中考数学名师公开课之直角三角形的性质解析及勾股定理综合全解

合集下载

2020届中考数学直角三角形与勾股定理相似三角形典型例题讲解

2020届中考数学直角三角形与勾股定理相似三角形典型例题讲解

第20讲:直角三角形与勾股定理一、复习目标(1)掌握判定直角三角形全等的条件和直角三角形的性质。

(2)掌握角平分线性质的逆定理。

(3)掌握勾股定理及其逆定理。

二、课时安排1课时三、复习重难点直角三角形的性质和判定,勾股定理及其逆定理,直角三角形全等的判定及其应用。

四、教学过程(一)知识梳理直角三角形的概念、性质与判定定义有一个角是________的三角形叫做直角三角形性质(1)直角三角形的两个锐角互余(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于___________全套资料联系QQ/微信:1403225658(3)在直角三角形中,斜边上的中线等于________________判定(1)两个内角互余的三角形是直角三角形(2)一边上的中线等于这边的一半的三角形是直角三角形拓展(1)S Rt△ABC=12ch=12a b,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)Rt△ABC内切圆半径r=a+b-c2,外接圆半径R=c2,即等于斜边的一半勾股定理及逆定理勾股定理直角三角形两直角边a、b的平方和,等于斜边c的平方.即:________勾股定理的逆定理逆定理如果三角形的三边长a、b、c有关系: ________ ,那么这个三角形是直角三角形用途(1)判断某三角形是否为直角三角形;(2)证明两条线段垂直;(3)解决生活实际问题互逆命题互逆命题如果两个命题的题设和结论正好相反,我们把这样的两个命题叫做互逆命题,如果我们把其中一个叫做______,那么另一个叫做它的______互逆定理若一个定理的逆定理是正确的,那么它就是这个定理的________,称这两个定理为互逆定理命题、定义、定理、公理定义在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义命题定义判断一件事情的句子叫做命题分类正确的命题称为________错误的命题称为________组成每个命题都由______和______两个部分组成公理公认的真命题称为________定理除公理以外,其他真命题的正确性都经过推理的方法证实,推理的过程称为________.经过证明的真命题称为________(二)题型、技巧归纳考点一:利用勾股定理求线段的长度技巧归纳:勾股定理的作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求另两边的关系;(3)用于证明平方关系的问题.考点2实际问题中勾股定理的应用技巧归纳:利用勾股定理求最短线路问题的方法:将起点和终点所在的面展开成为一个平面,进而利用勾股定理求最短长度.考点3勾股定理逆定理的应用技巧归纳:判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.考点4定义、命题、定理、反证法技巧归纳:只有对一件事情做出判定的语句才是命题,其中正确的命题是真命题,错误的命题是假命题.对于命题的真假(正误)判断问题,一般只需根据熟记的定义、公式、性质、判定定理等相关内容直接作出判断即可,有的则需要经过必要的推理与计算才能进一步确定真与假.(三)典例精讲例1 将一个有45度角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图21-1,则三角板的最大边的长为( )全套资料联系QQ/微信:1403225658A、3CMB、6CMC、32CMD、62CM[解析] 如图所示,过点A作AD⊥BD,垂足为D,所以AB=2AD=2×3=6 (cm),△ABC是等腰直角三角形,AC=2AB=62(cm).例2 一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长;(3)求点B1到最短路径的距离.解:(1)如图,木柜的表面展开图是两个矩形和.蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC1.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长是l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长是l2=(4+4)2+52=89.l1>l2,最短路径的长是l2=89.(3)作B1E⊥AC1于E,则B1E=B1C1AC1·AA1=489·5=208989例3 已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A .②B .①②C .①③D .②③[解析] 根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.①∵22+32=13≠42,∴以这三个数为长度的线段不能构成直角三角形,故不符合题意; ②∵32+42=52,∴以这三个数为长度的线段能构成直角三角形,故符合题意; ③∵12+(√3)2=22,∴以这三个数为长度的线段能构成直角三角形,故符合题意. 故构成直角三角形的有②③. 故选D.例4 下列命题为假命题的是( ) A .三角形三个内角的和等于180° B .三角形两边之和大于第三边C .三角形两边的平方和等于第三边的平方D .三角形的面积等于一条边的长与该边上的高的乘积的一半[解析] 选项A 和B 中的命题分别为三角形的内角和定理与三角形三边关系定理,均为真命题;对于选项C ,只有直角三角形中两直角边的平方和等于斜边的平方,而其他三角形的三边都不具有这一关系,因此是假命题;选项D 中的命题是三角形的面积计算公式,也是真命题,故应选C.(四)归纳小结本部分内容要求熟练掌握判定直角三角形全等的条件和直角三角形的性质、掌握角平分线性质的逆定理、掌握勾股定理及其逆定理。

中考数学专题复习之直角三角形与勾股定理

中考数学专题复习之直角三角形与勾股定理
子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,
将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为
A.0.7米
B.1.5米
C.2.2米
图22-6
( C )
D.2.4米






2.[2017·丰台二模]三国时期吴国赵爽创制了“勾股圆方图”(如图22-7)证明了勾股
图 22-2
D.5







.[2018·昌平期末]小明学了利用勾股定理在数轴上找一个无理数的准确位置后,
又进一步进行练习:首先画出数轴,如图22-3,设原点为点O,在数轴上的2个单位长
度的位置找点A,然后过点A作AB⊥OA,且AB=3.以点O为圆心,OB为半径作弧,设
与数轴右侧交点为点P,则点P的位置在数轴上 ( C )
7.直角三角形中两条边长分别为3和4,则第三边长为 5 或 7 .












考向一 勾股定理
例 1 下列各组数中的三个数作为三角形的边长,其中能构成直角三角形的是
( B )
A. 3, 4, 5
B.1, 2, 3
C.6,7,8
D.2,3,4












| 考向精练 |
1.[2018·房山二模]如图22-6,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯
2
2
2
图22-10

2019中考数学高频考点剖析专题19平面几何之直角三角形问题—解析卷.doc

2019中考数学高频考点剖析专题19平面几何之直角三角形问题—解析卷.doc

备考2019中考数学高频考点剖析专题十九平面几何之直角三角形问题考点扫描☆聚焦中考直角三角形问题,是每年中考的必考重点内容之一,考查的知识点包括直角三角形的性质、勾股定理和解直角三角形三方面,总体來看,难度系数低,以选择填空为主。

关于解直角三角形主要是解析题。

解析题主要以计算为主。

结合2018年全国各地中考的实例,我们从三方血进行直角三角形问题的探讨:(1)直角三角形的性质;(2)勾股定理;(3)解直角三角形.考点剖析☆典型例题頑(2018・玉林)如图,在四边形ABCD中,ZB二ZD二90° , ZA=60° , AB二4,则AD的取值范围是2<AD<8・【分析】如图,延长BC交AD的延长线于E,作BF丄AD于F.解直角三角形求出AE、AF即可判断;【解答】解:如图,延长BC交AD的延长线于E,作BF丄AD于F.在RtAABE 中,VZE=30° , AB=4,AAE=2AB=8,在RtAABF 中,AF二寺AB二2,AAD的取值范围为2<AD<8,故答案为2<AD<8.例2| (2018・盐城)如图,在直角△ABC 中,ZC 二90° , AC 二6, BC 二8, P 、Q 分别为边BC 、AB 上的两个动点,若要使AAPQ 是等腰三角形且Z\BPQ 是直角三角形,则AQ 二 芈或孕. 【分析】分两种情形分别求解:①如图1屮,当AQ 二PQ, ZQPB=90°时,②当AQ 二PQ, ZPQB=90° 时;【解答】解:①如图1中,当AQ=PQ, ZQPB 二90°时,设AQ 二PQ 二x,・.・PQ 〃AC,AABPQ^ABCA,.BQ_PQ・ 10-x = x10 ~_6,・15 rAAQ~. 4②当 AQ 二PQ, ZPQB=90° 时,设 AQ 二PQ 二y.VABQP^ABCA,• PQ.BQ•• A L BC '■ y,10-y飞8 例3| (2018・黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则 蚂蚁从外壁A 处到内壁B 处的最短距离为20 cm (杯壁厚度不计).・・x 二 图1 图?蚂蚁月【分析】将杯子侧面展开,建立A关于EF的对称点A',根据两点之间线段最短可知“ B的长度即为所求.:【解答】解:如图连接A' B,则A' B 即为最短距离,A' B=A/A^D^+BD^A/162+1 2 2=20 (cm).故答案为20.^H| (2018*杭州)如图,在中,ZACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,八D长为半径画弧,交线段AC于点E,连结CD.(1)若ZA=28° ,求ZACD的度数.(2)设BC=a, AC二b.①线段AD的长是方程x2+2ax・b2=0的一个根吗?说明理由.②若AD=EC,求学的值.B【分析】(1)根据三角形内角和定理求出ZB,根据等腰三角形的性质求出ZBCD,计算即可;(2)①根据勾股定理求岀AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【解答】解:(1) V ZACB=90° , ZA=28° ,.\ZB=62° ,VBD=BC,・・・ZBCD二ZBDC二59° ,・・・ZACD二90° - ZBCD二31°;(2)①由勾股定理得,A B R AC J BC S/ai2 + b2,AD=Va2 + b2 - a,解方程x2+2ax - b~0 得,x^~2a± V4a2+4b2^ 土需盯予-a,2・・・线段AD的长是方程x2+2ax - b2=0的一个根;② VAD=AE,AAE=EC=4,2 由勾股定理得,a2+b2=(寺b+a)2, 整理得,竿导.b 4巫(2018-遵义)如图,吊车在水平地血上吊起货物时,吊绳BC与地血保持垂直,吊臂AB与水平线的夹角为64。

