高一数学上册期中考试试题

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷含答案

2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。

期中考试数学高一真题试卷

期中考试数学高一真题试卷

期中考试数学高一真题试卷一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(2) \)的值。

A. 3B. 5C. 7D. 92. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相离B. 相切C. 相交D. 包含3. 已知等差数列的首项为2,公差为3,求第5项的值。

A. 17B. 14C. 11D. 84. 若\( \sin \theta = \frac{1}{2} \),求\( \cos 2\theta \)的值。

A. 0B. -1C. 1D. -\( \frac{1}{2} \)5. 函数\( y = \log_2 x \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)6. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( x + y = 10 \),求\( xy \)的值。

A. 4B. 8C. 12D. 167. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 88. 已知\( a \)和\( b \)是方程\( x^2 + 5x + 6 = 0 \)的两个根,求\( a + b \)的值。

A. -3B. -2C. -1D. 09. 函数\( y = \sqrt{x} \)的值域是:A. \( x \geq 0 \)B. \( y \geq 0 \)C. \( y > 0 \)D. \( y \leq 0 \)10. 已知\( \tan \alpha = 2 \),求\( \sin 2\alpha \)的值。

A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C.\( \frac{2}{5} \) D. \( \frac{1}{5} \)二、填空题(每题4分,共20分)11. 若\( \cos \theta = -\frac{\sqrt{3}}{2} \),\( \theta \)的终边在第二象限,则\( \sin \theta \)的值为________。

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题

浙江省杭州市第二中学2024-2025学年高一上学期期中考试数学试题一、单选题1.设集合{}N 12A x x =∈-≤≤,{}2,1,0,1B =--,则A B = ()A .{}2,1,0,1,2--B .{}1,0,1-C .{}0,1D .{}12.若函数()1f x +的定义域是{}10x x -<<,则函数()f x 的定义域为()A .{}01x x <<B .{}21x x -<<-C .{}10x x -<<D .{}20x x -<<3.不等式20cx ax b ++>的解集为112x x ⎧⎫-<<⎨⎬⎩⎭,则函数2y ax bx c =+-的图象大致为()A .B .C .D .4.已知()e e x x xf x a -=+是偶函数,则a =()A .2-B .1-C .1D .25.已知命题p :0x ∃≥,111x x +<+,则()A .命题p 的否定为0x ∀≥,111x x +≥+,且p 是真命题B .命题p 的否定为0x ∃≥,111x x +≥+,且p 是真命题C .命题p 的否定为0x ∀≥,111x x +≥+,且p 是假命题D .命题p 的否定为0x ∀<,111x x +≥+,p 是假命题6.已知函数2()32x a x f x ax x ⎧≤=⎨+>⎩,,是R 上的增.函数,则实数a 的取值范围为()A .1a >B .13a <<C .13a -≤≤D .13a <£7.已知,,abc 为正数,且22a b c ++=,则14a b b c +++的最小值为()A .52B .52C .92D .948.已知函数341()=41x x f x x -++,则不等式(21)()0f x f x -+<的解集为()A .(1,)+∞B .(,1)-∞C .1(,)3+∞D .1(,)3-∞二、多选题9.设,R a b ∈,若0a b ->,则下列结论正确的是()A .0b a ->B .0b a +>C .220a b ->D .330a b +<10.某校“五一田径运动会”上,共有12名同学参加100米、400米、1500米三个项目,其中有8人参加“100米比赛”,有7人参加“400米比赛”,有5人参加“1500米比赛”,“100米和400米”都参加的有4人,“100米和1500米”都参加的有3人,“400米和1500米”都参加的有3人,则下列说法正确的是()A .三项比赛都参加的有2人B .只参加100米比赛的有3人C .只参加400米比赛的有3人D .只参加1500米比赛的有3人11.设R x ∈,[]x 表示不超过x 的最大整数,如][1.51, 1.52⎡⎤=-=-⎣⎦,记{}[]x x x =-.则下列说法正确的有()A .R,Z x n ∀∈∈,都有[][]n x n x +=+B .,x y ∀∈R ,都有[][][]xy x y ≥C .*R,N x n ∀∈∈,都有[]x x n n ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦D .若存在实数x ,使得23[]1,[]2,[]3,...,[]n x x x x n ====同时成立,则正整数n 的最大值为4.三、填空题12.设集合(){}22,2,N,N A x y x y x y =+≤∈∈,则A 中元素的个数为13.如果2339x x --<,则x 的取值范围为.14.函数()f x 的定义域为D ,若对于任意12x x D ∈,当12x x <时,有12()()f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[0,1]上为非减函数,且满足以下三个条件:①(0)0;f =②1()()32x f f x =;③(1)()1f x f x -+=.则21((55f f +=四、解答题15.已知命题22:R,60p x x x a ∃∈-+=,当命题p 为真命题时,实数a 的取值集合为A .(1)求集合A ;(2)设集合{}321B a m a m =-≤≤-,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.16.已知函数()4(0)4x xa f x a =+≠(1)当1a =时,根据定义证明函数()f x 在(0,+∞)上单调递增.(2)若()f x 有最小值4,求a 的值.17.某公园为了美化游园环境,计划修建一个如图所示的总面积为7502m 的矩形花园.图中阴影部分是宽度为1m 的小路,中间,,A B C 三个矩形区域将种植牡丹、郁金香、月季(其中,B C 区域的形状、大小完全相同).设矩形花园的一条边长为m x ,鲜花种植的总面积为2m S .(1)用含有x 的代数式表示a ,并写出x 的取值范围;(2)当x 的值为多少时,才能使鲜花种植的总面积最大?18.设函数()222f x x tx =-+,其中R t ∈.(1)若1t =,(i )当[0,3]x ∈时,求()f x 的最大值和最小值;(ii )对任意的[]0,2x a ∈+,都有()5f x ≤,求实数a 的取值范围;(2)若对任意的12,[0,4]x x ∈,都有()()128f x f x -≤,求实数t 的取值范围.19.定义在R 上的奇函数()f x ,当0x ≥时,2()4f x x x =-+.(1)求()f x 的解析式;(2)当()f x 的定义域为[,]a b (0a )时,()f x 的值域为[,]a b ,求,a b 的取值.(3)是否存在实数,a b ,使得当()f x 的定义域为[,]a b 时,()f x 的值域为88[,b a,如果存在,求出,a b 的值;若不存在,请说明理由.。

