变电所及配电线路的设计

合集下载

(完整)35kV总降压变电所及高压配电系统初步设计

(完整)35kV总降压变电所及高压配电系统初步设计

目录1 前言 (1)1.1毕业设计背景 (1)1.2毕业设计意义 (1)1.3设计要求 (1)2 35kV变电所一次系统负荷计算 (2)2.1变电所电力负荷分组与计算 (2)2.2 需要系数法的计算 (2)2.2.1设备负荷计算举例 (3)2.2.2总配电所和车间变电所数量的确定 (4)2.2.3各车间变电所负荷计算及无功功率补偿 (5)2.3 低压变压器的选择与损耗计算 (8)2.3.1低压变压器的选择 (8)2.3.2 各低压变压器的损耗计算 (9)2.4 主变压器的选择 (11)2.4.2主变压器损耗计算 (12)3 系统主接线设计 (13)3.1主接线设计的基本要求 (13)3.1.1供电电源的确定 (13)3.2电气主接线方案的确定 (13)3.2.1 确定35kV、10kV电气主接线 (13)3.2.2供电系统简图 (14)4 短路电流的计算 (15)4.1 短路电流 (15)4.1.1短路的原因 (15)4.1.2 短路的危害 (15)4.1.3 短路电流计算的目的 (15)4.1.4 短路电流计算的标幺值法 (15)4.2 计算各元件的电抗标幺值 (16)4.2.1选取基准值 (16)4.2.2供配电系统中各主要元件电抗标么值 (16)4.2.3短路电流具体计算短路电路中各主要元件的电抗标么值.. 174.2.4 在最大运行方式下 (18)4.2.5在最小运行方式下 (19)5 变电所高压电气设备的选择与校验 (21)5.1. 35KV高压开关柜的选择 (21)5.1.1短路校验的原则 (21)5.2高压设备选择及校验 (21)5.2.1 35KV断路器的选择 (22)5.2.2 35KV隔离开关的选择 (23)5.2.3 35KV电流互感器的选择 (23)5.2.4 35KV电压互感器的选择 (24)5.2.5 35KV熔断器的选择 (24)5.2.6 35KV避雷器的选择 (24)5.3 10KV电气设备的选择 (24)5.3.1 10KV开关柜的选择 (24)5.3.2 10KV断路器的选择 (24)5.3.3 隔离开关的选择 (25)5.3.4电流互感器的选择 (26)5.3.5电压互感器的选择 (26)6 高压配电线路的设计 (26)6.1高压配电线路接线方式的选择 (26)6.2高压配电线路截面的选择与校验 (27)6.2.1 35KV高压进线的选择 (27)6.2.2 截面积的校验 (27)6.2.3 10KV高压出线线路的选择与校验 (28)7 防雷与接地设计 (29)7.1防雷保护 (29)7.1.1 电力线路的防雷措施 (29)7.1.2 变配电所的防雷措施 (30)7.1.3雷电侵入波的防护 (30)7.2接地设计 (30)8 继电保护的整定计算 (31)8.1继电保护的基本任务及要求 (31)8.1.1继电保护的基本任务 (31)8.1.2 继电保护的基本要求 (31)8.2 变压器的继电保护设置 (32)8.3变电所主变压器继电保护的计算 (32)8.3.1装设瓦斯保护 (32)8.3.2装设定时限过电流保护 (32)8.3.3 装设电流速断保护 (33)8.3.4 装设过负荷保护 (34)8.3.5 10kV母线断路器的保护 (34)8.3.6 10kV出线各支路的保护 (35)结论 (35)致谢 (36)参考文献 (37)摘要本设计是为某矿山起重机有限公司设计一座35kV变电所及其配电系统。