中考数学勾股定理(讲义及答案)附解析

中考数学勾股定理(讲义及答案)附解析

一、选择题1.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .9 2.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .63.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③4.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1525.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .826.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.58.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.有下列的判断: ①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .②二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠.求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.30.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 2.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形;由割补法可知四边形CDFE 的面积保持不变;△DEF 是等腰直角三角形2DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值42,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.4.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.5.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,BD BE DE64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.15.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.1671【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N 22''OM ON +. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解. 【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.20.【分析】根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4,∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DMBM ,进而可得BE +CF(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB 中,由①知:6EH HB ==∴622 AH AE EH=+=+,22222256623AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN∠+∠=︒,∴AN DE⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为2033或1235. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根。

中考数学专题复习 专题51 勾股定理的多种证明方法(教师版含解析)

中考数学专题复习 专题51  勾股定理的多种证明方法(教师版含解析)

中考专题51 勾股定理的多种证明方法勾股定理具体内容是:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

历史上证明勾股定理有很多方法,每种方法都含有科学思维、科学探究的过程,每一种证明方法都利用数学观念,数学知识。

每一种方法都体现一名数学家为科学付出的情怀。

在证明勾股定理的长河中,参与的人有的是学者,有的是著名的科学家,还有的是政治家,比如总统。

通过学习勾股定理的证明,可以品味各种拼图,方法各异,妙趣横生,证明思路别具匠心,极富创新。

它们充分运用了几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,深刻体现了形数统一、代数和几何紧密结合、互不可分的独特魅力。

勾股定理是对社会有重大影响的10大科学发现之一。

早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。

迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。

数学故事:在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德(Garfield).他发现附近的一个小石凳上,有两个小孩正在谈论着什么.由于好奇心的驱使,伽菲尔德向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。

《勾股定理》优秀说课稿(精选5篇)

《勾股定理》优秀说课稿(精选5篇)

《勾股定理》优秀说课稿(精选5篇)《勾股定理》优秀说课稿篇1一、说教材勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。

2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

二、说教法和学法教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让同学们主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。

这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

【名师面对面】2015中考数学总复习 第5章 第20讲 直角三角形课件

【名师面对面】2015中考数学总复习 第5章 第20讲 直角三角形课件

2.(2014· 荆门)如图,已知圆柱底面的周长为 4 dm,圆柱高为 2 dm,在圆柱的侧面上,过点 A 和点 C 嵌有一圈金属丝,则 这圈金属丝的周长最小为( A ) A.4 2 dm C.2 5 dm B.2 2 dm D.4 5 dm
3.(2014·东营)如图,有两棵树,一棵高12米,另
°.利用比例关系,转化为方程解决,是解决问题的好思路.
勾股定理及其逆定理
1.(2014·十堰)如图,在四边形ABCD中,
AD∥BC,DE⊥BC,垂足为点E,连结AC交DE于
点F,点G为AF的中点,∠ACD=2∠ACB.若DG=
3,EC=1,求DE的长.
【解析】根据直角三角形斜边上的中线的性质可得DG=AG, 得出CD=DG后,在Rt△CED中根据勾股定理即可求解.
第20讲 直角三角形
1.了解直角三角形的概念,掌握直角三角形的
性质定理.掌握有两个角互余的三角形是直角三
角形.
2.掌握勾股定理及其逆定理,并能用来解决一
些简单的实际问题.
1.直角三角形的判定和性质的应用,以及运用勾 股定理及其逆定理来解决实际问题都是中考的重点, 在选择题、填空题、解答题中均有出现. 2.直角三角形是最常见的图形之一,可单独成题
4. (2014· 凉山)已知一个直角三角形的两边的长分别是3 和 4, . 则第三边长为 5 或 7
5.如图,在边长为1的小正方形 组成的网格中,△ABC的三个顶点
在格点上,请按要求完成下列各题:
(1)画线段AD∥BC且使AD=BC, 连结CD;
(2)线段AC的长为 2 5
,CD的
长为____ 5 ,AD的长为 5 ; (3)△ACD为 直角 三角形,四边 形ABCD的面积为 10 ; (4)若E为BC中点,则tan∠CAE的 1 值是____ 2 .

勾股定理经典例题(全解版)

勾股定理经典例题(全解版)

类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长AD、BC交于E。

中考数学复习考点知识与题型归类解析27---直角三角形、勾股定理(解析版)

中考数学复习考点知识与题型归类解析27---直角三角形、勾股定理(解析版)