2023-2024学年天津一中高一(上)期中数学试卷【答案版】

2023-2024学年天津一中高一(上)期中数学试卷【答案版】

2023-2024学年天津一中高一(上)期中数学试卷一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集U={x|0≤x<5,x∈N*},集合P={1,2,3},Q={2,4},则(∁U P)∪Q=()A.{0,2,3,4}B.{2,4}C.{2,3,4}D.{1,2,4}2.“a=b”是“a+b2=√ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.存在量词命题p:∃x∈[﹣1,1],x2﹣1≤0的否定是()A.∀x∈[﹣1,1],x2﹣1>0B.∀x∈[﹣1,1],x2﹣1≥0 C.∃x∈[﹣1,1],x2﹣1>0D.∃x∈[﹣1,1],x2﹣1≥0 4.已知a,b∈R,则下列命题正确的是()A.若a>b,则a2≠b2B.若a2≠b2,则a>bC.若a>b,则a2>b2D.若a>|b|,则a2>b25.已知x>y>z,且x+y+z=1,则下列不等式中恒成立的是()A.xy>yz B.x|y|>z|y|C.xy>xz D.xz≥yz6.已知函数f(x)的定义域为(0,+∞),且满足f(x)+2f(1x )=5x+4x,则f(x)的最小值为()A.2B.3C.4D.2√27.若函数f(x)=2ax2+bx+c的部分图象如图所示,则f(5)=()A.−13B.−23C.−16D.−1128.定义在R上的奇函数f(x),满足f(12+x)=f(12−x),在区间[−12,0]上递增,则()A.f(0.3)<f(√2)<f(2)B.f(2)<f(0.3)<f(√2)C .f (0.3)<f (2)<f (√2)D .f (√2)<f (2)<f (0.3)9.已知a ,b ∈R ,若√4a 2+b 2⋅√a 2+4b 2a 2+b2的最大值为m ,且不等式x 2﹣ax +b <0的解集为(1,2m ),则a +b =( ) A .3B .43C .7D .1110.定义区间长度m 为这样的一个量:m 的大小为区间右端点的值减去区间左端点的值,若关于x 的不等式x 2﹣ax ﹣6a <0有解,且解集的区间长度不超过5个单位长,则a 的取值范围是( ) A .(﹣∞,25]∪[1,+∞) B .[﹣25,﹣24)∪(0,1] C .[﹣25,0)∪(1,24) D .[﹣25,1]二、填空题:(每小题4分,共24分) 11.已知函数f(x)=√2+x 1√16−x 的定义域为 .12.已知命题p :x >m ,q :2+x ﹣x 2<0,如果命题p 是命题q 的充分不必要条件,则实数m 的取值范围是 .13.某班共48人,其中25人喜爱篮球运动,20人喜爱乒乓球运动,16人对这两项运动都不喜爱,则既喜爱篮球运动又喜爱乒乓球运动的人数为 .14.已知函数f(x)={x +3,x ≤0√x ,x >0,若f (a ﹣3)=f (a +2),则f (a )= .15.已知函数f(x)={x 2−(a +4)x +5,x <2(2a −3)x ,x ≥2在R 上单调递减,则实数a 的取值范围为 .16.定义在R 上的函数f (x )满足f (﹣x )=f (x ),且当x ≥0时,f (x )={−x 2+1,0≤x <11−x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1﹣x )≤f (x +m )恒成立,则实数m 的最大值为 . 三、解答题:(本题共4小题,共46分)解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |x 2﹣2x =0},B ={x |x 2+(m ﹣1)x ﹣m 2+1=0} (1)若A ∩B ={2},求实数m 的取值范围; (2)若A ∩B =B ,求实数m 的取值范围. 18.(12分)已知a >0,b >0,2a +b =2. (1)求b a +4b的最小值;(2)求4a 2+8ab +b 2的最大值. 19.(12分)已知函数f(x)=x 2+2x.(1)求f(1),f(2)的值;(2)判断函数f(x)在区间(1,+∞)的单调性并证明;(3)若不等式f(x−1)≥2(x−1)+2x−1+m对一切x∈[1,6]恒成立,求实数m的取值范围.20.(12分)已知函数f(x)=x+1−aa−x(x∈R且x≠a).(1)求f(x)+f(2a﹣x)的值;(2)当函数f(x)的定义域为[a+12,a+1]时,求f(x)的值域;(3)设函数g(x)=x2+|(x﹣a)f(x)|,求g(x)的最小值.2023-2024学年天津一中高一(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集U={x|0≤x<5,x∈N*},集合P={1,2,3},Q={2,4},则(∁U P)∪Q=()A.{0,2,3,4}B.{2,4}C.{2,3,4}D.{1,2,4}解:因为U={x|0≤x<5,x∈N*}=U={1,2,3,4},所以(∁U P)∪Q={4}∪{2,4}={2,4}.故选:B.2.“a=b”是“a+b2=√ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:a=b<0时,a+b2=√ab不成立,“a=b”不是“a+b2=√ab”的充分条件;a+b2=√ab时,有a≥0且b≥0,a+b−2√ab=0,即(√a−√b)2=0,得a=b,故“a=b”是“a+b2=√ab”的必要条件;所以“a=b”是“a+b2=√ab”的必要不充分条件.故选:B.3.存在量词命题p:∃x∈[﹣1,1],x2﹣1≤0的否定是()A.∀x∈[﹣1,1],x2﹣1>0B.∀x∈[﹣1,1],x2﹣1≥0 C.∃x∈[﹣1,1],x2﹣1>0D.∃x∈[﹣1,1],x2﹣1≥0解:命题是特称命题,则命题的否定是:∀x∈[﹣1,1],x2﹣1>0.故选:A.4.已知a,b∈R,则下列命题正确的是()A.若a>b,则a2≠b2B.若a2≠b2,则a>bC.若a>b,则a2>b2D.若a>|b|,则a2>b2解:对于A,当a=﹣b时,如a=2,b=﹣2时a2=b2成立,故A错误;对于B,当a=1,b=2,显然a2≠b2,但a<b,故B错误;对于C,当a=2,b=﹣3时,显然a>b,但a2<b2,故C错误;对于D,a>|b|,则a2>|b|2=b2,故D正确.故选:D.5.已知x>y>z,且x+y+z=1,则下列不等式中恒成立的是()A.xy>yz B.x|y|>z|y|C.xy>xz D.xz≥yz解:当x=2,y=0,z=﹣1时,不等式xy>yz,x|y|>z|y|,xz≥yz均不成立,故选项A、B、D错误;因为x>y>z,且x+y+z=1,所以x>0,所以xy>xz,故选项C正确.故选:C.6.已知函数f(x)的定义域为(0,+∞),且满足f(x)+2f(1x )=5x+4x,则f(x)的最小值为()A.2B.3C.4D.2√2解:由f(x)+2f(1x )=5x+4x,取x=1x,则f(1x)+2f(x)=5x+4x,联立解得f(x)=x+2x,x∈(0,+∞).∴f(x)=x+2x≥2√x⋅2x=2√2,当且仅当x=2x,即x=√2时等号成立.∴f(x)的最小值为2√2.故选:D.7.若函数f(x)=2ax2+bx+c的部分图象如图所示,则f(5)=()A.−13B.−23C.−16D.−112解:根据题意,函数f(x)=2ax2+bx+c,由函数的图象,其定义域为{x|x≠2且x≠4},在区间(2,4)上,f(x)>0,且当x=3时,f(x)取得最小值1,在区间(﹣∞,2)和(4,+∞)上,f(x)<0,设g(x)=ax2+bx+c,则g(x)=0的两个零点为2和4,必有a<0,且当x=3时,g(x)取得最大值2,则有{−ba =2+4=6c a =2×4=89a +3b +c =2,解可得{a =−2b =12c =−16,则f (x )=2−2x 2+12x−16=−1x 2−6x+8, 则f (5)=−13.故选:A .8.定义在R 上的奇函数f (x ),满足f (12+x )=f (12−x ),在区间[−12,0]上递增,则( )A .f (0.3)<f(√2)<f(2)B .f (2)<f (0.3)<f (√2)C .f (0.3)<f (2)<f (√2)D .f (√2)<f (2)<f (0.3)解:定义在R 上的奇函数f (x ),满足f (12+x )=f (12−x ),可得f (x )的图象关于直线x =12对称,由f (﹣x )=﹣f (x ),f (﹣x )=f (x +1), 可得f (x +2)=﹣f (x +1)=f (x ), 即f (x )的周期为2,奇函数f (x )在区间[−12,0]上递增,可得f (x )在(0,12)递增,由f (x )的图象关于直线x =12对称,可得f (x )在(12,1)递减,即有f (12)>f (0)=0,f (−12)<0,f (0.3)>0,即有f (2)=f (0)=0,f (√2)=f (1−√2)<0, 可得f (√2)<f (2)<f (0.3), 故选:D .9.已知a ,b ∈R ,若√4a 2+b 2⋅√a 2+4b 2a 2+b2的最大值为m ,且不等式x 2﹣ax +b <0的解集为(1,2m ),则a +b =( ) A .3B .43C .7D .11解:根据不等式xy ≤x 2+y 22可得√4a 2+b 2⋅√a 2+4b 2≤4a 2+b 2+a 2+4b 22=52(a 2+b 2),当且仅当4a 2+b 2=a 2+4b 2,即a 2=b 2时等号成立, 所以,√4a 2+b 2⋅√a 2+4b 2a 2+b 2≤52,所以m =52.所以,不等式x2﹣ax+b<0的解集为(1,5).根据一元二次不等式的解集与一元二次方程解的关系可知,1和5是方程x2﹣ax+b=0的两个解,由根与系数的关系知{1+5=a1×5=b,解得{a=6b=5,所以a+b=11.故选:D.10.定义区间长度m为这样的一个量:m的大小为区间右端点的值减去区间左端点的值,若关于x的不等式x2﹣ax﹣6a<0有解,且解集的区间长度不超过5个单位长,则a的取值范围是()A.(﹣∞,25]∪[1,+∞)B.[﹣25,﹣24)∪(0,1]C.[﹣25,0)∪(1,24)D.[﹣25,1]解:∵关于x的不等式x2﹣ax﹣6a<0有解,∴Δ=a2+24a>0,解得a>0或a<﹣24.由x2﹣ax﹣6a=0解得.x1=a−√△2,x2=a+√△2∵x1<x2,∴不等式解集为(x1,x2),∵解集的区间长度不超过5个单位长x2﹣x1≤5,解得﹣25≤a≤1,∵a>0或a<﹣24,∴﹣25≤a<﹣24或0<a≤1.故选:B.二、填空题:(每小题4分,共24分)11.已知函数f(x)=√2+x√16−x2的定义域为[﹣2,4).解:由题意得函数f(x)=√2+x1√16−x2要有意义,需满足{2+x≥016−x2>0,解得﹣2≤x<4,即函数f(x)=√2+x1√16−x2的定义域为[﹣2,4).故答案为:[﹣2,4).12.已知命题p:x>m,q:2+x﹣x2<0,如果命题p是命题q的充分不必要条件,则实数m的取值范围是[2,+∞).解:不等式2+x﹣x2<0,即x2﹣x﹣2>0,解得x<﹣1或x>2.设A={x|x>m},B={x|x<﹣1或x>2},由命题p是命题q的充分不必要条件,可知A⫋B,所以有m≥2,即实数m的取值范围是[2,+∞).故答案为:[2,+∞).13.某班共48人,其中25人喜爱篮球运动,20人喜爱乒乓球运动,16人对这两项运动都不喜爱,则既喜爱篮球运动又喜爱乒乓球运动的人数为 13 .解:某班共48人,其中25人喜爱篮球运动,20人喜爱乒乓球运动,16人对这两项运动都不喜爱, 设两项运动都喜欢的人数为x ,作出维恩图,可得:25﹣x +x +20﹣x +16=48,解得x =13, 则既喜爱篮球运动又喜爱乒乓球运动的人数为13. 故答案为:13.14.已知函数f(x)={x +3,x ≤0√x ,x >0,若f (a ﹣3)=f (a +2),则f (a )= √2 .解:当a +2≤0,即a ≤﹣2时,则由f (a ﹣3)=f (a +2)可得,a =a +5,无解; 当a ﹣3≤0,且a +2>0,即﹣2<a ≤3时,由f (a ﹣3)=f (a +2)可得,a =√a +2,所以a >0, 整理可得,a 2﹣a ﹣2=0,解得a =﹣1(舍去)或a =2; 当a ﹣3>0,即a >3时,由f (a ﹣3)=f (a +2)可得,√a −3=√a +2,无解. 综上所述,a =2. 所以,f(a)=f(2)=√2. 故答案为:√2.15.已知函数f(x)={x 2−(a +4)x +5,x <2(2a −3)x ,x ≥2在R 上单调递减,则实数a 的取值范围为 [0,76] .解:函数f(x)={x 2−(a +4)x +5,x <2(2a −3)x ,x ≥2在R 上单调递减,则{2a −3<0a+42≥24−2(a +4)+5≥2(2a −3),解得0≤a ≤76,即实数a 的取值范围为[0,76].故答案为:[0,76].16.定义在R 上的函数f (x )满足f (﹣x )=f (x ),且当x ≥0时,f (x )={−x 2+1,0≤x <11−x ,x ≥1,若对任意的x ∈[m ,m +1],不等式f (1﹣x )≤f (x +m )恒成立,则实数m 的最大值为 −13.解:因为 f (﹣x )=f (x ),x ∈R ,所以函数f (x )为偶函数, 又当x ⩾0时,f (x )={−x 2+1,0≤x <11−x ,x ≥1是减函数,所以不等式 f (1﹣x )⩽f (x +m ),等价于不等式 f (|1﹣x |)⩽f (|x +m |), 即|1﹣x |⩾|x +m |,平方化简得 2(m +1)x ⩽1﹣m 2, 当m +1=0时,x ∈R ,符合题意,所以m =﹣1; 当m +1>0,即 m >﹣1时 ,x ⩽1−m2,又x ∈[m ,m +1], 所以 m +1⩽1−m 2,解得 m ⩽−13,所以−1<m ⩽−13; 当m +1<0,即m <﹣1 时,x ⩾1−m2,又x ∈[m ,m +1], 所以m ⩾1−m 2,解得m ⩾13,这与m <﹣1矛盾,舍去. 综上,−1⩽m ⩽−13,因此实数 m 的最大值是 −13.三、解答题:(本题共4小题,共46分)解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |x 2﹣2x =0},B ={x |x 2+(m ﹣1)x ﹣m 2+1=0} (1)若A ∩B ={2},求实数m 的取值范围; (2)若A ∩B =B ,求实数m 的取值范围.解:(1)因为A ={x |x 2﹣2x =0}={0,2},由A ∩B ={2}可得2∈B , 则22+2(m ﹣1)﹣m 2+1=0, 化简可得m 2﹣2m ﹣3=0, 解得m =﹣1或m =3,当m =﹣1时,x 2+(m ﹣1)x ﹣m 2+1=0⇒x 2﹣2x =0,则B ={0,2},此时A ∩B ={0,2},不满足题意; 当m =3时,x 2+(m ﹣1)x ﹣m 2+1=0⇒x 2+2x ﹣8=0,则B ={4,2},此时A ∩B ={2},满足题意; 所以m =3.(2)由A ∩B =B 可得,B ⊆A ,当B =∅时,Δ=(m ﹣1)2+4(m 2﹣1)<0, 化简可得5m 2﹣2m ﹣3<0,解得−35<m <1;当B为单元素集合时,Δ=(m﹣1)2+4(m2﹣1)=0,解得m=−35或m=1,当m=−35时,x2+(m−1)x−m2+1=0⇒x2−85x+1625=0,解得x=45,即B={45},不满足B⊆A;当m=1时,x2+(m﹣1)x﹣m2+1=0⇒x2=0,解得x=0,即B={0},满足B⊆A;当B为双元素集合时,则其两个元素分别是0,2,由韦达定理得{Δ=(m−1)2+4(m2−1)>0−(m−1)=0+2−m2+1=0×2,解得m=﹣1,此时x2+(m﹣1)x﹣m2+1=0⇒x2﹣2x=0,即B={0,2},满足B⊆A,综上所述,m∈(−35,1]∪{1}.18.(12分)已知a>0,b>0,2a+b=2.(1)求ba +4b的最小值;(2)求4a2+8ab+b2的最大值.解:(1)a>0,b>0,2a+b=2,所以ba+4b=ba+2(2a+b)b=ba+4ab+2≥2√ba⋅4ab+2=6,当且仅当ba=4ab且2a+b=2,即a=12,b=1时等号成立,故ba+4b的最小值为6.(2)由2a+b=2≥2√2ab,得ab≤12,当且仅当2a=b且2a+b=2,即a=12,b=1时等号成立,4a2+8ab+b2=(2a+b)2+4ab=4+4ab≤4+4×12=6,故4a2+8ab+b2的最大值为6.19.(12分)已知函数f(x)=x2+2x.(1)求f(1),f(2)的值;(2)判断函数f(x)在区间(1,+∞)的单调性并证明;(3)若不等式f(x−1)≥2(x−1)+2x−1+m对一切x∈[1,6]恒成立,求实数m的取值范围.解:(1)f(x)=x2+2x,则f(1)=1+2=3,f(2)=4+1=5.(2)函数f(x)在区间(1,+∞)的单调递增,证明如下:任取1<x1<x2,则f(x1)−f(x2)=x12+2x1−(x22+2x2)=(x12−x22)+(2x1−2x2)=(x1−x2)(x1+x2−2x1x2),由1<x1<x2,得x1﹣x2<0,x1+x2>2,x1x2>1,2x1x2<2,x1+x2−2x1x2>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以函数f(x)在区间(1,+∞)的单调递增.(3)不等式f(x−1)≥2(x−1)+2x−1+m,即(x﹣1)2﹣2(x﹣1)≥m,依题意有(x﹣1)2﹣2(x﹣1)≥m对一切x∈[1,6]恒成立,(x﹣1)2﹣2(x﹣1)=(x﹣1)2﹣2(x﹣1)+1﹣1=(x﹣2)2﹣1,由1≤x≤6,得﹣1≤x﹣2≤4,0≤(x﹣2)2≤16,﹣1≤(x﹣2)2﹣1≤15,则有﹣1≥m,实数m的取值范围(﹣∞,﹣1].20.(12分)已知函数f(x)=x+1−aa−x(x∈R且x≠a).(1)求f(x)+f(2a﹣x)的值;(2)当函数f(x)的定义域为[a+12,a+1]时,求f(x)的值域;(3)设函数g(x)=x2+|(x﹣a)f(x)|,求g(x)的最小值.解:(1)已知函数f(x)=x+1−aa−x(x∈R且x≠a).则f(x)+f(2a−x)=x+1−aa−x+2a−x+1−aa−2a+x=x+1−aa−x+a−x+1x−a=x+1−a−a+x−1a−x=−2.(2)f(x)=1−(a−x)a−x=−1+1a−x,由a+12≤x≤a+1,有−a−1≤−x≤−a−1 2,得−1≤a−x≤−1 2,则有−2≤1a−x≤−1,可得−3≤−1+1a−x≤−2,所以f(x)值域为[﹣3,﹣2].(3)由题意,函数g(x)=x2+|(x﹣a)f(x)|,所以g(x)=x2+|x+1﹣a|(x≠a),①当x≥a﹣1且x≠a时,g(x)=x2+x+1−a=(x+12)2+34−a,如果a−1≥−12,即a≥12时,g(x)min=g(a−1)=(a−1)2;如果a−1<−12,即a<12且a≠−12时,g(x)min=g(−12)=34−a;如果a=−12时,g(x)无最小值.②当x<a﹣1时,g(x)=x2−x−1+a=(x−12)2+a−54;如果a−1>12,即a>32时,g(x)min=g(12)=a−54;如果a−1≤12,即a≤32时,g(x)min=g(a−1)=(a−1)2,当a>32时,(a−1)2−(a−54)=(a−32)2>0,当a<12时,(a−1)2−(34−a)=(a−12)2>0,综上所述,当a<12且a≠−12时,g(x)的最小值是34−a;当12≤a≤32时,g(x)的最小值是(a﹣1)2;当a>32时,g(x)的最小值是a−54;当a=−12时,g(x)无最小值.。

