的统计结果。
解答二:同样地,我们需要将数据导入统计软件,然后进行回归分析。
这次,我们将考试成绩作为因变量,学习时间作为自变量。
除了之前提到的回归方程、相关系数和显著性检验之外,我们还可以通过回归分析的结果来进行预测。
例如,我们可以利用回归方程来预测一个学生在给定学习时间下的考试成绩。
习题三:某研究人员想要了解一个人的身高与体重之间的关系。
研究人员随机选择了200名成年人,记录了他们的身高(单位:厘米)和体重(单位:千克)。
请利用这些数据进行回归分析,并给出相关的统计结果。
解答三:同样地,我们将数据导入统计软件,然后进行回归分析。
回归分析习题答案
回归分析习题答案回归分析习题答案回归分析作为一种常用的统计方法,被广泛应用于各个领域。
它能够帮助研究者理解变量之间的关系,并预测未来的趋势。
在回归分析的学习过程中,习题是不可或缺的一部分,通过解答习题,我们可以更好地掌握回归分析的原理和应用。
本文将回答一些常见的回归分析习题,帮助读者更好地理解回归分析的概念和方法。
1. 问题:某公司想要预测销售额与广告投入之间的关系,他们收集了过去12个月的数据,包括每个月的广告投入和销售额。
请用简单线性回归模型拟合数据,并预测下个月的销售额。
答案:简单线性回归模型可以表示为:销售额= β0 + β1 * 广告投入。
通过最小二乘法估计参数,可以得到回归方程。
使用软件或计算器进行计算,得到β0和β1的估计值。
然后,将下个月的广告投入代入回归方程,即可得到预测的销售额。
2. 问题:某研究人员想要研究学生的考试成绩与学习时间之间的关系。
他们随机选择了100名学生,记录了他们的学习时间和考试成绩。
请用多元线性回归模型拟合数据,并解释模型中的系数。
答案:多元线性回归模型可以表示为:考试成绩= β0 + β1 * 学习时间+ β2 *年级+ ε。
其中,学习时间和年级是自变量,考试成绩是因变量。
通过最小二乘法估计参数,可以得到回归方程。
系数β1表示学习时间对考试成绩的影响,系数β2表示年级对考试成绩的影响。
如果β1和β2的估计值显著不为零,说明学习时间和年级对考试成绩有显著影响。
3. 问题:某研究人员想要研究气温对冰淇淋销量的影响。
他们收集了每天的气温和冰淇淋销量数据,发现两者呈现正相关关系。
请用非线性回归模型拟合数据,并解释模型中的参数。
答案:非线性回归模型可以表示为:冰淇淋销量= β0 + β1 * 气温+ β2 * 气温^2 + ε。
其中,气温是自变量,冰淇淋销量是因变量。
通过最小二乘法估计参数,可以得到回归方程。
系数β1表示气温对冰淇淋销量的线性影响,系数β2表示气温对冰淇淋销量的非线性影响。
回归分析试题答案
诚信应考 考出水平 考出风格浙江大学城市学院2011 — 2012 学年第一学期期末考试卷《 回归分析 》开课单位: 计算分院 ;考试形式:开卷(A4纸一张);考试时间:2011年01月6日; 所需时间: 120 分钟一.计算题(10分。
)1,考虑过原点的线性回归模型1,1,2,...,i i i y x i n βε=+=误差1,...,n εε仍满足基本假定。
求1β的最小二乘估计。
并求出1β 的期望和方差,写出1β的分布。
1221111111121,1,2,...,ˆ()()2()0ˆi i i nni i i i i i ni i i i ni ii nii y x i n Q y yy x Qy x x x yxβεββββ======+==-=-∂=--=∂=∑∑∑∑∑解:第1页共 6 页二. 证明题(本大题共2小题,每小题7分,共14分。
)1,证明:(1)22()1var()[1]i i xxx x e n L σ-=--(2)2211ˆˆ()2n i ii y y n σ==--∑是2σ的无偏估计。
011111122ˆˆˆ()()1()()1var()var[()()]()1var()var((()))()12cov[,(())](1(i i i i i nn i i j j jj j xx ni i i j j j xx ni i j j j xx ni i j j j xxe y y y x x x x y y x x y n L x x e y x x y n L x x y x x y n L x x y x x y n L x n ββσσ======-=----=----=-+--=++---+-=++∑∑∑∑∑解(1):222122222221212211)()1())2()()()11(12()]()1[1]1ˆˆ(2)()(())21ˆ[()]2()111var()[1]2212n i i j j xx xxi i xx xxi xx ni i i ni i i n n i i i i xx x x x x x L n L x x x x n L n L x x n L E E y y n E y y n x x e n n n L n σσσσσ=====----+--=++-+-=--=--=---==----=-∑∑∑∑∑22(11)n σσ--=三.填空题.(每空2分,共46分)1.为了研究家庭收入和家庭消费的关系,通过调查得到数据如下:6.22893,29.12349,43008,97.29,5422=====∑∑∑xy yxy x1)用最小二乘估计求出线性回归方程的参数估计值0ˆβ= 。
回归分析期末试题及答案
回归分析期末试题及答案一、简答题1. 请解释回归分析的基本思想。
回归分析是一种统计学方法,用于研究变量之间的关系。