中考数学复习考点知识与题型归类解析28---直角三角形、勾股定理一、选择题7.(2020·宁波)如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为 A .2B .2.5C .3D .4{答案}B{解析}在Rt △ABC 中, AC =8,BC =6,根据勾股定理,得AB =22AC BC =10.∵CD为Rt △ABC 斜边上的中线,∴CD =12AB =5.∵BE =BC ,F 为DE 的中点,∴由中位线定理,得BF =12CD =12×5=2.5.因此本题选B .6.(2020·陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A 、B 、C 都在格点上,若BD 是△ABC 的高,则BD 的长为( ) A .101313B .91313C .81313D .71313第6题图{答案}D{解析}本题考查了利用勾股定理求线段长、割补法求三角形面积以及等积法等知识.DBAC首先求出△ABC 的面积为3.5,ACBD =3.5×.(2020·包头)8、如图,在Rt ABC 中,90ACB ∠=︒,D 是AB 的中点,BE CD ⊥,交CD 的延长线于点E .若2AC =,BC =BE 的长为( )A.BCD{答案}A{解析}∵∠ACB=90°,∴△ABC 是直角三角形,∴22212AB AC BC =+=,∴AB =又∵点D 是AB 的中点,∴CD =.∴△ABC 的面积等于△BCD 面积的2倍,即11222CD BE BCAC ⨯=,∴BE =.故选A. 12.(2020·河北)如图7,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误的是A.从点P 向北偏西45°走3km 到达lB.公路l 的走向是南偏西45°C.公路l 的走向是北偏东45°D.从点P 向北走3km 后,再向西走3km 到达lEDBA{答案}A{解析}解析:如图,在Rt△PAB中,∵∠APB=90°,PA=PB=6km,∴∠PAB=∠PBA=45°,AB=km.过点P作PC⊥AB,垂足为C,∴PC=12×=.∴点P向北偏西45°走km到达l,故选项A错误;过点A作DE⊥PA,则∠1=∠2=45°,∴公路l的走向是北偏东45°或南偏西45°,故选项B和C正确;过点C作CF⊥PB,垂足为F.在Rt△PCB中,∵∠PCB=90°,PC=BC,PB=6km,∴CF=PF=12×6=3km,即从点P 向北走3km后,再向西走3km到达l,故选项D正确.16.(2020·河北)图10是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图10的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4{答案}B{解析}设选取的三块纸片的面积分别为a,b,c(a≤b<c),根据勾股定理可知a+b=c,所以选取的三块纸片可能为:①a=b=1,b=2,此时ab=1;②a=1,b=2,c=3, 此时ab=2;③a=1,b=3,c=4, 此时ab=3;④a=1,b=4,c=5, 此时ab=4;⑤a=2,b=2,c=4, 此时ab=4;⑥a=2,b=3,c=5, 此时ab=6.∴选取的三块纸片的面积分别是2,3,5时,所围成的三角形的面积最大,故答案为B.15.(2020·毕节)如图,在一个宽度为AB 长的小巷内,一个梯子的长为a ,梯子的底端位于AB 上的点P ,将该梯子的顶端放于巷子一侧墙上的点C 处,点C 到AB 的距离BC 为b ,梯子的倾斜角∠BPC 为45° ;将该梯子的顶端放于另一侧墙上的点D 处,点D 到AB 的距离AD 为c ,且此时梯子的倾斜角∠APD 为75°,则AB 的长等于( ) A .a B .b C .2b cD .c{答案}D ,{解析}本题考查勾股定理的实际应用.解:如图,∵CB ⊥AB ,∠APD =45°,∴∠PBC =45°.∴PB =PC . ∵DA ⊥AB ,∠APD =75°,∴∠ADP =15°. 作∠EPD =∠EDP =15°,则∠AEP =30°. 设AP =x ,则EP =2x ,EA =c -2x .在Rt △APE 中,由勾股定理,得AP 2+AE 2=PE 2,即x 2+(c -2x )2=(2x )2,bbc∴x 1=(c (不合题意,舍去),x 2=(2c .∵PD =PC ,∴AD 2+AP 2=BP 2+BC 2.即c 2+[(2c ]2=2b 2. 整理,得b1)c .∴AB =AP +PB =(2-c1)c =c . 故选D .8.(2020·黄石)如图,在Rt △ABC 中,∠ACB =90°,点H 、E 、F 分别是边AB 、BC 、CA 的中点,若EF +CH =8,则CH 的值为( )A .3B .4C .5D .6{答案} B{解析} 根据三角形的中位线定理和直角三角形斜边上的中线等于斜边的一半解决问题:∵在Rt △ABC 中,∠ACB =90°,点H ,E ,F 分别是边AB ,BC ,CA 的中点,∴EF =12AB ,CH =12AB ,∵EF +CH =8,∴CH =EF =12×8=4,故选:B .11.(2020·广西北部湾经济区)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读k ǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2EFCB为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸{答案} C{解析}过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,CD=1,AE=r﹣1,则AB=2r,DE=10,OE=12在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,因此本题选C.4.(2020•宁夏)如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【解析】过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.二、填空题16.(2020·衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm;(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.{答案}(1)160,(2)640 9{解析}(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,∵P,Q,A,B在同一直线上,∴PQ=PA-AQ=140-60=80(cm),PM=PA+BC=140+60=200(cm).∵当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3),∴当点B运动到点M处的△PCO与点B运动到点N处的△PCO全等,又PM=PN,∴PT⊥MN.∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠PPH PTOP PM==,∴4050200PT=,解得PT=160(cm),∴点P到MN的距离为160 cm.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=x cm.由题意AT =PT ﹣PA =160﹣140=20(cm ),OA =PA ﹣OP =140﹣50=90(cm ),OQ =50cm ,AQ =60cm ,∵QH ⊥OA ,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x )2,解得x4609=.∴HT =AH+AT6409=(cm ),∴点Q 到MN 的距离为6409cm .因此本题答案为.(1)160 (2)640913.(2020·绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为________. {答案}45.{解析}本题考查了三角形的面积计算,勾股定理.由题意可得,直角三角形的斜边长为3,一条直角边长为2,由勾股定理得直角三角形的另一条直角边长为:22325-=,故阴影部分的面积是1254452⨯⨯⨯=.因此本题答案为45.16.(2020·绥化)在Rt △ABC 中,∠C =90°,若AB -AC =2,BC =8,则AB 的长是______. {答案}17{解析}设AB =x ,则AC =x -2.由勾股定理,得x2-(x -2)2=82.解得x =17. 13.(2020·江苏徐州)如图,在Rt △ABC 中,∠ABC =90°,D 、E 、F 分别为AB 、BC 、CA 的中点,若BF =5,则DE = .(第13题){答案}5{解析}利用三角形的中位线的性质以及直角三角形斜边上中线的性质进行计算,∵点D、E、F分别为AB、BC、CA的中点,∠ABC=90˚,∴AC=2DE=2BF,∵BF=5,∴DE=5. 9.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°{答案} B{解析}由平行线的性质可得∠CF A=∠D=90°,由外角的性质可求∠BAD的度数.如图,设AD与BC交于点F,∵BC∥DE,∴∠CF A=∠D=90°,∵∠CF A=∠B+∠BAD=60°+∠BAD,∴∠BAD=30°故选:B.13. (2020·淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为_______________.{答案}8AB,代入求出即可.{解析}根据直角三角形斜边上的中线性质得出CD=12∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,AB=8,∴CD=12故答案为:8.18.(2020·无锡)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC 上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为▲.{答案}83{解析}过点D 作DF ∥AC 交BE 于F (如图1),易得△BDF ∽△BAE ,∴DF AE =BD AB =23,∵AE =3EC ,∴DF =2EC ,∴△COE ∽△DOF ,CO OD =CE CF =12,∴S ∆AOB =23 S ∆ABC ;点C 显然在以AB 为直径的圆弧上运动,AB 中点为M ,∴当CM ⊥AB 时,即点C 在圆弧最高处时,△ABC 面积最大,此时面积为12×4×2=4,∴S ∆ABC =23×4=83.14.(2020·扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高.EODBAC ED 图2图 1M C ABOFEOD BAC{答案}9120{解析}本题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:x 2+32=(10﹣x )2,解得x =. 12. (2020·岳阳)如图,在ABC Rt ∆中,CD 是斜边AB 上的中线,︒=∠20A ,则=∠BCD °.{答案}70°{解析}在在ABC Rt ∆中,∵CD 是斜边AB 上的中线,∴AB BD AD CD 21===,∴∠ACD =∠A=20°,∴∠BCD =∠ACB -∠ACD =90°-20°=70°.15.(2020·湖北孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为1S ,空白部分的面积为2S ,大正方形的边长为m ,小正方形的边长为n ,若1S =2S ,则nm的值为________.(第15题 图1) (第15题 图2){答案}2. {解析}设图1中三角形较短的直角边的长为x ,则较长的直角边的长为x+n ,由题意可得S 1=2nx+n 2, S 2=2x 2,由题意可得{2nx +n 2=2x 2,m 2=x 2+(x +n)2,解得{x =m2n =√3−12m,,所以nm.. 15.(2020·达州)已知△ABC 的三边a 、b 、c 满足b +|c −3|+a 2-8a =4√b −1-19,则△ABC 的内切圆半径= . {答案}1{解析} 式子b +|c −3|+a 2-8a =4√19可整理为:(a -4)2+(√b −1−2)2+|c −3|=0,由平方、二次根式、绝对值的非负性可得:a -4=0且√−2=0、c −3=0,所以a =4,b =5,c=3,由勾股定理得逆定理得△ABC 是直角三角形,所以r=12×(3+4-5)=1.11.(2020·菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为______.{答案}32{解析}结合直角三角形斜边中线的性质把∠DCB 等量转化到直角三角形中求余弦值.在Rt △ABC 中,∵点D 为AB 边的中点,∴CD =21AB ,∴CD =BD ,AB =2CD =6,∴∠DCB =∠B ,∴cos ∠DCB =cos B =AB BC =64=32. 15.“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步.已知此步道外形近似于如图所示的Rt △ABC ,其中∠C=90°,AB 与BC 间另有步道DE 相连,D 在AB 正中位置,E 地与C 相距1 km .若tan ∠ABC=43,∠DEB=45°,小张某天沿A →C →E →B →D →A 路线跑一圈,则他跑了 km .{答案}24{解析}过点D 作DF ⊥BC ,垂足为F ,设DF=x , ∵∠DEB=45°,tan ∠ABC=43, ∴tan ∠ABC=BF DF =43,tan ∠DEF=EF DF=1,∴43BF x ,EF x .∵CE=1,∴471133BCx x x .∵DF ⊥BC ,AC ⊥BC ,∴DF ∥AC , ∵D 在AB 正中位置,∴DF 是△ABC 的中位线,∴AC=2DF=2x , 在Rt △ABC 中,∠C=90°,tan ∠ABC=43, ∴tan ∠ABC=BC AC =43,即237413x x ,解得x =3, ∴AC=6,BC=8, ∴226810AB,∴当小张某天沿A →C →E →B →D →A 路线跑一圈时,则他跑了681024AC BC AB km .15.(2020·安顺)如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为.{答案}45{解析} 过点C ,作CF ∥AB ,交AB 的延长线于点F,作点F 关于直线CD 的对称点G.则,FCE A F ABE ∠=∠∠=∠,CF=CG,DF=DG.∵EB=EA ,∴A ABE ∠=∠,∴FCE F ∠=∠,∴EF=EC.即AC=BF=11. ∵DF=DG=3,∴BG=5. ∵CF=CG, ∴2FGC F CBE ∠=∠=∠ ,即CG=BG=5,则CD=4.在Rt △BDC 中,224845BC =+=.18.(2020·宜宾)在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,BE 平分∠ABC 交AC 于点E ,连结CD 交BE 于点O .若AC =8,BC =6,则OE 的长是 .{答案}9511{解析}在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,根据勾股定理,得AB =22AC BC +=2286+=10.∴S △ABC =24,∵D 是AB 的中点,∴BD =5,S △BCD =12,如图,过点E 作EF ⊥AB 于点F ,过点O 分别作OG ⊥AB 于点G ,OH ⊥BC 于点H ,∵BE 平分∠ABC,∴CE=FE,OG=OH,设CE=FE=m,OG=OH=n,∴AE=8-m,∵S△ABE=12AE·BC=12AB·FE,∴AE·BC=AB·FE,∴6(8-m)=10m,∴CE=FE=m=3,在Rt△ABC中,∠ECB=90°,根据勾股定理,得BE===3.∵S△BCD=12BD·OG+12BC·OH,∴12×5×n+12×6×n=12,∴OG=OH=n=2411,由OH∥BC得BOBE=OHCE=24113=811,∴OE=311BE.18.(2020·娄底)由4个直角边长分别为,a b的直角三角形围成的“赵爽弦图”如图所示,根据大正方形的面积2c等于小正方形的面积2()a b-与4个直角三角形的面积2ab的和证明了勾股定理222a b c+=,还可以用证明结论:若0a>,0b>,且22a b+为定值,则当a b时,ab取得最大值.{答案}={解析}本题考查了勾股定理的应用和完全平方公式,设22a b+为定值k,则222kc a b+==,由“张爽弦图”可知,2222()()ab c a b k a b=--=--,即2()2k a bab--=,要使ab的值最大,FGH则2()a b -需最小,又2()0a b -≥,∴当a b =时,2()a b -取得最小值,最小值为0,则当a b=时, 16.(2020·通辽)如图,在△ABC 中,∠ACB =90°,AC =BC ,点P 在斜边AB 上,以PC 为直角边作等腰直角三角形PCQ ,∠PCQ =90°,则P A 2,PB 2,PC 2三者之间的数量关系是 .{答案}AP 2+BP 2=2PC 2{解析}如图,连结BQ .由题意得:∠ACB =∠PCQ =90°,∴∠ACB -∠PCB =∠PCQ -∠PCB ,即∠ACP =∠BCQ ,∵AC =BC ,PC =QC ,∴△ACP ≌△BCQ (SAS ),∴AP =BQ ,∠A =∠CBQ =45°,∵∠CBP =45°,∴∠CBP +∠CBQ =90°,∴△PBQ 是直角三角形,∴BQ 2+BP 2=PQ 2,即AP 2+BP 2=PQ 2,∵△PCQ 是等腰直角三角形,∴PQ,故PQ 2=2PC 2,∴AP 2+BP 2=2PC 2.ab 取得最大值,最大值为2k,因此本题填=.18.(2020·邵阳)如图,在Rt △ABC 中,∠ACB =90°,斜边AB =2,过点C 作CF //AB ,以AB 为边作菱形ABEF ,若∠F =30°,则Rt △ABC 的面积为 .{答案}12{解析}本题考查了菱形的性质、直角三角形的性质,利用直角三角形中的30°角所对直角边是斜边一半的性质,求出HE ,再利用平行线间的距离处处相等这一知识点得到HE =CG ,最终求出直角三角形面积.如图,分别过点E 、C 作EH 、CG 垂直AB ,垂足为点H 、G , ∵根据题意四边形ABEF 为菱形,∴AB =BE , 又∵∠ABE =30°∴在RT △BHE 中,EH =2, 根据题意,AB ∥CF ,根据平行线间的距离处处相等,∴HE =CG =2,∴Rt ABC 的面积为11222.因此本题答案为12.12. (2020•宁夏)我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是26寸.【解析】由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.16.(2020•宁夏)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为27.【解析】由题意可得在图1中:a2+b2=15,(b﹣a)2=3,图2中大正方形的面积为:(a+b)2,∵(b﹣a)2=3a2﹣2ab+b2=3,∴15﹣2ab=32ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.三、解答题22.(2020·哈尔滨)如图,方格纸中的每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰△CDG,点G在小正方形的顶点上,且△CDG的周长1010 .连接EG,请直接写出线段EG的长.{解析}本题考查了使用正方形判定等进行尺规作图,等腰三角形的性质;熟练掌握等腰三角形尺规作图方法是解题的关键,(1)以A 和B 为圆心,AB 为半径作圆,格点即为点F 和点E ;(2)因为△CDG 的周长1010 ,CD =10,所以腰长是5,以C 或D 为圆心,5个格长为半径作圆,格点即为点G ,最后勾股得出EG =51222=+. {答案}解:(1)如图所示.(2)如图所示, EG =516.(2020·贵阳)(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.{答案}解:(1)如图①中,△ABC 即为所求.(2)如图②中,△ABC 即为所求.(3)△ABC 即为所求. FEG23.(2020·随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理:(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足321S S S =+的有 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为21S S 、,直角三角形面积为3S ,请判断321S S S 、、的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m 的式子表示) ①=+++2222d c b a ;②b 与c 的关系为 ,a 与d 的关系为 .{解析}本题考查了勾股定理及其证明方法、整式的化简、方程组的解法.(1)①按照教材内容叙述勾股定理的内容;②利用各部分图形的面积和等于总面积列出关于a 、b 、c 的等式,然后化简整理即可得到勾股定理的结论;(2)①在每个图形中都可以利用各部分图形的面积公式和勾股定理证明321S S S =+,进而得到答案为3;②首先利用正方形、半圆、等边三角形的面积公式求出321S S S 、、,然后结合勾股定理证明321S S S =+.(3)①首先利用正方形形的面积公式和勾股定理证明正方形A 、B 、C 、D 的面积和等于正方形M 的面积,然后代入数值可以得到=+++2222d c b a 2m .②利用∠1=∠2=∠3=∠α,得到它们的正切值ef c d a b ==,再结合勾股定理解方程组可以确定b=c ,a+d=m.{答案}解:(1)①如果直角三角形的两条直角边分别为a ,b ,斜边为c ,那么222c b a =+. (或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)……1分②证明:(学生只需写出一种证明方法即可,未写文字说明不扣分)在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和. 即22)(421a b ab c -+⋅=,化简得222c b a =+.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和. 即421)(22⋅+=+ab c b a ,化简得222c b a =+.在图3中,梯形的面积等于三个直角三角形的面积的和. 即221221))((21c ab b a b a +⋅=++,化简得222c b a =+.……………3分(2)①3……4分②结论321S S S =+.……5分 证明如下:∵232221)2(21)2(21)2(21c S ba S S πππ-++=+3222)(81S c b a +-+=π∵222c b a =+,∴321S S S =+.…………………7分(3)①如图所示,由(1)②的证明可知:M F E D C B A S S S S S S S =+=+++,∵大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d , ∴=+++2222d c b a 2m .答案:2m …8分②如图所示,设正方形E 、F 的边长分别为e 、f ,∵∠1=∠2=∠3=∠α,∴ef c d a b ==. 又∵=+++2222d c b a 2m ,222e b a =+,∴222f d c =+,∴b=c ,a+d=m.答案:b=c ,…9分a+d=m.…11分23.(2020·随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理:(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足321S S S =+的有 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为21S S 、,直角三角形面积为3S ,请判断321S S S 、、的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m 的式子表示) ①=+++2222d c b a ;②b 与c 的关系为 ,a 与d 的关系为 .{解析}本题考查了勾股定理及其证明方法、整式的化简、方程组的解法.(1)①按照教材内容叙述勾股定理的内容;②利用各部分图形的面积和等于总面积列出关于a 、b 、c 的等式,然后化简整理即可得到勾股定理的结论;(2)①在每个图形中都可以利用各部分图形的面积公式和勾股定理证明321S S S =+,进而得到答案为3;②首先利用正方形、半圆、等边三角形的面积公式求出321S S S 、、,然后结合勾股定理证明321S S S =+.(3)①首先利用正方形形的面积公式和勾股定理证明正方形A 、B 、C 、D 的面积和等于正方形M 的面积,然后代入数值可以得到=+++2222d c b a 2m .②利用∠1=∠2=∠3=∠α,得到它们的正切值ef c d a b ==,再结合勾股定理解方程组可以确定b=c ,a+d=m.{答案}解:(1)①如果直角三角形的两条直角边分别为a ,b ,斜边为c ,那么222c b a =+. (或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)……1分②证明:(学生只需写出一种证明方法即可,未写文字说明不扣分)在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和. 即22)(421a b ab c -+⋅=,化简得222c b a =+. 在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和. 即421)(22⋅+=+ab c b a ,化简得222c b a =+.在图3中,梯形的面积等于三个直角三角形的面积的和. 即221221))((21c ab b a b a +⋅=++,化简得222c b a =+.……………3分(2)①3……4分②结论321S S S =+.……5分 证明如下:∵232221)2(21)2(21)2(21c S ba S S πππ-++=+3222)(81S c b a +-+=π∵222c b a =+,∴321S S S =+.…………………7分(3)①如图所示,由(1)②的证明可知:M F E D C B A S S S S S S S =+=+++,∵大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,∴=+++2222d c b a 2m .答案:2m …8分②如图所示,设正方形E 、F 的边长分别为e 、f ,∵∠1=∠2=∠3=∠α,∴ef c d a b ==. 又∵=+++2222d c b a 2m ,222e b a =+,∴222f d c =+,∴b=c ,a+d=m.答案:b=c ,…9分a+d=m.…11分23.(2020·牡丹江)等腰三角形ABC 中,AB =AC =4,∠BAC =45°,以AC 为腰作等腰直角三角形ACD ,∠CAD 为90°,请画出图形,并直接写出点B 到CD 的距离.{解析}根据题目条件先画出相应的图形,分点D 在AC 的左侧或右侧两种情况讨论,然后根据特殊的45°角及相关线段长度,结合等腰直角三角形的性质和勾股定理求出点B 到CD 的垂线段的长度,即点B 到CD 的距离.{答案}解:本题有两种情况:点B 到CD 的距离为22;点B 到CD 的距离为4-22.(每图正确得1分,每个答案正确得2分)16. (2020·安顺)如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.图①图②图③{解析} 画直角三角形的关键在于利用勾股定理的逆定理,即一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,同时,合理使用格点三角形的特征.(1)显然利用边长为3、4、5即可画出直角三角形;(22的特点画直角三角形;(3画出直角三角形.本题画法不唯一. {答案}(答案不唯一)(1)答图①(2)答图②(3)答图③。