四川省绵阳中学2024-2025学年高一上学期期中测试数学试卷(含答案)

四川省绵阳中学2024-2025学年高一上学期期中测试数学试卷(含答案)

绵阳中学高2024级高一上期期中测试数学试题第I 卷(选择题)一、单选题(每小题5分,共计40分)1.已知命题,命题的否定是()A.B.C.. D.2.已知集合,若,则实数的值不可以为()A.2 B.1 C.0 D.3.下列函数既是奇函数又在单调递增的是()A. B.C. D.4.已知,若的解集为,则函数的大致图象是( )A. B.C. D.5.已知函数在区间上的值域是,则区间可能是()A. B. C. D.6.“函数的定义域为”是“”的( )2:,210p x x ∀∈+>R p 2,210x x ∀∈+R …2,210x x ∃∈+>R 2,210x x ∃∈+<R 2,210x x ∃∈+R …{}()(){}2320,220A x x x B x x ax =-+==--=∣∣A B A ⋃=a 1-()0,∞+1y x =31y x=1y x x =-1y x x=+()2f x ax x c =--()0f x >()2,1-()y f x =-222y x x =-+[],a b []1,2[],a b []1,0-30,2⎡⎤⎢⎥⎣⎦[]1,3[]1,1-()211f x ax ax =-+R 04a <<A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知且,不等式恒成立,则正实数的取值范围是( )A.B.C. D.8.已知函数是定义在的单调函数,且对于任意的,都有,若关于的方程恰有两个实数根,则实数的取值范围为( )A. B. C. D.二、多选题(每小题6分,共计18分)9.对于任意实数,下列四个命题中为假命题的是( )A.若,则B.若,则C.若,则D.若,则10.已知为正实数,且,则( )A.的最大值为4B.的最小值为18C.的最小值为4D.11.定义在上的偶函数满足:,且对于任意,,若函数,则下列说法正确的是()A.在上单调递增B.0,0a b >>1ab =11422m a b a b++≥+m 2m ≥4m ≥6m ≥8m ≥()f x [)0,∞+[)0,x ∞∈+()2f f x ⎡=⎣x ()2f x x k +=+k 92,4⎡⎫⎪⎢⎣⎭51,4⎡⎫⎪⎢⎣⎭133,4⎡⎫⎪⎢⎣⎭13,4∞⎛⎫- ⎪⎝⎭,,,a b c d ,0a b c >≠ac bc>22ac bc >a b>0a b <<22a ab b >>0,a bcd >>>ac bd>,a b 8ab a b ++=ab 22(1)(1)a b +++a b +1111a b +++R ()f x ()22f =120x x >>()()21122122x f x x f x x x ->-()()2f xg x x -=()g x ()0,∞+()()34g g -<C.在上单调递减D.若正数满足,则第II 卷(非选择题)三、填空题(每小题5分,共计15分)12.函数__________.13.函数,若,则14.已知函数的定义域为的图象关于直线对称,且,若,则__________.四、解答题(共计77分)15.(13分)已知定义在上的函数满足:.(1)求函数的表达式;(2)若不等式在上恒成立,求实数的取值范围.16.(15分)设集合.(1)若,求实数的值;(2)若“”是“”的必要条件,求实数的取值范围.17.(15分)如图,正方形的边长为分别是和边上的点沿折叠使与线段上的点重合(不在端点处),折叠后与交于点.若(1)证明:的周长为定值.(2)求的面积S 的最大值.()f x ()2,∞+m ()()24202m f m f m -+->()2,m ∞∈+()12f x x =+()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩()()2f a f a =+()2__________.f a =()(),f x g x (),y f x =R 1x =()()()()110,45f x g x f x g x -+=--=()21f =()()12g g +=R ()()2223f x f x x x +-=-+()f x ()21f x ax ≥-[]1,3a {}(){}222320,2150A x x x B x x a x a =-+==+++-=∣∣{}2A B ⋂=a x A ∈x B ∈a ABCD 1,,E F AD BC EF C AB M M ,A B CD AD G ,BM x BF y==AMG AMG18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断在上的单调性,并用单调性定义证明;(3)解不等式.19.(17分)若函数的定义域为,集合,若存在正实数,使得任意,都有,且,则称在集合上具有性质.(1)已知函数,判断在区间上是否具有性质,并说明理由;(2)已知函数,且在区间上具有性质,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且在上具有性质,求实数的取值范围.()21ax b f x x-=+[]1,1-()11f =-()f x ()f x []1,1-()()()210f t f t f -+>()f x D M D ⊆t x M ∈x t D +∈()()f x t f x +>()f x M ()P t 2()f x x =()f x [1,0]-(1)P 3()f x x x =-()f x [0,1]()P n n ()f x R 0x ≥()()f x x a a a =--∈R ()f x R (6)P a数学参考答案题号12345678910答案D D C C B B D C AD ABC题号11答案ABD 填空题12.13.414.【详解】因为的图象关于直线对称,则①,又,即,结合①得②,因为,则,结合②得,则,令,得,令,得,由,得,由,得,则,所以.15.【详解】(1)将的替换为得联立()(],22,1∞--⋃-()y f x =1x =()()11f x f x -=+()()110f x g x -+=()()110f x g x -=-()()110g x f x ++=()()45f x g x --=()()135f x g x +--=()()35g x g x +-=1x =()()125g g +-=2x =()()125g g -+=()()110f x g x -+=()()2110f g +-=()()45f x g x --=()()225f g --=()()125g g -+-=()()125g g +=()()2223f x f x x x +-=-+x x -()()2223f x f x x x -+=++()()()()22223223f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩解得(2)不等式为,化简得,要使其在上恒成立,则,,当且仅当取等,所以.16.【详解】(1)由,所以或,故集合.因为,所以,将代入中的方程,得,解得或,当时,,满足条件;当时,,满足条件,综上,实数的值为或(2)因为“”是“”的必要条件,所以对于集合.当,即时,,此时;当,即时,,此时;当,即时,要想有,须有,此时:,该方程组无解.综上,实数的取值范围是.17.【详解】(1)设,则,由勾股定理可得,即,由题意,,()21213f x x x =++()21f x ax ≥-2121213x x ax ++≥-116x a x ≤++[]1,3min116x a x ⎛⎫≤++ ⎪⎝⎭11116x x ++≥=x =1a ≤+()()2320120x x x x -+=⇒--=1x =2x ={}1,2A ={}2A B ⋂=2B ∈2x =B 2430a a ++=1a =-3a =-1a =-{}{}2402,2B x x =-==-∣3a =-{}{}24402B x x x =-+==∣a 1-3-x A ∈x B ∈B A⊆()()22,Δ4(1)4583B a a a =+--=+Δ0<3a <-B =∅B A ⊆Δ0=3a =-{}2B =B A ⊆Δ0>3a >-B A ⊆{}1,2B A ==()221352a a ⎧+=-⎨-=⎩a (],3∞--,,01BM x BF y x ==<<1CF MF y ==-222(1)x y y +=-212x y -=90GMF DCF ∠∠==即,可知,设的周长分别为,则又因为,所以,的周长为定值,且定值为2.(2)设的面积为,则,因为,所以,.因为,则,因为,所以,当且仅当,即时,等号成立,满足故的面积的最大值为.18.【详解】(1)函数是定义在上的奇函数,,解得,,而,解得,.(2)函数在上为减函数;90AMG BMF ∠∠+= Rt Rt AMG BFM ∽,AMG BFM 1,p p 11p AM x p BF y -==111p x y y x =++-=+()2111112x x x p p x y y y---==⋅+==AMG BFM 1S 22122(1)S AM x S BF y-==112S xy =()2221221(1)(1)(1)211x x x x x x x S S y y x x ----====-+()()()211121311x x x x x⎡⎤⎡⎤-++-⎣⎦⎣⎦==-+-+++10x +>201x>+211x x ++≥=+3S ≤-211x x+=+1x =-()0,1x ∈AMG 3-()21ax b f x x-=+[]1,1-()()22;11ax b ax b f x f x x x ----=-=-++0b =()21ax f x x ∴=+()11f =-2a =-()[]22,1,11x f x x x -∴=∈-+()221x f x x -=+[]1,1-证明如下:任意且,则因为,所以,又因为,所以,所以,即,所以函数在上为减函数.(3)由题意,,又,所以,即解不等式,所以,所以,解得,所以该不等式的解集为.19.【详解】(1),当时,,故在区间[―1,0]上不具有性质;(2)函数的定义域为,对任意,则,在区间上具有性质,则,即,因为是正整数,化简可得:对任意恒成立,设,其对称轴为,则在区间上是严格增函数,所以,,解得,故正整数的最小值为2;[]12,1,1x x ∈-12x x <()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++12x x <120x x -<[]12,1,1x x ∈-1210x x ->()()120f x f x ->()()12f x f x >()()12f x f x >[]1,1-()()()210f t f tf -+>()00f =()()210f t f t -+>()()21f t f t >--()()21f t f t >-22111111t t t t ⎧-≤≤⎪-≤-≤⎨⎪<-⎩0t≤<()()221(1)21f x f x x x x +-=+-=+0.8x =-()()10.60f x f x +-=-<()f x ()1P ()3f x x x =-R []0,1x ∈x n +∈R ()f x [0,1]()P n ()()f x n f x +>33()()x n x n x x +-+>-n 223310x nx n ++->[]0,1x ∈22()331g x x nx n =++-02n x =-<()g x [0,1]2min ()(0)10g x g n ==->1n >n(3)法一:由是定义域为上的奇函数,则,解得,若,,有恒成立,所以符合题意,若,当时,,所以有,若在上具有性质,则对任意恒成立,在上单调递减,则,x 不能同在区间内,,又当时,,当时,,若时,今,则,故,不合题意;,解得,下证:当时,恒成立,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,()f x R (0)0f a a =-=0a ≥0a =()f x x =6x x +>0a >0x <()()()f x f x x a a x a a =--=----=-++()2,,2,x a x a f x x a x a x a x a +<-⎧⎪=--≤≤⎨⎪->⎩()f x R (6)P (6)()f x f x +>x ∈R ()f x [,]a a -6x +[,]a a -6()2a a a ∴>--= [2,0]x a ∈-()0f x ≥[0,2]x a ∈()0f x ≤264a a <≤2x a =-6[0,2]x a +∈(6)()f x f x +≤46a ∴<302a <<302a <<()()6f x f x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>故实数的取值范围为.法二:由是定义域为上的奇函数,则,解得.作出函数图像:由题意得:,解得,若,,有恒成立,所以符合题意,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,故实数的取值范围为.a 30,2⎡⎫⎪⎢⎣⎭()f x R (0)0f a a =-=0a ≥2(2)46a a a --=<302a ≤<0a =()f x x =6x x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>a 30,2⎡⎫⎪⎢⎣⎭。

2023~2024学年第一学期高一期中考试数学试题[含答案]

2023~2024学年第一学期高一期中考试数学试题[含答案]


上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2

0(舍去),
f x

的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )

2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0

高一数学期中考试题及答案

高一数学期中考试题及答案

高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。

2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。

3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。

4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。

四川省成都市郫都区2024-2025学年高一上学期11月期中考试数学试题

四川省成都市郫都区2024-2025学年高一上学期11月期中考试数学试题

四川省成都市郫都区2024-2025学年高一上学期11月期中考试数学试题一、单选题1.下列关系正确的是()A .{}{}00,1∈B .0∈∅C .{}0∅⊆D Q2.命题“20,251x x x ∃≤<-”的否定是()A .20,251x x x ∀><-B .20,251x x x ∃>≥-C .20,251x x x ∀≤≥-D .20,251x x x ∃≤>-3.已知函数()235,128,1x x f x x x +≤⎧=⎨-+>⎩,则()2f f ⎡⎤⎣⎦的值为()A .11B .0C .5D .44.对于任意实数a ,b ,c ,下列命题中正确的是()A .若22ac bc >,则a b >B .若a b >,则22ac bc >C .若a b >,0c ≠,则ac bc>D .若a b >,则11a b<5.某校高一年级组织趣味运动会,有跳远、球类、跑步三项比赛,共有24人参加比赛,其中有12人参加跳远比赛,有11人参加球类比赛,有16人参加跑步比赛,同时参加跳远和球类比赛的有4人,同时参加球类和跑步比赛的有5人,没有人同时参加三项比赛,则()A .同时参加跳远和跑步比赛的有4人B .仅参加跳远比赛的有3人C .仅参加跑步比赛的有5人D .同时参加两项比赛的有16人6.已知集合M 满足{}1,2{}1,2,3,4,5M ⊆,则所有满足条件的集合M 的个数是()A .6B .7C .8D .97.已知关于x 的不等式0ax bx c-≥+的解集为()[),12,∞∞-⋃+,则错误..的说法是()A .2a b =B .1c =-C .1ab+D .20ax bx +>的解集为{|2x x <-或0}x >8.已知()f x 为R 上的减函数,设函数()()(),0,0f x x g x f x x ⎧≥⎪=⎨-<⎪⎩,则满足不等式()()4g m g m ->的m 的取值范围是()A .()1,+∞B .()2,+∞C .()(),11,-∞+∞ D .()(),22,-∞+∞ 二、多选题9.已知函数2()4f x x x =-+的值域为[0,4],则()f x 的定义域可以为()A .[]1,3B .[]0,3C .(1,4]D .[]0,410.下列说法正确的是()A .若()f x 的定义域为()2,4-,则()2f x 的定义域为()1,2-B .()2x f x x=和()g x x =表示同一个函数C .函数2y x =-17,8⎛⎤-∞ ⎥⎝⎦D .函数()f x 满足()()221f x f x x --=-,则()213f x x =+11.函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.则函数()323f x x mx =-图象的对称中心可能是()A .()0,0B .()1,2-C .()1,2D .()216,三、填空题12.已知集合{}212,4,10A a a a =++,5A ∈,则a =.13.已知奇函数()f x 是R 上的增函数,且()2,1N 是其图象上的一点,那么()11f x -<的解集是.14.已知函数2()(35)||1f x x m x =+++的定义域为R ,若函数有四个单调区间,则实数m 的取值范围为.四、解答题15.已知集合{}15A x x =-≤≤,{}221B x a x a =-≤≤+,(1)若4a =,求A B ⋂,A B ,()A A B ð;(2)若A B B = ,求实数a 的取值范围.16.已知集合{M x y ==,命题p :实数x M ∈,命题q :实数x 满足22230x ax a --<(其中0a >).(1)若2a =,且当命题p 和q 都是真命题时,求实数x 的取值范围;(2)若命题p 是q 成立的充分不必要条件,求实数a 的取值范围.17.已知函数()222x x af x x++=,[)2,x ∞∈+.(1)当12a =时,试判断()f x 的单调性,并加以证明;(2)若对任意[)2,x ∞∈+,()1f x ≥恒成立,求实数a 的取值范围.18.某工艺品售卖店,为了更好地进行工艺品售卖,进行了销售情况的调查研究.通过对每天销售情况的调查发现:该工艺品在过去一个月(以30天计),每件的销售价格()x ϕ(单位:元)与时间第x 天的函数关系近似满足()10kx xϕ=+,(0k >),日销售量()g x (单位:件)与时间第x 天的部分数据如下表所示:x1015202530()g x 5055605550已知第10天的日销售收入为505元.(1)求k 的值;(2)给出以下三个函数模型:①()g x ax b =+;②()ag x b x=-;③()g x a x m b =-+.根据上表中的数据,从中选择你认为最合适的一种函数模型来描述在过去一个月内日销售量()g x 与时间第x 天的变化关系,并求出该函数解析式及定义域;(3)设在过去一个月内该工艺品的日销售收入为()f x (单位:元),求()f x 的最小值.19.已知定义在R 上的一次函数=满足()92f f x x ⎡⎤=-⎣⎦,且对1x ∀,2R x ∈,12x x ≠时,都有()()()()12120x x f x f x --<,又函数=满足22111g x x x x ⎛⎫-=+- ⎪⎝⎭.(1)求函数=和=的解析式;(2)若[]0,2x ∃∈使得()221f x t t ≥-+成立,求实数t 的取值范围;(3)设()()212143m h x g x mx -⎡⎤=-+-⎣⎦,(0m >),对1x ∀,[]21,3x ∈,都有()()1232h x h x -≤,求实数m 的取值范围.。

高一数学上学期期中考试试卷含答案(共5套,新课标版)

高一数学上学期期中考试试卷含答案(共5套,新课标版)

高一第一学期数学期中考试试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,集合{}1,2M =,{}3,4N =,则()UM N =( )A.{}5B.{}1,2C.{}3,4D.{}1,2,3,42.函数y = ) A.[)1,+∞B.[]0,2C.()0,+∞D.[)0,+∞3.点()sin913,cos913A ︒︒位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.若实数a ,b 满足2a b +=,则33a b +的最小值是( )A.18B.6C.D.5.已知0a b >>,则“0m >”是“m m a b >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件6.函数()22log 4y x =-的单调增区间是( ) A.()0,+∞B.()2,+∞C.(),0-∞D.(),2-∞-7.教室通风的目的是通过空气的流动,排出室内的污浊空气和致病微生物,降低室内二氧化碳和致病微生物的浓度,送进室外的新鲜空气,按照国家标准,教室内空气中二氧化碳日平均最高容许浓度应小于等于0.1%,经测定,刚下课时,某班教室空气中含有0.2%的二氧化碳,若开窗通风后教室内二氧化碳的浓度为%y ,且y 随时间t (单位:分钟)的变化规律可以用函数100.05()-=+∈ty eR λλ描述,则该教室内的二氧化碳浓度达到国家标准至少需要的时间为( )(参考数据ln20.7,ln3 1.1≈≈)A .7分钟B .9分钟C .11分钟D .14分钟 8.设0.3log 0.2a =,3log 2b =,0.30.6c =,则( ) A.c b a >>B.b c a >>C.a c b >>D.a b c >>二、多项选择题(共4小题,各题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分).9.下列说法正确的是( )A .如果α是第一象限的角,则α-是第四象限的角B .如果α,β是第一象限的角,且αβ<则sin sin αβ<C .若圆心角为3π的扇形的弧长为π,则该扇形面积为23πD .若圆心角为23π的扇形的弦长为83π10.若角α的终边上有一点()(),20P a a a ≠,则2sin cos αα-的值可以是( )A .BC .D 11.下列结论正确的是( )A.“0x ∃<,2310x x -+≥”的否定是“0x ∀<,2310x x -+<”B.函数()f x 在(],0-∞单调递增,在()0,+∞单调递增,则()f x 在R 上是增函数C.函数()f x 是R 上的增函数,若()()()()1212f x f x f x f x +≥-+-成立,则120x x +≥D.函数()f x 定义域为R ,且对,a b R ∀∈,()()()f a b f a f b +=+恒成立,则()f x 为奇函数12.函数()()()2,142,1x a x f x x a x a x ⎧-<⎪=⎨--≥⎪⎩恰有2个零点的充分条件是( )A.(]1,2B.()3,+∞C.1,12⎛⎫⎪⎝⎭D.10,2⎛⎤ ⎥⎝⎦三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()222x x f x x a -=⋅-是奇函数,则a =________________.14.在平面直角坐标系中,若角α的终边经过点4π4πsin ,cos 33P ⎛⎫ ⎪⎝⎭,则()cos πα+=_________.15.若cos cos 7x π=,则x 的取值组成的集合为_____________________..16.设函数()()213,1,2, 1.xax a x a x f x x ⎧-++<=⎨≥⎩的最小值为2,则实数a 的取值范围是____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)如图,在平面直角坐标系中,锐角α和钝角β的顶点与原点重合,始边与x 轴的正半轴重合,终边分别与单位圆交于,A B 两点,且OA OB ⊥. (1)求()()sin cos 23cos sin 2ππαβππβα⎛⎫++ ⎪⎝⎭⎛⎫-+ ⎪⎝⎭的值;(2)若点A 的横坐标为35,求2sin cos αβ的值.18.(本小题满分12分)已知集合{}23=<->或A x x x ,{}123,=-≤≤+∈B x m x m m R . (1)若2=m ,求A B 和()R A B ;(2)若=∅A B ,求实数m 的取值范围.19.(本小题满分12分)已知函数()2=-mf x x x ,且112⎛⎫=- ⎪⎝⎭f . (1)求m 的值;(2)判定()f x 的奇偶性,并给予证明;(3)判断()f x 在(0,)+∞上的单调性,并给予证明.20.(本小题满分12分)已知2()3=+-f x x x a .(1)若()0<f x 的解集为{}4-<<x x b ,求实数a ,b 的值; (2)解关于x 的不等式()2>+f x ax a .21.(本小题满分12分)市场上有一种新型的强力洗衣液,特点是去污速度快,已知每投放(14,)≤≤∈a a a R 个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为()=⋅y a f x ,其中161(04)8()15(410)2⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩x xf x x x ,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(2)若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,问能否使接下来的4分钟内持续有效去污?说明理由.22.(本小题满分12分)已知函数2()21(0)g x ax ax b a =-++>在区间[2,3]上有最大值4和最小值1,设()()g x f x x=. (1)求a ,b 的值(2)若不等式()22log 2log 0f x k x -⋅≥在[]2,4x ∈上有解,求实数k 的取值范围;(3)若()2213021xx f k k -+⋅-=-有三个不同的实数解,求实数k 的取值范围.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.8.C 【解析】依题意可知0=t 时,0.2=y ,即0.050.2,0.15+==λλ,所以100.050.15=+t y e ,由100.050.150.1=+≤t y e ,得1013≤t e ,两边取以e 为底的对数得1ln ln3 1.1,11103-≤=-≈-≥t t ,所以至少需要11分钟,故选:C . 二、多项选择题(共4小题,每小题均有两个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分).三、填空题:本题共4小题,每小题5分,共20分. 13.1 14.15. {|2,}7k k Z πααπ=±∈16.[1,)+∞四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)∵2πβα=+,∴sin sin cos 2πβαα⎛⎫=+= ⎪⎝⎭,cos cos sin 2πβαα⎛⎫=+=- ⎪⎝⎭, ∴()()sin cos sin sin sin cos 213cos cos sin cos cos sin 2ππαβαβααπαβααπβα⎛⎫++ ⎪⎝⎭==-=-⎛⎫-+ ⎪⎝⎭. .........................5分(2)∵点A 的横坐标为35,∴3cos 5α=,4sin 5α, 4cos cos sin 25πβαα⎛⎫=+=-=- ⎪⎝⎭,∴44322sin cos 25525αβ⎛⎫=⨯⨯-=- ⎪⎝⎭. ........................ 10分18.【解析】(1)若2=m ,则{}17=≤≤B x x ,......................... 1分 所以{}21=<-≥或AB x x x , ......................... 3分因为{}23=-≤≤RA x x ,所以(){}13=≤≤R AB x x . ......................... 6分(2)因为=∅A B ,当=∅B 时,123->+m m ,解得4<-m ,满足≠∅AB ; ......................... 8分当≠∅B 时,12312233-≤+⎧⎪-≥-⎨⎪+≤⎩m m m m ,解得10-≤≤m , ......................... 11分综上所述:实数m 的取值范围是4<-m 或10-≤≤m . ......................... 12分19.(1)因为11112112222⎛⎫⎛⎫⎛⎫=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭m mf ,所以1=-m ; ......................... 3分(2)由(1)可得1()2=-f x x x,因为()f x 的定义域为{}0≠x x , 又111()222()⎛⎫⎛⎫-=---=-+=--=- ⎪ ⎪⎝⎭⎝⎭f x x x x f x x x x ,所以()f x 是奇函数; ......................... 7分 (3)函数()f x 在(0,)+∞上为增函数,理由如下: 任取120>>x x , 则()()()()()1212121212121212122111222-+⎛⎫--=---=-+= ⎪⎝⎭x x x x x xf x f x x x x x x x x x x x ....................10分 因为120>>x x ,所以12120,0->>x x x x ,所以()()12>f x f x ,所以()f x 在(0,)+∞上为单调增函数. ......................... 12分 20.【详解】(1)因为()0>f x 的解集为{}4-<<x x b ,所以4=-x 为方程()0=f x 的根,所以2(4)3(4)0-+⨯--=a ,解得4=a . ......................... 3分 所以由2()340=+-<f x x x ,解得{}41-<<x x ,所以1=b . ......................... 6分 (2)()2>+f x ax a 等价于2(3)30+-->x a x a ,整理得:(3)()0+->x x a . ...................... 7分当3>-a 时,解不等式得3<-x 或>x a ; 当3=-a 时,解得3≠-x ;当3<-a 时,解得<x a 或3>-x ; ......................... 11分综上,当3>-a 时,不等式的解集为(,3)(,)-∞-+∞a ;当3=-a 时,不等式的解集为{}3≠-x x ; 当3<-a 时,不等式的解集为(,)(3,)-∞-+∞a . 12分21.【解析】(1)因为4=a ,所以644,048202,410⎧-≤≤⎪=-⎨⎪-<≤⎩x y x x x . ......................... 1分则当04x ≤≤时,由64448-≥-x,解得0≥x ,所以此时04x ≤≤. ......................... 4分 当410<≤x 时,由2024-≥x ,解得8≤x ,所以此时48<≤x . ......................... 5分 综上,得08≤≤x ,若一次投放4个单位的洗衣液,则有效去污时间可达8分钟. ........................ 6分(2)假设要使接下来的4分钟内持续有效去污,则: 当610≤≤x时,11616251(14)4428(6)14⎡⎤⎛⎫=⨯-+-=-+--≥-- ⎪⎢⎥---⎝⎭⎣⎦a y x a x a a x x ....... 8分当且仅当14-=x 时等号取到.(因为14≤≤a ,所以[6,10]∈x 能取到) 所以y有最小值4--a.令44--≥a ,解得244-≤≤a , ......................... 10分所以a的最小值为24 1.42-≈<.即要使得接下来的4分钟内持续有效去污,6分钟后至少需要再投放1.4个单位的洗衣液.所以,若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,能使接下来的4分钟内持续有效去污. ......................... 12分22. (1)由题意2()(1)1g x a x b a =-++-,又0a >,∴()g x 在[2,3]上单调递增,∴(2)4411(3)9614g a a b g a a b =-++=⎧⎨=-++=⎩,解得10a b =⎧⎨=⎩. ......................... 3分(2)由(1)2()21g x x x =-+,()1()2g x f x x x x==+-, [2,4]x ∈时,2log [1,2]x ∈,令2log t x =,则()20f t kt -≥在[1,2]上有解,......................... 4分1()2220f t kt t kt t -=+--≥,∵[1,2]t ∈,∴22121211k t t t ⎛⎫≤+-=- ⎪⎝⎭, [1,2]t ∈,则11,12t ⎡⎤∈⎢⎥⎣⎦,∴211t ⎛⎫- ⎪⎝⎭的最大值为14, ......................... 6分 ∴124k ≤,即18k ≤. ∴k 的取值范围是1,8⎛⎤-∞ ⎥⎝⎦. ......................... 7分(3)原方程化为221(32)21(21)0x x k k --+-++=,令21xt =-,则(0,)t ∈+∞,2(32)(21)0t k t k -+++=有两个实数解12,t t ,作出函数21xt =-的图象,如图 ......................... 9分原方程有三个不同的实数解,则101t <<,21t >,或101t <<,21t =,记2()(32)(21)0h t t k t k =-+++=, ......................... 10分则210(1)0k h k +>⎧⎨=-<⎩,解得0k >,或210(1)032012k h k k ⎧⎪+>⎪=-=⎨⎪+⎪<<⎩,无解. 综上k 的取值范围是(0,)+∞. ......................... 12分高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