10~0.4kV变电所供配电系统初步设计

10~0.4kV变电所供配电系统初步设计

10~0.4kV变电所供配电系统初步设计摘要:从负荷计算、无功补偿、站址选择、主接线选用、短路电流、设备选型、继保配置、防雷接地、照明、配网自动化等方面论述了10kV变电站设计的主要内容和设计程序.关键词: 10kV变电站; 设计; 负荷计算; 无功补偿10kV配电网属中压配电网,它延伸至用电负荷的中心或居民小区内,直接面对工矿企业和居民等广大用户的供电需要,起着承上启下确保用户供电的作用,因此10kV配电网所处的地位十分重要. 在配电工程中,能否保证系统安全、经济、可靠地运行,工程的设计质量是一个重要条件. 本文就10kV变电站的设计思路进行探讨.1 负荷计算及负荷分级计算负荷是确定供电系统,选择主变容量、电气设备、导线截面和仪表量程的依据,也是整定继电保护的重要数据. 因此,正确进行负荷计算及负荷分类是设计的前题,也是实现供电系统安全、经济运行的必要手段. 此阶段需要的原始资料有: ①供电区域的总平面图; ②供电区域逐年及最终规模的最大负荷、年耗电量、功率因数值及项目投产日期; ③每回出线的名称、负荷值、各负荷的性质及对供电可靠性或其它方面的特殊要求; ④供电部门对电源电压、供电方式、电源路数及继电保护、自动装置等方面的相关意见; ⑤用户对变电站设置方面的数量、容量、位置等的设想及资金准备情况等.计算负荷的方法多种多样,如需用系数法、二项式法、利用系数法等. 目前多数采用需用系数法与二项式法相结合的方法,部分采用利用系数法. 但是由于利用系数法其理论依据是概率论和数理统计,计算结果比较接近实际,因此也适用于各类的负荷,在以后的负荷计算工作中将占主导地位.负荷根据其对供电可靠性的要求可划分为一、二、三级负荷. 对于一级负荷,如医院的手术室等必须有两个独立的电源供电,如同时具备两个条件的发电厂或变电所的不同母线段等,且当两个独立电源中任一电源失去后,另一电源能保证对全部一级负荷的不间断供电. 对于一级负荷中的特别重要负荷,也称保安负荷. 如用于银行主要业务的电子计算机及其外部设备、防盗信号等必须备有应急电源,应由两个独立的电源点供电. 如两个发电厂、一个发电厂和一个地区电网或一个电力系统中的两个区域性变电所等. 独立于正常电源的发电机同样可作为应急电源,实行先断后通. 对于二级负荷一般需有两个独立电源供电,且当任一电源失去后,另一电源能保证对全部或部分的二级负荷供电. 对于三级负荷,通常只需一个电源供电. 在各类负荷中,除了保安负荷外,都不应按一个电源系统检修或故障的同时另一电源又发生故障进行设计.2 无功补偿的确定在电力系统中,存在着广泛的、大量的感性负荷,在系统运行中消耗大量的无功功率,降低了系统的功率因数,增大了线路的电压损失,电能损耗也增高. 因此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率的基础上设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功倒送. 目前广泛采用并联电容器作为无功补偿装置,分集中补偿和分散补偿两种. 在确定无功补偿方案时应注意如下问题:2. 1 补偿方式问题目前无功补偿的出发点还放在用户侧,只注意补偿用户的功率因数,而不是立足于降低电力网的损耗. 如为提高某电力负荷的功率因数,增设1台补偿箱,对降损有所帮助,但要实现最有效的降损,可通过计算无功潮流来确定各点的最优补偿量及补偿方式,使有限的资金发挥出最大的效益.2. 2 谐波问题电容器具备一定的抗谐波能力,但谐波含量过大时会对电容器的寿命产生影响,甚至造成电容器的过早损坏,且电容器对谐波有放大作用,因此使系统的谐波干扰更严重. 动态无功补偿的控制容易受谐波干扰的影响,造成控制失灵. 因而在有较大谐波干扰的地方补偿无功,还应考虑添加滤波装置.2. 3 无功倒送问题无功倒送会增加线路及变压器的损耗,加重线路的负担,因此是电力系统所不允许的.2. 4 电容器容量的选择(1) 集中补偿容量( kvar) :QC = P ( tanψ1 - tanψ2) . P为最大负荷月的平均有功功率, kW; tgψ1为补偿前功率因数的正切值; tgψ2为补偿后功率因数的正切值;(2) 单个电动机随机补偿容量( kvar) :QC = 3 I0Un. Un 为电动机的额定电压, kV; I 0为电动机的空载电流, A.(3) 按配电变压器容量确定补偿容量( kvar) . 在配电变压器低压侧安装电容器时, 应考虑在轻负荷时防止向10kV配电网倒送无功,以取得最大的节能效果. QC = (0. 10 ~0. 15) Sn. Sn 为配变容量, kV A.3 变电站位置的确定变电站位置应避开大气污秽、盐雾、与邻近设施有相互影响的地区(如军事设施、通信电台、飞机场等) 、滑坡、滚石、明暗河塘等,靠近负荷中心出线条件好,交通运输方便. 当前,在一些居民区变电站的建设中,有部分居民对实际情况不了解或看到一些报刊杂志上的片面宣传资料,对配电设备的环境影响产生了误解或恐惧心理,引发“要用电,但拒绝供电设备”的矛盾. 根据上海市辐射环境监理所对上海市内不同类型的已投运的100余座10kV变电站历时两年多的实测和调研,结果如下:(1) 具有独立建筑物的10kV变电站: ①变电站产生的电场经过实心墙体的屏蔽,得到有效的衰减,基本无法穿出. 在距铁门、百叶窗等非实心墙体外3~4米处,电场强度已衰减至环境背景值的水平. ②磁感应强度对实心墙体的穿透力较强,其垂直分量大于水平分量,随着空间距离的增长有明显的衰减. ③实际测得的最大电场与磁场强度值远低于我国环境标准所规定的居民区电场与磁场参考限值.(2) 置于大楼内的10kV变电站: ①电磁场在户内所测得的数值相对比户外的数值要高. ②无论户内或户外,实际测得的最大电场与磁场强度值均比我国环境标准所规定的参考限值有较大的裕度.(3) 10kV预装式变电站: ①10kV预装式变电站附近的电场强度与上述具有独立建筑物变电站的情况相当,磁感应强度在总体上偏小. ②电场与磁场实测最大强度值均远低于我国环境标准所规定的参考限值.在《浙江省农村低压电力设施装置标准》中也要求变电站离其它建筑物宜大于5米. 在设计中,还应考虑到变电站的噪声对周围环境的影响,必要时采用控制和降低噪声的措施.4 主变压器选择在10kV变电站中,要选用性能优越、节能低损耗和环保型的变压器. 变压器的台数及容量要根据负荷计算和负荷分级的结果并结合经济运行进行选择. 当有大量的一、二级负荷,或季节负荷变化较大,或集中负荷较大时,宜装设两台及以上的变压器. 当其中任一台变压器断开时,其余变压器应满足一级负荷及大部分二级负荷的用电需要. 定变压器容量时还要综合考虑环境温度、通风散热条件等相关因素. 对冲击性较大的负荷、季节性容量较大的负荷、小区或高层建筑的消防和电梯等需备用电源的负荷等可设专用变压器,此方法既保障了电能的质量及供电的可靠性,又结合了电费电价政策,做到经济运行.为了使变压器容量在三相不平衡负荷下得以充分利用,并有利于抑制3n次谐波影响,宜选用的变压器接线组别为D, yn11. D, yn11接线的变压器低压侧单相接地短路时的短路电流大,也有利于低压侧单相接地故障的切除. 在改、扩建工程中,为了满足变压器并列运行条件,选用的变压器接线组别与原有的保持一致,短路阻抗百分比接近,容量比不超过1∶3. 如我县某企业,其设备的用电规格与我国不相一致,根据用户的意见,我们将容量为630kV A的主变接线组别定为D, dn,并要求变压器设单独的接地系统,以此满足用户的供电要求. 设在高层建筑内部的变电站,主变采用干式变压器. 设在周围大气环境较差的变电站,应选用密闭型或防腐型变压器. 为了不降低配电运行的电压, 10kV变电站的主变分接头宜放在10. 5kV上,分接范围油浸变为±5% ,干式变为±2 ×2. 5%.5 电气主接线的选择变电站的主接线对变电站内电气设备的选择、配电装置的布置及运行的可靠性与经济性等都有密切的关系,是变电站设计中的重要环节. 主接线的形式多种多样,在10kV变电站的设计中常用的有单母接线、单母分段接线、线路—变压器组接线、桥式接线等,每种接线均有各自的优缺点. 通过对几种能满足负荷用电要求的主接线形式在技术、经济上的比较,选择最合理的方案.技术指标包括: ①供电的可靠性与灵活性; ②供电电能质量; ③运行管理、维护检修条件; ④交通运输及施工条件; ⑤分期建设的可能性与灵活性; ⑥可发展性.经济指标包括: ①基建投资费用. ②年运行费.我县西部的甲乙两企业,以前均由长广的6kV线路供电,现都要求改为电网10kV供电. 在甲企业中,由于其预计运行的时间只有3年左右,且周围均为10kV电网供电,经过技术及经济比较,采用了保留原有供电设备,仅增一台特殊变比(10kV /6kV)的变压器来满足用电要求的方案,节省了投资,节约了时间.在乙企业中,其新增设备的额定电压为10kV,在企业周围还有部分采用6kV电压等级供电的负荷,如同样采用甲企业的方法,仅增一台特殊变比(10kV /6kV)的变压器,则该企业有可能成为一个新的6kV电压等级供电点,对用电的管理及电网的运行均产生不利的影响. 经技术及经济比较,向用户列举了10kV供电的诸多优点,动员用户对原有供电设备进行了改造. 此方法对用户、电网和用电管理部门都是一个较理想的选择.6 短路电流计算在供电系统中危害最大的故障是短路,为了正确选择和校验电气设备,须计算短路电流.在10kV变电站的短路电流计算中,一般将三相短路电流作为重点. 为了简化短路电流计算方法,在保证计算精度的情况下,可忽略一些次要因素的影响. 其规定有:(1) 所有电源的电动势相位角相同,电流的频率相同,短路前电力系统的电势和电流是对称的.(2) 认为变压器为理想变压器,变压器的铁芯始终处于不饱和状态,即电抗值不随电流大小发生变化.(3) 输电线路的分布电容略去不计.(4) 每一个电压级均采用平均额定电压,只有电抗器采用加于电抗器端点的实际额定电压.(5) 一般只计发电机、变压器、电抗器、线路等元件的电抗.(6) 在简化系统阻抗时,距短路点远的电源与近的电源不能合并.参照以上原则,给出变电站在最大运行方式下的等效电路图,运用同一变化法或个别变化法分别得出:(1)次暂态短路电流( I ”) ,用来作为继电保护的整定计算和校验断路器的额定断流容量.(2) 三相短路冲击电流( Ish ) ,用来校验电器和母线的动稳定.(3) 三相短路电流稳态有效值( I ∞) ,用来校验电器和载流导体的热稳定.(4) 次暂态三相短路容量( S ”) ,用来校验断路器的遮断容量和判断母线短路容量是否超过规定值,作为选择限流电抗器的依据.7 设备的选择及校验在进行电气设备选择时,应根据工程的实际情况,在保证安全、可靠的前题下,积极而稳妥地采用新技术,注意节约投资.7. 1 10kV开关柜的选择容量为500kV A及以上的变压器一般均配有10kV开关柜. 10kV开关柜可分为固定式和手车式开关柜.就绝缘介质而言,目前10kV开关柜的主流产品又可分为SF6气体绝缘和真空绝缘. SF6气体绝缘的开关柜体积小,一般20年内免维护,但价格高,其气体的泄露还会造成环境污染. 真空绝缘的开关柜体积适中,相对同等档次的SF6气体绝缘的开关柜来说价格略低,使用过程中不会造成环境污染,但每二年就需做一次试验,增大了运行维护的工作量. 因此开关柜的选择除按正常工作条件选择和按短路状态校验外,还应考虑开关柜放置的场合和对开关柜性能的要求等条件. 如我县某工程,其预留的10kV变电站位置在地下室,该工程在建筑上并没有考虑变电站的通风问题,且在建筑施工时设置的变电站大门只有2. 05米净高,用电可靠性要求较高. 在这里,选用SF6气体绝缘的开关柜显然违背了《国家电网公司电力安全工作规程》中在SF6电气设备上的工作这一节的相关条款. 但一般的真空开关柜高度均在2. 2米以上,通过对一些开关柜制造厂家的咨询,最后采用了高度为1. 9米的非标型真空开关柜. 7. 2 10kV负荷开关和熔断器组合的选择在10kV变电站的设计中,对主变容量在400kV A及以下的变电站,高配部分通常采用负荷开关加熔丝的组合,其接线简单. 为提高工作效率,笔者综合了各部门对400kV A及以下变电站建设的意见和建议,制作了一套400kV A及以下变电站设计的标准图,取得了良好的效果.在10kV负荷开关和熔断器组合的选择方面, 10kV负荷开关按正常工作条件选择和按短路状态校验. 熔断器的熔体额定电流按Ie = k I1. max进行选择,其中k为可靠系数,当不计电动机自起动时取1. 1~1. 3,考虑电动机自起动时取1. 5~2. 0; I 1. max为电力变压器回路的最大工作电流. 熔管的额定电流≥熔体的额定电流. 选择熔断器时,还应保证前后两级熔断器之间(多见于美式箱变) 、熔断器与电源侧的继电保护之间、熔断器与负荷侧的继电保护之间的动作选择性. 当本段保护范围内发生短路故障时,应在最短的时间内切除故障. 当电网接有其它接地保护时,回路中的最大接地电流与负荷电流之和应小于最小熔断电流.7. 3 0. 4kV开关柜的选择0. 4kV开关柜的主流产品目前有GGD、GCK、GCS等. 按正常工作条件选择,按短路状态校验. 一般对于接线简单、出线回路少的场合采用GGD型. 对于出线多、供电可靠性较高、供电设备较美观的场合采用GCK或GCS型. 无论采用何种柜型,其所配置的开关都应根据负荷的用电要求及用户的资金准备情况加以合理选择,使其具有较高的性价比.7. 4 电力电缆的选择(1) 首先应根据用途、敷设方式和使用条件来选择电力电缆的类型. YJV型交联聚乙烯电缆和VV型聚氯乙烯电缆是目前工程建设中普遍选用的两种电缆. YJV型电缆与VV型电缆相比, YJV型电缆虽然价格略高,但具有外径小、重量轻、载流量大、寿命长的显著优点( YJV型电缆寿命可长达40年, VV型电缆寿命仅为20年) ,因此在工程设计中应尽量选用YJV型交联聚乙烯电缆.(2) 电缆的额定电压UN ≥所在电网的额定电压.(3) 按长期发热允许电流选择电缆的截面. 但当电缆的最大负荷利用小时数T max > 5000h,且长度超过20米时,则应按经济电流密度来选择.(4) 允许电压降的校验. 对供电距离较远、容量较大的电缆线路,应满足:ΔU % = 173 ImaxL ( r cosψ+xsinψ) / U ≤5% , U、L为线路工作电压(线电压)和长度; cosψ为功率因数; r、x 为电缆单位长度的电阻和电抗.(5) 热稳定的校验电缆应满足的条件为:所选电缆截面S ≥Q d /C X 100 (mm2 ). Qd为短路电流的热效应, (A2 S) ; C为热稳定系数. 如我县某企业的供电电源是从紧邻的一座110kV变电所的10kV侧专线接入的,由于该企业的用电负荷不是很大,若按长期发热允许电流选择的电缆截面,或按经济电流密度来选择的电缆截面均在95 mm2以下,但在热稳定校验时,所选电缆截面S ≤Q d /C X 100 (mm2 ) ,电缆截面至少需在120 mm2及以上.8 继电保护的配置当变压器故障时,在保护的配置上一般有两种途径:如选用断路器或开关来开断短路电流,则配以各类的微机保护. 如一次设备选用的是负荷开关,则选用熔断器来保护. 两者比较如下.(1) 断路器或开关具备所有的保护功能与操作功能,价格较昂贵. 负荷开关只能分合额定负荷电流,不能开断短路电流,需配合高遮断容量后备式限流熔断器作为保护元件来开断短路电流,价格较便宜.(2) 在切空载变压器时,断路器或开关会产生截流过电压. 负荷开关则没有此种现象.(3) 对变压器的保护,断路器或开关的全开断时间为继保动作时间、自身动作时间、熄弧时间之和,一般会大于油浸变发生短路故障时要求切除的时间. 限流熔断器具有速断功能,但必须防止熔断器单相熔断时设备的非全相运行,应在熔断器撞击器的作用下让负荷开关脱扣,完成三相电路的开断.(4) 由于高遮断容量后备式限流熔断器的保护范围在最小熔断电流到最大开断容量之间,且限流熔断器的时间特性曲线为反时限曲线,短路发生后,可在短时内熔断来切除故障,所以可对其后所接设备如CT、电缆等提供保护. 使用断路器或开关则要提高其它设备的热稳定要求. 但就限制线性谐振过电压方面来说,在变压器的高压侧应避免使用熔断器.9 防雷与接地(1) 10kV变电站在建设过程中,可利用钢筋混凝土结构的屋顶,将其钢筋焊接成网并接地来防护直击雷.(2) 在变电站内的高压侧、低压侧及进线段安装避雷器,以防护侵入雷电波、操作过电压及暂时过电压.(3) 10kV变电站中的接地网一般由扁钢及角钢组成,也可利用建筑物钢筋混凝土内的钢筋体作接地网,但各钢筋体之间必须连成电气通路并保证其电气连续性符合要求. 接地电阻值要求不大于4Ω. 变压器、高低压配电装置、墙上的设备预埋件等都需用扁钢等与接地网作可靠焊接进行接地. 发电机的接地系统需另行设置,不得与变电站的接地网连接.(4) 低压配电系统按接地方式的不同可分为三类:即TT、TN和IT系统. TT方式供电系统是指将电气设备的金属外壳直接接地的保护系统,称作保护接地系统. TN方式供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统. 在TN方式供电系统中,根据其保护零线是否与工作零线分开又可分为: TN C和TN S方式供电系统. TN C方式供电系统是用工作零线兼作接零保护线,适用于三相负载基本平衡的情况. TN S方式供电系统是把工作零线N和专用保护线PE严格分开,当N线断开,如三相负荷不平衡,中性点电位升高,但外壳、PE线电位. TN S方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统. 此外,在一些由用户提供的图纸中,我们还可看到TN C S方式的供电系统,此系统的前部分是TN C方式供电,系统的后部分出PE线,且与N线不再合并. TN C S供电系统是在TN C系统上的临时变通作法,适用于工业企业. 但当负荷端装设RCD (漏电开关) 、干线末端装有断零保护时也可用于住宅小区的低压供电系统. IT方式供电系统表示电源侧没有工作接地,或经过高阻抗接地,负载侧电气设备进行接地保护. IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好,一般用于不允许停电的场所,或者是要求严格的连续供电的地方.10 照明10kV变电站内的照明电源从低压开关柜内引出,管线选用BV 500铜芯塑料线穿管后沿墙或顶暗敷,电线的管径按规定配置,所配灯具应具有足够的照度,在安装位置上不应装设在变压器和高、低压配电装置上,应安装在墙上设备的上方或周围,要留有一定的距离来保证人身及设备的安全,同时应避免造成照明死区. 灯具安装高度应高于视平线以避免耀眼,还要避免与电气设备或运行人员的碰撞.11 配网自动化配电自动化是指利用现代电子技术、通信技术、计算机及网络技术与电力设备相结合,将配电网在正常及事故情况下的监测、保护、控制、计量和供电部门的管理工作有机地融合在一起,改进供电质量,与用户建立更密切、更负责的关系,以合理的价格满足用户要求的多样性需要,力求供电经济性最好,企业管理更为有效. 配网自动化以故障自动诊断、故障区域自动隔离、非故障区域自动恢复送电为目的. 目前配电自动化主要考虑的功能有: ①变电站综合自动化; ②馈线自动化; ③负荷管理与控制; ④用户抄表自动化.就国情而言,配网自动化系统目前还处于试点建设阶段,缺乏大规模实现中低压配电网络配电自动化的物质基础,但配网自动化是今后发展的方向. 因此,在进行站内设计时,要结合配网自动化规划,给未来的实施自动化技术改造(包括信息采集、控制、通信等提供接口和空间等方面)留有余地. 在技术上实现配电自动化的前提条件是: ①一次网络规划合理,接线方式简单,具有足够的负荷转移能力; ②变配电设备自身可靠,有一定的容量裕度,并具有遥控和智能功能. 除此之外,还可考虑通过实现配电半自动化方式来提高供电可靠性水平,因为可自动操作的一次开关价格昂贵,而二次设备相对便宜,故实现配电半自动化的具体方法可考虑采用故障自动量测和定位、人工操作开关、隔离故障和转移负荷的方式. 如在目前的设计中,采用了短路故障指示器,能准确、迅速地确定故障区段,站内都备有通信、集抄装置的位置等. 对重要用户多、负荷密度高、线路走廊资源紧张、用户对供电可靠性较为敏感的区域的用户进行设计时,尽可能选用可靠的一次智能化开关. 配网自动化系统因投资大、见效慢,应统一规划,分步实施. 因此,在10kV变电站的设计中,我们要结合配网自动化的进程,及时用先进、科学的方法来完善我们的设计,完善我们的电网.参考文献:[ 1 ] 芮静康. 现代工业与民用供配电设计手册[ S]. 北京:中国水利水电出版社, 2004.[ 2 ] 蓝毓俊,戴继伟. 各类10KV配电站对环境影响的测量与分析[ J ]. 上海电力, 2003, (4).[ 3 ] 吴致尧,何志伟. 10KV配电系统无功补偿的研究进展[ J ]. 电机电器技术, 2004, (5).。