其基本思想是通过建立一个数学模型来描述一个或多个自变量对因变量的影响,并根据观察数据对模型进行拟合和推断。
2. 请解释简单线性回归和多元线性回归的区别。
简单线性回归是建立在一个自变量和一个因变量之间的基础上的回归模型。
多元线性回归则是在两个或更多个自变量和一个因变量之间建立的回归模型。
3. 请解释残差的含义。
残差是指建立回归模型后,观测值与模型预测值之间的差异。
残差可以用来评估模型的拟合程度,如果残差较大,则说明模型无法很好地解释观察数据的变化。
4. 请解释R平方的含义及其优缺点。
R平方是一个用来衡量回归模型拟合程度的指标,其值介于0和1之间。
R平方越接近1,说明模型对观察数据的拟合越好;而R平方越接近0,则说明模型对观察数据的拟合越差。
R平方的优点是简单直观,易于理解,但其缺点是不适用于比较不同自变量的模型。
5. 请简要说明什么是多重共线性问题。
多重共线性问题指的是在多元线性回归中,自变量之间存在高度相关性的情况。
多重共线性会导致回归系数的估计不准确,难以解释自变量与因变量之间的关系。
二、计算题1. 已知一个简单线性回归模型为:Y = 2 + 3X,回归系数的解释是什么?回归系数3表示自变量X每增加1个单位,因变量Y会增加3个单位。
而常数项2表示当自变量X为0时,因变量Y的取值为2。
2. 使用最小二乘法求解简单线性回归模型的参数估计值。
最小二乘法是一种常用的回归分析方法,用于估计回归模型中的参数值。
以简单线性回归模型Y = β0 + β1X 为例,最小二乘法通过最小化观测值Y与模型预测值之间的平方差来估计β0和β1。
3. 请计算多元线性回归模型的回归系数。
多元线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn。
回归系数β1、β2、...、βn可以使用最小二乘法来估计,通过最小化观测值Y与模型预测值之间的平方差来得出。
统计学原理-第六章--相关与回归分析习题
A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。
经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。
相关分析与回归分析同步练习试卷2(题后含答案及解析)
相关分析与回归分析同步练习试卷2(题后含答案及解析)题型有:1. 单项选择题 3. 名词解释题 4. 简答题 5. 计算分析题单项选择题每小题1分,在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
多选无分。
1.总体总量指标的点估计值是()A.平均数乘以样本成数B.样本容量乘以样本成数C.样本指标值乘以总体单位数D.样本指标的区间估计值乘以总体单位数正确答案:C 涉及知识点:相关分析与回归分析2.理论上最符合抽样调查随机原则的形式是()A.整群抽样B.类型抽样C.阶段抽样D.简单随机抽样正确答案:D 涉及知识点:相关分析与回归分析3.()是其他抽样方式的基础,也是衡量其他抽样方式抽样效果的标准。
()A.简单随机抽样B.等距抽样C.类型抽样D.整群抽样正确答案:A 涉及知识点:相关分析与回归分析4.为了解职工家庭生活水平状况,决定采用等距抽样进行调查,首先把职工按工资水平的高低进行排队,此种排队方法属于A.按无关标志排队B.按有关标志排队C.按简单标志排队D.按复杂标志排队正确答案:B 涉及知识点:相关分析与回归分析5.产品的单位成本随着劳动生产率的不断提高而下降,此种现象属于()A.完全相关B.不完全相关C.正相关D.负相关正确答案:D 涉及知识点:相关分析与回归分析6.只反映一个自变量和一个因变量韵相关关系是()A.正相关B.负相关C.单相关D.复相关正确答案:C 涉及知识点:相关分析与回归分析7.当相关关系的—个变量变动时,另—变量也相应地发生大致均等的变动,这种相关关系称为()A.线性相关B.非线性相关C.单相关D.完全相关正确答案:A 涉及知识点:相关分析与回归分析8.完全相关关系就是()A.函数关系B.因果关系C.狭义的相关关系D.广义的相关关系正确答案:A 涉及知识点:相关分析与回归分析9.大多数相关关系属于()A.不相关B.完全相关C.不完全相关D.无法判断正确答案:C 涉及知识点:相关分析与回归分析10.制作双变量分组相关表,应将自变量放在()A.横栏B.纵栏C.中间栏D.任意一栏正确答案:A 涉及知识点:相关分析与回归分析11.相关系数的取值范围是()A.-1≤r≤lB.-1≤r≤lC.-1<r<lD.-1≤r<1正确答案:B 涉及知识点:相关分析与回归分析12.两个变量问的相互依存程度越高,则二者之间的相关系数值越接近于()A.1B.-1C.0D.1或-1正确答案:D 涉及知识点:相关分析与回归分析13.两个现象之间相互依存关系程度越弱,则相关系数r()A.越接近于0B.越接近于-1C.越接近于1D.越接近于0.5正确答案:A 涉及知识点:相关分析与回归分析14.在相关分析中,要求相关的两个变量()A.至少有一个是随机变量B.因变量是随机变量C.都不是随机变量D.自变量是随机变量正确答案:A 涉及知识点:相关分析与回归分析名词解释题每小题3分15.一元线性回归模型正确答案:一元线性回归模型又称简单直线回归模型,它是根据两个变量的成对数据,配合直线方程式,再根据自变量的变动值,来推算因变量的估计值的一种统计分析方法。
回归分析练习题及参考答案