高一上学期期中考试数学试卷

高一上学期期中考试数学试卷

阜阳一中2027届高一上学期期中考试数学试题(考试时间:120分钟试卷总分:150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2,128t A xx B t t =≤=≤≤∈Z ∣∣,则A B = ()A .[]1,3-B .{}0,1C .0,2D .{}0,1,22.命题“[]1,3x ∀∈-,2320x x -+-≤”的否定为()A .[]1,3x ∃∈-,0232>-+-x xB .[]1,3x ∃∈-,2320x x -+-≤C .[]1,3x ∀∈-,0232>-+-x x D .[]1,3x ∃∉-,0232>-+-x x 3.“幂函数()()211m f x m m x -=--在()0,∞+单调递减”是“1m =-”的()A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件4.下列说法正确的是()A .若a b >,则22a b >B .若22a bc c>,则a b >C .若a b >,则12a b -<-D .若a b >,则22ac bc >5.函数e e ex xxy --=的部分图象大致为()A .B .C .D .6.若实数a ,b ,c 满足632=⋅=⋅c b a a ,则下列不等关系中不可能成立的是()A .c a b<<B .b c a<<C .a c b<<D .a b c<<7.已知函数()f x 的定义域为()()()R,33,63f x f x f -=+=,且(]12,,3x x ∀∈-∞,当12x x ≠时,()()12120f x f x x x ->-,则不等式()263f x x x +->的解集为()A .{|1x x <-或>7B .{}17x x -<<C .{|0x x <或}6x >D .{}06x x <<8.从古至今,中国人一直追求着对称美学.世界上现存规模最大、保存最为完整的木质结构——故宫:金黄的宫殿,朱红的城墙,汉白玉的阶,琉璃瓦的顶……沿着一条子午线对称分布,壮美有序,和谐庄严,映衬着蓝天白云,宛如东方仙境.再往远眺,一线贯穿的对称风格,撑起了整座北京城.某建筑物的外形轮廓部分可用函数()f x =+来刻画,满足关于x 的方程()f x b =恰有三个不同的实数根123,,x x x ,且123x x x b <<=(其中,(0,)a b ∈+∞),则b 的值为()A .8081-B .169C .8081D .20881二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数1()13xf x =+,则()A .31(log 4)5f =B .()f x 的值域为(,1)-∞C .()f x 是R 上的减函数D .函数()f x 图像关于点⎪⎭⎫ ⎝⎛210,对称10.已知0a >,0b >,3a b +=,则()A .ab 的最大值为94B C .3b ba b++的最小值为4D .2211a b a b +++的最小值为9511.若()f x 定义域为I ,对任意1x I ∈,存在唯一2x I ∈,使得()()121f x f x ⋅=,则称()f x 在定义域上是“倒数函数”,则下列说法正确的是()A .1()f x x=是倒数函数B .1()g x x x=+是倒数函数C .若21()2x h x x --=+在3,2m ⎡⎤-⎢⎥⎣⎦上是倒数函数,则23m =-D .若存在0m >,使得2()21(R)s x ax x a =+-∈在定义域[0,]m 上是倒数函数,则1a <-三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()y f x =的定义域为[]0,4,则函数()02y x +=-的定义域是.13.函数21y x ax a =--在12,2⎡⎤--⎢⎥⎣⎦上单调递增,则实数a 的取值范围是.14.设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的取值范围为.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合{}24A x x =-≤≤,{}322mx B x -=<.(1)当1m =时,求A B ⋂,()A C B U ;(2)当0m >,A B B = 时,求实数m 的取值范围.16.(15分)已知函数()()222,f x ax a x a =-++∈R .(1)对任意[]2,3a ∈,函数()10f x a >-恒成立,求实数x 的取值范围;(2)当a ∈R 时,求不等式()0f x ≥的解集.17.(15分)某文旅公司设计文创作品,批量生产并在旅游景区进行售卖.经市场调研发现,若在旅游季在文创作品的原材料上多投入x 万元()115x ≤≤,文创作品的销售量可增加m 千个,其中14.4,18,120.8,815,xx m x x x ⎧≤<⎪=+⎨⎪-≤≤⎩每千个的销售价格为38m m-万元,另外每生产1千个产品还需要投入其他成本0.5万元.(1)求该文旅公司在旅游季增加的利润y 与x (单位:万元)之间的函数关系;(2)当x 为多少万元时,该公司在旅游季增加的利润最大?最大为多少万元?18.(17分)已知函数21()21x xf x -=+定义域为(1,1)-,函数1()421x xg x m m +=+⋅+-.(1)解不等式(21)(32)0f x f x -+-<;(2)若存在两个不等的实数a ,b 使得()()0f a f b +=,且()()0g a g b +≥,求实数m 的取值范围.19.(17分)已知函数()y f x =与()y g x =的定义域均为D ,若对任意的()1212x x D x x ∈≠、都有()()()()1212g x g x f x f x -<-成立,则称函数()y g x =是函数()y f x =在D 上的“L 函数”.(1)若()43,()2,R f x x g x x D =+==,判断函数()y g x =是否是函数()y f x =在D 上的“L 函数”,并说明理由;(2)若2()21,(),[0,)f x x g x D =-=+∞,函数()y g x =是函数()y f x =在D 上的“L 函数”,求实数m的取值范围;(3)比较a b +和,R a b a b +∈()的大小,并证明:若()[],0,2f x x D ==,函数()y g x =是函数()y f x =在D 上的“L 函数”,且()()02g g =,则对任意的()1212x x D x x ∈≠、都有()()121g x g x -<阜阳一中2027届高一上学期期中考试数学试题参考答案:1.D【详解】{}{}|2=22A x x xx =≤-≤≤∣,由指数函数的性质可得(){}{}1280,1,2,3t B t t =≤≤∈=Z ∣,所以{}{}{}220,1,2,30,1,2A B xx ⋂=-≤≤⋂=∣.故选:D.2.A【详解】根据全称量词命题的否定形式可知:命题“[]1,3x ∀∈-,2320x x -+-≤”的否定为“[]1,3x ∃∈-,2320x x -+->”,故选:A 3.B【详解】若()f x 为幂函数,则211m m --=,解得1m =-或2m =,因当1m =-时,()2f x x -=在()0,∞+上单调递减,符合题意;当2m =时,()f x x =在()0,∞+上单调递增,不合题意.故由“幂函数()()211m f x m m x -=--在()0,∞+单调递减”当且仅当“1m =-”成立,即“幂函数()()211m f x m m x -=--在()0,∞+单调递减”是“1m =-”的充要条件.故选:B.3.B【分析】ACD 选项可以根据排除法解决,B 选项根据不等式的性质判断.【详解】A 选项,取0,1a b ==-,满足a b >,但是22a b <,A 选项错误;B 选项,显然0c ≠,则20c >,根据不等式的性质,不等式22a bc c>两边同时乘以2c 可得,a b >,B 选项正确;C 选项,取0,1a b ==-,11a -=-,23b -=-,此时12a b ->-,C 选项错误;D 选项,若0c =,则22ac bc =,D 选项错误.故选:B 5.A【详解】e e ()ex xxf x --=定义域为R ,且e e ()()ex xxf x f x ---==-,则原函数为奇函数.排除B.再取特殊值1112e e 1(1)11e e f --==-<,且为正数.排除D.当0x >时,2e e 1()11e ex x xx f x --==-<,x 越大函数值越接近1,排除C.故选:A.6.D【详解】由已知得623b ca==,易知0a >,设直线l :6y a=,作出2x y =,3x y =,直线l 图象,如图:当61a>时,06a <<,0c b <<,当601a<<时,6a >,0b c <<,所以a b c <<不可能成立,故选:D.7.D【分析】根据函数的对称性、单调性、图象等知识求得不等式的解集.【详解】依题意,函数()f x 的定义域为()()R,33f x f x -=+,所以()f x 的图象关于直线3x =对称,(]12,,3x x ∞∀∈-,当12x x ≠时,()()12120f x f x x x ->-,所以()f x 在区间(],3-∞上单调递增,则()f x 在区间()3,∞+上单调递减,对于不等式()263f x x x +->,即()()236f x x >--,设()()236g x x =--,()g x 的开口向上,对称轴为直线3x =,()()063g g ==,()()()()6333303f f f f =+=-==,由此画出()f x 的大致图象、()g x 的图象如下图所示,由图可知()()f x g x >的解集为{}|06x x <<.故选:D8.B【详解】因为()()2f x a f x +=+==-,所以()f x 关于x a =对称,所以()f x b =的根应成对出现,又因为x 的方程()f x b =恰有三个不同的实数根123,,x x x 且123x x x b <<=,所以该方程的一个根是a ,得1232,,x x b a a x b ==-=,且a b ≠,所以()()f a b f b b⎧===⎪⎨=+=⎪⎩,由()f a b ==得24b a =,当20b a -≥,即2042b b -⨯≥,即02b <≤时,()f b b =+=,①2242b b b -⨯===-,②由①-②得32b =,解得169b =,所以6481a =;当20b a -<,即2042b b -⨯<,即2b >时,()f b b =+=,③222422b bb b ⨯-===-,④由③-④得22b=+,即)220=,解得4b =,此时244b a b ===,不合题意,舍去,综上,6416,819a b ==.故选:B.9.ACD【详解】33log 4111(log 4)14513f ===++,所以选项A 正确;13x y =+的值域是(1,)+∞,故1()13xf x =+的值域是(0,1),所以选项B 错误;13x y =+恒正且在R 上递增,故113xy =+是R 上的减函数,所以选项C 正确;由于1113()()113131313xx x x xf x f x -+-=+=+=++++,所以选项D 正确.故选:ACD 10.ACD 【详解】A 选项,0a >,0b >,()2944a b ab +≤=,当且仅当32a b ==时,等号成立,A 正确;B 选项,233a b =+++,>B 错误.C 选项,3224b b b a b b b a a b a b a b ++++=+=++≥=,当且仅当b aa b =,即32a b ==时,等号成立,C 正确;D 选项,()()()()2222121111121111a b a b b a b a a b +++=+++-++-++++114111111111a b a b a b =+++++-=++++++,其中0a >,0b >,3a b +=,故11155a b +++=,所以()()11511111121155111515a b a b b b a b a a ++++⎛⎫+⎛⎫+=+ ⎪+=++ ⎭⎪⎝+++⎝++⎭2455≥+=,故22119111115a b a b a b +=++≥++++,当且仅当()()115151a b b a ++=++,即32a b ==时,等号成立,D 正确.