专项训练(四) 函数图象与性质的探究
函数的图象和性质(题型归纳)
函数的图象和性质【考情分析】1.考查特点:高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择题、填空题的形式考查,难度一般;主要考查函数的定义域、值域的求法,分段函数求值与解不等式问题,函数图象的判断及函数的奇偶性、单调性、周期性等.2.关键能力:逻辑思维能力、运算求解能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学运算.【题型一】函数及其表示【典例分析】1.(2021·北京市第四十三中学高三月考)函数ln ()1xf x x =-的定义域为()A .(0,)+∞B .()0,11(),⋃+∞C .[0,)+∞D .[)0,11(),⋃+∞【答案】B【解析】由题意得:010x x >⎧⎨-≠⎩得0x >且1x ≠,所以函数的定义域为()0,11(),⋃+∞,故选:B2.(2021·江西高三模拟)设函数()223,122,1x x f x x x x -≥⎧=⎨--<⎩,若()01f x =,则0x =()A .1-或2B .2或3C .1-或3D .1-或2或3【答案】A【解析】当01x ≥时,00()23f x x =-,0231x ∴-=,02x ∴=;当01x <时,2000()22f x x x =--,∴200221x x --=,解得03x =(舍去),01x =-,故选A .【提分秘籍】1.高考常考定义域易失分点:(1)若f (x )的定义域为[m ,n ],则在f [g (x )]中,m ≤g (x )≤n ,从中解得x 的范围即为f [g (x )]的定义域;(2)若f [g (x )]的定义域为[m ,n ],则由m ≤x ≤n 确定的g (x )的范围即为f (x )的定义域.2.高考常考分段函数易失分点:(1)注意分段求解不等式时自变量的取值范围的大前提;(2)利用函数性质转化时,首先判断已知分段函数的性质,利用性质将所求问题简单化.【变式演练】1.(2021·山东省实验中学高三模拟)若()y f x =的定义域为(0,2],则函数(2)()1f xg x x =-的定义域是()A .(0,1]B .[0,1)C .(0,1)(1⋃,4]D .(0,1)【答案】D【解析】由()y f x =的定义域为(0,2],令02210x x <⎧⎨-≠⎩,解得01x <<,∴函数(2)()1f xg x x =-的定义域是(0,1).故选:D .2.(2021·辽宁高三模拟)已知函数()()123,1x f x f x x ≥=+<⎪⎩,则()10f -=___________.【答案】32【解析】()()123,1x f x f x x ≥=+<⎪⎩ ()()()()()1027448116232f f f f f ∴-=-=-=-==.故答案为:32【题型二】函数的图象及应用【典例分析】(1)函数f (x )=sin x +xcos x +x2在[-π,π]上的图象大致为()(2)(2021·合肥调研)已知函数f (x )|2x +1|,x <1,log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.【答案】(1)D (2)1【解析】(1)∵f (-x )=sin (-x )-x cos (-x )+(-x )2=-sin x +x cos x +x 2=-f (x ),∴f (x )为奇函数,排除A ;∵f (π)=sin π+πcos π+π2=π-1+π2>0,∴排除C ;∵f (1)=sin 1+1cos 1+1,且sin 1>cos 1,∴f (1)>1,∴排除B ,故选D.(2)作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又因为1<x 1+x 2+x 3<8,所以2<x 3<9.结合图象可知A 点坐标为(9,3),代入函数解析式得3=log 2(9-m ),解得m =1.【提分秘籍】1.图像的识别:已知函数的解析式,判断其图象的关键是由函数解析式明确函数的定义域、值域、单调性、奇偶性、周期性等,以及函数图象上的特殊点,根据这些性质对函数图象进行具体分析判断.2.图像的应用:(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.【变式演练】1.(2021·江苏金陵中学高三模拟)下列四个图象可能是函数35log |1|1x y x +=+图象的是()A .B .C .D .【答案】C 【解析】∵35log |1|1x y x +=+的定义域为{}|1x x ≠-,其图象可由35log ||x y x=的图象沿x 轴向左平移1个单位而得到,∵35log ||x y x =为奇函数,图象关于原点对称,∴35log |1|1x y x +=+的图象关于点(1,0)-成中心对称.可排除A 、D 项.当0x >时,35log |1|01x y x +=>+,∴B 项不正确.故选:C2.(2021·北京石景山区·高三一模)已知22,0()32,0x x f x x x ⎧-=⎨->⎩,若()f x ax 在[1,1]x ∈-上恒成立,则实数a 的取值范围是()A .(,1][0,)-∞-+∞B .[0,1]C .[1,0]-D .(1,0)-【答案】C【解析】作出()y f x =,y ax =在[]1,1-上的图象如下图所示:因为()f x ax 在[]1,1x ∈-上恒成立,所以()y f x =的图象在y ax =的图象的上方(可以部分点重合),且()1121f -=-=,令320x -=,所以23x =,所以()21,1,,03A B ⎛⎫- ⎪⎝⎭,根据图象可知:当y ax =经过点()1,1A -时,a 有最小值,min 1a =-,当y ax =经过点2,03B ⎛⎫⎪⎝⎭时,a 有最大值,max 0a =,综上可知a 的取值范围是[]1,0-,故选:C.【题型三】函数的性质及应用【典例分析】(1)3.(2021•新高考Ⅱ卷T8)已知函数f (x )的定义域为R ,f (x +2)为偶函数,f (2x +1)为奇函数,则()A .f (﹣)=0B .f (﹣1)=0C .f (2)=0D .f (4)=0【答案】B【解析】由题意,f (x +2)为偶函数,可得f (x +4)=f (﹣x ),f (2x +1)为奇函数,可得f (﹣2x +1)=﹣f (2x +1),令F (x )=f (2x +1)为奇函数,可得F (0)=f (1)=0,∴f (﹣1)=﹣f (3)=﹣f (1)=0,即f (﹣x )=﹣f (x +2),∴f (x +4)=﹣f (x +2),易知f (x )的周期T =4,其他选项的值不一定等于0.即f (﹣1)=0,故选:B .(2)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞B.3,1][,[01]--C.[1,0][1,)-⋃+∞ D.[1,0][1,3]-⋃【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选D.【提分秘籍】高考常考函数四个性质的应用:(1)奇偶性,具有奇偶性的函数在关于原点对称的区间上,其图象、函数值、解析式和单调性联系密切,研究问题时可以转化到部分(一般取一半)区间上,注意偶函数常用结论f (x )=f (|x |);(2)单调性,可以比较大小、求函数最值、解不等式、证明方程根的唯一性;(3)周期性,利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题转化到已知区间上求解;(4)对称性,常围绕图象的对称中心设置试题背景,利用图象对称中心的性质简化所求问题.【变式演练】1.(2021•甲(理)卷T12)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f (29)=()A .﹣49B .﹣23C .47D .25【答案】D【解析】∵f (x +1)为奇函数,∴f (1)=0,且f (x +1)=﹣f (﹣x +1),∵f (x +2)偶函数,∴f (x +2)=f (﹣x +2),∴f [(x +1)+1]=﹣f [﹣(x +1)+1]=﹣f (﹣x ),即f (x +2)=﹣f (﹣x ),∴f (﹣x +2)=f (x +2)=﹣f (﹣x ).令t =﹣x ,则f (t +2)=﹣f (t ),∴f (t +4)=﹣f (t +2)=f (t ),∴f (x +4)=f (x ).当x ∈[1,2]时,f (x )=ax 2+b .f (0)=f (﹣1+1)=﹣f (2)=﹣4a ﹣b ,f (3)=f (1+2)=f (﹣1+2)=f (1)=a +b ,又f (0)+f (3)=6,∴﹣3a =6,解得a =﹣2,∵f (1)=a +b =0,∴b =﹣a =2,∴当x ∈[1,2]时,f (x )=﹣2x 2+2,∴f (29)=f (21)=﹣f (23)=﹣(﹣2×49+2)=25.故选:D .1.(2021·辽宁本溪高级中学高三模拟)函数f (x )=11x-+lg(1+x )的定义域是()A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C【解析】因为f (x )=11x-+lg(1+x ),所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞),故选:C 2.(2021·天津南开中学高三模拟)设函数1()1xf x x-=+,则下列函数中为奇函数的是()A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【解析】由题意可得12()111x f x x x-==-+++,对于A ,()2112f x x--=-不是奇函数;对于B ,()211f x x-=+是奇函数;对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数;对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数.故选:B 3.(2021湖北襄阳五中高三模拟)若定义在R 上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x ,则g(x)=()A .e x -e-xB .(e x +e -x )C .(e -x -e x )D .(e x -e -x )【答案】D【解析】∵()f x 为定义在R 上的偶函数,∴()()f x f x -=,又∵()g x 为定义在R 上的奇函数,()()g x g x -=-,由()(),()()()()x x f x g x e f x g x f x g x e -+=∴-+-=-=,∴1()()2xx e g x e -=-.故选:D.4.(2021·湖南长沙长郡中学高三模拟)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-=⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭()A .53-B .13-C .13D .53【答案】C【解析】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-==--=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫=⎪⎝⎭.故选:C.5.(2021·江苏南京外国语高三模拟)若函数()y f x =的大致图象如图所示,则()f x 的解析式可能是()A .()1xf x x =-B .()1x f x x =-C .()21x f x x =-D .()21x f x x =-【答案】C【解析】由图可知,当(0,1)x ∈时,()0f x <,取12x =,则对于B ,112()101212f ==>-,所以排除B ,对于D ,1122(012314f ==>-,所以排除D ,当0x >时,对于A ,()1111x f x x x ==+--,此函数是由1y x =向右平移1个单位,再向上平移1个单位,所以1x >时,()1f x >恒成立,而图中,当1x >时,()f x 可以小于1,所以排除A,故选:C6.(2021·海南高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.7.(2021·黑龙江哈尔滨市·哈师大附中高三三模)已知函数()ln ,01,0xx x f x e x -⎧>=⎨+≤⎩,则()()22fx f x +=实数根的个数为()A .2B .3C .4D .5【答案】A【解析】 2()()20(()2)(()1)0f x f x f x f x +-=⇒+-=,解得:()2f x =-或()1f x =,∴02x lnx >⎧⎨=-⎩或01x lnx >⎧⎨=⎩或012x x e -≤⎧⎨+=-⎩或011xx e -⎧⎨+=⎩解得:x e =或1=x e,∴方程实数根的个数为2个,故选:A.8.(2021·湖南长沙长郡中学高三模拟)对于函数y =f (x ),其定义域为D ,如果存在区间[m ,n ]⊆D ,同时满足下列条件:①f (x )在[m ,n ]上是单调函数;②当f (x )的定义域为[m ,n ]时,值域也是[m ,n ],则称区间[m ,n ]是函数f (x )的“K 区间”.