10KV变电所配电系统设计

10KV变电所配电系统设计

10KV变电所配电系统设计一、设计背景二、设计流程1.销售数据统计:根据变电所的设计用电负荷和类型,对配电系统的额定容量进行预估。

2.布置设计:确定10KV变电所的布置图,包括主变压器、配电柜、工控室、配电设备等的位置布置。

3.配电系统设计:根据设计用电负荷,选择主变压器的容量,并确定合适的高压开关设备。

4.低压配电系统设计:根据设计用电负荷,选择合适的低压配电设备,并进行电缆线路的布置和长度计算。

5.系统连线图设计:确定10KV变电所的主要线路互联关系,包括高压、低压开关设备之间的连接方式和电缆敷设路径。

6.保护控制系统设计:设计配电系统的保护和控制系统,包括主变压器保护、高压开关保护、低压配电保护等。

7.安全设计:考虑变压器的防火、防爆、防雷等安全性能,设计配电设备的安全电源。

8.配电系统的附属设施:设计配电系统所需的辅助设施,如防护装置、接地设施、通风设施等。

三、设计要求1.容量要求:根据变电所的用电负荷,合理确定主变压器和配电设备的容量。

2.系统可靠性要求:配电系统可靠性较高,要求正常运行时间高达99.99%以上。

3.安全性要求:设计满足变电所的安全性要求,考虑到防火、防爆、防雷等因素。

4.经济性要求:设计满足经济性要求,尽可能节约投资。

5.可操作性要求:设计要方便运维、维修及未来的扩容。

四、设计方案1.主变压器选择:根据用电负荷预测结果,选用合适的主变压器容量,考虑变压器的损耗和冗余需求。

2.高压开关设备选择:根据配电系统的容量,选择合适的高压开关设备,包括断路器、隔离开关、负荷开关等。

3.低压配电设备选择:根据设计用电负荷,选择合适的低压配电设备,包括配电柜、断路器、接触器、漏电保护器等。

4.电缆线路设计:根据用电负荷和布置设计图,计算电缆的截面积、长度,确定合适的电缆型号。

5.保护控制系统设计:根据电力系统的特点和要求,设计配电系统的保护和控制系统,包括过压、过流、短路等保护设备。

10Kv降压变电所及车间低压配电系统设计_毕业设计

10Kv降压变电所及车间低压配电系统设计_毕业设计

专科毕业设计(论文)资料题目名称:10Kv降压变电所及车间低压配电系统设计学院(部):电气与信息工程学院专业:电气自动化学生姓名:班级:指导教师姓名:最终评定成绩:湖南工业大学教务处(2011届) 专科毕业设计(论文)题 目 名 称:10kv降压变电所及车间低压配电系统设计学 院(部): 电气与信息工程学院 专 业: 电气自动化 学 生 姓 名: 周敏 班 级: 电气0631 学号 06053103 指导教师姓名:职称 副教授最终评定成绩:2011 年 月摘 要本设计含工厂供电设计,包括:负荷的计算及无功功率的补偿;变电所主变压器台数和容量、型式的确定;变电所主接线方案的选择;进出线的选择;短路计算和开关设备的选择;二次回路方案的确定及继电器保护的选择和整定;防雷保护与接地装置的设计;车间配电线路布线方案的确定;线路导线及其配电设备和保护设备的选择;以及电气照明的设计,还有电路图的绘制。

本设计根据设计任务书可分为三大部分,第一部分为各车间变电所的设计选择,包括方案比较、变压所变压器台数及容量选择、变电所I的供电负荷统计无功补偿,变压所I的变压器选择;第二部分为各车间计算负荷和无功率补偿、短路电流计算、工厂总降压变电所及接入系统设计、变电所高低压电气设备的选择、继电保护的配置;第三部分为电气设计图,包括车间变配电所电气主接线图、继电保护原理接线图。

关键词:变电所变压器断路器继电器隔离开关互感器熔断器ABSTRACTThis design including factory, including power supply system design : Calculation of load and compensation of the inactive power; Transformer substation main voltage transformer platform count and capacity , sureness of pattern; Mainly wire the choice of the scheme in the transformer substation; Pass in and out the choice of the thread; Choice of shorting out and calculating and switchgear ; Two return circuit sureness and choice that relay protect of scheme exactly make; Defend the thunder and protect the design with the earth device ; The workshop distribution line connects up the sureness of the scheme; Circuit wire and distribution equipment and protecting the choice of the equipment; And the electric design that lighted, there is drawing of circuit diagram.This design according to the design specification can be divided into three parts, the first part of the design of each workshop substation, including scheme comparison, choose variable pressure transformer sets and capacity of what I choose, substation reactive-power compensation power load statistics, which I transformer variable pressure choice;The second part is computational load each workshop and without power compensation, short-circuit current calculation, factory general voltage substation and access system design, substation high-low voltage electrical equipment choice, relay protection configuration;Keyword: Transformer substation Voltage transformer Circuit breaker Relay Isolate the switch Mutual inductor Fuse box目录第一章各车间计算负荷和无功功率补偿 (6)1.1 根据下列公式计算 (6)1.2 各车间计算负荷 (6)1.3 无功功率补偿 (9)第二章各车间变电所的设计选择 (12)2.1 方案比较 (12)2.2 变压所变压器台数及容量选择 (13)第三章短路电流计算 (16)3.1 短路电流计算的目的及方法 (16)3.2 短路电流计算 (16)第四章工厂总降压变电所及接入系统设计 (19)4.1 工厂总降压变电所主变压器台数及容量的选择 (19)4.2 35KV供电线路截面选择 (19)第五章变电所高低压电气设备的选择 (20)5.1 高压35KV侧设备 (20)5.2 中压10KV侧设备 (20)5.3 低压侧0.4KV侧设备 (21)第六章继电保护的配置 (22)6.1 主变压器的继电保护装置 (22)6.2 电流速断保护装置 (22)6.3 变压器的差动保护 (23)6.4 35KV进线线路保护 (23)6.5 10KV进线线路保护 (24)6.6 电流速断保护装置 (25)结论 (26)参考文献 (27)致谢 (28)附录 (29)第一章各车间计算负荷和无功功率补偿计算负荷计算负荷也称需要负荷或最大负荷。