故选:ACD 11.ACD【详解】由题意对任意1x I ∈,存在唯一2x I ∈,使得()()121f x f x ⋅=,则称()f x 在定义域上是“倒数函数”,则()f x 在定义域上是“倒数函数”当且仅当对任意1x I ∈,存在唯一2x I ∈,使得()()121f x f x =;即当且仅当()f x 的值域是()()11f x f x =的值域的子集,定义()f x 的值域、()()11f x f x =的值域分别为1,f f R R ,所以()f x 在定义域上是“倒数函数”当且仅当1f f R R ⊆;对于A ,1()f x x=的值域为()(),00,f R ∞∞=-⋃+,而()()11,0f x x x f x ==≠的值域为()()1,00,f R ∞∞=-⋃+,显然满足1f f R R ⊆,故A 正确;对于B ,由对勾函数性质可得,1()g x x x=+的值域为(][),22,g R ∞∞=--⋃+,而()()11g x g x =的值域为111,00,22g R ⎡⎫⎛⎤=-⋃⎪ ⎢⎥⎣⎭⎝⎦,不满足1g g R R ⊆,故B 错误;对于C ,由题意21()2x h x x --=+在3,2m ⎡⎤-⎢⎥⎣⎦上是倒数函数,首先当3,2x m ⎡⎤∈-⎢⎥⎣⎦时,()223213()2222x x h x x x x -++--===-++++单调递减,此时21,42h m R m --⎡⎤=⎢⎥+⎣⎦,由倒数函数定义可知,21,42h m R m --⎡⎤=⎢⎥+⎣⎦不包含0,即2102m m -->+(1);从而()()11h x h x =在3,2x m ⎡⎤∈-⎢⎥⎣⎦时的值域为112,421h m R m +⎡⎤=⎢⎥--⎣⎦,由题意12112,4,2421h h m m R R m m --+⎡⎤⎡⎤=⊆=⎢⎥⎢⎥+--⎣⎦⎣⎦,所以要满足题意,还需满足211242421m m m m --⎧≥⎪⎪+⎨+⎪≥⎪--⎩(2);只需(1)(2)式子同时成立即可,所以当且仅当2421m m +=--,解得23m =-,故C 正确;对于D ,必要性:情形一:当0a >时,2()21(R)s x ax x a =+-∈在定义域()[0,],0m m >上单调递增,则()1,s R s m ⎡⎤=-⎣⎦,若2()21(R)s x ax x a =+-∈在定义域[0,]m 上是倒数函数,首先()0s m <,此时()()11s x s x =的值域为()11,1s R s m ⎡⎤=-⎢⎥⎢⎥⎣⎦,同时注意到()()111,,1s s R s m R s m ⎡⎤⎡⎤=-⊆=-⎢⎥⎣⎦⎢⎥⎣⎦不成立,故0a >不符合题意;情形二:当0a =时,()21s x x =-在定义域()[0,],0m m >上单调递增,则()1,s R s m ⎡⎤=-⎣⎦,若2()21(R)s x ax x a =+-∈在定义域[0,]m 上是倒数函数,首先()0s m <,此时()()11s x s x =的值域为()11,1s R s m ⎡⎤=-⎢⎥⎢⎥⎣⎦,同时注意到()()111,,1s s R s m R s m ⎡⎤⎡⎤=-⊆=-⎢⎥⎣⎦⎢⎥⎣⎦不成立,故0a =不符合题意;情形三:当0a <时,注意到2()21(R)s x ax x a =+-∈的对称轴为10x a=->,则()20f f a ⎛⎫=- ⎪⎝⎭,(i )当20m a<≤-时,()()min 01s x s ==-,由二次函数性质可知存在0[0,]x m ∈使得()()0max s x s x =,即此时()01,s R s x ⎡⎤=-⎣⎦,若2()21(R)s x ax x a =+-∈在定义域[0,]m 上是倒数函数,首先()00s x <,此时()()11s x s x =的值域为()101,1s R s x ⎡⎤=-⎢⎥⎢⎥⎣⎦,同时注意到()()10011,,1s s R s x R s x ⎡⎤⎡⎤=-⊆=-⎢⎥⎣⎦⎢⎥⎣⎦不成立,故20m a <≤-不符合题意;(ii )当20m a>->时,由二次函数性质可知()()()2minmax1121,1s x s m am m s x s a a ⎛⎫==+-=-=-- ⎪⎝⎭,即此时()1,s R s m s a ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦,注意到()01s s R =-∈,若2()21(R)s x ax x a =+-∈在定义域[0,]m 上是倒数函数,首先1110s a a ⎛⎫-=--< ⎪⎝⎭,其次结合0a <,可得a 应该满足1a <-;充分性:1a ∀<-,有11110s a a ⎛⎫-<-=--< ⎪⎝⎭,20m a∃>->,使得()22211222111021am am m am m s m am m <-⇒<-⇒+-<-⇒-<=<+-,这表明当1a <-时,存在0m >,使得2()21(R)s x ax x a =+-∈在定义域[0,]m 上是倒数函数,故D 正确.故选:ACD.12.11,2⎡⎫-⎪⎢⎣⎭【详解】21y x ax a =-- 在12,2⎡⎤--⎢⎥⎣⎦上单调递增,∴2()f x x ax a =--在12,2⎡⎤--⎢⎥⎣⎦单调递减,则122a-≤,即1a ≥-,同时需满足1(2)()02f f -->,即1(4)(21)04a a +-<,解得142a -<<,综上可知11,2a ⎡⎫∈-⎪⎢⎣⎭故答案为:11,2⎡⎫-⎪⎢⎣⎭14.01a ≤≤【详解】解:若0a =时,21,0(){(2),0x f x x x <=-≥,∴min ()0f x =;若0a <时,当x a <时,()1f x ax =-+单调递增,当x →-∞时,()f x →-∞,故()f x 没有最小值,不符合题目要求;若0a >时,当x a <时,()1f x ax =-+单调递减,2()()1f x f a a >=-+,当x a >时,min 20(02)(){(2)(2)a f x a a <<=-≥∴210a -+≥或2212a a -+≥-(),解得01a <≤,综上可得01a ≤≤;15.(1){}24A B x x ⋂=-≤<,(){}4≠=x x A C B U ;(2)()0,1.【详解】(1)当1m =时,322mx -<,即322x -<解得31x -<,即4x <,则{}4B x x =< (3){}24A B x x ∴⋂=-≤<,又{}42><=x x x A C U 或(){}4≠=∴x x A C B U ; (8)(2)由322mx -<解得4mx <,又0m > ,4x m∴<,即4{|}B x x m =<,由A B B = 得A B ⊆, (11)44m∴>,1m <,01m ∴<<,即m 的取值范围是()0,1. (13)16.(1)()(),13,∞∞--⋃+(2)答案见解析【详解】(1)依题意,()22210ax a x a -++>-恒成立,()21280xx a x -+⨯-->恒成立,又因为2213124x x x ⎛⎫-+=-+ ⎪⎝⎭恒大于0,所以()212280x x x -+⨯-->,即()(),13,x ∞∞∈--⋃+. (6)(2)()()()()22212f x ax a x x ax =-++=--,当0a =时,()22f x x =-+,由()0f x ≥,解得1x ≤:当0a ≠时,令()0f x =,解得1221,x x a==.当0a <时,201a<<,即21x x <由()0f x ≥,解得21x a ≤≤;当02a <<时,21>a,即21x x >,解得2x a ≥或1x ≤当2a =时,21a=,由()0f x ≥,解得∈;当2a >时,21a<,即21x x <,由()0f x ≥,解得2x a ≤或1x ≥综上所述:当0a <时,不等式()0f x ≥的解集为2,1a ⎡⎤⎢⎥⎣⎦;当0a =时,不等式()0f x ≥的解集为(],1-∞;当02a <<时,不等式()0f x ≥的解集为(]2,1,a ∞∞⎡⎫-⋃+⎪⎢⎣⎭;当2a =时,不等式()0f x ≥的解集为;当2a >时,不等式()0f x ≥的解集为[)2,1,a ∞∞⎛⎤-⋃+ ⎥⎝⎦ (15)17.(1)368,18144 3.5,815xx x y x x x ⎧--≤<⎪=+⎨⎪-≤≤⎩(2)当5x =(万元)时,该公司在旅游季增加的利润最大,最大为17万元.【详解】(1)本季度增加的利润830.5 2.58y m m x m x m ⎛⎫=---=-- ⎪⎝⎭,当18x ≤<时,14.4362.58811x xy x x x x =⨯--=--++,当815x ≤≤时,()2.520.8844 3.5y x x x =---=-,所以该公司增加的利润y 与x (单位:万元)之间的函数关系式为368,18144 3.5,815xx x y x x x ⎧--≤<⎪=+⎨⎪-≤≤⎩; (7)(2)368,18144 3.5,815xx x y x x x ⎧--≤<⎪=+⎨⎪-≤≤⎩,当18x ≤<时,()363682912921711x y x x x x ⎡⎤=--=-++≤-⎢⎥++⎣⎦,当3611x x =++,即5x =时,等号成立, (11)当815x ≤≤时,44 3.5y x =-是减函数,当8x =时,取得最大值16, (13)因为1716>,所以当5x =(万元)时,该公司在旅游季增加的利润最大,最大为17万元 (15)18.(1)1335x x ⎧⎫<<⎨⎬⎭⎩(2)25+12∞⎛⎫- ⎪⎝⎭,【详解】(1)函数21()21x x f x -=+定义域为(1,1)-,关于原点对称,212122()1212121x x x x xf x +--===-+++,所以易知,()f x 在(1,1)-上单调递增,因为()2112()2112x xx xf x f x -----===-++,()f x 是奇函数,由(21)(32)0f x f x -+-<可得()(21)(32)23f x f x f x -<--=-,所以121112312123x x x x-<-<⎧⎪-<-<⎨⎪-<-⎩,解得:1335x <<.故不等式的解集为:1335x x ⎧⎫<<⎨⎬⎭⎩. (7)(2)由()()0f a f b +=可得()()()f a f b f b =-=-,所以=-b a ,不妨设a b >,则01a <<,因为1()421x x g x m m +=+⋅+-,令122aat =+,则522t <<,所以,11()()()()421421a a a a g a g b g a g a m m m m +--++=+-=+⋅+-++⋅+-211=222222a a a am m ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭()2210t m t =+-≥, (12)所以222t m t≥-,令()22211=2222111222t h t t t t t ==-⎛⎫--- ⎪⎝⎭,因为522t <<,所以21152t <<,所以2111112222225t ⎛⎫-<--<- ⎪⎝⎭,所以()25212h t -<<-,所以2512m >-所以实数m 的取值范围为:25+12∞⎛⎫- ⎪⎝⎭ (17)19.(1)是,理由见解析(2)116m ≥(3)||||||a b a b +≥+,证明见解析【详解】(1)对任意的12R x x ∈、,且12x x ≠,()()12122g x g x x x -=-,()()12124f x f x x x -=-.显然有()()()()1212g x g x f x f x -<-,所以函数()y g x =是函数()y f x =在D 上的“L 函数”. (3)(2)因为函数()y g x =是函数()y f x =在D 上的“L 函数”,所以()()()()1212g x g x f x f x -<-对任意的[)()12120,x x x x ∞∈+≠、恒成立,22122x x <-对任意的[)()12120,x x x x ∞∈+≠、恒成立,22122x x <-对任意的[)()12120,x x x x ∞∈+≠、恒成立,12>对任意的[)()12120,x x x x ∞∈+≠、恒成立,即12≥,解得116m ≥ (8)(3)因为0a b +≥,0a b +≥,所以()2222a b a b ab ab +-+=-.所以当0ab ≥时,()22220a b a b ab ab +-+=-=.当0ab <时,()222240a b a b ab ab ab +-+=-=->.综上:a b +≥a b +. (11)对于[]120,2x x ∈、,不妨设12x x >,(i )当1201x x <-≤时,因为函数()y g x =是函数()y f x =在[]0,2上的“L 函数”,所以()()1212|1g x g x x x -<-≤∣.此时()()121g x g x -<成立; (13)(ii )当121x x ->时,由[]120,2x x ∈、得1212x x <-≤,因为()()02g g =,函数()y g x =是函数()y f x =在[]0,2上的“L 函数,所以()()()()()()121220g x g x g x g g g x -=-+-()()()()1220g x g g g x ≤-+-()()12121220221x x x x x x <-+-=-+=--<,此时()()121g x g x -<也成立,综上,()()121g x g x -<恒成立. (17)。

高一上学期期中考试数学试卷含答案(共5套)

高一上学期期中考试数学试卷含答案(共5套)