若函数f (xa (a >0)存在“K 区间”,则a 的取值范围为()A .13,34⎛⎫⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .3,14⎛⎤⎥⎝⎦D .(14,1]【答案】C【解析】()f x为减函数,所以a n a m-=-=1.=代人a n a m==,得11a n a m ⎧=-+⎪⎨=-+⎪⎩问题转化为函数y a =与函数21(0)y x x x =-+≥有两个交点结合图像可知3,14a ⎛⎤∈ ⎥⎝⎦故选:C 9.(2021·浙江镇海中学高三模拟)假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者,现在我们来研究捕食者与被捕食者之间理想状态下的数学模型.假设捕食者的数量以()x t 表示,被捕食者的数量以()y t 表示.下图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法不.正确的是()A .若在1t 、2t 时刻满足:()()12y t y t =,则()()12x t x t =B .如果()y t 数量是先上升后下降的,那么()x t 的数量一定也是先上升后下降C .被捕食者数量与捕食者数量不会同时到达最大值或最小值D .被捕食者数与捕食者数总和达到最大值时,捕食者的数量也会达到最大值【答案】ABD【解析】由图可知,曲线中纵坐标相等时横坐标未必相等,故A 不正确;在曲线上半段中观察到()y t 是先上升后下降,而()x t 是不断变小的,故B 不正确;捕食者数量最大时是在图象最右端,最小值是在图象最左端,此时都不是被捕食者的数量的最值处,同样当被捕食者的数量最大即图象最上端和最小即图象最下端时,也不是捕食者数量取最值的时候,所以被捕食者数量和捕食者数量不会同时达到最大和最小值,故C 正确;当捕食者数量最大时在图象最右端,()()25,30x t ∈,()()0,50y t ∈,此时二者总和()()()25,80x t y t +∈,由图象可知存在点()10x t =,()100y t =,()()110x t y t +=,所以并不是被捕食者数量与捕食者数量总和达到最大值时,被捕食者数量也会达到最大值,故D 错误,故选:ABD.10.(2021·江阴市第二中学高三模拟)设函数(32)1,1(),1x a x x f x a x --≤⎧=⎨>⎩(0a >且1)a ≠,下列关于该函数的说法正确的是()A .若2a =,则2(log 3)3f =B .若()f x 为R 上的增函数,则312a <<C .若(0)1f =-,则32a =D .函数()f x 为R 上奇函数【答案】AB【解析】对于选项A ,因为2log 31>,所以2log 32(log 3)23f ==,所以选项A 正确;对于选项B ,欲使得该函数为增函数,则满足3201321a a a a ->⎧⎪>⎨⎪--≤⎩,解得312a <<,所以选项B 正确;对于选项C ,使得(0)1f =-,此时0a >且1a ≠,与条件不符,所以选项C 错误;对于选项D ,该函数为非奇非偶函数,所以选项D 错误,综上只有选项AB 符合题意,故选AB .11.(2021·重庆南开中学高三模拟)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(,)B x y 的轨迹方程是()y f x =,则对函数()y f x =的判断正确的是()A .函数()()22g x f x =-[3-,9]上有两个零点B .函数()y f x =是偶函数C .函数()y f x =在[8-,6]-上单调递增D .对任意的x ∈R ,都有1(4)()f x f x +=-【答案】AB 【解析】当42x --,B 的轨迹是以A 为圆心,半径为2的14圆当22x -时,B 的轨迹是以D 为圆心,半径为22的14圆,当24x 时,B 的轨迹是以C 为圆心,半径为2的14圆,当46x 时,B 的轨迹是以A 为圆心,半径为2的14圆,作出函数的图象如图,函数值域为[0,22],则函数()f x 与直线22y =的图象在[3-,9]上有2个交点,故A 正确;函数为偶函数,故B 正确;由图可知,函数()f x 在[8-,6]-上单调递减,故C 错误;由图,当0x =时,(0)f =,()40f =,此时()()140f f ≠,故D 错误故选:AB .12.(2021·江苏连云港市·高三模拟)函数()f x 的定义域为R ,且()f x 与(1)f x +都为奇函数,则()A .(1)f x -为奇函数B .()f x 为周期函数C .(3)f x +为奇函数D .(2)f x +为偶函数【答案】ABC【解析】由题意知:(1)(1)0f x f x --++=且(1)(1)0f x f x -+++=,∴(1)(1)f x f x -=--,即(1)(1)f x f x -=+,可得()(2)f x f x =+,∴()f x 是周期为2的函数,且(1)f x -、(2)f x +为奇函数,故A 、B 正确,D 错误;由上知:(1)(3)f x f x +=+,即(3)f x +为奇函数,C 正确.故选:ABC.13.(2021·山东滕州一中高三模拟)若函数1()ln 1f x x =-,则(2)f =__________.【答案】3ln2【解析】令121x =-,可得32x =,所以3(2)=ln 2f .故答案为:3ln 2.14.(2021·山东省成武第一中学高三二模)若函数()f x 满足定义域为D ,值域也为D ,就称()f x 为“优美函数”.试写出能满足“若()f x 是优美函数,则()00=f ”为假命题的一个函数是______.【答案】1y x=【解析】根据题意,不妨令()1f x x=,该函数定义域()(),00,-∞⋃+∞,值域与定义域相同,是优美函数,但()0f 没有意义,即可说“若()f x 是优美函数,则()00f =”为假命题本题答案不唯一.本题选择()1f x x =.故答案为:1y x=.15.(2021·江苏南京师范大学附中高三模拟)定义在()1,+∞上的函数()f x 满足下列两个条件(1)对任意的()1,x ∈+∞恒有()()22f x f x =成立;(2)当(]1,2x ∈时,()2f x x =-.则()6f 的值是__________.【答案】2【解析】因为对任意的()1,x ∈+∞恒有()()22f x f x =成立,所以有:()()()336232322422f f f f f ⎛⎫⎛⎫=⨯==⨯= ⎪ ⎪⎝⎭⎝⎭,又因为当(]1,2x ∈时,()2f x x =-,所以3312222f ⎛⎫=-= ⎪⎝⎭,所以()36422f f ⎛⎫== ⎪⎝⎭故答案为:216.(2021·武邑武罗学校高三模拟)若函数6,2()3log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域为[4,)+∞,则(1)f =________;实数a 的取值范围为________.【答案】5(1,2]【解析】因为12≤,所以(1)165f =-+=.当2x ≤时,6y x =-+是减函数,所以264y ≥-+=.若01a <<,函数3log a y x =+是减函数,显然当x →+∞时,y →-∞,不符合题意;若1a >,函数3log a y x =+是增函数,所以3log 2a y >+,要想函数()f x 的值域为[4,)+∞,只需3log 24a +≥,即lg 2log 211lg 2lg 2lg a a a a ≥⇒≥⇒≥⇒≤,所以12a <≤,实数a 的取值范围为(1,2].。
八年级数学-函数的图象练习题(含解析)
八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。
2020中考数学解答题专练-函数的图象与性质探究(学生用)
2020中考数学题位复习系统之解答题专练5函数的图象与性质探究1. 在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.2.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.3. 有这样一个问题:探究函数y=的图象与性质.小东根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当x≥﹣1时,y=,当x<﹣1时y=;(2)根据(1)中的结果,请在所给坐标系中画出函数y=的图象;(3)结合函数图象,写出该函数的一条性质:.(4)结合画出的函数图象,解决问题:若关于x的方程ax+1=的只有一个实数根,直接写出实数a的取值范围:.4. 有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是;的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质:;(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为:;5. 小邱同学根据学习函数的经验,研究函数y=的图象与性质.通过分析,该函数yy﹣1﹣2﹣3.4﹣7.5 2.4(1)函数y=的自变量x的取值范围是;(2)在图中补全当1≤x<2的函数图象;(3)观察图象,写出该函数的一条性质:;(4)若关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是.6.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与﹣﹣﹣标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.7.有这样一个问题:探究函数y=的图象与性质.小东根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当x≥3时,y=,当x<3时y=;(2)根据(1)中的结果,请在所给坐标系中画出函数y=的图象;(3)结合画出的函数图象,解决问题:若关于x的方程ax+1=只有一个实数根,直接写出实数a的取值范围:.。
中考数学 中档题突破 专项训练六 新函数的图象及其性质探究题
4
m
x;由周长为 m,得 2(x+y)=m,即 y=-x+2.满足要求的(x,y)应是两
个函数图象在第________象限内交点的坐标.
(2)画出函数图象 4
函数 y=x(x>0)的图象如图所示,而函数 y=-x +m2的图象可由直线 y=-x 平移得到.请在同一 直角坐标系中直接画出直线 y=-x.
2.(2021·荆州)小爱同学学习二次函数后,对函数 y=-(|x|-1)2进行 了探究.在经历列表、描点、连线步骤后,得到如图所示的函数图象.请 根据函数图象,回答下列问题: (1)观察探究: ①写出该函数的一条性质:__________________________________; ②方程-(|x|-1)2=-1 的解为:________; ③若方程-(|x|-1)2=a 有四个实数根,则 a 的取值范围是_______.
4 y=x和
m y=-x+2,整理得
x2-12mx+4=0,Δ=14m2-4×4≥0
时,两个函数有交点,解得 m≥8(负值舍去).故答案为:m≥8.
(2)延伸思考: 将函数 y=-(|x|-1)2的图象经过怎样的平移可得到 函数 y1=-(|x-2|-1)2+3 的图象?写出平移过程, 并直接写出当 2<y1≤3 时,自变量 x 的取值范围.
解: (1)①图象关于 y 轴对称;当 x=-1 或 x=1 时,y 有最大值,最大 值为 0;当 x<-1 或 0<x<1 时,y 随 x 增大而增大;当 x> 1 或-1< x<0 时,y 随 x 增大而减小等.(填一条即可) ②x1=-2;x2=0;x3=2.③-1<a<0.
(2)函数图象如图所示,函数的性质如下: (写出其中一条即可) ①当 x<3 时,y 随 x 的增加而减少; 当 x>3 时,y 随 x 的增加而增加. ②当 x=3 时,函数 y 取得最小值 1. (3)x<0 或 x>4.
一次函数的图象和性质专题练习题
专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。
初中数学专题讲解1专题十一《函数图象与性质的探究题》
①当x=-4时,求y的值;
②当2012≤|y|≤2019时,求x的取值范围.
1.
解:(1)画出函数图象如解图;
(2)①当x=-4时,y=4;
②由题知,当x≥0时,y=x;当x<0时,y=-x,
∴y=|x|,
∵y=|x|≥0,2012≤|y|≤2019.
∴2012≤y≤2019,
”,“=”或“<”)
②当函数值y=2时,求自变量x的值;
③在直线x=-1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;
④若直线y=a与函数图象有三个不同的交点,求a的取值范围.
4. 解:(1)画出函数图象如解图①;
(2)①<,<;
2
2
②在y=- 中,当y=2时,2=- ,解得x=-1.满足x≤-1.∴x=-1符合
(2)①2.5;
【解法提示】①当x=0.5时,y=-0.5+3=2.5.