35kv企业变电所电气部分设计

35kv企业变电所电气部分设计

任务书一、设计内容要求设计一35KV变电所的电气部分二、原始资料1、某企业为保证供电需求,要求设计一座35KV降压变电所,以10KV电缆给各车间供电,一次设计并建成。

2、距本变电所7Km处有一系统变电所,由该变电所用35KV双回路架空线路向待定设计的变电所供电,在最大运行方式下,待设计的变电所高压母线上的短路功率为1080MVA 。

3、待设计的变电所10KV无电源。

4、本变电所10KV母线到各个车间(共有8个车间)均用电缆供电,其中一车间和二车间为一类负荷,其余为三类负荷,Tmax=400h ,各馈线负荷如表1—1(表1—1)5、所用电的主要负荷见表1—2(表1—2)6、环境条件(1)当地最热月平均最高温度29.9°c,极端最低温度-5.9°c,最热月地面0.8m处土壤平均26.7°c ,电缆出线净距100mm。

(2)当地海拔高度507.4m。

雷暴日数36.9日/年:无空气污染,变电所地处在P≤500m·Ω的黄土上。

三、设计任务1 、设计本变电所的主电路,论证设计方案是最佳方案,选择主变压器的容量和台数;2 、设计本变电所的自用电路,选择自用变压器的容量和台数;3 、计算短路电流;4、选择导体及电气设备。

四、设计成果1 、设计说明书和计算书各一份2 、主电路图一份五、主要参考资料1、水利电力部西北电力设计院编。

电力工程电气设计手册(第一册)。

北京:中国水利电力出版社。

1989.122、周问俊主编。

电气设备实用手册。

北京:中国水利水电出版社,19993、陈化钢主编。

企业供配电。

北京:中国水利水电出版社,2003.94、电力专业相关教材和其它相关电气手册和规定1电气主接线设计方案1.1电气主接线概述为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。

把变电站、断路器等按预期生产流程连成的电路,称为电气主接线。

电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。

某塑料制品厂全厂总配变电所及配电系统的设计

某塑料制品厂全厂总配变电所及配电系统的设计

摘要某塑料制品厂全厂总配变电所及配电系统设计是对工厂供电的设计。

本设计对工厂供电方式、主要设备的选择、保护装置的配置及防雷接地系统进行了相应的叙述,其中还包括全厂的负荷计算、高压侧和低压侧的短路计算、设备选择及校验、主要设备继电保护设计、配电装置设计、防雷和接地设计等。

本设计通过计算出的有功、无功和视在功率选择变压器的大小和相应主要设备的主要参数,再根据用户对电压的要求,计算补偿功率,从而得出所需补偿电容的大小与个数。

根据国家供电部门的相关规定,画出总配变电所及配电系统的主接线图。

电气主接线对电气设备的选择,配电所的布置,运行的安全性、可靠性和灵活性,对电力工程建设和运行的经济节约等,都有很大的影响。

,,,关键词:变电所,负荷计算,设备选型,继电保护目录第1章绪论 (1)1.1 工厂供电的意义 (1)1.2 工厂供电的要求 (1)1.3 工厂平面图 (1)第2章主接线的设计 (3)2.1 总配电所的主接线设计的原则和意义 (3)2.2 变配电所主接线方案的技术经济指标 (3)2.3 主接线图 (4)第3章负荷计算 (5)3.1 负荷计算的意义 (6)3.2 负荷计算的方法 (6)3.3 负荷计算示意图 (6)3.4 具体数据和负荷计算举例 (7)3.4.1 原始数据 (7)3.4.2 负荷计算 (8)第4章功率补偿计算及变压器的选择 (11)4.1 功率补偿计算 (11)4.2 变压器容量的选择 (13)第5章短路电流计算 (15)5.1 短路电流计算方法及意义 (15)5.2 短路计算 (15)5.2.1 短路电流计算等效示意图 (16)5.2.2 短路电流及容量的计算 (16)第6章进线、母线及电器设备的选择 (18)6.1 总配电所架空线进线的选择 (18)6.2 高压侧与低压侧母线的选择 (19)6.3 各变电所进线选择 (19)6.4 变电所低压出线的选择 (20)6.5 设备的选择 (20)6.5.1 高压侧设备的选择 (20)6.5.2 各车间进线设备的选择 (21)6.5.3各变电所低压侧出线回路设备选择与校验表 (22)第7章过电流保护 (24)7.1 高压进线的继电保护 (24)7.2 各变电所进线的保护 (26)7.3 变压器继电保护 (27)第8章防雷与接地保护 (31)8.1 防雷保护 (31)8.2 接地装置 (32)结论 (33)参考文献 (35)致谢 (36)第1章绪论1.1 工厂供电的意义工厂供电(electric power supply for industrial plants),就是指工厂所需电能的供应和分配。

10KV变电所及低压配电线路设计

10KV变电所及低压配电线路设计

论文标题:10KV配电所及自闭线路的设计摘要:电能是现代工业生产的主要能源和动力.随着现代文明的发展与进步,社会生产和生活对电能供应的质量和管理提出了越来越高的要求。

工厂供电系统的核心部分是变电所。

因此,设计和建造一个安全、经济的变电所,是极为重要的。

此工厂供电设计包括:负荷的计算及无功功率的补偿;变电所主变压器台数和容量、型式的确定;变电所主接线方案的选择;进出线的选择;短路计算和开关设备的选择;二次回路方案的确定及继电器保护的选择和整定;防雷保护与接地装置的设计;车间配电线路布线方案的确定;线路导线及其配电设备和保护设备的选择;以及电气照明的设计,还有电路图的绘制。

关键词:电能变电所变压器继电器接地装置目录1,绪论1.1 变电所的发展概况及前景展望1.2 课题内容与设计要求及任务1.2.1 设计目的1.2.2 设计要求1.2.3 设计依据1.2.4 供电设计必须遵循的一般原则2, 变电所设计2.1 变电所的负荷计算2.1.1 变电所的负荷分级及负荷计算的目的2.1.2 负荷计算的方法2.1.3 各车间变电所的负荷计算2.2 无功功率补偿及其计算2.2.1 无功功率补偿的目的2.2.2 无功补偿的方法2.2.3 各车间变电所的无功补偿计算2.3 变电所主变压器台数和容量、型式的确定2.3.1 主变压器台数的选择2.3.2 主变压器容量的选择2.3.3 各车间变电所主变压器的选择2.3.4 变电所型示的选择2.3.5 变电所的位置选择2.3.6 厂负荷中心的估算方法2.4 变电所主接线方案的选择2.4.1 安全性2.4.2 可靠性2.4.3 灵活性2.4.4 经济性2.5 进出线的选择2.5.1 选择计算、校验方法2.5.2 变电所进出线的选择2.6 短路电流的计算2.6.1 短路电流计算2.7 变电所一次设备的选择2.7.1 一次设备选择的要求2.7.2 一次设备校验应满足的条件2.7.3 各车间变电所的一次设备的选择与校验2.8 二次回路方案的选择及继电保护的整定2.8.1 二次回路的定义与分类2.8.2 二次回路的意义2.8.3 二次回路方案的选择与继电保护的整定2.9 变电所防雷保护和接地装置2.9.1 变电所的防雷措施2.9.2 变电所的防雷保护设计2.9.3 变电所公共接地装置的设计2.10 变电所电气照明2.10.1 照明的要素2.10.2 照明供电系统保护装置的选择3, 低压配电线路设计3.1 车间配电线路布线方案的确定3.1.1 车间配电线路设计的一般要求3.1.2 车间配电系统布线方案的选择3.2 线路导线及其配电设备和保护设备的选择3.2.1 线路导线的选择3.2.2 配电设备的选择3.2.3 保护设备的选择3.3 车间电气照明3.3.1 电气照明的重要性3.3.2 合理照明的要素4,参考文献5,结束语6,致谢1,绪论众所周知,电能是现代工业生产的主要能源和动力,是实现生产自动化的重要物质基础。

变电所一次系统电气主接线的设计

变电所一次系统电气主接线的设计

变电所一次系统电气主接线的设计一.生产负荷性质设计原始资料为保证我公司生产项目的供电需要,需设计一座35kV降压终端变电站,通过10kV电缆线给熔窑、锡槽、退火、冷端、NH站、原料、公用工程等车间及生活供电,Ⅱ类负荷占31.2%,其余为Ⅲ类负荷,对于部分关键设备采用UPS供电。

距我公司待建变电站5km处有一110kV变电站,其电源引自两个发电厂。

根据我公司生产工艺要求,在生产过程中需要不间断供电,否则会对生产造成重大影响,为此考虑一回线路故障或检修时,由另一回线路供电的运行方式。

加上负载容量较大,因此设计由110kV变电站以35kV架空线路(两回,非同杆架设)向我公司待建的35kV变电站供电。

二.电气主接线设计选择1.变电站35kV侧接线型式的确定按照《变电站设计技术规程》的有关规定,对电气主接线图的设计必须满足以下基本要求:①保证供电可靠性和电能质量的基本要求;②应力求接线简单,运行灵活和操作方便;③保证运行、维护和检修的安全和方便;④应尽量降低投资,节约运行费用;⑤满足扩建的要求,实现分期过渡;⑥设备先进、经济合理。

结合我公司项目实际以及上级110KV变电站的条件,本变电站35kV侧主接线考虑以下3种方案。

从可靠性来看,方案1:任一元件(母线及母线隔离开关等)故障或检修,均需使整个配电装置停电,不能满足工厂负荷用电的要求。

方案2:当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要负荷停电,可以满足生产负荷的要求,可靠性高。

方案3:当线路发生故障时,需动作与之相连的两台断路器,从而影响一台未发生故障的变压器运行。

因此方案1、方案3可靠性均不如方案2。

10kv变电所及低压配电系统的设计

10kv变电所及低压配电系统的设计

10kv变电所及低压配电系统的设计LT1引言1.1 用户供电系统电力用户供电系统由外部电源进线、用户变配电所、高低压配电线路和用电设备组成。

按供电容量的不同,电力用户可分为大型(10000kV·A以上)、中型(1000-10000kV·A)、小型(1000kV·A及以下)1.大型电力用户供电系统大型电力用户的用户供电系统,采用的外部电源进线供电电压等级为35kV 及以上,一般需要经用户总降压变电所和车间变电所两级变压。