1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元北京辽宁上海江西河南贵州陕西 224601122634547485154442662454973264490115462396220816082035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
(完整版)数学必修三回归分析经典题型(带答案)
数学必修三回归分析经典题型1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为93.7319.7ˆ+=x y用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm B.身高在145.83cm 以上 C.身高在145.83cm 以下 D.身高在145.83cm 左右 【答案】D【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3-9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准。
选D2.对有线性相关关系的两个变量建立的线性回归方程$y =$a+b $x ,关于回归系数b $,下面叙述正确的是________.①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①【解析】由b$和r 的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0.3.对具有线性相关关系的变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),它们之间的线性回归方程是$y =3x +20,若101i i x =∑=18,则101i i y =∑=________.【答案】254【解析】由101i i x =∑=18 1.8.因为点在直线$y =3x +2025.4. 所以101i i y =∑=25.4×10=254.4.下表是某厂1~4由散点图可知,用水量其线性回归直线方程是y =-0.7x +a ,则a 等于________. 【答案】5.252.53.5,∵回归直线方程过定点, ∴3.5=-0.7×2.5+a. ∴a =5.25.5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程$y =b$x +$a ,那么下列说法正确的是________.①直线$y =b$x +$a 必经过点(x ,y ); ②直线$y =b$x +$a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线$y =b$x +$a 的斜率为1221ni ii nii x ynx y xnx==--∑∑;④直线$y =b $x +$a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差$21()ni i i b a y x =⎡⎤⎣⎦∑$-+是该坐标平面上的直线与这些点的最小偏差.【答案】①③④【解析】回归直线的斜率为b ,故③正确,回归直线不一定经过样本点,但一定经过样本中心,故①正确,②不正确.6.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 【答案】185【解析】设父亲身高为173176,b$= $a=-b $ 176-1×173=3, ∴$y =x +3,当x =182时,$y =185.7.下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:)请根据上表提供的数据,用最小二乘法求出y 关于的线性回归方程;(2)估计使用年限为10年时,维修费用为多少?【答案】解:(1)0.08 1.23yx =+线性回归方程为 (2)估计使用年限为10年时,维修费用为12.38万元. 【解析】(1)先求然后利用公可求出回归直线y ax b =+方程.(2)把x=10代入回归直线方程可得y 的值,就可得所求的值.解:(1906543222222512=++++=∑=i ixΘ又x y 23.108.0+=∴线性回归方程为 (2)把10=x 代入回归方程得到:38.121023.108.0=⨯+=y∴估计使用年限为10年时,维修费用为12.38万元.。
机器学习与人工智能(回归分析)习题与答案
一、填空题1.回归分析的首要问题是()。
正确答案:估计回归系数2.分段多项式回归的回归系数发生的临界点称为()。
正确答案:结点3.自然样条是添加了()的样条回归:回归函数在边界区域是线性的。
正确答案:边界约束4.做样条回归时,如果结点个数过(),样条的回归曲线将非常曲折;反之,将过于平坦。
正确答案:多5.在光滑样条回归的目标函数中,()的作用是使得回归函数尽可能拟合训练数据。
正确答案:损失函数二、判断题1.线性假设是指自变量xj的变化对因变量y的影响与其他自变量的的取值无关。
正确答案:×解析:线性假设是指无论自变量取xj取何值,它变化一个单位所引起的因变量的变化大小是恒定的,加性假设是指自变量xj的变化对因变量y的影响与其他自变量的的取值无关2.“回归函数在边界区域是线性的”。
这个附加约束使自然样条在边界处产生更稳定的估计。
正确答案:√3.在N-W方法中,核函数的带宽h越小,估计的回归函数曲线越光滑,h越大,估计的回归函数曲线波动越大。