②画出函数图象如解图:
(3)y1>y2>y3.
【解法提示】∵在y=-x+3中-1<0,
3
4
15
<5,∴y1>y2>y3.
4
∴y随x的增大而减小,∵ <
,解得:
4. (2019郴州)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函
数.下面我们参照学习函数的过程与方法,探究分段函数y=
x
…
y
…
-3
-
-2
-
-1
1
2
-
的图象与性质.列表:
0
1
x
1
2
3
…
中考数学总复习 专题提升四 一次函数图象与性质的综合应用(含答案)
一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__.解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0, 解得x =1n +1. ∴S n =12·1n +1·1n +2=12⎝ ⎛⎭⎪⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12×⎝ ⎛12-13+13-14+14-15+…+12013-⎭⎪⎫12014=12×⎝ ⎛⎭⎪⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10题图水银柱的长度x (cm) 4.2 … 8.2 9.8 体温计的读数y (℃)35.0…40.042.0(1)求y 关于的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =×6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =k x的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD . (1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =k x 的图象过点A (6,2), ∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x.∵点B (-4,n )在 y =12x的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1.∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12×|-12|×|-1|+12×|-12|×|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40×1=40. ∴a =40,m =1.(2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度×车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25×100+88=48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =vx , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆.14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳设享受医保的某居民一年的大病住院医疗费用为元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)×50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)×50%+(x -30000)×60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5×30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000×0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得 ⎩⎪⎨⎪⎧y =x +3,100x=160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000×92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同. (1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10,∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90×5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.。
2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)
专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。
三角函数的图像与性质专项训练(解析版)
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
利用函数的图像探究函数的性质经典习题附答案
利用函数的图像探究函数的性质经典习题附答案题型一、运用图像研究函数零点的个数知识点拨:运用函数的图像研究函数的零点问题的关键要正确做出函数的图像,观察图像交点的个数。
由于答案依赖于图像因此,要正确规范的做出图像,该标的关键的点、线要标出,另外有时为了更好地作图也要多对函数进行调整,变成常见的函数。
例题1、定义在R上的奇函数f(x)满足f(x+4)=f(x),且在区间[2,4)上【解析】因为f(x+4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R上的图像,由y=f(x)-log5|x|=0,得f(x)=log5|x|,分别画出y=f(x)和y =log5|x|的图像,如下图,由f(5)=f(1)=1,而log55=1,f(-3)=f(1)=1,log5|-3|<1,而f(-7)=f(1)=1,而log5|-7|=log57>1,可以得到两个图像有5个交点,所以零点的个数为5.本题考查了函数的零点问题,以及函数的奇偶性和周期性,考查了转化与化归、数形结合的思想,函数的零数问题,常转化为函数的图像的交点个数来处理,其中能根据函数的性质作出函数的图像并能灵活地运用图像,找到临界点是解题的关键也是难点.题型二、根据函数的零点确定参数的范围知识点拨:求解函数的零点问题的填空题,其基本策略是应用数形结合的方法来加以解决,在应用数形结合思想时,一般地会将函数的零点问题转化为两个函数的图像的交点问题来加以解决,此时,为了方便起见,转化后的两个函数,其中一个是不含参数的函数,另一个是含有参数的函数,即转化为“一静一动”两个函数,这样,通过研究“动”函数的图像与“静”函数的图像的相对位置关系就可以得到问题的解。
例题2、【解析】注意到x<-1时,f(x)=x2-2ax的零点是可求的,即x=0(舍去)或x=2a,为此,就需要对2a是否小于-1来进行讨论,若2a大于或等于-1,则需要x≥-1时,f(x)有三个零点,从而通过数形结合的方式来加以研究;若2a小于-1,则需要x≥-1时,f(x)有两个零点,从而通过数形结合的方式来加以研究,进而得到问题的答案.由x2-2ax=0得x=0或x=2a,因为x<-1,所以x=0不合题意.题型三、运用函数图像解决多元问题知识点拨:解决多元问题的最值问题主要思想就是把多元问题转化为单元问题,要通过函数的图像找到各个参数的关系,但要注意参数的范围。
2020北京市中考数学专题复习 函数图象与性质探究题
一、简单专题集训函数图象与性质探究题(连续5年考查)类型一分析数据、探究函数问题(2019.24新考查)1.(2019房山区一模改编)如图,AB为⊙O的直径,点C是⊙O上一动点,过点C作⊙O直径CD,过点B作BE⊥CD于点E.连接AC,已知AB=6cm.第1题图小东根据学习函数的经验,对线段AC、BE的长度之间的关系进行了探究.下面是小东的探究过程,请补充完整:(1)对于点C在⊙O上的不同位置,画图、测量,得到了线段AC、BE的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6BE/cm 1.27 2.82 2.82 2.63 1.840AC/cm 1.24 3.45 4.91 5.16 5.676在AC、BE的长度这两个变量中,确定的长度是自变量,的长度是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当BE=2时,AC的长度约为cm.2.(2019通州区期末改编)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB=30°,D是直径AB上一动点,连接CD并过点D作CD的垂线,与⊙O的其中一个交点记为点E(点E位于直线CD上方或左侧),连接E C.第2题图小东根据学习函数的经验,对线段AD,CD,EC的长度之间的关系进行了探究.下面是小东的探究过程,请补充完整:(1)对于点D在直径AB上的不同位置,画图,测量,得到了线段AD,CD,EC的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7AD/cm0 1.1423456CD/cm 5.20 4.49 3.60 3.00 2.65 2.65 3.00EC/cm 5.20 4.24 4.22 4.24 4.77 5.60 6.00在AD,CD,EC的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定函数的图象;(3)结合函数图象,解决问题:当∠ECD=60°时,AD的长度约为cm.3.(2019门头沟区二模改编)如图,E为半圆O直径AB上一动点,C为半圆上一定点,连接AC和BC,AD平分∠CAB交BC于点D,连接CE和DE.第3题图小腾根据学习函数的经验,对线段AE,CE,DE长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点E在直径AB上的不同位置,画图,测量,得到了线段AE,CE,DE的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7CE/cm 2.50 2.28 2.50 3.00 3.72 4.64 5.44DE/cm 2.98 2.29 1.69 1.69 2.18 3.05 3.84AE/cm0.000.87 2.11 3.02 4.00 5.12 6.00在AE,CE,DE的长度这三个量中,确定的长度是自变量,自变量的取值范围是;(2)在同一平面直角坐标系xOy中,画出(1)中所确定函数的图象;(3)结合函数的图象,解决问题:当△ACE为等腰三角形时,AE的长度约为cm(结果精确到0.01).4.(2019丰台区二模改编)如图,点M 是⊙O 中AB ︵上一定点,点P 是弦AB 上一动点.过点A 作射线MP 的垂线交⊙O 于点C ,连接PC ,已知AB =5cm.第4题图小腾根据学习函数的经验,对线段AP ,AC ,PC 的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点P 在弦AB 上的不同位置,画图、测量,得到了线段AP ,AC ,PC 的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6AP /cm 0.000.99 2.47 3.01 3.98 5.00AC /cm 2.55 3.10 4.31 4.74 4.97 4.31PC /cm2.552.612.522.121.112.55在AP ,AC ,PC 的长度的三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定函数的图象;(3)结合函数图象,解决问题:在点P 的运动过程中,当AC 与PC 的差为最大值时,AP 的长度约为cm.类型二测量与分析数据、探究函数问题(8年2考:2018.24、2017.26)1.(2019朝阳区一模)小超在观看足球比赛时,发现了这样一个问题,两名运动员从不同的位置出发,沿着不同的方向,以不同的速度直线奔跑,什么时候他们离对方最近呢?小超通过一定的测量,并选择了合适的比例尺,把上述问题抽象成如下数学问题:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D以1cm/s的速度从点C向点B运动,点E以2cm/s的速度从点A向点B运动,当点E到达点B时,两点同时停止运动,若点D,E同时出发,多长时间后DE取得最小值?第1题图小超猜想当DE⊥AB时,DE最小.