总降压变电所将进线电压降为6-10kV的内部高压配电电压,然后经高压配电线路引至各个车间变电所,车间变电所再将电压变为220/380V的低电压供用电设备使用。

某些厂区环境和设备条件许可的大型电力用户也有采用所谓“高压深入负荷中心”的供电方式,即35kV的进线电压直接一次降为220/380V的低压配电电压。

2.中型电力用户供电系统一般采用10kV的外部电源进线供电电压,经高压配电所和10kV用户内部高压配电线路馈电给各车间变电所,车间变电所再将电压变换成220/380V的低电压供用电设备使用。

高压配电所通常与某个车间变电所合建。

3.小型电力用户供电系统一般小型电力用户也用10kV外部电源进线电压,通常只设有一个相当于车间变电所的降压变电所,容量特别小的小型电力用户可不设变电所,采用低压220/380V直接进线。

2. 变电所负荷计算和无功补偿的计算2.1 负荷情况本厂多数车间为三班制,最大负荷利用小时h=,除1#、2#、3#T5000max车间部分设备属二级负荷外,其它均属三级负荷。

低压动力设备均为三相,额定电压为380V。

电气照明设备为单相,额定电压为220V。

本厂的负荷统计参见ϕ≥。

下表1-1。

供电部门对功率因数的要求值:10kV供电时,cos0.9变电所位置已选定,每个车间距离变电所的距离为:1#车间:110m ; 2#车间:80m ;3#车间:100m ; 4#车间:90m 。

某冶金机械修造厂总降压变电所及高压配电系统设计

某冶金机械修造厂总降压变电所及高压配电系统设计
设计范围包括总降压变电所的变压器、电气主接线以及其他相关的高压配电设施。
变压器选择
1
根据工厂的负荷需求,选择合适型号和容量的变 压器。
2
考虑变压器的运行效率、能效等级以及维护成本。
3
确保变压器能够适应工厂的峰值负荷和低谷负荷, 保障供电稳定性。
电气主接线设计
设计电气主接线图, 明确各设备之间的连 接关系和运行方式。
采用分断式熔断器
在电路中采用分断式熔断器,当发生短路时,熔断器能够迅速切断 电路,限制短路电流的扩大。
加强设备维护和检修
定期对电气设备进行检查和维护,及时发现和排除设备故障,预防 短路事故的发生。
04
设备布置与安装
设备布置原则
安全可靠
确保设备布置安全可靠,避免 设备相互干扰和危险。
便于维护
设备布置应便于日常维护和检 修,减少维护时间和成本。
限制谐振过电压
通过合理配置电力系统的电容和电 感参数,避免产生谐振过电压。
防雷保护措施
避雷针安装
在变电所的建筑物和高压设备上安装避雷针,以 引导雷电电流入地。
接地网设计
建立完善的接地网系统,确保雷电电流能够迅速 导入大地,避免对设备和人员造成危害。
设备屏蔽
对关键的高压设备进行屏蔽,以减少雷电电磁脉 冲对设备的影响。
,便于管理和维护。
配电装置
采用成套配电装置,包括无功 补偿装置、有功滤波装置等, 根据功能需求进行合理布置。
控制系统
采用集中控制和远程控制相结 合的方式,控制系统设备放置
在控制室内。
设备安装要求
基础制作
根据设备规格和重量,制作相应的混凝土基 础,确保设备安装稳固。
电缆沟与桥架

6某机械厂总降压变电所及配电系统设计

6某机械厂总降压变电所及配电系统设计

1 绪论配电网络与输电系统相比有几个明显的特点:配电馈线中的断路器沿线链状布置,线路中没有母线;线路中有任意数量的断开点,断开点随运行方式变化,电流方向不确定,因此保护必须是双向的;配电网络是有分支的网络,配电线路中节点的分支具有任意性,使保护配合关系复杂化;配电网络中有分布负荷,线路两端负荷不平衡;在双端供电的配电系统中电源可能有不相等的相角。

根据配电网的特点,以常开型联络开关为界可以将配电网划分成两种基本类型的网络:一种是单侧电源供电网络,例如辐射状、树状网和处于开环运行的环状网络;另一种是双侧电源供电网络或处于闭环运行的配电网络环状网络。

我国配电网自动化的发展是电力市场和经济建设的必然结果,长期以来配电网的建设未得到应有的重视, 建设资金短缺, 设备技术性能落后, 事故频繁发生, 严重影响了人民生活和经济建设的发展, 随着电力的发展和电力市场的建立, 配电网的薄弱环节显得越来越突出, 形成电力需求与电网设施不协调的局面。

国家颁布设施的电力法的贯彻后, 电力作为一种商品进入市场, 接受用户的监督和选择, 甚至于对电力供应中的停电影响追究电力经营者的责任。

另一方面, 高精密的技术和装备对电能质量要求, 配电网供电可靠性已是电力经营者必须考虑的主要问题。

随着市场观念的转变和电力发展的需求, 配电网的自动化已经作为供电企业十分紧迫的任务。

城市电网, 从八十年代就意识到配电网的潜在危险, 并竭力呼吁致力于城市电网的改造工程,并组织全国性的大型会议对配电网改造提出了具体实施计划, 各种渠道凑集资金, 提出更改计划,利用高技术、好性能的设备从事电网的改造。

当前我国配电网处于高速发展的时期, 国家从政策上给予很大支持, 具有相应的资金条件, 但我国配电网仍处于方案的探索时期, 特别是我国配电网的规模及覆盖面, 市场之大是任何一个经济发达或发展中国家无法比拟的, 而我国配电网的发展也是随经济发展同步进行, 为了探索我国配电网自动化方案, 先后对国外配电网的模式进行考察并在国内进行实验试点。