高一年级第一学期期中考试数学试卷考试时间120分钟,满分150分。

卷Ⅰ(选择题共60分)一.选择题(共12小题,每小题5 分,计60分。

在每小题给出的四个选项中,只有1个选项符合题意)1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则C B A= ()A. B. C. D.2.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A. B. C. D.3.函数y=的图象是()A. B. C. D.4.幂函数在时是减函数,则实数m的值为A. 2或B.C. 2D. 或15.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A. B. C. D.6.在下列区间中,函数的零点所在的区间为()A. B. C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)表达式是()A. B. C. D.8.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A. B. C. D.9.已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.10.若函数f(x)=,且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A. B. C. D.11.若在区间上递减,则a的取值范围为()A. B. C. D.12.已知函数f(x)=则函数g(x)=f[f(x)]-1的零点个数为()A. 1B. 3C. 4D. 6卷Ⅱ(非选择题共90分)二、填空题(本大题共4小题,共20分)13.方程的一根在内,另一根在内,则实数m的取值范围是______.14.若函数的图象与x轴有公共点,则m的取值范围是______ .15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是______ .16.已知函数的定义域为D,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是______三、解答题(本大题共6小题,共70分,其中17题10分,18-22题12分)17.计算下列各式的值:(1)(2).18.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知定义域为R的函数是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.21.“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前个小时消除了的污染物,(1)小时后还剩百分之几的污染物(2)污染物减少需要花多少时间(精确到小时)参考数据:22.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.第一学期期中考试高一年级数学试卷答案1.【答案】A解:因为A={x|x2-2x-3<0}={x|-1<x<3},B={x|2x+1>1}={x|x>-1},则C B A=[3,+∞) ,故选A.2.【答案】C解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.3.【答案】B解:函数y=是奇函数,排除A,C;当x=时,y=ln<0,对应点在第四象限,排除D.故选B.4.【答案】B解:由于幂函数在(0,+∞)时是减函数,故有,解得m =-1,故选B.5.【答案】A解:∵函数f(x)的定义域为(0,4],∴由,得,即0<x≤2,则函数g(x)的定义域为(0,2],故选:A.6.【答案】C解:∵函数f(x)=e x+4x-3在R上连续,且f(0)=e0-3=-2<0,f()=+2-3=-1=-e0>0,∴f(0)f()<0,∴函数f(x)=e x+4x-3的零点所在的区间为(0,).故选C.7.【答案】D解:设x<0,则-x>0,∵当x≥0时,,∴f(-x)=-x(1+)=-x(1-),∵函数y=f(x)是定义在R上的奇函数,∴f(x)=-f(-x),∴f(x)=x(1-),故选D.8.【答案】D解:∵函数f(x)为奇函数,若f(1)=-1,则f(-1)=-f(1)=1,又∵函数f(x)在(-∞,+∞)上单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:1≤x≤3,所以x的取值范围是[1,3].故选D.9.【答案】C解:因为f(a)=f(b),所以|lg a|=|lg b|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选C.10.【答案】D解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得a∈[4,8),故选D.11.【答案】A解:令u=x2-2ax+1+a,则f(u)=lg u,配方得u=x2-2ax+1+a=(x-a)2 -a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2-2ax+1+a在区间(-∞,1]上单调递减,又真数x2-2ax+1+a>0,二次函数u=x2-2ax+1+a在(-∞,1]上单调递减,故只需当x=1时,若x2-2ax+1+a>0,则x∈(-∞,1]时,真数x2-2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选:A.由题意,在区间(-∞,1]上,a的取值需令真数x2-2ax+1+a>0,且函数u=x2-2ax+1+a在区间(-∞,1]上应单调递减,这样复合函数才能单调递减.本题考查复合函数的单调性,考查学生分析解决问题的能力,复合函数单调性遵从同增异减的原则.12.【答案】C解:令f(x)=1,当时,,解得x1=-,x2=1,当时,,解得x3=5,综上f(x)=1解得x1=-,x2=1,x3=5,令g(x)=f[f(x)]-1=0,作出f(x)图象如图所示:由图象可得当f(x)=-无解,f(x)=1有3个解,f(x)=5有1个解,综上所述函数g(x)=f[f(x)]-1的零点个数为4,故选C.13.【答案】(1,2)解:设f(x)=x2-2mx+m2-1,则f(x)=0的一个零点在(0,1)内,另一零点在(2,3)内.∴,即,解得1<m<2.故答案为(1,2).14.【答案】[-1,0)解:作出函数的图象如下图所示,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得-1≤m<0.故答15.案为[-1,0).【答案】.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m-5.∴m的取值范围是.故答案为:..利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.【答案】[5,+∞)解:函数的定义域为:x≤2,当x∈D时,f(x)≤m恒成立,令t=≥0,可得2x=4-t2,所以f(t)=5-t2-t,是开口向下的二次函数,t≥0,f(t)≤5,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是:m≥5.故答案为:[5,+∞).求出函数的定义域,利用换元法结合函数的性质,求解实数m的取值范围.本题考查函数的最值的求法,换元法的应用,函数恒成立体积的应用,是基本知识的考查.17.【答案】解:(1)原式===;-----------(5分)(2)原式===log39-9=2-9=-7.----(10分)18.【答案】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|-2<x<4},----(1分)则A∪B={x|-2<x≤7},----(3分)又∁R A={x|x<1或x>7},则(∁R A)∩B={x|-2<x<1};----(5分)(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①当A=∅时,有m-1>2m+3,解可得m<-4,----(7分)②当A≠∅时,若有A⊆B,必有,解可得-1<m<,----(11分)综上可得:m的取值范围是:(-∞,-4)∪(-1,).----(12分)19.【答案】解:(1),若要式子有意义,则,即,所以定义域为. ----(4分)(2)f(x)的定义域为,且所以f(x)是奇函数. ----(8分)(3)又f(x)>0,即,有.当时,上述不等式,解得. ----(12分)20.【答案】解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即,则b=1,经检验,当b=1时,是奇函数,所以b=1;----(3分)(2),f(x)在R上是减函数,证明如下:在R上任取,,且,则,因为在R上单调递增,且,则,又因为,所以,即,所以f(x)在R上是减函数; ----(7分)(3)因为,所以,而f(x)是奇函数,则,又f(x)在R上是减函数,所以,即在上恒成立,令,,,,因为,则k<-1.所以k的取值范围为. ----(12分)21.【答案】解:(1)由已知,∴,当时,,故小时后还剩的污染物. ----(5分)(2)由已知,即两边取自然对数得:,∴,∴污染物减少需要花32小时. ----(12分)22.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;----(3分)(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;----(7分)(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.----(12分)2019-2020学年第一学期期中考试高一数学试题说明:本试卷分为第I 卷和第Ⅱ卷两部分,共三个大题,22个小题。

高一数学上学期期中考试试卷含答案(共5套)

高一数学上学期期中考试试卷含答案(共5套)

高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。

考试用时120分钟。

第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。

陕西省“西中教育联合体”2024-2025学年高一上学期期中考试数学试题

陕西省“西中教育联合体”2024-2025学年高一上学期期中考试数学试题

陕西省“西中教育联合体”2024-2025学年高一上学期期中考试数学试题一、单选题1.命题“每一个四边形的对角线都互相垂直”的否定是()A .每一个四边形的对角线都不互相垂直B .存在一个四边形,它的对角线不垂直C .所有对角线互相垂直的四边形是平行四边形D .存在一个四边形,它的对角线互相垂直2.已知集合{}1,,A a b =,{}2,,B a a ab =,若A B =,则20232022a b +=()A .1-B .0C .1D .23.设0.70.80.713,,0.8,3a b c -⎛⎫=== ⎪⎝⎭则()A .a b c >>B .b a c >>C .c a b<<D .c b a>>4.已知关于x 的一元二次不等式20ax bx c ++<的解集为(1,5)-,其中,,a b c 为常数,则不等式20cx bx a ++≤的解集是()A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .1,[1,)5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .1(,1],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭5.已知实数1x >,则函数221y x x =+-的最小值为()A .5B .6C .7D .86.函数331x x y =-的图象大致是()A .B .C .D .7.定义在0,+∞上的函数()f x 满足:对()12,0,x x ∞∀∈+,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()36f =,则不等式()2f x x>的解集为()A .()3,+∞B .()0,3C .()0,2D .()2,+∞8.已知函数()2,123,1x a a x f x ax ax a x ⎧+≥=⎨-+-+<⎩(0a >且1a ≠),若函数()f x 的值域为R ,则实数a 的取值范围是()A .20,3⎛⎤⎝⎦B .31,2⎛⎤ ⎥⎝⎦C .[)2,+∞D .[)3,+∞二、多选题9.已知集合{}{}22320,(2)20A xx x B x ax a x =-+==-++=∣∣,若B A ⊆,则实数a 的值可以为()A .2B .1C .12D .010.若R a b c ∈,,,则下列命题正确的是()A .若22ac bc <,则a b <B .若01a <<,则aC .若0a b >>且0c <,则b c ba c a+>+D .22245a b a b +≥--11.已知x ,y 都为正数,且21x y +=,则下列说法正确的是()A .2xy 的最大值为14B .224x y +的最小值为12C .()x x y +的最大值为14D .11x y+的最小值为3+12.高斯(Gauss )是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]2.33-=-,[]15.3115=.已知函数()21122x xf x =-+,()()G x f x =⎡⎤⎣⎦,则下列说法正确的有()A .()G x 是偶函数B .()G x 的值域是{}1,0-C .()f x 是奇函数D .()f x 在R 上是增函数三、填空题1313827-⎛⎫+=⎪⎝⎭.14.函数2()1(0,1)x f x a a a -=+>≠的图象必经过定点.15.不等式210ax ax a -++>对R x ∀∈恒成立,则实数a 的取值范围为.16.函数()1(0)g x ax a =+>,()22f x x x =+,若[]11,1x ∀∈-,[]02,1x ∃∈-使()()10g x f x =成立,则a 的取值范围是.四、解答题17.解关于x 的不等式2(1)0x ax a --+<;18.已知集合{}310A x x =<<,{}29140B x x x =-+<,{}32C x x m =<<,(1)求A B ⋂,()R A B ð;(2)若x C ∈是()x A B ∈ 的充分而不必要条件,求实数m 的取值范围.19.已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.20.某工厂某种航空产品的年固定成本为250万元,每生产x 件,需另投入成本为()C x ,当年产量不足80件时,21()103C x x x =+(万元).当年产量不小于80件时,10000()511450C x x x=+-(万元).每件商品售价为50万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (件)的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?21.设幂函数()22()33m f x m m x -=--在(0,)+∞单调递增,(1)求()f x 的解析式;(2)设不等式()45f x x ≤+的解集为函数()2()[(1)()]g x f x a f x f x =++-的定义域,记()g x 的最小值为()h a ,求()h a 的解析式.。

海南省定安县定安中学2024-2025学年高一上学期11月期中考试数学试题

海南省定安县定安中学2024-2025学年高一上学期11月期中考试数学试题

海南省定安县定安中学2024-2025学年高一上学期11月期中考试数学试题一、单选题1.已知全集{}1,2,3,4,5U =,集合{}1,3,4A =,集合{}1,5,4B =,则()U B A ⋃=ð()A .{}5B .{}2,5C .{}1,3,5,4D .{}1,2,5,42.命题“x ∃∈R ,320x x +->”的否定是()A .x ∃∉R ,320x x +-≤B .x ∃∈R ,320x x +-≤C .x ∀∈R ,320x x +-≤D .x ∀∉R ,320x x +-≤3.设R x ∈,则“12x <<”是“13x <<”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件4.下列不等式正确的是()A .若b a >,则11a b>B .若c ca b>,则a b <C .若a b >,则22ac bc >D .若0,0b a m >>>,则a m ab m b+>+5.函数()12f x x =-的定义域是()A .()1,+∞B .[)1,+∞C .[)()1,22,⋃+∞D .()2,+∞6.若数集{})(1212,,,1,2n n A a a a a a a n =≤<<<≥ 具有性质P :对任意的i ,(1)j i j n ≤<≤,i j a a 与j ia a 中至少有一个属于A ,则称集合A 为“权集”,则()A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有17.奇函数()f x 在(),0-∞上单调递增,若()10f -=,则不等式()0xf x <的解集是().A .()()101,∪,-∞-B .()()11,∪,-∞-+∞C .()()1001,∪,-D .()()101,∪,-+∞8.若命题“2R,10x x mx ∃∈++<”为假命题,则实数m 的取值范围是()A .(][),22,-∞-+∞U B .()2,2-C .()(),22,∞∞--⋃+D .[]22-,二、多选题9.下列关于集合的说法不正确的有()A .{0}=∅B .任何集合都是它自身的真子集C .若{1,}{2,}a b =(其中,a b ∈R ),则3a b +=D .集合{}2yy x =∣与{}2(,)x y y x =∣是同一个集合10.(多选)下列四个图形各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的是()A .B .C .D .11.()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则下列说法中正确的是()A .()f x 的单调递增区间为(],2-∞-和[]0,2B .(π)(5)f f -<C .()f x 的最大值为4D .当0x <时,2()4f x x x =--三、填空题12.不等式304xx -≤+的解集是.13.某校为了让学生感受生命的奥秘,培养学生热爱自然、探索大自然的意识,开展了“种植当岁初,滋荣及春暮”的活动.学校打算在宿舍后面的空地上开设一块面积为50m 2的矩形田地ABCD 让学生种植自己喜欢的植物,四周留有宽度分别为1m 和2m 的过道,如图所示,则该矩形田地的边AB 长为m 时,过道占地面积最小,最小面积为m 2.14.已知函数()()()3x xf x e eg x -=++ ,其中,()g x 为奇函数,若()2023f a =,则()f a -=.四、解答题15.已知集合{}29180A xx x =-+≤∣,{49}B x x =<<∣.(1)分别求A B ⋂,A B .(2)已知{21}C xm x m =-<<+∣,且C B ⊆,求实数m 的取值范围.16.已知函数()22,1,2,12,, 2.2x x f x x x x x ⎧⎪+≤-⎪=-<<⎨⎪⎪≥⎩(1)求[(1)]f f ;(2)若()3f a =,求a 的值.17.设x ∈R ,集合A 中含有三个元素3,x ,22x x -.(1)求实数x 应满足的条件;(2)若2A -∈,求实数x 的值.18.已知正数,a b 满足4a b ab +=.(1)求a b +的最小值;(2)若28a b m m +>+恒成立,求m 取值范围.19.已知函数()2211x x af x x -+-=-,且()12f -=-.(1)求函数()f x 的解析式;(2)证明:函数()f x 在0,1上单调递减.(3)求函数()f x 在1,22⎡⎤⎢⎥⎣⎦的最值。