探究后发现用几何的知识解决这个问题有一定的困难,于是根据函数的学习经验,设C,D两点间的距离为x cm,D,E两点的距离为y cm,对函数y随自变量x的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整:(1)由题意可知线段AE和CD的数量关系是:;(2)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;x/cm012345y/cm 6.0 4.8 3.8 2.7 3.0(说明:补全表格时相关数值保留一位小数)(3)在平面直角坐标系中,描出以补全后表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:小超的猜想;(填“正确”或“不正确”)当两点同时出发了s时,DE取得最小值,为cm.2.(2019西城区一模)如图,AB ︵是直径AB 所对的半圆弧,C 是AB ︵上一定点,D 是AB ︵上一动点,连接DA 、DB 、D C.已知AB =5cm ,设D 、A 两点间的距离为x cm ,D 、B 两点间的距离为y 1cm ,D ,C 两点间的距离为y 2cm.第2题图小腾根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值;x /cm 012345y 1/cm 5 4.9430y 2/cm43.322.47 1.43(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(3)结合函数图象,解决问题:连接BC ,当△BCD 是以CD 为腰的等腰三角形时,DA 的长度约为cm.3.(2019东城区一模)如图,点E 在弦AB 所对的优弧上,且BE ︵为半圆,C 是BE ︵上的动点,连接CA ,C B.已知AB =4cm ,设B ,C 两点间的距离为x cm ,点C 到弦AB 所在直线的距离为y 1cm ,A ,C 两点间的距离为y 2cm.第3题图小明根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值;x /cm 0123456y 1/cm 00.78 1.76 2.853.984.95 4.47y 2/cm44.695.265.965.944.47(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(3)结合函数图象,解决问题:①连接BE ,则BE 的长约为cm ;②当以A ,B ,C 为顶点组成的三角形是直角三角形时,BC 的长度约为cm.4.(2019海淀区一模)如图,线段AB及一定点C,P是线段AB上一动点,作直线CP,过点A作AQ⊥CP 于点Q.已知AB=7cm,设A,P两点间的距离为x cm,A,Q两点间的距离为y1cm,P,Q两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.第4题图下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm00.30.50.81 1.5y1/cm00.280.490.791 1.48y2/cm00.080.090.0600.29x/cm234567y1/cm 1.87 2.37 2.61 2.72 2.76 2.78y2/cm0.73 1.82 4.20 5.33 6.41(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APQ中有一个角为30°时,AP的长度约为cm.类型三新函数性质探究问题(8年2考:2016.26、2015.26)1.(2019西城区二模)某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,下表是y与t的几组对应值,其部分图象如图所示.t012346810…y024 2.83210.50.25…第1题图(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为微克.2.(2019海淀区二模)有这样一个问题:探究函数y =18x 2-1x的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数y =18x 2-1x 的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数y =18x 2-1x的自变量x 的取值范围是;(2)如图,在平面直角坐标系xOy 中,完成以下作图步骤:①画出函数y =14x 2和y =-2x的图象;②在x 轴上取一点P ,过点P 作x 轴的垂线l ,分别交函数y =14x 2和y =-2x 的图象于点M ,N ,记线段MN 的中点为G ;③在x 轴正半轴上多次改变点P 的位置,用②的方法得到相应的点G ,把这些点用平滑的曲线连接起来,得到函数y =18x 2-1x 在y 轴右侧的图象.继续在x 轴负半轴上多次改变点P 的位置,重复上述操作得到该函数在y 轴左侧的图象.第2题图(3)结合函数y =18x 2-1x的图象,发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为(保留小数点后一位);②该函数还具有的性质为:(一条即可)。
函数的性质与图像分析例题和知识点总结
函数的性质与图像分析例题和知识点总结在数学的广袤世界中,函数是一个极为重要的概念。
函数的性质与图像紧密相连,通过对函数性质的研究,我们能够更好地理解和描绘函数的图像,从而解决各种与函数相关的问题。
接下来,让我们通过一些具体的例题来深入探讨函数的性质与图像,并对相关的知识点进行总结。
一、函数的定义域和值域函数的定义域是指自变量的取值范围,而值域则是函数值的取值范围。
例 1:已知函数$f(x) =\sqrt{x 1}$,求其定义域。
解:要使根式有意义,被开方数必须大于等于零,即$x 1 \geq 0$,解得$x \geq 1$,所以函数的定义域为$1, +\infty)$。
知识点总结:常见函数的定义域要求,如分式函数分母不为零,偶次根式被开方数非负,对数函数真数大于零等。
二、函数的单调性函数的单调性描述了函数值随自变量变化的趋势。
例2:判断函数$f(x) =x^2 2x$在区间$(\infty, 1)$上的单调性。
解:对$f(x)$求导,$f'(x) = 2x 2$。
当$x < 1$时,$f'(x) <0$,所以函数在区间$(\infty, 1)$上单调递减。
知识点总结:判断函数单调性的方法,如定义法、导数法。
对于二次函数,可以通过其对称轴和开口方向来判断单调性。
三、函数的奇偶性奇偶性反映了函数图像的对称性。
例 3:判断函数$f(x) =\sin x$的奇偶性。
解:因为$f(x) =\sin(x) =\sin x = f(x)$,所以函数$f(x) =\sin x$是奇函数。
知识点总结:奇函数满足$f(x) = f(x)$,其图像关于原点对称;偶函数满足$f(x) = f(x)$,其图像关于 y 轴对称。
四、函数的周期性周期性表示函数值在一定区间内重复出现。
例 4:已知函数$f(x) =\sin 2x$,求其最小正周期。
解:因为$\sin 2(x +\pi) =\sin(2x + 2\pi) =\sin 2x$,所以函数的最小正周期为$T =\frac{2\pi}{2} =\pi$。
【中考压轴之满分集训】专题02 函数图像与性质综合题(四大类)(解析版)
冲刺中考数学压轴之满分集训专题02函数图像与性质综合题(四大类)【类型一:分析函数图像】【典例1】(锦州)已知A,B两地相距10千米,上午9:00甲骑电动车从A 地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为.【答案】9:20【解答】解:因为甲30分走完全程10千米,所以甲的速度是千米/分,由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15﹣10)分钟,所以乙的速度为:5÷5=1千米/分,所以乙走完全程需要时间为:10÷1=10分,因为9:10乙才出发,所以乙到达A地的时间为9:20;故答案为9:20.【变式1-1】(2022•潍坊)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C 的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【解答】解:过点F作FH⊥AB于H,当0≤x≤1时,如图1,在Rt△FAH中,AF=x,∠A=60°,则FH=AF•sin A=x,∴线段EF扫过区域的面积y=x•x=x2,图象是开口向上的抛物线,当1<x≤2时,如图2,过点D作DP⊥AB于P,则DP=AD•sin A=,∴线段EF扫过区域的面积y=×(x﹣1+x)×=x﹣,图象是y 随x的增大而增大的线段,当2<x≤3时,如图3,过点E作EG⊥CD于G,则CE=CF=3﹣x,∴EG=(3﹣x),∴线段EF扫过区域的面积y=2×﹣×(3﹣x)×(3﹣x)=﹣(3﹣x)2,图象是开口向下的抛物线,故选:A.【变式1-2】(2022•齐齐哈尔)如图①所示(图中各角均为直角),动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点P运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是()A.AF=5B.AB=4C.DE=3D.EF=8【答案】B【解答】解:由图②的第一段折线可知:点P经过4秒到达点B处,此时的三角形的面积为12,∵动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,∴AB=4.∵×AF•AB=12,∴AF=6,∴A选项不正确,B选项正确;由图②的第二段折线可知:点P再经过2秒到达点C处,∴BC=2,由图②的第三段折线可知:点P再经过6秒到达点D处,∴CD=6,由图②的第四段折线可知:点P再经过4秒到达点E处,∴DE=4.∴C选项不正确;∵图①中各角均为直角,∴EF=AB+CD=4+6=10,∴D选项的结论不正确,故选:B.【变式1-3】(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A.50m/min B.40m/min C.m/min D.20m/min【答案】D【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m/min),故选:D.【变式1-4】(2022•辽宁)如图,在等边三角形ABC中,BC=4,在Rt△DEF 中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是()A.B.C.D.【答案】A【解答】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,∴BM=CM=BC=2,AM=BM=2,=BC•AM=4,∴S△ABC①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DG=x∴S=CD•DG=x2;②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG=(4﹣x),﹣S△BDG=4﹣×(4﹣x)×(4﹣x),∴S=S△ABC∴S=﹣x2+4x﹣4=﹣(x﹣4)2+4,③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD=x,则CE=x﹣4,DB=x﹣4,∴BE=x﹣(x﹣4)﹣(x﹣4)=8﹣x,∴BM=4﹣x在Rt△BGM中,GM=(4﹣x),∴S=BE•GM=(8﹣x)×(4﹣x),∴S=(x﹣8)2,综上,选项A的图像符合题意,故选:A.【类型二:判断函数图像】【典例2】(2020•铜仁市)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解答】解:由题意当0≤x≤4时,y=×AD×AB=×3×4=6,当4<x<7时,y=×PD×AD=×(7﹣x)×4=14﹣2x.故选:D.【变式2-1】(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【解答】解:由题意得:当0≤t<1时,S=4﹣t,当1≤t≤2时,S=3,当2<<t≤3时,S=t+1,故选:A.【变式2-2】(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】B【解答】解:∵二次函数y=ax2+bx+c的部分函数图象开口向上,∴a>0,∵二次函数y=ax2+bx+c的部分函数图象顶点在x轴下方,开口向上,∴二次函数y=ax2+bx+c的图象与x轴有两个交点,b2﹣4ac>0,∴一次函数y=ax+b2﹣4ac的图象位于第一,二,三象限,由二次函数y=ax2+bx+c的部分函数图象可知,点(2,4a+2b+c)在x轴上方,∴4a+2b+c>0,∴y=的图象位于第一,三象限,据此可知,符合题意的是B,故选:B.【变式2-3】(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,∴b>0;∵A、B的抛物线都是开口向下,∴a<0,根据同左异右,对称轴应该在y轴的右侧,故A、B都是错误的.∵C、D的抛物线都是开口向上,∴a>0,根据同左异右,对称轴应该在y轴的左侧,∵抛物线与y轴交于负半轴,∴c<0由a>0,c<0,排除C.故选:D.