10~0.4kV变电所供配电系统初步设计

10~0.4kV变电所供配电系统初步设计

10~0.4kV变电所供配电系统初步设计摘要:从负荷计算、无功补偿、站址选择、主接线选用、短路电流、设备选型、继保配置、防雷接地、照明、配网自动化等方面论述了10kV变电站设计的主要内容和设计程序.关键词: 10kV变电站; 设计; 负荷计算; 无功补偿10kV配电网属中压配电网,它延伸至用电负荷的中心或居民小区内,直接面对工矿企业和居民等广大用户的供电需要,起着承上启下确保用户供电的作用,因此10kV配电网所处的地位十分重要. 在配电工程中,能否保证系统安全、经济、可靠地运行,工程的设计质量是一个重要条件. 本文就10kV变电站的设计思路进行探讨.1 负荷计算及负荷分级计算负荷是确定供电系统,选择主变容量、电气设备、导线截面和仪表量程的依据,也是整定继电保护的重要数据. 因此,正确进行负荷计算及负荷分类是设计的前题,也是实现供电系统安全、经济运行的必要手段. 此阶段需要的原始资料有: ①供电区域的总平面图; ②供电区域逐年及最终规模的最大负荷、年耗电量、功率因数值及项目投产日期; ③每回出线的名称、负荷值、各负荷的性质及对供电可靠性或其它方面的特殊要求; ④供电部门对电源电压、供电方式、电源路数及继电保护、自动装置等方面的相关意见; ⑤用户对变电站设置方面的数量、容量、位置等的设想及资金准备情况等.计算负荷的方法多种多样,如需用系数法、二项式法、利用系数法等. 目前多数采用需用系数法与二项式法相结合的方法,部分采用利用系数法. 但是由于利用系数法其理论依据是概率论和数理统计,计算结果比较接近实际,因此也适用于各类的负荷,在以后的负荷计算工作中将占主导地位.负荷根据其对供电可靠性的要求可划分为一、二、三级负荷. 对于一级负荷,如医院的手术室等必须有两个独立的电源供电,如同时具备两个条件的发电厂或变电所的不同母线段等,且当两个独立电源中任一电源失去后,另一电源能保证对全部一级负荷的不间断供电. 对于一级负荷中的特别重要负荷,也称保安负荷. 如用于银行主要业务的电子计算机及其外部设备、防盗信号等必须备有应急电源,应由两个独立的电源点供电. 如两个发电厂、一个发电厂和一个地区电网或一个电力系统中的两个区域性变电所等. 独立于正常电源的发电机同样可作为应急电源,实行先断后通. 对于二级负荷一般需有两个独立电源供电,且当任一电源失去后,另一电源能保证对全部或部分的二级负荷供电. 对于三级负荷,通常只需一个电源供电. 在各类负荷中,除了保安负荷外,都不应按一个电源系统检修或故障的同时另一电源又发生故障进行设计.2 无功补偿的确定在电力系统中,存在着广泛的、大量的感性负荷,在系统运行中消耗大量的无功功率,降低了系统的功率因数,增大了线路的电压损失,电能损耗也增高. 因此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率的基础上设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功倒送. 目前广泛采用并联电容器作为无功补偿装置,分集中补偿和分散补偿两种. 在确定无功补偿方案时应注意如下问题:2. 1 补偿方式问题目前无功补偿的出发点还放在用户侧,只注意补偿用户的功率因数,而不是立足于降低电力网的损耗. 如为提高某电力负荷的功率因数,增设1台补偿箱,对降损有所帮助,但要实现最有效的降损,可通过计算无功潮流来确定各点的最优补偿量及补偿方式,使有限的资金发挥出最大的效益.2. 2 谐波问题电容器具备一定的抗谐波能力,但谐波含量过大时会对电容器的寿命产生影响,甚至造成电容器的过早损坏,且电容器对谐波有放大作用,因此使系统的谐波干扰更严重. 动态无功补偿的控制容易受谐波干扰的影响,造成控制失灵. 因而在有较大谐波干扰的地方补偿无功,还应考虑添加滤波装置.2. 3 无功倒送问题无功倒送会增加线路及变压器的损耗,加重线路的负担,因此是电力系统所不允许的.2. 4 电容器容量的选择(1) 集中补偿容量( kvar) :QC = P ( tanψ1 - tanψ2) . P为最大负荷月的平均有功功率, kW; tgψ1为补偿前功率因数的正切值; tgψ2为补偿后功率因数的正切值;(2) 单个电动机随机补偿容量( kvar) :QC = 3 I0Un. Un 为电动机的额定电压, kV; I 0为电动机的空载电流, A.(3) 按配电变压器容量确定补偿容量( kvar) . 在配电变压器低压侧安装电容器时, 应考虑在轻负荷时防止向10kV配电网倒送无功,以取得最大的节能效果. QC = (0. 10 ~0. 15) Sn. Sn 为配变容量, kV A.3 变电站位置的确定变电站位置应避开大气污秽、盐雾、与邻近设施有相互影响的地区(如军事设施、通信电台、飞机场等) 、滑坡、滚石、明暗河塘等,靠近负荷中心出线条件好,交通运输方便. 当前,在一些居民区变电站的建设中,有部分居民对实际情况不了解或看到一些报刊杂志上的片面宣传资料,对配电设备的环境影响产生了误解或恐惧心理,引发“要用电,但拒绝供电设备”的矛盾. 根据上海市辐射环境监理所对上海市内不同类型的已投运的100余座10kV变电站历时两年多的实测和调研,结果如下:(1) 具有独立建筑物的10kV变电站: ①变电站产生的电场经过实心墙体的屏蔽,得到有效的衰减,基本无法穿出. 在距铁门、百叶窗等非实心墙体外3~4米处,电场强度已衰减至环境背景值的水平. ②磁感应强度对实心墙体的穿透力较强,其垂直分量大于水平分量,随着空间距离的增长有明显的衰减. ③实际测得的最大电场与磁场强度值远低于我国环境标准所规定的居民区电场与磁场参考限值.(2) 置于大楼内的10kV变电站: ①电磁场在户内所测得的数值相对比户外的数值要高. ②无论户内或户外,实际测得的最大电场与磁场强度值均比我国环境标准所规定的参考限值有较大的裕度.(3) 10kV预装式变电站: ①10kV预装式变电站附近的电场强度与上述具有独立建筑物变电站的情况相当,磁感应强度在总体上偏小. ②电场与磁场实测最大强度值均远低于我国环境标准所规定的参考限值.在《浙江省农村低压电力设施装置标准》中也要求变电站离其它建筑物宜大于5米. 在设计中,还应考虑到变电站的噪声对周围环境的影响,必要时采用控制和降低噪声的措施.4 主变压器选择在10kV变电站中,要选用性能优越、节能低损耗和环保型的变压器. 变压器的台数及容量要根据负荷计算和负荷分级的结果并结合经济运行进行选择. 当有大量的一、二级负荷,或季节负荷变化较大,或集中负荷较大时,宜装设两台及以上的变压器. 当其中任一台变压器断开时,其余变压器应满足一级负荷及大部分二级负荷的用电需要. 定变压器容量时还要综合考虑环境温度、通风散热条件等相关因素. 对冲击性较大的负荷、季节性容量较大的负荷、小区或高层建筑的消防和电梯等需备用电源的负荷等可设专用变压器,此方法既保障了电能的质量及供电的可靠性,又结合了电费电价政策,做到经济运行.为了使变压器容量在三相不平衡负荷下得以充分利用,并有利于抑制3n次谐波影响,宜选用的变压器接线组别为D, yn11. D, yn11接线的变压器低压侧单相接地短路时的短路电流大,也有利于低压侧单相接地故障的切除. 在改、扩建工程中,为了满足变压器并列运行条件,选用的变压器接线组别与原有的保持一致,短路阻抗百分比接近,容量比不超过1∶3. 如我县某企业,其设备的用电规格与我国不相一致,根据用户的意见,我们将容量为630kV A的主变接线组别定为D, dn,并要求变压器设单独的接地系统,以此满足用户的供电要求. 设在高层建筑内部的变电站,主变采用干式变压器. 设在周围大气环境较差的变电站,应选用密闭型或防腐型变压器. 为了不降低配电运行的电压, 10kV变电站的主变分接头宜放在10. 5kV上,分接范围油浸变为±5% ,干式变为±2 ×2. 5%.5 电气主接线的选择变电站的主接线对变电站内电气设备的选择、配电装置的布置及运行的可靠性与经济性等都有密切的关系,是变电站设计中的重要环节. 主接线的形式多种多样,在10kV变电站的设计中常用的有单母接线、单母分段接线、线路—变压器组接线、桥式接线等,每种接线均有各自的优缺点. 通过对几种能满足负荷用电要求的主接线形式在技术、经济上的比较,选择最合理的方案.技术指标包括: ①供电的可靠性与灵活性; ②供电电能质量; ③运行管理、维护检修条件; ④交通运输及施工条件; ⑤分期建设的可能性与灵活性; ⑥可发展性.经济指标包括: ①基建投资费用. ②年运行费.我县西部的甲乙两企业,以前均由长广的6kV线路供电,现都要求改为电网10kV供电. 在甲企业中,由于其预计运行的时间只有3年左右,且周围均为10kV电网供电,经过技术及经济比较,采用了保留原有供电设备,仅增一台特殊变比(10kV /6kV)的变压器来满足用电要求的方案,节省了投资,节约了时间.在乙企业中,其新增设备的额定电压为10kV,在企业周围还有部分采用6kV电压等级供电的负荷,如同样采用甲企业的方法,仅增一台特殊变比(10kV /6kV)的变压器,则该企业有可能成为一个新的6kV电压等级供电点,对用电的管理及电网的运行均产生不利的影响. 经技术及经济比较,向用户列举了10kV供电的诸多优点,动员用户对原有供电设备进行了改造. 此方法对用户、电网和用电管理部门都是一个较理想的选择.6 短路电流计算在供电系统中危害最大的故障是短路,为了正确选择和校验电气设备,须计算短路电流.在10kV变电站的短路电流计算中,一般将三相短路电流作为重点. 为了简化短路电流计算方法,在保证计算精度的情况下,可忽略一些次要因素的影响. 其规定有:(1) 所有电源的电动势相位角相同,电流的频率相同,短路前电力系统的电势和电流是对称的.(2) 认为变压器为理想变压器,变压器的铁芯始终处于不饱和状态,即电抗值不随电流大小发生变化.(3) 输电线路的分布电容略去不计.(4) 每一个电压级均采用平均额定电压,只有电抗器采用加于电抗器端点的实际额定电压.(5) 一般只计发电机、变压器、电抗器、线路等元件的电抗.(6) 在简化系统阻抗时,距短路点远的电源与近的电源不能合并.参照以上原则,给出变电站在最大运行方式下的等效电路图,运用同一变化法或个别变化法分别得出:(1)次暂态短路电流( I ”) ,用来作为继电保护的整定计算和校验断路器的额定断流容量.(2) 三相短路冲击电流( Ish ) ,用来校验电器和母线的动稳定.(3) 三相短路电流稳态有效值( I ∞) ,用来校验电器和载流导体的热稳定.(4) 次暂态三相短路容量( S ”) ,用来校验断路器的遮断容量和判断母线短路容量是否超过规定值,作为选择限流电抗器的依据.7 设备的选择及校验在进行电气设备选择时,应根据工程的实际情况,在保证安全、可靠的前题下,积极而稳妥地采用新技术,注意节约投资.7. 1 10kV开关柜的选择容量为500kV A及以上的变压器一般均配有10kV开关柜. 10kV开关柜可分为固定式和手车式开关柜.就绝缘介质而言,目前10kV开关柜的主流产品又可分为SF6气体绝缘和真空绝缘. SF6气体绝缘的开关柜体积小,一般20年内免维护,但价格高,其气体的泄露还会造成环境污染. 真空绝缘的开关柜体积适中,相对同等档次的SF6气体绝缘的开关柜来说价格略低,使用过程中不会造成环境污染,但每二年就需做一次试验,增大了运行维护的工作量. 因此开关柜的选择除按正常工作条件选择和按短路状态校验外,还应考虑开关柜放置的场合和对开关柜性能的要求等条件. 如我县某工程,其预留的10kV变电站位置在地下室,该工程在建筑上并没有考虑变电站的通风问题,且在建筑施工时设置的变电站大门只有2. 05米净高,用电可靠性要求较高. 在这里,选用SF6气体绝缘的开关柜显然违背了《国家电网公司电力安全工作规程》中在SF6电气设备上的工作这一节的相关条款. 但一般的真空开关柜高度均在2. 2米以上,通过对一些开关柜制造厂家的咨询,最后采用了高度为1. 9米的非标型真空开关柜. 7. 2 10kV负荷开关和熔断器组合的选择在10kV变电站的设计中,对主变容量在400kV A及以下的变电站,高配部分通常采用负荷开关加熔丝的组合,其接线简单. 为提高工作效率,笔者综合了各部门对400kV A及以下变电站建设的意见和建议,制作了一套400kV A及以下变电站设计的标准图,取得了良好的效果.在10kV负荷开关和熔断器组合的选择方面, 10kV负荷开关按正常工作条件选择和按短路状态校验. 熔断器的熔体额定电流按Ie = k I1. max进行选择,其中k为可靠系数,当不计电动机自起动时取1. 1~1. 3,考虑电动机自起动时取1. 5~2. 0; I 1. max为电力变压器回路的最大工作电流. 熔管的额定电流≥熔体的额定电流. 选择熔断器时,还应保证前后两级熔断器之间(多见于美式箱变) 、熔断器与电源侧的继电保护之间、熔断器与负荷侧的继电保护之间的动作选择性. 当本段保护范围内发生短路故障时,应在最短的时间内切除故障. 当电网接有其它接地保护时,回路中的最大接地电流与负荷电流之和应小于最小熔断电流.7. 3 0. 4kV开关柜的选择0. 4kV开关柜的主流产品目前有GGD、GCK、GCS等. 按正常工作条件选择,按短路状态校验. 一般对于接线简单、出线回路少的场合采用GGD型. 对于出线多、供电可靠性较高、供电设备较美观的场合采用GCK或GCS型. 无论采用何种柜型,其所配置的开关都应根据负荷的用电要求及用户的资金准备情况加以合理选择,使其具有较高的性价比.7. 4 电力电缆的选择(1) 首先应根据用途、敷设方式和使用条件来选择电力电缆的类型. YJV型交联聚乙烯电缆和VV型聚氯乙烯电缆是目前工程建设中普遍选用的两种电缆. YJV型电缆与VV型电缆相比, YJV型电缆虽然价格略高,但具有外径小、重量轻、载流量大、寿命长的显著优点( YJV型电缆寿命可长达40年, VV型电缆寿命仅为20年) ,因此在工程设计中应尽量选用YJV型交联聚乙烯电缆.(2) 电缆的额定电压UN ≥所在电网的额定电压.(3) 按长期发热允许电流选择电缆的截面. 但当电缆的最大负荷利用小时数T max > 5000h,且长度超过20米时,则应按经济电流密度来选择.(4) 允许电压降的校验. 对供电距离较远、容量较大的电缆线路,应满足:ΔU % = 173 ImaxL ( r cosψ+xsinψ) / U ≤5% , U、L为线路工作电压(线电压)和长度; cosψ为功率因数; r、x 为电缆单位长度的电阻和电抗.(5) 热稳定的校验电缆应满足的条件为:所选电缆截面S ≥Q d /C X 100 (mm2 ). Qd为短路电流的热效应, (A2 S) ; C为热稳定系数. 如我县某企业的供电电源是从紧邻的一座110kV变电所的10kV侧专线接入的,由于该企业的用电负荷不是很大,若按长期发热允许电流选择的电缆截面,或按经济电流密度来选择的电缆截面均在95 mm2以下,但在热稳定校验时,所选电缆截面S ≤Q d /C X 100 (mm2 ) ,电缆截面至少需在120 mm2及以上.8 继电保护的配置当变压器故障时,在保护的配置上一般有两种途径:如选用断路器或开关来开断短路电流,则配以各类的微机保护. 如一次设备选用的是负荷开关,则选用熔断器来保护. 两者比较如下.(1) 断路器或开关具备所有的保护功能与操作功能,价格较昂贵. 负荷开关只能分合额定负荷电流,不能开断短路电流,需配合高遮断容量后备式限流熔断器作为保护元件来开断短路电流,价格较便宜.(2) 在切空载变压器时,断路器或开关会产生截流过电压. 负荷开关则没有此种现象.(3) 对变压器的保护,断路器或开关的全开断时间为继保动作时间、自身动作时间、熄弧时间之和,一般会大于油浸变发生短路故障时要求切除的时间. 限流熔断器具有速断功能,但必须防止熔断器单相熔断时设备的非全相运行,应在熔断器撞击器的作用下让负荷开关脱扣,完成三相电路的开断.(4) 由于高遮断容量后备式限流熔断器的保护范围在最小熔断电流到最大开断容量之间,且限流熔断器的时间特性曲线为反时限曲线,短路发生后,可在短时内熔断来切除故障,所以可对其后所接设备如CT、电缆等提供保护. 使用断路器或开关则要提高其它设备的热稳定要求. 但就限制线性谐振过电压方面来说,在变压器的高压侧应避免使用熔断器.9 防雷与接地(1) 10kV变电站在建设过程中,可利用钢筋混凝土结构的屋顶,将其钢筋焊接成网并接地来防护直击雷.(2) 在变电站内的高压侧、低压侧及进线段安装避雷器,以防护侵入雷电波、操作过电压及暂时过电压.(3) 10kV变电站中的接地网一般由扁钢及角钢组成,也可利用建筑物钢筋混凝土内的钢筋体作接地网,但各钢筋体之间必须连成电气通路并保证其电气连续性符合要求. 接地电阻值要求不大于4Ω. 变压器、高低压配电装置、墙上的设备预埋件等都需用扁钢等与接地网作可靠焊接进行接地. 发电机的接地系统需另行设置,不得与变电站的接地网连接.(4) 低压配电系统按接地方式的不同可分为三类:即TT、TN和IT系统. TT方式供电系统是指将电气设备的金属外壳直接接地的保护系统,称作保护接地系统. TN方式供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统. 在TN方式供电系统中,根据其保护零线是否与工作零线分开又可分为: TN C和TN S方式供电系统. TN C方式供电系统是用工作零线兼作接零保护线,适用于三相负载基本平衡的情况. TN S方式供电系统是把工作零线N和专用保护线PE严格分开,当N线断开,如三相负荷不平衡,中性点电位升高,但外壳、PE线电位. TN S方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统. 此外,在一些由用户提供的图纸中,我们还可看到TN C S方式的供电系统,此系统的前部分是TN C方式供电,系统的后部分出PE线,且与N线不再合并. TN C S供电系统是在TN C系统上的临时变通作法,适用于工业企业. 但当负荷端装设RCD (漏电开关) 、干线末端装有断零保护时也可用于住宅小区的低压供电系统. IT方式供电系统表示电源侧没有工作接地,或经过高阻抗接地,负载侧电气设备进行接地保护. IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好,一般用于不允许停电的场所,或者是要求严格的连续供电的地方.10 照明10kV变电站内的照明电源从低压开关柜内引出,管线选用BV 500铜芯塑料线穿管后沿墙或顶暗敷,电线的管径按规定配置,所配灯具应具有足够的照度,在安装位置上不应装设在变压器和高、低压配电装置上,应安装在墙上设备的上方或周围,要留有一定的距离来保证人身及设备的安全,同时应避免造成照明死区. 灯具安装高度应高于视平线以避免耀眼,还要避免与电气设备或运行人员的碰撞.11 配网自动化配电自动化是指利用现代电子技术、通信技术、计算机及网络技术与电力设备相结合,将配电网在正常及事故情况下的监测、保护、控制、计量和供电部门的管理工作有机地融合在一起,改进供电质量,与用户建立更密切、更负责的关系,以合理的价格满足用户要求的多样性需要,力求供电经济性最好,企业管理更为有效. 配网自动化以故障自动诊断、故障区域自动隔离、非故障区域自动恢复送电为目的. 目前配电自动化主要考虑的功能有: ①变电站综合自动化; ②馈线自动化; ③负荷管理与控制; ④用户抄表自动化.就国情而言,配网自动化系统目前还处于试点建设阶段,缺乏大规模实现中低压配电网络配电自动化的物质基础,但配网自动化是今后发展的方向. 因此,在进行站内设计时,要结合配网自动化规划,给未来的实施自动化技术改造(包括信息采集、控制、通信等提供接口和空间等方面)留有余地. 在技术上实现配电自动化的前提条件是: ①一次网络规划合理,接线方式简单,具有足够的负荷转移能力; ②变配电设备自身可靠,有一定的容量裕度,并具有遥控和智能功能. 除此之外,还可考虑通过实现配电半自动化方式来提高供电可靠性水平,因为可自动操作的一次开关价格昂贵,而二次设备相对便宜,故实现配电半自动化的具体方法可考虑采用故障自动量测和定位、人工操作开关、隔离故障和转移负荷的方式. 如在目前的设计中,采用了短路故障指示器,能准确、迅速地确定故障区段,站内都备有通信、集抄装置的位置等. 对重要用户多、负荷密度高、线路走廊资源紧张、用户对供电可靠性较为敏感的区域的用户进行设计时,尽可能选用可靠的一次智能化开关. 配网自动化系统因投资大、见效慢,应统一规划,分步实施. 因此,在10kV变电站的设计中,我们要结合配网自动化的进程,及时用先进、科学的方法来完善我们的设计,完善我们的电网.参考文献:[ 1 ] 芮静康. 现代工业与民用供配电设计手册[ S]. 北京:中国水利水电出版社, 2004.[ 2 ] 蓝毓俊,戴继伟. 各类10KV配电站对环境影响的测量与分析[ J ]. 上海电力, 2003, (4).[ 3 ] 吴致尧,何志伟. 10KV配电系统无功补偿的研究进展[ J ]. 电机电器技术, 2004, (5).。