天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)

天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)

塘沽一中2024—2025学年度第一学期高一年级期中考试数学学科试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间100分钟,试卷共4页。

卷Ⅰ答案用2B 铅笔填涂在答题纸上对应区域,卷Ⅱ答案用黑色字迹的笔答在答题纸规定区域内。

第Ⅰ卷(共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是最符合题目要求的)1.已知集合,,则( )A. B. C. D.2.命题“,”的否定是( )A., B.,C., D.,3.如果a ,b ,c ,,则正确的是( )A.若,则B.若,,则C.若,则D.若,,则4.设a ,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列函数既是偶函数,且在上单调递减的是( )A. B. C. D.6.已知,,,则( )A. B. C. D.7.已知函数的部分图象如下图所示,则的解析式可能为( ){}|2A x x =<}2,1,0,1,{,23B =--()R A B = ð{}3{}2;3}0,1,2,3{}2,1,{0,1,2--0x ∃>2310x x -->0x ∀>2310x x --≤0x ∀≤2310x x --≤0x ∃>2310x x --≤0x ∃≤2310x x --≤R d ∈a b >11a b<a b >c d >a c b d ->-22ac bc >a b>a b >c d >ac bd>R b ∈22a b =1133ab⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()0,+∞2y x =1y x =+231y x =+21y x =32log 3a =0.23b =23log 2c =a b c>>b a c >>c b a>>b c a>>()f x ()f xA. B. C. D.8.函数的零点所在区间为( )A. B. C. D.9.已知国内某人工智能机器人制造厂在2023年机器人产量为300万台,根据市场调研和发展前景得知各行各业对人工智能机器人的需求日益增加,为满足市场需求,该工厂决定以后每一年的生产量都比上一年提高,那么该工厂到哪一年人工智能机器人的产量才能达到900万台(参考数据:,)( )A.2029年B.2030年C.2031年D.2032年10.设正实数x ,y 满足,则( )A.的最大值是B.的最小值为4C.最小值为2D.最小值为211.对任意的函数,都有,,且当时,,若关于x 的方程;在区间内恰有10个不等实根,则实数a 的取值范围是( )A. B. C. D.12.已知函数的定义域是,对,都有,且当时,,且,则下列说法中正确的个数为( )①②函数在上单调递增③④满足不等式的x 的取值范围为()e e 43x xf x x --=-()e e 34x xf x x--=-()e e 48x xf x x -+=-()1x f x x =-()1ln 3xf x x ⎛⎫=- ⎪⎝⎭()0,1()1,2()2,e ()e,320%lg 20.30≈lg 30.48≈22x y +=xy 14112x y+224x y +212x y x+R x ∈()f x ()()f x f x -=()()2f x f x =+[]1,0x ∈-()112xf x ⎛⎫=- ⎪⎝⎭()log 0a f x x -=[]10,10-()3,5()5,7[]5,7[]3,5()f x ()0,+∞x ∀()0,y ∈+∞()()()f x y f x f y ⋅=+1x >()0f x >113f ⎛⎫=- ⎪⎝⎭()10f =()f x ()0,+∞()()()()1111123202220230232022220222023f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()22f x f x --≥92,4⎛⎤ ⎥⎝⎦A.1个B.2个C.3个D.4个第Ⅱ卷(共90分)二、填空题(每小题5分,双空题答对一个给3分,共30分)13.已知函数,则函数的定义域为____________.14.____________。

2023-2024学年度上学期高一数学期中考试[含答案]

2023-2024学年度上学期高一数学期中考试[含答案]

又 f (x) 是奇函数,所以 0 x 2 时, f (x) 0 , x 2 时, f (x) 0 ,且 f (0) f (2) 0 ,
不等式
xf
x
0
x
f
0
x
0

x
f
0 (x)
0

x
0
,所以 0
x
2 或 2
x
0

综上 2 x 2 .
故选:D.a 23 , b 45 , c 253 ,则
【解析】
【分析】根据交集含义即可得到答案.
A B 1, 0,1
【详解】根据交集含义即可得到

故选:B.
2. 命题: x R, x | x | 0 的否定为( )
A. x R, x | x | 0
B. x R, x | x | 0
C. x R, x | x | 0
D. x R, x | x | 0
【详解】因为
f
2x
1
x2
1 t
,令
2x
1,
x
t
1 2

f
(t)
t
1 2 2
1
,即
f
(x)
x 12 2
1

所以 f (3) 2 .
故选:B
6.
若定义在 R 的奇函数
f
x
,若
x
0

f
x
x 2
xf
,则满足
x 0 的 x 的取值范围是(

, 20, 2
A. 【答案】D 【解析】
, 2 2, , 20, 2
对于 C,
y∣y∣ x2 1, x R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学上册期中考试试题
数学试卷
说明:本试卷满分150,时间120分钟
一、选择题(本题共12道小题,每小题5分,共60分。

每小题有且只有一个正确答案)
1、已全集{}1,2,3,4,5,6U =,{}1,2,5A =,{}1,3,4B = 则()U B A ð为( )
(A ){}1 (B) {}2,5 (C) {}3,4 (D) {}1,2,3,4
2、已知全集U z =,{}1,0,1,2A =-, {}2/B x x x ==则()U A B ð为( )
(A ) {}1,2- (B) {}1,0- (C) {}1,0 (D) {}1,2
3、“5x >”的一个充分非必要条件是( )
(A) 6x > (B) 3x > (C) 6x < (D) 100x <
4、若p 、q 是两个简单命题,且“p 或q ”的否定是真命题,则必有( )
(A).p 真q 真 (B).p 假q 假 (C).p 真q 假 (D).p 假q 真
5、设{}{}35,12P x x Q x m x m =<<=-≤≤+,若P Q ⊆,则实数m 的取值范围是()
(A) ∅ (B) {}34x x << (C) {}34x x <≤ (D) {}34x x ≤≤
6、已知不等式25x x m -++>的解集是R ,则实数m 的取值范围是 ( )
(A ){}07m m << (B ) {}7m m <
(C ){}07x m <≤ (D ) {}7m m ≤
7、不等式21021
x x +≤-的解集是( ) (A )1122x x ⎧⎫-≤≤⎨⎬⎩⎭ (B ) 11,22x x x ⎧⎫≤-≥⎨⎬⎩
⎭或 (C )1122x x ⎧⎫-≤<⎨⎬⎩
⎭ (D )1122x x x ⎧⎫≤-⎨⎬⎩⎭或
8、()3
432x --中的x 的取值范围是( )
(A) (),-∞+∞ (B) 33,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ (C) 3,2⎛⎫-∞ ⎪⎝⎭ (D) 3,2⎛⎫+∞ ⎪⎝⎭ 9、函数11x y x -=+的减区间是( ) (A)(),1-∞- (B)()-1,+∞ (C)()(),1-1,+-∞-∞ (D)(),1-∞-,()1,-+∞ 10、已知函数()21f x -的定义域为[)0,1,则()13f x -的定义域是( ) (A) ](2,4- ( B) 12,2⎛⎤-- ⎥⎦⎝ (C) 10,6⎛⎤ ⎥⎦⎝ (D) 20,3⎛⎤ ⎥⎦⎝ 11、函数()y f x =的图象过点()1,2,则函数()14y f x -=-的图象一定过 ( ) (A) ()1,6 (B) ()0,1 (C) ()6,0 (D) ()6,1 12、设S 是至少有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的,a b S ∈,对于有序实数对(),a b 在S 中有唯一确定的元素a b *与之对应)若对任意的,a b S ∈,有()a b a b **=,则对任意的,a b S ∈,下列等式中不恒成立的是( ) (A) ()a b a a **= (B) ()b b b b **= (C) [()()a b a a b a ****=⎤⎦ (D) ()[()a b b a b b ****=⎤⎦ 二填空题(本题共4小题,每小题5分,共20分) 13、不等式2024x x <--<的解集是 .
14、求)1y x =≤-的反函数 .
15 16、已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。

现有下列命题:①s 是q 的充要条件;②p 是q 的充分不必要条件;③r 是q 的必要不充分条件;④⌝p 是⌝s 的必要不充分条件;⑤r 是s 的充分不必要
条件。

其中为真命题的序号为 .
—2010学年高一年级数学期中卷答题卡
二、填空题(本题共4小题,每小题5分,共20分)
13、 ; 14 A = ;B = ;
15、 ; 16、
三、解答题(本题共6小题,共70分,要写出必要的文字叙述、演算步骤及推理过程)
17、(12分)已知U =R ,且{}{}
22120,450A x x x B x x x =--≤=-->,求: (1);
(2);(3)U U A B A B A B 痧。

18、(12分)解不等式
(1)
235223x x x -≤+- (6分) (2) 123x x x -+->+(6分)
19、(10分)(1)已知函数()01x f x
+=()2f -的值和函数的定义域
(2)求函数()f x =的定义域和值域
20、(12分)求函数()36f x x x x =-的单调区间
21、(12分)已知{}240A x x x =+=,(){}
222110B x x a x a =+++-=,若B A ⊆,求实数a 的取值范围。

22、(本小题满分12分)
已知命题p :1()f x -是()13f x x =-的反函数,且1|()|2f a -<;命题q :集合
2{|(2)10,}A x x a x x R =+++=∈,{|0}B x x =>,且A B =∅ ;若“p 或q 为真”且“p 且q 为假”,求实数a 的取值范围.
参考答案
一选择题1~5 C A A B D 6~10 B C C D D 11~12 D A
二填空题 13. {}/2123x x x -<<-<<或 14.()102
y x =≥ 15 . 1 16. ①②④
三解答题
17.解: 依题意A ={x|x 2-x-12≤0}={x|-3≤x ≤4},B ={x|x 2-4x-5>0}
={x|x<-1或x>5},所以(1)A ∩B ={x| -3≤x<-1}(2)A ∪B={x| x ≤4或x>5}(3)C U A ∩C U B ={x| 4<x ≤5}
18.(1){x |x<-3或-1≤x ≤
21或x >1 } (2){x | x <0或x >6} 19.(1)12
,()/01x x x <≠-且 (2){}/31x x -≤≤,{}/02y y ≤≤ 20.增区间:(],1-∞-,[)1,+∞ 减区间:[]1,1-
21解: ∵{}4,0A =-,,B A B ⊆=∅或{}4B =-或{}0B =或{}4,0B =-;
(1) 当B =∅时,方程()22
2110x a x a +++-=得()()22214188a a a ∆=+--=+⎡⎤⎣⎦
, 由0∆<得880a +<,解得1a <-.
(2)当{}4B =-时, 方程()22
2110x a x a +++-=有两个相等实数根-4, ∴880a ∆=+=且 ()()()2
2421410a a -++-+-=,因此满足条件的a 不存在; (3) 当{}0B =时, 方程()22
2110x a x a +++-=有两个相等实数根0,∴880a ∆=+=且()()()2
2021010a a +++-=,解得1a =-; (4) 当{}4,0B =-}时, 方程()22
2110x a x a +++-=有两个不相等实数根-4,0, ∴()()()2
2421410a a -++-+-=且210a -=,解得1a =. 综上所述,a 的取值范围是1a ≤-或 1a =。

22.解:由题意得可求11()()3x f x x R --=∈ 当P 为真时,则11|()|||3a f a --=,∴1||23
a -<,解得57a -<< 当A B =∅ 则方程2(2)10x a x +++=无正根,可分为以下几种情况
1
方程无根,则2(2)40a ∆=+-<,即40a -<<
2
方程有两负根,则2(2)40(2)0a a ⎧∆=+-≥⎨-+<⎩,即402a a a ≤-≥⎧⎨>-⎩或,0a ∴≥
∴当q 为真时,4a >-
由“p 或q 为真”且“p 且q 为假”知p 、q 一真一假, p 真q 假得57544a a a -<<⎧⇒-<≤-⎨≤-⎩;p 假q 真得5774a a a a ≤-≥⎧⇒≥⎨>-⎩或, 所以a 的取值范围为(5,4][7,)--+∞ .。

相关文档
最新文档