【类型三:反比例函数综合】【典例3】(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【答案】B【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图象上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B【变式3-1】(2021•鄂州)如图,点A是反比例函数y=(x>0)的图象上一点,过点A作AC⊥x轴于点C,AC交反比例函数y=(x>0)的图象于点B,点P是y轴正半轴上一点.若△PAB的面积为2,则k的值为.【答案】8【解答】解:连接OA、OB,∵AC⊥x轴,∴AC∥y轴,=S△APB,∴S△AOB=2,∵S△APB=2,∴S△AOB由反比例函数系数k的几何意义可得:S△AOC=6,S△BOC=,∴6﹣=2,解得:k=8,故答案为8.【变式3-2】(2021•荆州)如图,过反比例函数y=(k>0,x>0)图象上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.【答案】S1=4S4【解答】解:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S 是个定值,OA1=A1A2=A2A3=A3A4,∴S1=k,S2=k,S3=k,S4=k,∴S1=4S4.故答案为:S1=4S4.【变式3-3】(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k>0)的图象经过点C,E.若点A(3,0),则k的值是.【答案】4【解答】解:设C(m,),∵四边形ABCD是正方形,∴点E为AC的中点,∴E(,),∵点E在反比例函数y=上,∴,∴m=1,作CH⊥y轴于H,∴CH=1,∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∴∠OBA=∠HCB,∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴BH=OA=3,OB=CH=1,∴C(1,4),∴k=4,故答案为:4.【变式3-4】(2022•雁塔区校级模拟)如图,正方形ACBE的边长是,点B,C分别在x轴和y轴正半轴上,BO=2,ED⊥x轴于点D,ED的中点F在反比例函数y=(x>0)的图象上,则k=.【答案】3【解答】解:∵正方形ACBE的边长是,BO=2,∴BC=BE=,∴OC===1,∵∠ABC=90°,∴∠OBC+∠EBD=90°,∵∠OBC+∠OCB=90°,∴∠OCB=∠EBD,在△OBC和△DEB中,,∴△OBC≌△DEB(AAS),∴BD=OC=1,DE=OB=2,∴OD=3,∴E(3,2),∵点F是ED的中点,∴F(3,1),∵点F在反比例函数y=(x>0)的图象上,∴k=3×1=3,故答案为3.【变式3-5】(2021•广元)如图,点A(﹣2,2)在反比例函数y=的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P(x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,<S△OPE时,x的取值范围是.连接OA、OP.当S△OAD【答案】1<x<4【解答】解:过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,如图,∵点A(﹣2,2)在反比例函数y=的图象上,∴k=﹣4.∴y=.∵点A(﹣2,2),∴AD=OD=2.∴.设B(a,b),则ab=﹣4,OF=﹣b,BF=a.∴==2.=2.同理:S△OCG>S△OBF,从图中可以看出当点P在线段BC上时,S△OPE<S△OPE.即当点P在线段BC上时,满足S△OAD∵OM=ON=5,∴N(0,﹣5),M(5,0).设直线MN的解析式为y=mx+n,则:,解得:.∴直线MN的解析式为y=x﹣5.∴,解得:,.∴B(1,﹣4),C(4,﹣1).∴x的取值范围为1<x<4.【变式3-6】(2021•荆门)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y=(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为.【答案】(,1)【解答】解:作AE⊥OB于E,MF⊥x轴于F,则AE=1,∵∠AOB=30°,∴OE=AE=,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C为(1,),∵点C在函数y=(k≠0)的图象上,∴k=1×=,∴y=,∵∠COD=∠AOB=30°,∠MOC=30°,∴∠DOM=60°,∴∠MOF=30°,∴OF=MF,设MF=n,则OF=n,∴M(n,n),∵点M在函数y=的图象上,∴n=,∴n=1(负数舍去),∴M(,1),故答案为(,1).【变式3-7】(2021•达州)如图,将一把矩形直尺ABCD和一块等腰直角三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,EF交BC于点M,反比例函数y=(x<0)的图象恰好经过点F,M,若直尺的宽CD=1,三角板的斜边FG=4,则k=.【答案】﹣12【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=1,在Rt△FMN中,∠MFN=45°,∴FN=MN=1又∵FG=4,∴NA=MB=FG﹣FN=4﹣1=3,设OA=a,则OB=a+1,∴点F(﹣a,4),M(﹣a﹣1,3),又∵反比例函数y=(x<0)的图象恰好经过点F,M,∴k=﹣4a=3(﹣a﹣1),解得,a=3,∴k=﹣4a=﹣12,故答案为:﹣12.【类型4:二次函数综合】【典例4】(2021•广安)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣1,即,∴b=2a,则b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=﹣1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在﹣2和﹣3之间,∴当x=﹣2时,y=4a﹣2b+c>0,故②错误;∵x=﹣1时,y=ax2+bx+c的最大值是a﹣b+c,∴a﹣b+c≥ax2+bx+c,∴a﹣b≥ax2+bx,即a﹣b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故选:C.【变式4-1】(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是()A.2B.3C.4D.5【答案】A【解答】解:∵抛物线的开口方向向下,∴a<0.∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,b<0.∵a<0,b<0,∴ab>0,∴①的结论正确;∵抛物线y=ax2+bx+c经过点(﹣3,0),∴9a﹣3b+c=0,∴9a﹣3×2a+c=0,∴3a+c=0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.【变式4-2】(2022•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③【答案】D【解答】解:①由图可知:a>0,c<0,<0,∴b>0,∴abc<0,故①不符合题意.②由题意可知:=﹣,∴b=a,故②符合题意.③将(﹣2,0)代入y=ax2+bx+c,∴4a﹣2b+c=0,∵a=b,∴2a+c=0,故③符合题意.④由图象可知:二次函数y=ax2+bx+c的最小值小于0,令y=1代入y=ax2+bx+c,∴ax2+bx+c=1有两个不相同的解,故④不符合题意.故选:D.【变式4-3】(2022•梧州)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x =﹣1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是()A.b2>﹣8aB.若实数m≠﹣1,则a﹣b<am2+bmC.3a﹣2>0D.当y>﹣2时,x1•x2<0【答案】C【解答】解:根据函数图象可知a>0,根据抛物线的对称轴公式可得x=﹣=﹣1,∴b=2a,∴b2>0,﹣8a<0,∴b2>﹣8a.故A正确,不符合题意;∵函数的最小值在x=﹣1处取到,∴若实数m≠﹣1,则a﹣b﹣2<am2+bm﹣2,即若实数m≠﹣1,则a﹣b<am2+bm.故B正确,不符合题意;∵l∥x轴,∴y1=y2,令x=0,则y=﹣2,即抛物线与y轴交于点(0,﹣2),∴当y1=y2>﹣2时,x1<0,x2>0.∴当y1=y2>﹣2时,x1•x2<0.故D正确,不符合题意;∵a>0,∴3a>0,没有条件可以证明3a>2.故C错误,符合题意;故选:C.【变式4-4】(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【解答】解:①∵抛物线y=ax2+bx+c经过点(1,0),∴a+b+c=0,∵a<c,∴a+b+a<0,即2a+b<0,本小题结论正确;②∵a+b+c=0,0<a<c,∴b<0,∴对称轴x=﹣>1,∴当1<x<﹣时,y随x的增大而减小,本小题结论错误;③∵a+b+c=0,∴b+c=﹣a,对于方程ax2+bx+(b+c)=0,Δ=b2﹣4×a×(b+c)=b2+4a2>0,∴方程ax2+bx+(b+c)=0有两个不相等的实数根,本小题结论正确;故选:C.【变式4-5】(2021•福建)二次函数y=ax2﹣2ax+c(a>0)的图象过A(﹣3,y1),B(﹣1,y2),C(2,y3),D(4,y4)四个点,下列说法一定正确的是()A.若y1y2>0,则y3y4>0B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0D.若y3y4<0,则y1y2<0【答案】C【解答】解:如图,由题意对称轴为直线x=1,观察图象可知,y1>y4>y2>y3,若y1y2>0,如图1中,则y3y4<0,选项A不符合题意,若y1y4>0,如图2中,则y2y3<0,选项B不符合题意,若y2y4<0,如图3中,则y1y3<0,选项C符合题意,若y3y4<0,如图4中,则y1y2>0,选项D不符合题意,故选:C.【变式4-6】(2021•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①abc>0;②4a+2b+c>0;③若y≥c,则x≤﹣2或x≥0;④b+c=m.其中正确的有()个.A.1B.2C.3D.4【答案】B【解答】解:①∵抛物线开口向上,对称轴在y轴左边,与y轴交于负半轴,∴a>0,b>0,c<0,∴abc<0,故结论①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),∴抛物线与x轴的另一个交点为(1,0),∵抛物线开口向上,∴当x=2时,y=4a+2b+c>0,故结论②正确;③由题意可知对称轴为:直线x=﹣1,∴x=,∴b=2a,把y=c,b=2a代入y=ax2+bx+c得:ax2+2ax+c=c,∴x2+2x=0,解得x=0或﹣2,∴当y≥c,则x≤﹣2或x≥0,故结论③正确;④把(﹣1,m),(1,0)代入y=ax2+bx+c得:a﹣b+c=m,a+b+c=0,∴b=,∵b=2a,∴a=,∵抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,∴c=,∴b+c=,故选:B.。
专题练 第4练 函数的图象与性质