中考数学总复习知识点专题讲解8---勾股定理在动点直角三角形存在性问题中的应用

中考数学总复习知识点专题讲解8---勾股定理在动点直角三角形存在性问题中的应用

中考数学专题08 勾股定理在动动点题是近年来中考的形存在性问题是这类题目考查数学思想方法,尤其对勾股定基本思路是什么,解答的难点直角三角形是一类特殊三角形在求线段的长度等方面有广泛需掌握以下几个基本图形需掌握以下几个基本图形:题1. 如图1-1,在Rt △ABC 射线BC 以1m /s 的速度移动(1)求BC 边的长;(2)当△ABP 为直角三角形时【答案】(1)4m ;(2)见解析1考数学总复习知识点专题讲解理在动点直角三角形存在性问题中考的一个热点问题也是难点问题,而因动点产目考查的重点. 解这类题目要掌握转化、分类讨论勾股定理的运用炉火纯青,才能准确、快速的解答的难点在哪?我们将通过以下几个例题加以说明三角形,有着丰富的性质,角的关系、边的关系有广泛的应用.:BC 中,∠C =90°,AB =5m ,AC =3m ,动点移动,设运动的时间为t s .图1-1形时,求t 的值.见解析【解析】解:(1)∵∠C =90°在Rt △ABC 中,由勾股定理得4BC ==∴BC =4m .(2)由题意可知,∠ABP ≠90①当∠APB =90°时,此时P由(1)知BP =4,所以t =4②当∠BAP =90°时,如图1-由题意得:BP =t ,CP =t -4在Rt △ABP 中,由勾股定理得AP 2=BP 2-AB 2在Rt △ACP 中,由勾股定理得AP 2=AC 2+CP 2所以BP 2-AB 2=AC 2+CP 2即:()2222534t t −=+−解得:254t = 综上所述,当△ABP 为直角三【点睛】直角三角形存在性问和∠BAP 为直角时,进行分类题2. 如图2-1,在四边形ABC 若点P 是线段AD 上一动点【答案】见解析.【解析】解:∵∠D =90°,∴∠A =90°过B 作BE ⊥CD 于E ,如图则四边形ABED 为矩形所以BE =AD =7,DE =AB =3在Rt △BCE 中,由勾股定理得直角三角形时,t =4或254t =. 在性问题,分类讨论的出发角度是直角的位置行分类讨论,准确画出图形,根据勾股定理列方ABCD 中,∠D =90°,AB ∥DC ,AB =3,动点,当AP 为何值时,△BCP 是直角三角形图2-1AB ∥DC ,如图2-2所示.,CE =CD -DE =1图2-2定理得:BA D C E 位置,此题分∠APB 理列方程求解. DC =4,AD =7. 角形?BC2=CE2+BE2=50.因为∠C<90°,P在线段AD两种情况讨论:①当∠BPC=90°时,如图2-设AP=x,则PD=7-x在Rt△ABP中,由勾股定理得BP2=AP2+AB2=x2+9.在Rt△DCP中,由勾股定理得PC2=PD2+CD2= (7-x) 2+16.在Rt△BCP中,由勾股定理得PC2=PB2+BC2=x2+9+50.(7∴-x)2+16= x2+9+50解得:37 x=.即AP=3 7 .②当∠PBC=90°时,如图2-设AP =x ,则PD =7-x在Rt △ABP 中,由勾股定理得BP 2=AP 2+AB 2=x 2+9.在Rt △DCP 中,由勾股定理得PC 2=PD 2+CD 2= (7-x ) 2+16. 在Rt △BCP 中,由勾股定理得PC 2= BC 2-PB 2 = 50-x 2-9.(7∴-x )2+16=50- x 2-9解得:1234x x ==,.即AP =3或4.综上所述,当AP 为37或3【点睛】直角三角形的存在性位置进行讨论,解题方法除了以图2-4为例,是典型的“一线易知△ABP ∽△DPC ,所以即374x x =−,解得13x =因此在日常学习过程中,我们 图2-4定理得:定理得:定理得:或4时,△BCP 是直角三角形. 存在性问题用到的数学方法是分类讨论,针对直法除了利用勾股定理外,也可用相似三角形、一线三直角”模型.所以AB AP DP CD = 24x =,. 我们要针对每一个题多思考,有没有多种求解BA D C P针对直角所在不同的、三角函数等求解. 种求解方法,这样对拓展眼界有很大的好处.题3. 如图3-1,在△ABC 中向B 以1 cm /s 的速度运动,A ,B 同时出发.(1)经过多少秒,△BMN 为等边(2)经过多少秒,△BMN 为直角【答案】见解析.【解析】解:(1)设经过则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10.所以经过10 s ,△BMN 为等边(2)设经过x 秒,△BMN 根据题意分两种情况讨论:中,AB =30 cm ,BC =35 cm ,∠B =60°,,动点N 自B 向C 以2 cm /s 的速度运动. 若点为等边三角形; 为直角三角形.图3-1x 秒,△BMN 为等边三角形,为等边三角形.MN 是直角三角形.:图3-2①当∠NMB =90°时,如图3∵∠B =60°,∴∠BNM =30°,∴BN =2BM ,即2x =2 (30-x ),解得x =15;②当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BM =2BN ,即30-x =解得x =6,即经过6秒或15秒,△【点睛】(1)设时间为x ,用解之可得;(2)分①∠BNM 可得;②∠BMN =90°时,题4. 已知在Rt △ABC 中,∠(1)如图4-1,点O 是AB 的中点(2)如图4-2,若∠A =30°,AB3-2所示.图3-32×2x ,BMN 是直角三角形.x 表示出AM 、BN 、BM ,根据等边三角形的判=90°时,即可知∠BMN =30°,依据2BN =∠BNM =30°,依据2BM =BNERROR: undefinedOFFENDING COMMAND: F4S63YFF STACK:。