典型10KV变电所配电设计电气cad原理图

典型10KV变电所配电设计电气cad原理图
通过数据通信控制装置 上传调度。说明: 各 保护监控装置通过屏蔽双绞线构成 网络,实图。 该系统共配置 系列保护监控装置 台.装于开关柜上。DVP-602DVP-6002,3,13DVP-6001,CAN就地开关柜上传调度微机分段自投保护监控装置微机变压器DVP-623保护监控装置(1~4)DVP-651PTDVP-671监控装置微机微机数据通讯控制装置DVP-602DVP-631保护监控装置(1~4)微机线路(CAN网)保护控制 间隔层CAN总线通讯网DVP-641微机电容器保护监控装置(1~2)网络层1#进线DL623出线电容补偿变压器变压器DL63110kV IM641631DL623DLDLPT651671DL63110kV II MPT变压器变压器出线623DL623DLDL2#进线电容补偿641DL631DL综合自动化系统配置图10kV变电所标准图第 1 张BSJK0-01 1/2综合自动化系统配置图10kV变电所标准图第 2 张BSJK0-01 2/2分段自投控制至柜顶小母线及熔断器ID10kV分段自投保护控制端子排10kVDVP651 -10DVP651 -C2DVP651 -C1DVP651 -B2DVP651 -B1DVP651 -4DVP651 -1DVP651 -2DVP651 -31PADVP651 -7DVP651 -6DVP651 -8DVP651 -5DVP651 -9DVP651 -111121431PAA411N411C411N411867910C421A421N421N421A630 1613121514N41166B41165N411B41168671918172120B630 C630 至 段进线断路器柜65+2KM2RD1-1至 段进线断路器柜相应端子排至 段进线断路器柜相应端子排至 段进线断路器柜至 分段开关柜操作机构至 分段开关柜电流互感

(110kv变电站电气主接线设计)

(110kv变电站电气主接线设计)

110KV电气主接线设计姓名:专业:发电厂及电力系统年级:指导教师:摘要根据设计任务书的要求,本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。

该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。

110KV电压等级采用双母线接线,35KV和10KV电压等级都采用单母线分段接线。

本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线、熔断器等)、各电压等级配电装置设计。

本设计以《35~110kV变电所设计规范》、《供配电系统设计规范》、《35~110kV高压配电装置设计规范》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。

关键词:降压变电站;电气主接线;变压器;设备选型目录摘要 (Ⅰ)1 变电站电气主接线设计及主变压器的选择 (1)1.1 主接线的设计原则和要求 (1)1.1.1 主接线的设计原则 (1)1.1.2 主接线设计的基本要求 (2)1.2 主接线的设计 (3)1.2.1 设计步骤 (3)1.2.2 初步方案设计 (3)1.2.3 最优方案确定 (4)1.3 主变压器的选择 (5)1.3.1 主变压器台数的选择 (5)1.3.2 主变压器型式的选择 (5)1.3.3 主变压器容量的选择 (6)1.3.4 主变压器型号的选择 (6)1.4 站用变压器的选择 (9)1.4.1 站用变压器的选择的基本原则 (9)1.4.2 站用变压器型号的选择 (9)2 短路电流计算 (10)2.1 短路计算的目的、规定与步骤 (10)2.1.1 短路电流计算的目的 (10)2.1.2 短路计算的一般规定 (10)2.1.3 计算步骤 (10)2.2 变压器的参数计算及短路点的确定 (11)2.2.1 变压器参数的计算 (11)2.2.2 短路点的确定 (11)2.3 各短路点的短路计算 (12)2.3.1 短路点d-1的短路计算(110KV母线) (12)2.3.2 短路点d-2的短路计算(35KV母线) (13)2.3.3 短路点d-3的短路计算(10KV母线) (13)2.3.4 短路点d-4的短路计算 (14)2.4 绘制短路电流计算结果表 (14)3 电气设备选择与校验 (16)3.1 电气设备选择的一般规定 (16)3.1.1 一般原则 (16)3.1.2 有关的几项规定 (16)3.2 各回路持续工作电流的计算 (16)3.3 高压电气设备选择 (17)3.3.1 断路器的选择与校验 (17)3.3.2 隔离开关的选择及校验 (21)3.3.3 熔断器的选择····················错误!未定义书签。