第4练 函数的图象与性质1.(2015·全国 Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)等于( )A .3B .6C .9D .12答案 C解析 因为-2<1,log 212>log 28=3>1, 所以f (-2)=1+log 2[2-(-2)] =1+log 24=3, f (log 212)=22log 121log 12112=22=12=6,2⨯⨯--故f (-2)+f (log 212)=3+6=9.2.(2022·全国乙卷)如图是下列四个函数中的某个函数在区间[-3,3]的大致图象,则该函数是( )A .y =-x 3+3x x 2+1B .y =x 3-xx 2+1C .y =2x cos xx 2+1D .y =2sin xx 2+1答案 A解析 对于选项B ,当x =1时,y =0,与图象不符,故排除B ;对于选项D ,当x =3时,y =15sin 3>0,与图象不符,故排除D ;对于选项C ,当0<x <π2时,0<cos x <1,故y =2x cos x x 2+1<2x x 2+1≤1,与图象不符,所以排除C.故选A.3.(2020·全国Ⅱ)设函数f (x )=ln|2x +1|-ln|2x -1|,则f (x )( ) A .是偶函数,且在⎝⎛⎭⎫12,+∞上单调递增 B .是奇函数,且在⎝⎛⎭⎫-12,12上单调递减 C .是偶函数,且在⎝⎛⎭⎫-∞,-12上单调递增 D .是奇函数,且在⎝⎛⎭⎫-∞,-12上单调递减 答案 D解析 f (x )=ln|2x +1|-ln|2x -1|的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠±12. ∵f (-x )=ln|-2x +1|-ln|-2x -1| =ln|2x -1|-ln|2x +1| =-f (x ),∴f (x )为奇函数,故排除A ,C. 当x ∈⎝⎛⎭⎫-∞,-12时, f (x )=ln(-2x -1)-ln(1-2x )=ln -2x -11-2x=ln 2x +12x -1=ln ⎝ ⎛⎭⎪⎫1+22x -1,∵y =1+22x -1在⎝⎛⎭⎫-∞,-12上单调递减, ∴由复合函数的单调性可得f (x )在⎝⎛⎭⎫-∞,-12上单调递减. 4.(2020·新高考全国Ⅰ)若定义在R 上的奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( ) A .[-1,1]∪[3,+∞) B .[-3,-1]∪[0,1] C .[-1,0]∪[1,+∞) D .[-1,0]∪[1,3] 答案 D解析 因为函数f (x )为定义在R 上的奇函数,则f (0)=0.又f (x )在(-∞,0)上单调递减,且f (2)=0, 画出函数f (x )的大致图象如图(1)所示, 则函数f (x -1)的大致图象如图(2)所示.当x ≤0时,要满足xf (x -1)≥0, 则f (x -1)≤0,得-1≤x ≤0. 当x >0时,要满足xf (x -1)≥0, 则f (x -1)≥0,得1≤x ≤3.故满足xf (x -1)≥0的x 的取值范围是[-1,0]∪[1,3].5.(2022·新高考全国Ⅱ)已知函数f (x )的定义域为R ,且f (x +y )+f (x -y )=f (x )f (y ),f (1)=1,则∑22k =1f (k )等于( )A .-3B .-2C .0D .1 答案 A解析 因为f (1)=1,所以在f (x +y )+f (x -y )=f (x )f (y )中, 令y =1,得f (x +1)+f (x -1)=f (x )f (1), 所以f (x +1)+f (x -1)=f (x ),① 所以f (x +2)+f (x )=f (x +1).② 由①②相加,得f (x +2)+f (x -1)=0, 故f (x +3)+f (x )=0, 所以f (x +3)=-f (x ), 所以f (x +6)=-f (x +3)=f (x ),所以函数f (x )的一个周期为6. 在f (x +y )+f (x -y )=f (x )f (y )中, 令y =0,得f (x )+f (x )=f (x )f (0), 所以f (0)=2.令x =y =1,得f (2)+f (0)=f (1)f (1), 所以f (2)=-1. 由f (x +3)=-f (x ),得f (3)=-f (0)=-2,f (4)=-f (1)=-1, f (5)=-f (2)=1,f (6)=-f (3)=2,所以f (1)+f (2)+…+f (6)=1-1-2-1+1+2=0,根据函数的周期性知,∑22k =1f (k )=f (1)+f (2)+f (3)+f (4)=1-1-2-1=-3.6.(多选)(2022·新高考全国Ⅰ)已知函数f (x )及其导函数f ′(x )的定义域均为R ,记g (x )=f ′(x ).若f ⎝⎛⎭⎫32-2x ,g (2+x )均为偶函数,则( ) A .f (0)=0 B .g ⎝⎛⎭⎫-12=0 C .f (-1)=f (4) D .g (-1)=g (2)答案 BC解析 方法一 (转化法)因为f ⎝⎛⎭⎫32-2x ,g (2+x )均为偶函数, 所以f ⎝⎛⎭⎫32-2x =f ⎝⎛⎭⎫32+2x , 即f ⎝⎛⎭⎫32-x =f ⎝⎛⎭⎫32+x , g (2+x )=g (2-x ),所以f (3-x )=f (x ),g (4-x )=g (x ), 则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f ′(x ),且函数f (x )可导,所以g ⎝⎛⎭⎫32=0,g (3-x )=-g (x ), 所以g (4-x )=g (x )=-g (3-x ), 所以g (x +2)=-g (x +1)=g (x ), 所以g ⎝⎛⎭⎫-12=g ⎝⎛⎭⎫32=0, g (-1)=g (1)=-g (2),故B 正确,D 错误; 若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件, 所以无法确定f (0)的函数值,故A 错误.方法二 (特例法)因为f ⎝⎛⎭⎫32-2x ,g (2+x )均为偶函数,所以函数f (x )的图象关于直线x =32对称,函数g (x )的图象关于直线x =2对称.取符合题意的一个函数f (x )=1(x ∈R ),则f (0)=1,排除A ;取符合题意的一个函数f (x )=sin πx ,则f ′(x )=πcos πx ,即g (x )=πcos πx ,所以g (-1)=πcos(-π)=-π,g (2)=πcos 2π=π,所以g (-1)≠g (2),排除D.7.(2021·新高考全国Ⅰ)已知函数f (x )=x 3(a ·2x -2-x )是偶函数,则a =________. 答案 1解析 方法一 (定义法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数, 所以f (-x )=f (x )对任意的x ∈R 恒成立,所以(-x )3(a ·2-x -2x )=x 3(a ·2x -2-x )对任意的x ∈R 恒成立, 所以x 3(a -1)(2x +2-x )=0对任意的x ∈R 恒成立, 所以a =1.方法二 (取特殊值检验法)因为f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数, 所以f (-1)=f (1), 所以-⎝⎛⎭⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数, 所以a =1.8.(2022·浙江)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2,x ≤1,x +1x -1,x >1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________;若当x ∈[a ,b ]时,1≤f (x )≤3,则b -a 的最大值是________. 答案37283+ 3 解析 由题意知f ⎝⎛⎭⎫12=-⎝⎛⎭⎫122+2=74, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫74 =74+174-1=74+47-1=3728. 作出函数f (x )的图象,如图所示,结合图象,令-x 2+2=1,解得x =±1; 令x +1x -1=3,解得x =2±3,又x >1,所以x =2+3,所以(b -a )max =2+3-(-1)=3+ 3.9.(2022·烟台模拟)函数y =4-x 2ln (x +1)的定义域为( )A .[-2,2]B .(-1,2]C .(-1,0)∪(0,2]D .(-1,1)∪(1,2]答案 C解析 由已知可得⎩⎪⎨⎪⎧4-x 2≥0,x +1>0,ln (x +1)≠0,即⎩⎪⎨⎪⎧-2≤x ≤2,x >-1,x ≠0,因此,函数y =4-x 2ln (x +1)的定义域为(-1,0)∪(0,2].10.(2022·上饶模拟)已知函数f (x )=sin x +x 3+1x +3,若f (a )=1,则f (-a )等于( )A .1B .3C .4D .5 答案 D解析 根据题意f (a )=sin a +a 3+1a +3=1,即sin a +a 3+1a =-2,所以f (-a )=sin(-a )+(-a )3+1-a+3 =-⎝⎛⎭⎫sin a +a 3+1a +3=2+3=5. 11.(2022·菏泽模拟)已知函数f (x )=e x -e -xx 2+|x |-2,则f (x )的图象可能为( )答案 C解析 f (x )的定义域为{x |x ≠±1},因为f (-x )=e -x -e x(-x )2+|-x |-2=-e x -e -xx 2+|x |-2=-f (x ),所以f (x )为奇函数,其图象关于原点对称,所以排除AD ; 当x >0且x ≠1时,f (x )=e x -e -xx 2+x -2,当0<x <1时,x 2+x -2<0, e x -e -x =e 2x -1e x >0,所以f (x )<0,所以排除B.12.(2022·湖北四校联考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,关于函数f (x )的结论正确的是( ) A .f (0)=2B .f (x )的值域为(-∞,4)C .f (x )<1的解集为(-1,1)D .若f (x )=3,则x 的值是1或 3 答案 B解析 因为f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,函数f (x )的图象如图所示,由图可知f (0)=0,故A 错误; f (x )的值域为(-∞,4),故B 正确;由f (x )<1解得x ∈(-∞,-1)∪(-1,1),故C 错误;f (x )=3,即⎩⎪⎨⎪⎧x 2=3,-1<x <2,解得x =3,故D 错误.13.(多选)(2022·盐城模拟)已知函数f (x )为R 上的奇函数,g (x )=f (x +1)为偶函数,下列说法正确的有( )A .f (x )的图象关于直线x =-1对称B .g (2 023)=0C .g (x )的最小正周期为4D .对任意x ∈R 都有f (2-x )=f (x ) 答案 ABD解析 由题意知,f (x )的对称中心为(0,0),对称轴为x =1, 则f (x )也关于直线x =-1对称,且f (x )=f (2-x ),A ,D 正确; 由A 分析知f (x )=f (2-x )=-f (-x ), 故f (2+x )=-f (x ),所以f (4+x )=-f (2+x )=f (x ), 所以f (x )的周期为4,则g (2 023)=f (2 024)=f (0)=0,B 正确; 但不能说明f (x )的最小正周期为4,C 错误.14.(2022·重庆模拟)已知f (x )是定义在R 上的奇函数,且满足f (2+x )=f (2-x ),当x ∈[0,2]时,f (x )=x 2+a ,则函数f (x )与函数g (x )=12|x -2|-1的图象在[-2 020,2 022]上所有交点的横坐标之和为( ) A .2 020 B .1 010 C .1 012 D .2 022答案 A解析 因为f (x )是定义在R 上的奇函数, 所以f (0)=a =0,即当x ∈[0,2]时,f (x )=x 2, 由已知f (x )=f (4-x )=-f (x -4),所以f(x-4)=-f(x-8),f(x)=f(x-8),故f(x)是T=8的周期函数,且对称轴为x=2,又g(4-x)=12|4-x-2|-1=12|x-2|-1=g(x),即g(2+x)=g(2-x),所以函数g(x)=12|x-2|-1关于x=2对称,如图是函数f(x)和函数g(x)在[-6,10]上的图象,在区间[2,2 022]上,包含了函数f(x)中的252个周期再加上12个周期,在区间[-2 020,2]上,包含了函数f(x)中的252个周期再加上34个周期,所以函数f(x)和函数g(x)在[-2 020,2]和[2,2 022]上都有252×2+1=505(个)交点,根据对称性可得所有交点的横坐标之和为505×4=2 020.15.(2022·菏泽模拟)写出一个同时满足下列两个条件的非常数函数______________________ __________________________.①当x1x2≥0时,f(x1+x2)=f(x1)·f(x2);②f(x)为偶函数.答案f(x)=a|x|(a>0,a≠1)(答案不唯一)解析若满足①对任意的x1,x2≥0有f(x1+x2)=f(x1)f(x2)成立,则对应的函数为指数函数y=a x的形式;若满足②f(x)为偶函数,只需要将x加绝对值即可,所以满足①②两个条件的非常数函数可以是f(x)=a|x|(a>0,a≠1).16.(2022·长春模拟)已知函数f(x)=x3+2x-2sin x,则不等式f(6-5x)+f(x2)≤0的解集为________.答案[2,3]解析由题意知,f(-x)=-x3-2x+2sin x=-f(x),且f(x)的定义域为R,故f(x)为奇函数,又f′(x)=3x2+2(1-cos x)≥0,f(x)在定义域上单调递增,∴f(6-5x)+f(x2)≤0,可得f(x2)≤-f(6-5x)=f(5x-6),即x2≤5x-6,∴x2-5x+6=(x-2)(x-3)≤0,解得2≤x≤3,∴原不等式解集为[2,3].[考情分析]以基本初等函数为载体,考查函数的定义域、最值、奇偶性、单调性、周期性、分段函数求值或分段函数中参数的求解以及函数图象的识别,多以选择题、填空题的形式考查,难度属中档及以上.一、函数的概念与表示核心提炼1.