2017届九年级数学中考总复习:直角三角形----知识讲解(提高)

2017届九年级数学中考总复习:直角三角形----知识讲解(提高)

直角三角形----知识讲解(提高)【学习目标】1. 掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够熟练地掌握直角三角形的全等判定方法(HL )及其应用.【要点梳理】要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目中已知线段的长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:222a c b =-,222b c a =-, ()222c a b ab =+-. (4)勾股数:满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……② 如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.③22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;④2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长; ⑤2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长. 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的逆定理 如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点四、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点五、互逆命题与互逆定理如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.要点六、直角三角形全等的判定(HL )在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简 称“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备. 要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、勾股定理1、已知直角三角形斜边长为2,周长为2+【思路点拨】欲求直角三角形的面积,只需求两直角边之积,而由已知得两直角边之和为4,于是可转化为用方程求解.【答案与解析】解:设这个直角三角形的两直角边长分别为a b 、,则222222a b a b ⎧++=+⎪⎨+=⎪⎩即224a b a b ⎧+=⎪⎨+=⎪⎩①②将①两边平方,得2226a ab b ++= ③ ③-②,得22ab =,所以1122ab = 因此这个直角三角形的面积为12. 【总结升华】此题通过设间接未知数a b 、,通过变形直接得出12ab 的值,而不需要分别求出a b 、 的值.本题运用了方程思想解决问题.2、(2015春•黔南州期末)长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.【思路点拨】在折叠的过程中,BE=DE .从而设BE 即可表示AE .在直角三角形ADE 中,根据勾股定理列方程即可求解.【答案与解析】解:设DE=xcm ,则BE=DE=x ,AE=AB ﹣BE=10﹣x ,△ADE 中,DE 2=AE 2+AD 2,即x 2=(10﹣x )2+16. ∴x=(cm ).答:DE 的长为cm.【总结升华】注意此类题中,要能够发现折叠的对应线段相等.类型二、勾股定理的逆定理3、如图所示,四边形ABCD 中,AB ⊥AD ,AB =2,AD =CD =3,BC =5,求∠ADC 的度数.【答案与解析】解:∵ AB ⊥AD ,∴ ∠A =90°,在Rt △ABD 中,22222216BD AB AD =+=+=.∴ BD =4,∴ 12AB BD =,可知∠ADB =30°, 在△BDC 中,22216325BD CD +=+=,22525BC ==,∴ 222BD CD BC +=,∴ ∠BDC =90°,∴ ∠ADC =∠ADB+∠BDC =30°+90°=120°.【总结升华】利用勾股定理的逆定理时,条件是三角形的三边长,结论是直角三角形,即由边的条件得到角的结论,所以在几何题中需要进行边角的转换时要联想勾股定理的逆定理. 举一反三:【高清课堂 勾股定理逆定理 例4】【变式1】△ABC 三边a b c ,,满足222338102426a b c a b c +++=++,则△ABC 是( )A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【答案】D ;提示:由题意()()()222512130a b c -+-+-=,51213a b c ===,,,因为222a b c +=,所以△ABC 为直角三角形.【变式2】(2015春•厦门校级期末)在四边形ABCD 中,AB=AD=2,∠A=60°,BC=2,CD=4.求∠ADC 的度数.【答案】解:连接BD ,∵AB=AD=2,∠A=60°,∴△ABD 是等边三角形,∴BD=2,∠ADB=60°, ∵BC=2,CD=4,则BD 2+CD 2=22+42=20,BC 2=(2)2=20, ∴BD 2+CD 2=BC 2,∴∠BDC=90°,∴∠ADC=150°.类型三、勾股定理、逆定理的实际应用4、如图所示,在一棵树的10m 高的B 处有两只猴子,一只爬下树走到离树20m 处的池塘A 处,另外一只爬到树顶D 后直接跃到A 处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?【思路点拨】其中一只猴子从B →C →A 共走了(10+20)=30m ,另一只猴子从B →D →A 也共走了30m ,并且树垂直于地面,于是这个问题可化归到直角三角形中利用勾股定理解决.【答案与解析】解:设树高CD 为x ,则BD =x -10,AD =30-(x -10)=40-x ,在Rt △ACD 中,22220(40)x x +=-,解得:x =15.答:这棵树高15m .【总结升华】本题利用距离相等用未知数来表示出DC 和DA ,然后利用勾股定理作等量关系列方程求解.举一反三:【变式】如图①,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得:12AA '=,12392A B π'=⨯⨯= 在Rt △AA ′B 中,根据勾股定理得: 22222129225AB AA A B ''=+=+=则AB =15.所以需要爬行的最短路程是15cm .5、(2015春•武昌区期中)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案与解析】解:1小时“远航”号的航行距离:OB=16×1=16海里;1小时“海天”号的航行距离:OA=12×1=12海里,因为AB=20海里,所以AB 2=OB 2+OA 2,即202=162+122,所以△OAB 是直角三角形,又因为∠1=45°,所以∠2=45°,故“海天”号沿西北方向航行或东南方向航行.【总结升华】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.类型四、原命题与逆命题6、下列命题中,逆命题错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形【答案】C;【解析】解:A的逆命题是:对角线互相平分的四边形是平行四边形.由平行四边形的判定可知这是真命题;B的逆命题是:平行四边形的两对邻角互补,由平行四边形的性质可知这是真命题;C的逆命题是:一组对边平行,另一组对边相等的四边形是平行四边形,也可能是等腰梯形,故是错误的;D的逆命题是:平行四边形的两组对边分别相等地,由平行四边形的性质可知这是真命题;故选C.【总结升华】分别写出每个命题的逆命题,再判断其真假即可.此题主要考查学生对逆命题的定义的理解,要求学生对基础知识牢固掌握.举一反三:【变式】下列命题中,逆命题是真命题的是()A.对顶角相等B.如果两个实数相等,那么它们的平方数相等C.等腰三角形两底角相等D.两个全等三角形的对应角相等【答案】C;解:A的逆命题是:相等的角是对顶角是假命题,故本选项错误,B的逆命题是:如果两实数的平方相等,那么两实数相等是假命题,故本选项错误,C的逆命题是:两底角相等的三角形是等腰三角形是真命题,故本选项正确,D的逆命题是:对角线相等的两个三角形是全都三角形是假命题,故本选项错误,故选C.类型五、直角三角形全等的判定——“HL”7、已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.【思路点拨】证明线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.【答案与解析】 证明:∵AB=AC ,点D 是BC 的中点,∴∠ADB=90°,∵AE ⊥EB ,∴∠E=∠ADB=90°,∵AB 平分∠DAE ,∴∠EAB=∠DAB ;在△ADB 与△AEB 中,90EAB DAB E ADB ABAB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEB (AAS ),∴AD=AE .【总结升华】此题考查线段相等,可以通过全等三角形来证明,要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.8、如图,已知在△ABC 中,AB=AC ,∠BAC=90°,分别过B 、C 向过A 的直线作垂线,垂足分别为E 、F .(1)如图①过A 的直线与斜边BC 不相交时,求证:EF=BE+CF ;(2)如图②过A 的直线与斜边BC 相交时,其他条件不变,若BE=10,CF=3,求:FE 长.【答案与解析】(1)证明:∵BE ⊥EA ,CF ⊥AF ,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA ,在△ABE 和△CAF 中,∠BEA=∠AFC=90°,∠EBA=∠CAF ,AB=AC ,∴△ABE ≌△CAF .∴EA=FC ,BE=AF .∴EF=EA+AF .(2)解:∵BE ⊥EA ,CF ⊥AF ,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△CAF中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△ABE≌△CAF.∴EA=FC=3,BE=AF=10.∴EF=AF-CF=10-3=7.【总结升华】此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF 了.此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.。