正确答案:×解析:在N-W方法中,核函数的带宽h越大,估计的回归函数曲线越光滑,h越小,估计的回归函数曲线波动越大。
4.广义加性模型在保持其他自变量不变的情形下可以分析每个自变量对因变量的单独效应。
正确答案:√5.回归函数刻画了平均意义下因变量与自变量的相依关系。
正确答案:√6.回归分析的研究对象是具有相关关系的变量。
正确答案:√三、单选题1.已知变量x与y正相关,且由观测数据算得x的样本平均值为3,y的样本平均值为3.5,则由该观测数据算得的线性回归方程可能是( )。
A.y=0.4x+2.3B.y=2x-2.4C.y=-2x+9.5D.y=-0.3x+4.4正确答案:A2.在两个变量的回归分析中,作散点图是为了( )。
A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数正确答案:C3.下列两个变量之间的关系,( )是函数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归分析练习题与参考答案1 下面是7个地区2000年的人均国内生产总值(GDP)与人均消费水平的统计数据:求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归方程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归方程线性关系的显著性(0.05α=)。
(6)如果某地区的人均GDP为5000元,预测其人均消费水平。
(7)求人均GDP为5000元时,人均消费水平95%的置信区间与预测区间。
解:(1)回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% (4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。
人均GDP对人均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
模型摘要模型R R 方调整的R 方估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), 人均GDP(元)。
%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% (5)F检验:Anova b模型平方与df 均方 F Sig.1 回归81444968.680 1 81444968.680 1331.692 .000a残差305795.034 5 61159.007总计81750763.714 6a. 预测变量: (常量), 人均GDP。
b. 因变量: 人均消费水平回归系数的检验:t检验%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% %注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型 非标准化系数标准化系数t 显著性B 标准误 Beta1(常量) 734.693 139.540 5.2650.003 人均GDP (元)0.3090.0080.99836.4920.000a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (6)某地区的人均GDP 为5000元,预测其人均消费水平为734.6930.30950002278.693y =+⨯=(元)。
(7)人均GDP 为5000元时,人均消费水平95%的置信区间为[1990.74915,2565.46399],预测区间为[1580.46315,2975.74999]。
2 从n =20的样本中得到的有关回归结果是:SSR (回归平方与)=60,SSE (误差平方与)=40。
要检验x 与y 之间的线性关系是否显著,即检验假设:01:0Hβ=。
(1)线性关系检验的统计量F 值是多少?(2)给定显著性水平0.05α=,F α是多少?(3)是拒绝原假设还是不拒绝原假设? (4)假定x 与y 之间是负相关,计算相关系数r 。
(5)检验x 与y 之间的线性关系是否显著?解:(1)SSR 的自由度为k=1;SSE 的自由度为n-k-1=18; 因此:F=1SSRk SSE n k --=6014018=27(2)()1,18F α=()0.051,18F =4.41(3)拒绝原假设,线性关系显著。
(4),由于是负相关,因此r=-0.7746(5)从F 检验看线性关系显著。
3 随机抽取7家超市,得到其广告费支出与销售额数据如下:求:(1)用广告费支出作自变量x,销售额作因变量y,求出估计的回归方程。
(2)检验广告费支出与销售额之间的线性关系是否显著(0.05α=)。
(3)绘制关于x的残差图,你觉得关于误差项ε的假定被满足了吗?(4)你是选用这个模型,还是另寻找一个更好的模型?解:(1)系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)29.399 4.807 6.116 0.002广告费支出(万元) 1.547 0.463 0.831 3.339 0.021 a. 因变量: 销售额(万元)(2)回归直线的F检验:ANOV A(b)模型平方与df 均方 F 显著性1 回归691.723 1 691.723 11.147 .021(a)残差310.277 5 62.055合计1,002.000 6a. 预测变量:(常量), 广告费支出(万元)。