复合函数的定义域(1)若f(x)的定义域为[m,n],则在f(g(x))中,m≤g(x)≤n,从中解得x的范围即为f(g(x))的定义域.(2)若f(g(x))的定义域为[m,n],则由m≤x≤n确定的g(x)的范围即为f(x)的定义域.2.分段函数分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数值域的并集.练后反馈题目18912正误错题整理:二、函数的性质核心提炼1.函数的奇偶性(1)定义:若函数的定义域关于原点对称,则有f(x)是偶函数⇔f(-x)=f(x)=f(|x|);f(x)是奇函数⇔f(-x)=-f(x).(2)判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数). 2.函数单调性判断方法:定义法、图象法、导数法. 3.函数图象的对称中心和对称轴(1)若函数f (x )满足关系式f (a +x )=2b -f (a -x ),则函数y =f (x )的图象关于点(a ,b )对称. (2)若函数f (x )满足关系式f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2对称.练后反馈题目 3 4 5 6 7 10 13 14 15 16 正误错题整理:三、函数的图象 核心提炼1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.由函数的解析式判断其图象的主要方法是利用函数的性质,如定义域、奇偶性、单调性等,以及利用函数图象上的特殊点排除不符合要求的图象. 练后反馈题目 2 11 正误错题整理:1.[T2补偿](2022·重庆模拟)已知函数y =f (x )的部分图象如图所示,则y =f (x )的解析式可能是( )A .y =-x cos xB .y =1-cos xe x +e -xC .y =ln|x |xD .y =sin x +x cos x 答案 A解析 由函数图象知函数关于原点对称,为奇函数,可以排除选项B ; 其余选项都为奇函数.对于选项D ,当x =π时,y =-π,选项D 错误; 对于选项C ,x ≠0,故选项C 错误; 对于选项A ,当x ∈⎝⎛⎭⎫0,π2时,y <0, 当x =π时,y =π,故选项A 最有可能正确.2.[T4补偿](2022·六安模拟)已知f (x )=e x -e -x -x ,x ∈R ,则不等式f (2a +1)+f (2-a )>0的解集是( ) A .(-3,+∞) B .(-∞,-3) C.⎝⎛⎭⎫13,+∞ D.⎝⎛⎭⎫-∞,-13 答案 A解析 f ′(x )=e x +e -x -1=⎝⎛⎭⎫e x +1e x -1≥2-1>0(当且仅当x =0时等号成立), 则f (x )在R 上单调递增,又f (-x )=e -x -e -(-x )-(-x )=e -x -e x +x =-(e x -e -x -x )=-f (x ), 即f (-x )=-f (x ), 则f (x )为R 上的奇函数故原不等式转化为f (2a +1)>f (a -2), 即2a +1>a -2,即a >-3.3.[T6补偿](2022·淮南模拟)已知f (x )是定义在R 上的奇函数,若f ⎝⎛⎭⎫x +34为偶函数且f (1)=3,则f (2 021)+f (2 022)等于( ) A .-3B .-5C .3D .6答案 A解析 因为f ⎝⎛⎭⎫x +34为偶函数, 所以函数f (x )关于直线x =34对称,则有f ⎝⎛⎭⎫32+x =f (-x ),因为f (x )是定义在R 上的奇函数, 所以f (x )=-f (-x ),f (0)=0, 所以f ⎝⎛⎭⎫32+x =-f (x ), 所以f (3+x )=f (x ),所以f (x )是以3为周期的周期函数, 故f (2 021)=f (3×674-1)=f (-1) =-f (1)=-3,f (2 022)=f (0)=0, 所以f (2 021)+f (2 022)=-3.4.[T13补偿](多选)(2022·东北育才学校模拟)已知定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上单调递增,则下列说法正确的是( ) A .f (x )是周期函数B .f (x )的图象关于直线x =2对称C .f (x )在[1,2]上单调递减D .f (2)=f (0) 答案 ACD解析 令x =y =0,得f (0)=f (0)+f (0), 所以f (0)=0,令y =-x ,则f (0)=f (x )+f (-x )=0, 即f (-x )=-f (x ),所以f (x )是奇函数, f (x +4)=-f (x +2)=f (x ),所以f (x )是周期函数,4是它的一个周期,A 正确;f (2+x )=f (-2+x )=-f (2-x ),函数f (x )的图象关于点(2,0)对称,B 错误;f (1+x )=-f (-1+x )=f (1-x ),函数f (x )的图象关于直线x =1对称, 又f (x )在[-1,0]上单调递增, 因此f (x )在[0,1]上单调递增, 所以f (x )在[1,2]上单调递减,C 正确; f (2)=-f (0)=0,D 正确.5.[T14补偿](2022·张家口模拟)已知f (x )是定义在R 上的奇函数,且对x ∈R ,有f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=2x -1,则f (log 241)=________. 答案2341解析 由题意知,f (x +2)=-f (x ), 则f ((x +2)+2)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数, 又由5<log 241<6,且f (x )为奇函数, 得f (log 241)=f (log 241-4) =-f (log 241-6)=f (6-log 241). ∵6-log 241∈(0,1), 故f (6-log 241)=26log 412--1=6441-1=2341.6.[T16补偿](2022·广州模拟)已知f (x )是定义在R 上的偶函数,其导函数为f ′(x ).若x >0时,f ′(x )>2x ,则不等式f (2x )-f (x -1)≤3x 2+2x -1的解集为______. 答案 ⎣⎡⎦⎤-1,13 解析 ∵f ′(x )>2x , ∴f ′(x )-2x >0, ∴[f (x )-x 2]′>0,∴g (x )=f (x )-x 2在[0,+∞)上单调递增,且g (x )为偶函数, 由f (2x )-f (x -1)≤3x 2+2x -1, 得f (2x )-(2x )2≤f (x -1)-(x -1)2,∴|2x |≤|x -1|,解得-1≤x ≤13,∴不等式的解集为⎣⎡⎦⎤-1,13.。
中考数学 中档题突破 专项训练七 新函数的图象与性质的探究题
(1)列表:如表的已知数据是根据 A,E 两点间的距离 x 进行取点、画图、 测量,分别得到了 x 与 y 的几组对应值,请补全表格;
x/cm 0 0.5 1 1.5 2 2.3 2.5 y/cm 0 0.39 0.75 1.07 1.33 1.45 11..50 x/cm 2.8 3.2 3.5 3.6 3.8 3.9 50 y/cm 1.53 1.42 1.17 1.03 0.63 0.35
(1)按照表中自变量 x 的值进行取点、画图、测量,分别得到了 y1,y2与 x 的几组对应值:
x/cm 0 1 2 3 4
5
6
y1/cm 2.49 2.64 2.88 3.25 3.80 4.65 6.00
y2/cm 4.59 4.24 3.80 3.25 2.51 11..35 0.00 35
解:(1)①当 x=BM=0 时,MN=BE. ∵AB=AC,BE=DE, ∴∠B=∠C=∠EDB, ∴ED∥AC.
∵D 是 BC 的中点, ∴E 是 AB 的中点, ∴y=MN=BE=12AB=3.
②x=BM=83,又∵在△MBD 中,BD=4,
42
5
5
cos B=6=3,sin B= 3 ,tan B= 2 ,
小涛根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进
行了探究.
下面是小涛的探究过程,请补充完整.
(1)列表:下表的已知数据是根据 B,M 两点间的距离 x 进行取点、画图、
测量,分别得到了 y 与 x 的几组对应值:
x/cm
0
0.30 0.50 1.00 1.50 2.00 2.50
解: (1)x,y 都是边长,因此都是正数, 点(x,y)在第一象限,故答案为:一.
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数的图像和性质练习题一次函数是数学中的基础概念之一,也是高中数学中的重要内容。
它的图像和性质是我们学习一次函数的关键,通过练习题的形式,我们可以更好地理解和掌握一次函数的图像和性质。
1. 练习题一:给定一次函数y = 2x + 3,求出它的图像和性质。
首先,我们可以根据一次函数的一般式y = kx + b,确定该函数的斜率和截距。
斜率k表示函数图像的倾斜程度,截距b表示函数图像与y轴的交点。
对于给定的一次函数y = 2x + 3,斜率k = 2,截距b = 3。
根据斜率和截距的定义,我们可以知道该函数图像是一条斜率为2,截距为3的直线。
其次,我们可以绘制该函数的图像。
选择一些x的值,代入函数中求得对应的y值,然后将这些点连接起来,就可以得到该函数的图像。
例如,当x = 0时,y = 2*0 + 3 = 3;当x = 1时,y = 2*1 + 3 = 5;当x = -1时,y = 2*(-1) + 3 = 1。
我们可以选择更多的x值,计算出对应的y值,然后将这些点连接起来,就得到了一次函数y = 2x + 3的图像。
最后,我们可以分析该函数的性质。
根据斜率的正负,我们可以知道当x增大时,y也随之增大,表示该函数是递增的。
根据截距的正负,我们可以知道该函数与y轴的交点在正半轴,表示该函数在y轴右侧。
2. 练习题二:给定一次函数y = -0.5x + 2,求出它的图像和性质。
根据一次函数的一般式y = kx + b,我们可以得到该函数的斜率k = -0.5,截距b = 2。
根据斜率和截距的定义,我们可以知道该函数图像是一条斜率为-0.5,截距为2的直线。
绘制该函数的图像,选择一些x的值,代入函数中求得对应的y值,然后将这些点连接起来,就可以得到该函数的图像。
例如,当x = 0时,y = -0.5*0 + 2 = 2;当x = 1时,y = -0.5*1 + 2 = 1.5;当x = -1时,y = -0.5*(-1) + 2 = 2.5。
2020年高考数学《用函数的图像探究函数的性质》专项训练及答案解析
用函数的图像探究函数的性质一、基础检测1、(2018南京、盐城一模)设函数f(x)是偶函数,当x ≥0时,f(x)=⎩⎪⎨⎪⎧x (3-x ),0≤x ≤3,-3x +1,x>3,若函数y =f(x)-m 有四个不同的零点,则实数m 的取值范围是________.【答案】 ⎣⎢⎡⎭⎪⎫1,94【解析】先画出x ≥0时的函数图像,再利用偶函数的对称性得到x<0时的图像.令y =0得f(x)=m.令y =f(x),y =m ,由图像可得要有四个不同的零点,则m ∈⎣⎢⎡⎭⎪⎫1,94.2、(2019苏州期初调查)已知函数f(x)=|x 2-6|,若a>b>0,且f(a)=f(b),则a 2b 的最大值是________. 【答案】16【解析】作出函数f(x)图像,如下图:则0<b<6<a ,由f (a)=f (b),所以|a 2-6|=|b 2-6|,则a 2-6=6-b 2,所以a 2=12-b 2,则b =(12-b 2)b ,设函数g(b)=(12-b 2)b =-b 3+12b(0<b<6),g ′(b)=-3b 2+12=3(2+b)(2-b),令g′(b)=0,则b =2,当b ∈(0,2)时,g ′(b)>0,g(b)递增,当b ∈(2,6)时,g ′(b)<0,g(b)递减,所以g(b) 的最大值为16,则a 2b 的最大值是16.解后反思 处理双元变量的最值问题,常用消元法,转化为单元变量的函数来处理,特别注意的是,要注意写准函数的定义域.3、(2019泰州期末)已知函数f(x)=⎩⎪⎨⎪⎧x 3-3x +2a ,x ≥a ,x 3+3x -4a ,x<a ,若存在x 0<0,使得f(x 0)=0,则实数a 的取值范围是________.【答案】 [-1,0)思路分析 本题是一个分段函数的形式,有以下两种处理的思路:思路1.对两段函数分别研究图像和性质,由于研究的是x<0的情形,故分a ≥0和a<0两种情况讨论,当a ≥0时,结论易得;当a<0时,由于x<a 时,f(x)单调递增,而f(a)=a 3-a ,故要对f(a)=a 3-a 的正负分三种情况讨论,最后总结,问题得以解决.思路2.考虑能否合并成一个含绝对值的函数,本题f(x)=x 3-3|x -a|-a ,从而问题转化为y =x 3和y =3|x -a|+a 的图像在y 轴左侧有交点的问题,通过函数的图像,不难得到结论.