部编数学八年级下册专题10勾股定理的综合探究题型(解析版)含答案

部编数学八年级下册专题10勾股定理的综合探究题型(解析版)含答案

专题10 勾股定理的综合探究题型(解析版)题型一 探究直角三角形的边和高之间的关系典例1(湖州模拟)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB =c ,CD =h ,有下列四种说法:①a •b =c •h ;②a +b <c +h ;③以a +b 、h 、c +h 为边的三角形,是直角三角形;④1a 2+1b 2=1ℎ2.其中正确的有( )A .1个B .2个C .3个D .4个思路引领:①根据三角形面积公式即可求解;②证明(a +b )2<(c +h )2;③直角三角形,证明(a +h )2+h 2=(c +h )2;④只需证明h 2(1a 2+1b 2)=1,从左边推导到右边.解:①∵Rt △ABC 的面积为:12ab 或12ch ,∴ab =ch ,故①正确;②∵c 2<c 2+h 2,a 2+b 2=c 2,∴a 2+b 2<c 2+h 2,∵ab =ch ,∴a 2+b 2+2ab <c 2+h 2+2ch ,∴(a +b )2<(c +h )2,∴a +b <c +h ,故②正确;③∵(c +h )2=c 2+2ch +h 2,h 2+(a +b )2=h 2+a 2+2ab +b 2,∵a 2+b 2=c 2,(勾股定理)ab =ch (面积公式推导)∴c 2+2ch +h 2=h 2+a 2+2ab +b 2,∴(c +h )2=h 2+(a +b )2,∴根据勾股定理的逆定理知道以h,c+h,a+b为边构成的三角形是直角三角形,③正确;④∵ab=ch,∴(ab)2=(ch)2,即a2b2=c2h2,∵a2+b2=c2,∴a2b2=(a2+b2)h2,∴a2b2a2b2=h2,∴a2b2a2b2=1ℎ2,∴a2a2b2+b2a2b2=1ℎ2,∴1a2+1b2=1ℎ2,故④正确.故选:D.总结提升:此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,此题有一定的拔高难度,属于难题,在证明过程中,注意面积关系式ab=ch的应用.题型二“手拉手”全等或旋转构造手拉手全等模型典例2(2022•卧龙区校级开学)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,下列结论:①△AED≌△AEF;②BF=CD;③BE+DC>DE;④BE2+DC2=DE2.其中正确的有( )A.1个B.2个C.3个D.4个思路引领:根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;可证△ABF≌△ACD,于是BF=CD,判定②正确;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE2+BF2=EF2,等量代换后判定④正确.解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF﹣∠DAE=45°.在△AED与△AEF中,AD=AF∠DAE=∠FAE=45°,AE=AE∴△AED≌△AEF(SAS),①正确;②∵∠BAC=∠DAF=90°,∴∠FAB=∠CAD,在△ABF与△ACD中,AF=AD∠FAB=∠CAD,AB=AC∴△ABF≌△ACD(SAS),∴BF=CD,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC﹣∠BAD=∠DAF﹣∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,AC=AB∠CAD=∠BAF,AD=AF∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,在Rt△BEF中,由勾股定理,得BE2+BF2=EF2,∵BF=DC,EF=DE,∴BE2+DC2=DE2,④正确.所以正确的结论有①②③④.故选:D.总结提升:本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,熟练运用这些知识点是解题的关键.典例3 (2020•滨州模拟)如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB 绕着点B逆时针旋转后得到△CQB,则∠APB的度数 .思路引领:首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC 中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.解:连接PQ,由题意可知△ABP≌△CBQ则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,∴△BPQ为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠APB =∠BQC =150°总结提升:本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.针对练习1.(洪山区期中)如图,∠AOB =30°,P 点在∠AOB 内部,M 点在射线OA 上,将线段PM 绕P 点逆时针旋转90°,M 点恰好落在OB 上的N 点(OM >ON ),若PM ON =8,则OM = .思路引领:连接MN ,作NH ⊥OA 于H ,如图,根据旋转的性质得∠MPN =90°,PN =PM判断△PMN 为等腰直角三角形,则MN ==Rt △OHN 中,根据含30度的直角三角形三边的关系得NH =12ON =4,OH ==Rt △MNH 中根据勾股定理计算出MH =2,由此得到OM =OH +HM =+2.解:连接MN ,作NH ⊥OA 于H ,如图,∵线段PM 绕P 点逆时针旋转90°,M 点恰好落在OB 上的N 点,∴∠MPN =90°,PN =PM =∴△PMN 为等腰直角三角形,∴MN ==在Rt △OHN 中,∵∠NOH =30°,ON =8,∴NH =12ON =4,OH=在Rt△MNH中,∵NH=4,MN=∴MH=2,∴OM=OH+HM=+2.故答案为2.总结提升:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和含30度的直角三角形三边的关系.2.(2020秋•永嘉县校级期末)如图,在△AOB与△COD中,∠AOB=∠COD=90°,AO=BO,CO=DO,连接CA,BD.(1)求证:△AOC≌△BOD;(2)连接BC,若OC=1,AC BC=3①判断△CDB的形状.②求∠ACO的度数.思路引领:(1)由题意可得∠AOC=∠BOD,且AO=BO,CO=DO,即可证△AOC≌△BOD;(2)①由全等三角形的性质和勾股定理的逆定理可得∠BDC=90°,即可得△CDB是直角三角形;②由全等三角形的性质可求∠ACO的度数.证明:(1)∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,且AO=BO,CO=DO,∴△AOC≌△BOD(SAS)(2)①如图,∵△AOC≌△BOD∴∠ACO=∠BDO,AC=BD=∵CO=DO=1,∠COD=90°∴CD ODC=∠OCD=45°∵CD2+BD2=9=BC2,∴∠CDB=90°∴△BCD是直角三角形②∵∠BDO=∠ODC+∠CDB∴∠BDO=135°∴∠ACO=∠BDO=135°总结提升:本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理的逆定理,熟练运用全等三角形的性质是本题的关键.题型三倍长中线构造全等三角形典例4(2022•苏州模拟)如图1,在△ABC中,∠ACB=90°,点D为AB中点,DE,DF分别交AC于点E,交BC于点F,且DE⊥DF.(1)如果CA=CB,连接CD.①求证:DE=DF;②求证:AE2+BF2=EF2;(2)如图2,如果CA<CB,探索AE,BF和EF之间的数量关系,并加以证明.思路引领:(1)①根据等腰直角三角形的性质可知,∠DCE=∠DBF=45°,∠CDB=90°,CD=BD.由DE⊥DF,可证明∠CDE=∠BDF.即可利用“ASA”证明△DCE≌△DBF,即得出DE=DF;②由全等三角形的性质可知BF=CE,结合题意可求出AE=CF.在Rt△ECF中,再由勾股定理,得CF2+CE2=EF2,即得出AE2+BF2=EF2;(2)延长FD至点M,使DM=DF,连接AM,EM.易证△ADM≌△BDF(SAS),得出AM=BF,∠MAD=∠B,从而判断AM∥BC,即证明∠MAE=∠ACB=90°.再根据线段垂直平分线的判定和性质可知EF=EM.最后在Rt△AEM中,由勾股定理,得AE2+AM2=EM2,即得出AE2+BF2=EF2.(1)①证明:∵CA=CB,∠ACB=90°,∴△ABC是等腰直角三角形.∵点D是AB的中点,∴∠DCE=∠DBF=45°,∠CDB=90°,CD=BD.又∵DE⊥DF,∴∠EDF=∠CDB=90°,∵∠CDE=∠EDF﹣∠CDF,∠BDF=∠CDB﹣∠CDF,∴∠CDE=∠BDF.在△DCE与△DBF中,∠DCE=∠DBFCD=BD,∠CDE=∠BDF∴△DCE≌△DBF(ASA),∴DE=DF;②证明:由①可知△DCE≌△DBF,∴BF=CE,∵CA=CB,∴CA﹣CE=CB﹣BF,即AE=CF.在Rt△ECF中,由勾股定理,得CF2+CE2=EF2,∴AE2+BF2=EF2;(2)解:结论:AE2+BF2=EF2.理由如下:如图,延长FD至点M,使DM=DF,连接AM,EM.∵点D为AB中点,∴AD=BD,∵∠ADM=∠BDF,DM=DF,∴△ADM≌△BDF(SAS),∴AM=BF,∠MAD=∠B,∴AM∥BC,∴∠MAE=∠ACB=90°.又∵DE⊥DF,DM=DF,∴DE是FM的垂直平分线,∴EF=EM,在Rt△AEM中,由勾股定理,得AE2+AM2=EM2,∴AE2+BF2=EF2.总结提升:本题考查等腰直角三角形的性质,三角形全等的判定和性质,勾股定理,线段垂直平分线的性质以及平行线的性质等知识.掌握三角形全等的判定条件和正确的作出辅助线构造全等三角形是解题关键.题型四以两个直角三角形的公共边或等边为桥梁运用双勾股典例5 [阅读理解]如图,在△ABC中,AB=4,AC=6,BC=7,过点A作直线BC的垂线,垂足为D,求线段AD的长.解:设BD=x,则CD=7﹣x.∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2.又∵AB=4,AC=6,∴42﹣x2=62﹣(7﹣x)2.解得x=,∴BD=.∴AD==.[知识迁移](1)在△ABC中,AB=13,AC=15,过点A作直线BC的垂线,垂足为D.i)如图1,若BC=14,求线段AD的长;ii)若AD=12,求线段BC的长.(2)如图2,在△ABC中,AB=,AC=,过点A作直线BC的垂线,交线段BC于点D,将△ABD沿直线AB翻折后得到对应的△ABD′,连接CD′,若AD=,求线段CD′的长.思路引领:(1)i)利用勾股定理得出AB2﹣BD2=AC2﹣CD2,进而建立方程求BD,即可得出结论;ii)先利用勾股定理求出BC=5,CD=9,再分两种情况.即可得出结论;(2)先利用勾股定理求出BD,CD,再利用面积求出DN,进而求出DD',再用勾股定理得出D'H2=D'D2﹣HD2=D'B2﹣HB2,进而建立方程求出HB,即可得出结论.解:(1)i)设BD=x,则CD=14﹣x,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∵AB=13,AC=15,∴132﹣x2=152﹣(14﹣x)2,∴x=5,∴BD=5,∴AD===12;ii)在Rt△ABD中,BD===5,在Rt△ACD中,CD===9,当∠ABC为锐角时,如图1﹣1,BC=BD+CD=5+9=14,当∠ABC为钝角时,如图1﹣2,BC=BD﹣CD=9﹣5=4;(2)如图2,连接DD'交AB于点N,则DD'⊥AB,过点D'作D'H⊥BD于H,在Rt△ABD中,BD===;在Rt△ACD中,CD===5,∵AB垂直平分DD',∴D'B=DB=,D'D=2DN,=AD•BD=,∵S△ABD∴=•DN,∴DN=,∴D'D=2DN=5,设HB=m,则HD=HB+BD=m+,∵D'H2=D'D2﹣HD2=D'B2﹣HB2,∴(5)2﹣(m+)2=()2﹣m2,∴m=,∴HB=,∴HC=HB+BD+CD=++4=15,D'H===5,∴D'C===5.总结提升:此题是三角形综合题,主要考查了勾股定理,直角三角形的构造,利用方程的思想解决问题是解本题的关键.针对训练1.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于点D.若AC=3,AB=5,则CD的长为( )A.B.C.D.思路引领:如图,作DH⊥AB于H.首先证明AC=AH,DC=DH,AC=AH=3,设DC=DH=x,在Rt△BDH中,利用勾股定理构建方程即可解决问题.解:如图,作DH⊥AB于H.∵AD平分∠CAB,DC⊥AC,DH⊥AB,∴∠CAD=∠HAD,∠C=∠AHD=90°,∵AD=AD,∴△ADC≌△ADH(AAS),∴AC=AH=3,CD=DH,设CD=DH=x,∵AB=5,∴BH=AB=AH=5﹣3=2,在Rt△ACB中,∵∠C=90°,AC=3,AB=5,∴BC==4,在Rt△HBD中,则有(4﹣x)2=x2+22,∴x=,∴CD=,故选:A.总结提升:本题考查勾股定理,角平分线的性质定理,全等三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.2.如图,在△ABC中,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.AC=17,AD=15,BC=28,则AE的长等于 .思路引领:利用勾股定理可得DC和AB的长,由角平分线定理可得EG=ED,证明Rt△BDE≌Rt△BGE (HL),可得BG=BD,设AE=x,则ED=15﹣x,根据勾股定理列方程可得结论.解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD=15,AC=17,∴DC=,∵BC=28,∴BD=28﹣8=20,由勾股定理得:AB=,过点E作EG⊥AB于G,∵BF平分∠ABC,AD⊥BC,∴EG=ED,在Rt△BDE和Rt△BGE中,∵,∴Rt△BDE≌Rt△BGE(HL),∴BG=BD=20,∴AG=25﹣20=5,设AE=x,则ED=15﹣x,∴EG=15﹣x,Rt△AGE中,x2=52+(15﹣x)2,x=,∴AE=.故答案为:.总结提升:本题考查了角平分线性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握勾股定理是解题的关键.题型五勾股定理解决折叠问题典例6(2022•东莞市校级二模)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,则EF=( )A.3B.4C D思路引领:作FH⊥AD,结合折叠性质:EF⊥AM,证∠POF=∠AOH=∠AMD=∠FEH,再证△ADM ≌△FHE得EF=AM,根据勾股定理即可求出结果.解:由折叠的性质得EF⊥AM,过点F作FH⊥AD于H,交AM于O,则∠ADM=∠FHE=90°,∴∠HAO+∠AOH=90°、∠HAO+∠AMD=90°,∴∠POF=∠AOH=∠AMD,又∵EF⊥AM,∴∠POF+∠OFP=90°、∠HFE+∠FEH=90°,∴∠POF=∠FEH,∴∠FEH =∠AMD ,∵四边形ABCD 是正方形,∴AD =CD =FH =5,在△ADM 和△FHE 中,∠ADM =∠FHE ∠AMD =∠FEH AD =FH,∴△ADM ≌△FHE (AAS ),∴EF =AM ==故选:D .总结提升:本题主要考查正方形的性质和全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.针对训练1.如图,将一张长方形纸片沿着AE 折叠后,点D 恰好与BC 边上的点F 重合,已知AB =6 cm ,BC =10cm ,求EC 的长度.解:由题意可知△ADE ≌△AFE ,所以AF =AD =10 cm ,EF =DE .在Rt △AFB 中,根据勾股定理得BF 8(cm),所以FC =BC -BF =2(cm).设EC =x cm ,DE =DC -EC =(6-x )cm ,即EF =(6-x )cm ,在Rt △EFC 中,根据勾股定理有EF 2=FC 2+EC 2,即(6-x )2=22+x 2,解得x =83,所以EC =83cm .题型六 勾股定理在平面直角坐标系背景下的应用典例7(2017春•武昌区校级月考)如图,A (0,m ),B (n ,0)+n 2﹣10n +25=0(1)求点A ,点B 的坐标;(2)点P是第二象限内一点,过点A作AC⊥射线BP,连接CO,试探究BC,AC,CO之间的数量关系并证明.(3)在(2)的条件下,∠POC=∠APC,PA=PB的长.思路引领:(1)利用非负数的性质求得m、n的值,易得点A、B的坐标;(2)如图1,作OD⊥OC交PB于D,证△OAC≌△OBD(ASA)(提示AO,BC八字形),得证等腰Rt△OCD,故BC﹣AC=CD=;(3)作OM⊥OP交AC延长线于M,作AN⊥OP于N,连接PM.易证△OPB≌△OMA(ASA),故PB =MA,且得证等腰Rt△OPM,又∠APO=∠APC+∠OPC=∠POC+∠OPC=∠OCB=45°,所以∠APM=45°+45°=90°,易求出OP=PN+ON=4+3=7,(Rt△ANO,等腰Rt△APN),Rt△APM中,MA解:(1+n2﹣10n+25=0,∴|m﹣5|+(n﹣5)2=0∴m﹣5=0且n﹣5=0,则m=5,n=5,故A(0,5)B(5,0);(2)如图1,作OD⊥OC交PB于D,∵AO⊥BO,∴∠AOC=∠BOD(同角的余角相等).又AC⊥PB,∠1=∠2,∴∠OAC=∠OBD(等角的余角相等).在△OAC与△OBD中,∠AOC=∠BODOA=OB,∠OAC=∠OBD∴△OAC≌△OBD(ASA),∴OC=OD,∴CD,∴BC﹣AC=CD=;(3)作OM⊥OP交AC延长线于M,作AN⊥OP于N,连接PM.易证△OPB≌△OMA(ASA),∴PB=MA,且得证等腰Rt△OPM,又∠APO=∠APC+∠OPC=∠POC+∠OPC=∠OCB=45°,∴∠APM=45°+45°=90°,易求出OP=PN+ON=4+3=7.在Rt△APM中,由勾股定理得到:MA===即PB总结提升:考查了三角形综合题,涉及到了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理,非负数的性质和配方法的应用,难度较大,难点是作出辅助线,构建全等三角形.针对训练1.(2022秋•莲湖区校级期中)在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),A(1 ).(1)求线段AB的长;(2)若在x轴上有一点P,使得△PAB为等腰三角形,请你求出点P的坐标.思路引领:(1)利用两点间得距离公式可求AB;(2)分当AP=AB时,当BP=AB时,当BP=PA时,结合等腰三角形的性质和两点间的距离公式即可求解.解:(1)∵点A,点B的坐标为(3,0),A(1,∴AB=(2)如图所示:当AP=AB时,根据对称性,3﹣1=2,1﹣2=﹣1,∴P1(﹣1,0),同理当BP=AB时,P2(3―0),P3(3+0),当BP=PA时,设P4(x,0),则(x―1)2+(0―2=(3―x)2,解得:x=5 4,∴P4(54,0),综上所述:点P坐标为(﹣1,0),(3―0),(3+0),(54,0).总结提升:本题考查了点的坐标的求法,综合运用了等腰三角形的定义,两点间的距离公式.。