b. 因变量: 销售额(万元)显著。
回归系数的t检验:系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)29.399 4.807 6.116 0.002广告费支出(万元) 1.547 0.463 0.831 3.339 0.021 a. 因变量: 销售额(万元)显著。
(3)未标准化残差图:标准化残差图:(4)应考虑其他模型。
可考虑对数曲线模型:y=b0+b1ln(x)=22.471+11.576ln(x)。
4 根据下面SPSS输出的回归结果,说明模型中涉及多少个自变量?多少个观察值?写出回归方程,并根据F,s e,R2及调整的2a R的值对模型进行讨论。
模型汇总b模型R R 方调整 R 方标准估计的误差1 0.8424070.7096500.630463109.429596Anova b模型平方与df 均方 F Sig.1 回归321946.8018 3 107315.60068.9617590.002724残差131723.1982 11 11974.84总计453670 14系数a模型非标准化系数t Sig.B 标准误差1 (常量) 657.0534 167.4595393.9236550.002378VAR00002 VAR00003 VAR00004 5.710311-0.416917-3.4714811.7918360.3221931.4429353.186849-1.293998-2.4058470.0086550.2221740.034870解:自变量3个,观察值15个。
回归方程:ˆy=657.0534+5.710311X1-0.416917X2-3.471481X3拟合优度:判定系数R2=0.70965,调整的2aR=0.630463,说明三个自变量对因变量的影响的比例占到63%。
估计的标准误差yx S=109.429596,说明随即变动程度为109.429596回归方程的检验:F检验的P=0.002724,在显著性为5%的情况下,整个回归方程线性关系显著。
回归系数的检验:1β的t检验的P=0.008655,在显著性为5%的情况下,y与X1线性关系显著。
2β的t检验的P=0.222174,在显著性为5%的情况下,y与X2线性关系不显著。
的t检验的P=0.034870,在3显著性为5%的情况下,y与X3线性关系显著。
因此,可以考虑采用逐步回归去除X2,从新构建线性回归模型。
5 下面是随机抽取的15家大型商场销售的同类产品的有关数据(单位:元)。
求:(1)计算y与x1、y与x2之间的相关系数,是否有证据表明销售价格与购进价格、销售价格与销售费用之间存在线性关系?(2)根据上述结果,你认为用购进价格与销售费用来预测销售价格是否有用?(3)求回归方程,并检验模型的线性关系是否显著(0.05α=)。
(4)解释判定系数R2,所得结论与问题(2)中是否一致?(5)计算x1与x2之间的相关系数,所得结果意味着什么?(6)模型中是否存在多重共线性?你对模型有何建议?解:(1)y与x1的相关系数=0.309,y与x2之间的相关系数=0.0012。
对相关性进行检验:相关性销售价格购进价格销售费用销售价格Pearson 相关性 1 0.309 0.001显著性(双侧)0.263 0.997N 15 15 15 购进价格Pearson 相关性0.309 1 -.853(**)显著性(双侧)0.263 0.000N 15 15 15 销售费用Pearson 相关性0.001 -.853(**) 1显著性(双侧)0.997 0.000N 15 15 15 **. 在.01 水平(双侧)上显著相关。
可以看到,两个相关系数的P值都比较的,总体上线性关系也不现状,因此没有明显的线性相关关系。
(2)意义不大。
(3)回归统计Multiple R 0.59 3684R Square 0.35 246Adjusted R Square 0.24 4537标准误差69.75121观测值15方差分析df SS MS F Signifi canceF回归分析231778.153915889.083.2658420.073722残差1258382.77944865.232总计1490160.9333Coefficient s 标准误差tStatP-valueLower95%Upper95%下限95.0%上限95.0%(常量)375.6018339.4105621.106630.290145-363.911115.114-363.911115.114购进0.5370.2102.550.020.0790.9960.0790.996价格x184144674571152317365317365销售费用x21.4571940.667706592.1823860.0496810.0023862.9120010.0023862.912001从检验结果看,整个方程在5%下,不显著;而回归系数在5%下,均显著,说明回归方程没有多大意义,并且自变量间存在线性相关关系。
(4)从R2看,调整后的R2=24.4%,说明自变量对因变量影响不大,反映情况基本一致。
(5)方程不显著,而回归系数显著,说明可能存在多重共线性。
(6)存在多重共线性,模型不适宜采用线性模型。
6 一家电器销售公司的管理人员认为,每月的销售额是广告费用的函数,并想通过广告费用对月销售额作出估计。
下面是近8个月的销售额与广告费用数据:求:(1)用电视广告费用作自变量,月销售额作因变量,建立估计的回归方程。