解法1(分类讨论法) 当a ≥0时,只考虑x<a 的情形,f ′(x)=3x 2+3>0,f(x)在(-∞,a)上单调递增,而f(0)=-4a ≤0,显然不存在x 0<0,使得f(x 0)=0,所以a ≥0不成立.当a<0时,当x<a 时,f(x)在(-∞,a)上单调递增,且f(x)<f(a)=a 3-a ,当x ≥a 时,f ′(x)=3x 2-3=3(x +1)(x -1),①当a 3-a =a(a 2-1)>0,即-1<a<0时,则必存在x 0<a ,使得f(x 0)=0,结论成立; ②当a =-1时,f(-1)=0,结论成立;③当a<-1时,f(x)在 [a ,-1)上单调递增,在(-1,0)上递减,而f(-1)=2a +2<0,结论不成立. 综上实数a 的取值范围是[-1,0).解法2(图像法) 函数f(x)=x 3-3|x -a|-a ,由题意可得y =x 3与y =3|x -a|+a 在y 轴左侧有交点.y =3|x -a|+a 的顶点为(a ,a),在直线y =x 上,由⎩⎪⎨⎪⎧y =x ,y =x 3,解得x =-1. 又y =x 3在x =-1处的切线率斜恰为3,画出图像如图所示,数形结合知a ∈[-1,0)解后反思 本题解法1属于常规思路,解法2对函数式的化简和变形提出了很高的要求,其中y =3|x -a|+a 是折线函数,是由y =3|x|图像在y =x 上滑动所形成的图形,对于此类题型,同学要多总结,多积累,才能灵活应用.4、(2018扬州期末) 已知函数f(x)=⎩⎪⎨⎪⎧log 12(-x +1)-1,x ∈[-1,k],-2|x -1|,x ∈(k ,a],若存在实数k 使得该函数的值域为[-2,0],则实数a 的取值范围是________.【答案】 ⎝ ⎛⎦⎥⎤12,2【解析】根据函数f(x)的解析式作出草图如图,①当x ∈[-1,k]时,f(x)=log 12(-x +1)-1,它在[-1,1)上是单调递增的,且f(-1)=-2,f ⎝ ⎛⎭⎪⎫12=0,因为该函数在[-1,a]上的值域为[-2,0],所以必须有-1<k ≤12;②当x ∈(k ,a]时,f(x)=-2|x -1|,在(-∞,1]上单调递增,在[1,+∞)上单调递减,且f(0)=f(2)=-2,f(1)=0,因为函数的值域为[-2,0],所以必须有0≤k<a ≤2.综合①②,要求存在实数k 使得该函数的值域为[-2,0],则必须0≤k ≤12<a ≤2.所以实数a 的取值范围为⎝ ⎛⎦⎥⎤12,2.5、(2018镇江期末)已知k 为常数,函数f(x)=⎩⎪⎨⎪⎧x +2x +1,x ≤0,|ln x|,x>0,若关于x 的方程f(x)=kx +2有且只有四个不同解,则实数k 的取值构成的集合为________.【答案】 ⎩⎨⎧⎭⎬⎫1e 3∪(-e ,-1)【解析】作函数y =f(x)和y =kx +2的图像,如图所示,两图像除了(0,2)还应有3个公共点,当k ≥0时,直线应与曲线y =f(x)(x>1)相切,设切点(x 0,ln x 0),则切线斜率为k =1x 0,又k =ln x 0-2x 0,则1x 0=ln x 0-2x 0,解得x 0=e 3,此时k =1e 3,当k<0时,当y =kx +2与曲线y =x +2x +1相切于点(0,2)时,函数y =f(x)和y =kx +2的图像只有三个公共点,不符合题意,此时k =-1,当-1<k<0时,函数y =f(x)和y =kx +2的图像只有三个公共点,不符合题意,当直线y =kx +2与y =f(x)(0<x<1)相切时,两图像只有三个公共点,设切点(x 0,-ln x 0),则切线的斜率k =-1x 0,又k =-ln x 0-2x 0,则-1x 0=-ln x 0-2x 0,解得x 0=e -1,此时k =-e 不符合题意,当k<-e 时,两图像只有两个公共点,不合题意,而当-e <k<-1时,两图像有4个公共点,符合题意,所以实数k 的取值范围是⎩⎨⎧⎭⎬⎫1e 3∪(-e ,-1).解后反思 方程解的个数的判断,常转化为函数图像公共点个数的判断,在转化的过程中,一般将它转化为一个确定的函数与一个不确定的函数,这样,只需要研究不确定的函数的图像的变化情况就可以得到问题的解.转化时有时也会做一些“技术”上的处理,比如本题可以知方程f(x)=kx +2一定有一个零解,在x ≠0时,可以转化为直线y =k 与曲线y =f (x )-2x 有三个公共点来处理,这样做的好处是在画出两图像后很容易得到k 的取值范围,但曲线画起来难度增加了.6、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________. 【答案】(1,+∞)解法1(直接法) 当x>0时,令f(x)=e -x-12=0,解得x =ln 2>0,此时函数f(x)有1个零点,因为要求函数f(x)在R 上有3个不同的零点,则当x ≤0时,f (x )=x 3-3mx -2有2个不同的零点,因为f ′(x )=3x 2-3m ,令f ′(x )=0,则x 2-m =0,若m ≤0,则函数f (x )为增函数,不合题意,故m >0,所以函数f (x )在(-∞,-m )上为增函数,在(-m ,0]上为减函数,即f (x )max =f (-m )=-m m +3m m -2=2m m -2,f (0)=-2<0,要使f (x )=x 3-3mx -2在(-∞,0]上有2个不同的零点,则f (x )max =2m m -2>0,即m >1,故实数m 的取值范围是(1,+∞).解法2(分离参数) 当x>0时,令f(x)=e -x-12=0,解得x =ln 2>0,此时函数f(x)有1个零点,因为要求函数f(x)在R 上有3个不同的零点,则当x ≤0时,f (x )=x 3-3mx -2有2个不同的零点,即x 3-3mx -2=0,显然x =0不是它的根,所以3m =x 2-2x ,令y =x 2-2x (x <0),则y ′=2x +2x 2=2(x 3+1)x2,当x ∈(-∞,-1)时,y ′<0,此时函数单调递减;当x ∈(-1,0)时,y ′>0,此时函数单调递增,故y min =3,因此,要使f (x )=x 3-3mx -2在(-∞,0)上有两个不同的零点,则需3m >3,即m >1. 二、拓展延伸题型一、运用函数图像解决多元问题知识点拨:解决多元问题的最值问题主要思想就是把多元问题转化为单元问题,要通过函数的图像找到各个参数的关系,但要注意参数的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专项训练(四) 函数图象与性质的探究
(限时:45分钟)
1. (2019朝阳区一模)小超在观看足球比赛时,发现了这样一个问题,两名运动员从不同的位置出发,沿着
不同的方向,以不同的速度直线奔跑,什么时候他们离对方最近呢?小超通过一定的测量,并选择了合适的比例尺,把上述问题抽象成如下数学问题:如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,点D 以1 cm/s 的速度从点C 向点B 运动,点E 以2 cm/s 的速度从点A 向点B 运动,当点E 到达点B 时,两点同时停止运动,若点D ,E 同时出发,多长时间后DE 取得最小值?
小超猜想当DE ⊥AB 时,DE 最小.探究后发现用几何的知识解决这个问题有一定的困难,于是根据函数的学习经验,设C ,D 两点间的距离为x cm ,D ,E 两点的距离为y cm ,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整: (1)由题意可知线段AE 和CD 的数量关系是: ;
(2)按照下表中自变量x 的值进行取点、画图、测量,得到了y 与x 的几组对应值;
x /cm 0 1 2 3 4 5 y /cm
6.0
4.8
3.8
2.7
3.0
(说明:补全表格时相关数值保留一位小数)
(3)在平面直角坐标系中(在上方),描出以补全后表中各对对应值为坐标的点,画出该函数的图象; (4)结合画出的函数图象,解决问题:小超的猜想 ;(填“正确”或“不正确”)当两点同时出发了 s 时,DE 取得最小值,为 cm.
2. (2019西城区一模)如图,AB ︵是直径AB 所对的半圆弧,C 是AB ︵ 上一定点,D 是AB ︵
上一动点,连接DA 、DB 、D C.已知AB =5 cm , 设D 、A 两点间的距离为x cm ,D 、B 两点间的距离为y 1 cm ,D , C 两点间的距离为y 2 cm.
小腾根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:
(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值;
x /cm 0 1 2 3 4 5 y 1/cm 5 4.9 4 3 0 y 2/cm
4
3.32
2.47
1.4
3
(2)在同一平面直角坐标系xOy 中,描出补全后 的表中各组数值所对应的点(x ,y 1),(x ,y 2), 并画出函数y 1,y 2的图象;
(3)结合函数图象,解决问题:连接BC , 当△BCD 是以CD 为腰的等腰三角形时 ,DA 的长度约为 cm.
3. (2019东城区一模)如图,点E 在弦AB 所对的优弧上,且BE ︵
为 半圆,C 是BE ︵
上的动点,连接CA ,C B.已知AB =4 cm ,设B ,C 两点间的距离为x cm ,点C 到弦AB 所在直线的距离为y 1 cm ,A , C 两点间的距离为y 2 cm.
小明根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化 而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到 了y 1,y 2与x 的几组对应值;
x /cm 0 1 2 3 4 5 6 y 1/cm 0 0.78 1.76 2.85 3.98 4.95 4.47 y 2/cm
4
4.69
5.26
5.96
5.94
4.47
(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值 所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;
(3)结合函数图象,解决问题:
①连接BE ,则BE 的长约为 cm ;
②当以A ,B ,C 为顶点组成的三角形是直角三角形时, BC 的长度约为 cm.
4. (2019海淀区一模)如图,线段AB 及一定点C ,P 是 线段AB 上一动点,作直线CP ,过点A 作AQ ⊥CP 于 点Q .已知AB =7 cm ,设A ,P 两点间的距离为x cm , A ,Q 两点间的距离为y 1 cm ,P ,Q 两点间的距离为 y 2 cm.小明根据学习函数的经验,分别对函数y 1,y 2 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,y 2与x 的几组对应值:
(2)在同一坐标系中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;
(3)结合函数图象,解决问题:当△APQ 中有一个角为30°时,AP 的长度约为 cm.
x
y
G
N
M P 1
2
3
4
1
2
3
4
4
3214321
l
O
5. (2019西城区二模)某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y (单位:微克)与服药后的时间t (单位:小时)之间近似满足某种函数关系,下表是y 与t 的几组对应值,其部分图象如图所示.
t 0 1 2 3 4 6 8 10 … y
2
4
2.83
2
1
0.5
0.25
…
(1)在所给平面直角坐标系中,继续描出上表中已列 出数值所对应的点(t ,y ),并补全该函数图象; (2)结合函数图象,解决下列问题:
①某病人第一次服药后5小时,每毫升血液中的 含药量约为 微克;若每毫升血液中含药 量不少于0.5微克时治疗疾病有效,则第一次服 药后治疗该疾病有效的时间共持续约 小时;
②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为 微克.
6. (2019海淀区二模)有这样一个问题:探究函数y =18x 2-1
x
的图象与性质.
小宇从课本上研究函数的活动中获得启发,对函数y =18x 2-1
x 的图象与性质进行了探究.
下面是小宇的探究过程,请补充完整:
(1)函数y =18x 2-1
x 的自变量x 的取值范围是 ;
(2)如图,在平面直角坐标系xOy 中,完成以下作图步骤: ①画出函数y =14x 2和y =-2
x
的图象;
②在x 轴上取一点P ,过点P 作x 轴的垂线l ,分别交 函数y =14x 2和y =-2
x 的图象于点M ,N ,记线段MN
的中点为G ;
③在x 轴正半轴上多次改变点P 的位置,用②的方法
得到相应的点G ,把这些点用平滑的曲线连接起来,得到函数y =18x 2-1
x 在y 轴右侧的图象.继续在x 轴
负半轴上多次改变点P 的位置,重复上述操作得到该函数在y 轴左侧的图象. (3)结合函数y =18x 2-1
x
的图象,发现:
①该函数图象在第二象限内存在最低点,该点的横坐标约为 (保留小数点后一位); ②该函数还具有的性质为: (一条即可)。