中考数学冲刺复习课件:第21课时直角三角形和勾股定理

中考数学冲刺复习课件:第21课时直角三角形和勾股定理

第21课时 直角三角形和勾股定理课时作业
一、选择题
1.(2014•黄石)如图21-1,一个矩形纸片,剪去部分后得到
一个三角形,则图中∠1+∠2的度数是( C )
A.30°
B.60° C.90°
D.120°
2.如图21-2,△ABC与△ABD是直角三角形,点F是AB的中点
,若CF=8,则DF的长为( C )
第21课时 直角三角形和勾股定理
4.(2014•西宁)如图21-8,在△ABC中,∠C=90°,∠B=30° ,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说 法错误的是( D )
A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED
提示:∵在△ABC中,∠C=90°,∠B=30°, ∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°, ∴∠CAD=∠BAD=∠B, ∴AD=BD,AD=2CD, ∴BD=2CD, 根据已知不能推出CD=DE, 即只有D错误,选项A、B、C的答案都正确.
A.49
B.25
C.13
D.1
提示:由于大正方形的面积25,小正方形的面积是1,
则四个直角三角形的面积和是25-1=24,即4× ab=24,
即2ab=24,a2+b2=25,
则(a+b)2=25+24=49.
5.(2013•济南)如图21-5,小亮将升旗的绳子拉到旗杆底端
,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆
8.在△ABC中,若BC边上的中线AD= BC, 则该三角形的形状为( B )
A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形
9.在下列选项中,已知三角形三边长,能

初中数学知识点精讲精析 直角三角形的性质

初中数学知识点精讲精析 直角三角形的性质

24.2 直角三角形的性质学习目标1.掌握直角三角形的特殊性质:勾股定理。

2. 运用勾股定理进行简单的计算。

知识详解1.勾股定理(1)直角三角形的两个锐角互余。

(2)直角三角形两直角边的平方和等于斜边的平方。

(勾股定理)2.直角三角形的性质直角三角形斜边上的中线等于斜边的一半。

【典型例题】例1:下列说法中,不正确的是()A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数之比为3:4:5的三角形是直角三角形C.三边长度之比为3:4:5的三角形是直角三角形D.三边长度之比为5:12:13的三角形是直角三角形【答案】B【解析】A、根据三角形的内角和公式求得,各角分别为22.5°,67.5°,90°,所以是直角三角形;B、根据三角形的内角和公式求得,各角分别为45°,60°,75°,所以不是直角三角形;C、两边的平方和等于第三边的平方,符合勾股定理的逆定理,所以能构成直角三角形;D、两边的平方和等于第三边的平,符合勾股定理的逆定理,所以能构成直角三角形.例2:如图中字母A所代表的正方形的面积为()A.4B.8C.16D.64【答案】D【解析】根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.例3:将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形【答案】C【解析】将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形。

【误区警示】易错点1:勾股定理1. 已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.15【答案】Ba=16,则这个三【解析】设两直角边的长度分别为3a、4a,则3a•4a÷2=96,解得2易错点2:直角三角形的性质2. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列结论中,不一定成立的是()A.∠A与∠1互余B.∠B与∠2互余C.∠A=∠2D.∠1=∠2【答案】D【解析】A、在Rt△ACD中,∠ADC=90°,所以∠A与∠1互余,正确;B、在Rt△BCD中,∠BDC=90°,所以∠B与∠2互余,正确;C、∵∠A+∠1=90°,∠1+∠2=90°,∴∠A=∠2,正确;D、当∠A=∠B时,AC=AB,所以CD既是∠C的角平分线,也是斜边上的高与中线,所以∠1=∠2,正确;当∠A≠∠B时,∠1≠∠2,错误【综合提升】针对训练1. 如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为2. 在△ABC 中,∠C=90°,若AB=5,则222AC BC AB ++= 3. 一个三角形的三边的比为5:4:3,它的周长为60cm ,则它的面积是2cm 1.【答案】10【解析】∵等腰△ABC 的底边BC 为16,底边上的高AD 为6,∴BD=8,2.【答案】50【解析】根据勾股定理可知:222AC BC AB =+,∵AB=5∴222AC BC AB ++=50 3.【答案】150【解析】∵三角形的三边长的比是5:4:3,它的周长是60cm ,∴设此三角形的边长分别是5x ,4x ,3x ,则5x+4x+3x=60,解得x=5cm , ∴此三角形的边长分别是25cm ,20cm ,15cm ,222625152025+==∴此三角形是直角三角形, ∴这个三角形的面积=12×15×20=1502cm 【中考链接】(2014年泉州)如图,Rt △ABC 中,∠ACB=90°,D 为斜边AB 的中点,AB=10cm ,则CD 的长为 cm .【答案】5【解析】∵∠ACB=90°,D 为斜边AB 的中点, ∴CD=12AB=12×10=5cm 课外拓展勾股定理是初等几何学中的一个基本定理,又称毕达哥拉斯定理或毕氏定理。

中考数学总复习《直角三角形与勾股定理》考点梳理及典例讲解课件

中考数学总复习《直角三角形与勾股定理》考点梳理及典例讲解课件
B
A.2,3,4 B.3,4,5 C.4,5,6 D.5,6,7
2.如果一个三角形三条边的长度之比为,且周长为,那么这个三角形的面积是( )
B
A. B. C. D.
3.三角形的三边长分别为,,,且满足,则此三角形是( )
B
A.以为斜边的直角三角形 B.以为斜边的直角三角形C.以为斜边的直角三角形 D.以,为腰的等腰三角形
3,或
(2) 如图,在中,已知,,于点,且,点是边上的一动点.若为直角三角形,则的长为____________________.
,或
1.小华想用老师提供的三条线段首尾相连围成一个直角三角形,则他可以选择的三条线段的长度是( )
解法归纳 探究直角三角形,直角三角形的顶点不确定时,可分类讨论直角顶点是哪个顶点或哪条边为斜边.其中有关线段长度的计算方法有:①利用勾股定理列方程求解;②利用相似三角形的对应边成比例列方程求解;③借助直角三角形边角关系中的三角函数求解;④利用图形的面积相等列方程求解.
(1) (原创)在矩形中,,,点在上,,点在上,连接,点是的中点.若是直角三角形,则的长度可能是_______________.
体验3 [2023·南昌模拟] 下图是某高铁站扶梯的示意图,扶梯的坡度12.李老师乘扶梯从底端以的速度用时到达顶端,则李老师上升的垂直高度为____.
类型一 直角三角形的性质与判定
例 1 如图,已知等腰的底边,是腰上一点,连接.
(1)若, ,则 .
(2)若,.
① 求证:是直角三角形.
② 求的长.
类型二 与直角三角形有关的分类探究题
例 2 如图,将矩形按如图所示方式放置,点,点是线段,上的动点(不与线段端点重合).将沿直线折叠,得到,连接,.当为直角三角形时,点的坐标可能是_____________________.

(全国)2019版中考数学复习第四单元三角形第20课时直角三角形与勾股定理课件

(全国)2019版中考数学复习第四单元三角形第20课时直角三角形与勾股定理课件
2
课堂考点探究
例 1 如图 20-5,在四边形 ABCD 中,∠ABC=90°,AC=AD,M,N 分别为 AC,CD 的中点,连接 BM,MN,BN. (2)若∠BAD=60°,AC 平分∠BAD,AC=2, 求 BN 的长.
(2)∵∠BAD=60°,AC 平分∠BAD,∴∠BAC=∠DAC=30°,
图 20-11 A.0.7 米 B.1.5 米 C.2.2 米 D.2.4 米
[答案] C [解析] 在 Rt△ ACB 中,∵∠ACB=90°,BC=0.7 米,AC=2.4 米, ∴AB2=0.72+2.42=6.25. 在 Rt△ A'BD 中,∵∠A'DB=90°, A'D=2 米,BD2+A'D2=A'B2, ∴BD2+22=6.25,∴BD2=2.25, ∵BD>0,∴BD=1.5 米, ∴CD=BC+BD=0.7+1.5=2.2(米).
考点三 命题、定义、定理、基本事实
定义
在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,做出明 确的规定,也就是给它们下定义
定义 判断一件事情的句子叫做命题

正确的命题称为① 真命题
分类

错误的命题称为② 假命题
组成 每个命题都由③ 题设 和④ 结论 两个部分组成
基本事实 公认的真命题称为⑤ 基本事实
课堂考点探究
针对训练
1.如图 20-10,在矩形 ABCD 中,BC=6,CD=3,将△ BCD 沿对角 线 BD 翻折,点 C 落在点 C'处,BC'交 AD 于点 E,则线段 DE 的 长为 ( )
A.3
B.145

2014中考数学名师课件:第24课时 直角三角形和勾股定理(考点管理+归类探究+易错警示+课时作业,)

2014中考数学名师课件:第24课时 直角三角形和勾股定理(考点管理+归类探究+易错警示+课时作业,)

考点管理
归类探究
易错警示
课时作业
【解析】 根据勾股定理的几何意义,可得A、B的面 积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1 +S2,即S3=2+5+1+2=10.
全效学习中考学练测
考点管理
归类探究
易错警示
课时作业
100 ,正方形B 1.如图24-8,正方形A的面积是_______ 225 . 的面积是_______
B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑
杆顶端A下滑多少米.
图24-6
全效学习中考学练测
考点管理
归类探究
易错警示
课时作业
解:设 AE 的长为 x 米,依题意得 CE=AC-x. ∵AB=DE=2.5,BC=1.5,∠C=90°, ∴AC= AB2-BC2= 2.52-1.52=2. ∵BD=0.5, ∴在 Rt△ECD 中, CE= DE2-CD2= 2.52-(1.5+0.5)2=1.5, ∴2-x=1.5,x=0.5,即 AE=0.5. 答:滑杆顶端 A 下滑 0.5 米.
图24-2
全效学习中考学练测
考点管理
归类探究
易错警示
课时作业
A.AB中点 B.BC中点 C.AC中点
D.∠C的平分线与AB的交点
4.如果一个直角三角形的两条边长分别是6和8,另一个 与它相似的直角三角形边长分别为3和4及x,那但有限
( B
B.有2个 D.有无数个
∴AB=AC=6, ∴BC2=AB2+AC2=62+62=72, ∴BC=6 2,故选 D.
【点悟】 在直角三角形中,熟记含 30°角、含 45° 角的直角三角形的直角边与斜边的关系,对我们解决填空 题、选择题有很大的帮助.在含 30°角的直角三角形中, 30°角所对的直角边是斜边的一半;在含 45°角的直角三 角形中,斜边是直角边的 2倍.

初中数学综合复习直角三角形与勾股定理(含命题、定理和证明)部分1

初中数学综合复习直角三角形与勾股定理(含命题、定理和证明)部分1

初中数学综合复习直角三角形与勾股定理(含命题、定理和证明)部分1一、选择题1. 如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为A. 5B.6C.7D.25【答案】A2.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【答案】C3. 如图,将Rt△ABC绕点A按顺时针旋转一定的角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=3,∠B=60º,则CD的长为()A.0.5 B.1.5 C.2D.1【答案】D4.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.120°B.90°C.60°D.30【答案】D5.以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等考点:命题与定理.分析:利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.解答:解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等.故选C.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.6.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形考点:命题与定理.分析:利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.解答:解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选B.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.1.如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为cm.【答案】252或56或102.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则DF的长为_________.【答案】63.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明).考点:作图—应用与设计作图.分析:(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.解答:解:(Ⅰ)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求.点评:此题主要考查了应用设计与作图,借助网格得出正方形是解题关键.三、解答题1.类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB ,OC 表示出来。

2.把求最值问题转化为三角函数的最值求解。

【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。

【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。

【解题思路】1.设出点的坐标,列出方程。

2.利用韦达定理,设而不求,简化运算过程。

3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。

题型分值完全一样。

选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。

相关文档
最新文档