总降压变电所及高压配电系统设计

总降压变电所及高压配电系统设计

毕业设计说明书毕业生姓名:专业:学号:指导教师:所属系(部):二〇一〇年六月摘要工厂总降压变电所是工厂供配电的重要组成部分,它直接影响整个工厂供电的可靠运行,同时它又是联系发电厂和用户的中间环节,起着变换、接受和分配电能的作用。

电气主接线是总降压变电所的主要环节,电气主接线的拟定直接关系着全厂电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是决定变电所电气部分技术经济性能的关键因素。

本设计是35/6kV降压变电所及高压配电系统的设计。

首先,进行车间负荷统计和无功功率补偿,确定主变压器及各车间变压器;从技术和经济等方面,通过了两种方案的比较,选择经济、可靠、运行灵活的主接线一次方案。

其次,进行短路计算和设备的选择、校验;然后,确定工厂电源进线、母线和高压配电线路。

最后,进行二次回路方案、整定继电保护、防雷保护和接地装置的设计。

设计结果可以满足精益冶金机械修造厂供电的可靠性,并保证各车间电气设备的稳定运行。

关键词:负荷计算;变电所主接线;继电保护目录摘要 (i)第一章绪论 (1)第一节工厂供电的意义和要求 (1)一、工厂供电的意义 (1)二、工厂供电的要求 (1)第二节设计内容及步骤 (2)第二章负荷计算和无功补偿 (4)第一节负荷计算的目的 (4)第二节负荷计算方法 (4)一、单组用电设备的计算负荷的确定 (4)二、多组用电设备的计算负荷的确定 (5)第三节车间用电设备组和工厂计算负荷的确定 (5)一、车间变电所低压侧计算负荷的确定 (5)二、车间变电所高压侧计算负荷的确定 (6)三、总降压变电所二次侧计算负荷的确定 (8)四、总降压变电所一次侧计算负荷的确定 (8)第四节无功功率补偿及其计算 (9)第三章总降压变电所的所址和型式的确定 (13)第一节变电所所址的选择 (13)一、变电所所址选择的一般原则 (13)二、负荷中心的确定 (13)第二节变电所型式的确定 (15)一、总降压变电所 (15)二、车间变电所 (15)三、最终方案的确定 (16)第四章确定总降压变电所主变压器型式、容量和数量 (17)第一节确定总降压变电所主变压器型式 (17)第二节总降压变电所主变压器台数和容量的确定 (17)一、主变压器台数的选择 (17)二、主变压器容量的选择 (18)三、绕组数和接线组别的确定 (19)四、冷却方式的选择 (19)第五章变配电所主接线的选择 (20)第一节变电所主接线 (20)一、变电所的构成 (20)二、对变电所主接线的要求 (20)三、变电所主接线方案的比较 (22)第二节变电所主接线方式 (23)一、变电所常用主接线 (23)二、总降压变电所主接线方式的选择 (24)三、高压配电系统主接线方式的选择 (26)第六章短路计算及一次设备的选择 (28)第一节短路电流计算 (28)一、短路计算的目的和方法 (28)二、短路计算过程 (28)三、短路电流计算结果 (32)第二节一次设备的选择与校验 (32)一、一次设备选择及校验的条件 (33)二、35kV高压设备的选择及校验 (35)三、6kV高压设备的选择及校验 (37)第七章工厂电源进线及高压配电线路的选择 (39)第一节变电所进出线的种类及选择方法 (39)一、变电所进出线的种类 (39)二、变电所进出线的方式的选择 (39)三、变电所进出线导线和电缆形式的选择 (39)第二节高压配电线路的选择 (40)一、高压配电线路接线方式的选择 (40)二、高压配电线路的设计 (41)第三节导线截面的选择及校验 (41)一、35kV高压进线的选择 (42)二、35kV高压引入电缆(由高压配电室至主变)的选择 (43)三、6kV高压母线的选择 (43)四、各车间变压器到6kV母线联络线的选择 (44)第八章继电保护及二次回路的选择 (50)第一节继电保护装置的配置原则及情况 (50)一、继电保护的任务 (50)二、继电保护装置的基本要求 (50)三、继电保护的基本工作原理 (51)四、电流保护的接线方式 (52)第二节变压器的继电保护及整定计算 (52)一、变压器保护装置的配置要求 (52)二、主变压器保护装置的整定计算 (53)第三节6kV母线的继电保护 (55)第四节电力线路的保护 (56)一、电力线路保护装置的配置要求 (56)二、线路过电流保护的整定计算 (57)第五节二次回路方案的选择 (62)一、断路器控制回路及信号装置的选择 (63)二、变电所的电能计量回路 (65)三、测量和绝缘监视回路 (65)四、自动重合闸装置(ARD) (67)五、备用电源自动投入装置(APD) (67)第九章车间变电所的防雷保护和接地装置的设计 (69)第一节防雷保护 (69)一、雷电过电压的种类 (69)二、防雷设备的选择 (69)第二节变电所接地装置的选择 (70)一、接地的概述 (70)二、接地方案确定 (72)结论 (74)主要参考文献 (75)外文资料 (76)中文译文 (78)致谢 ................................................................................................. 错误!未定义书签。

变电所主接线及线路电流保护设计

变电所主接线及线路电流保护设计

一、分析原始资料为满足某地区发展和人民生活电力的需要,经系统规划设计论证,新建一所220kv变电1.1 建设规模1.1.1 本所安装2台120MV A主变压器1.1.2 电压等级220/110/10KV1.1.3 各电压侧出线回路数:220kv侧4回,110kv侧8回,10kv侧16回。

1.2各侧负载情况110kv侧有2回路线供电给远方大型冶炼厂,其容量为60MV A;其他作为各地区变电所进线,其最小负荷与最大负荷之比为0.65。

10kv总负荷为50MV A,一,二类负荷用户占70%:最大一回出线负荷为5MV A,最小负荷与最大负荷纸币为0.65。

1.3系统阻抗220kv近似为无线大功率电源系统,以100MV A为基准容量,规算至本所220kv母线阻抗为0.021,;110kv侧电源容量为800MV A,以100MV A为基准容量,规算至本所110kv母线阻抗为0.12。

1.4变电所外接线路采用三段式电流保护,相关参数如下:1.4.1线路AB,BC的最大负荷电流分别为230A,150A;负荷自启动系数Kst=1.5;1.4.2各变电所出线上后备保护的动作时间如图所示;后备保护的△t=0.5s;1.4.3线路的电抗为0.4欧姆/千米二、设计说明书1.1对待设计变电所在电力系统中的地位、作用及电力用户的分析待建变电所包括两个主变压器和若干个辅助变压器,主变压器供电电压为220KV。

高压母线为220kV,有6回出线;中压侧母线为110KV,有8回出线,其中2回出线供给远方大型冶炼厂用电(容量为60MVA),其余作为地区变电所的进线;低压母线10kV,有12回出线,总负荷为50MVA,一二类负荷用户占70%。

1.2主变压器的选择根据变电所的具体情况和可靠性的要求,变电所选用两台同样型号的三绕组变压器,根据给定的容量和变压器的电压等级选用主变压器型号SFS7-120000/220 。

1.3主接线的确定1)变电所主接线要与变电所在系统中的地位、作用相适应。

10kV变电所供配电系统的设计要点

10kV变电所供配电系统的设计要点

10kV变电所供配电系统的设计要点摘要:要想发挥出变配电所的积极作用,提高供电的质量及其稳定性,需要对变配电所进行科学、合理的设计。

同时,充分结合线路设计的总体要求,结合具体的用电需求状况,进一步提升上级电源选择的合理性。

在今后的工作中,相关的设计人员还需要考虑到节能设计、防雷设计等因素对线路设计产生的影响,进行综合的把控,进一步发挥配电系统的积极作用,满足人们的用电需求。

关键词:10kV变电所;供配电系统;设计要点110kV变配电所供电设计要求在开展10kV变配电所供电设计的工作之前,需要对整条供电线路进行科学、合理的设计,在充分发挥各种设计准则和相关标准的基础上,提升设计的质量,具体可以从以下五个方面开展。

(1)进行系统设计前,需要根据上级电源的设计要求和其未来的发展规划进行充分的调查和研究,保障后期各种配电工作的开展都能够满足上级电源的需求。

根据整个系统的设计要求,确定合适的上级电源。

将二者的优势进行有效结合,更好地满足变配电所的用电需求。

(2)需要充分考虑供电系统的容量对整个工作所产生的影响。

根据相关的调查研究发现,在现阶段的容量设计中,大部分设计人员都严重缺乏前瞻性的思考,在后期的供电工作中,出现了供电量不足的问题。

为了避免上述问题的发生,在今后的设计工作中,需要在充分调查了用户用电需求的基础上,预留容量发展空间。

这样,在后期的电力事业发展的过程中,才能够满足各种调整和改造工作的需求。

(3)需要考虑整条供电线路设置的影响。

在进行供电线路设置的过程中,需要从用户的用电需求角度出发,提升线路设计的科学性和合理性,从而更好地发挥配电所调控电能的积极作用。

(4)在设计的过程中,需要设计人员从整体的角度出发,进行全面的把控。

部分的工作人员在设计的过程中,由于缺乏全面性的规划,出现了电压不稳定的问题。

为此,设计人员需要有效发挥谐波处理方式和其他保护措施的积极作用,以此达到提升供电系统稳定性和系统运行质量的目的。

变电所设计规范

变电所设计规范

35~110KV 变电所设计规范GB50059-92主编部门:中华人民共和国能源部批准部门:中华人民共和国建设部施行日期:1993 年5 月1 日第一章总则第1.0.1条为使变电所的设计认真执行国家的有关技术经济政策,符合安全可靠、技术先进和经济合理的要求,制订本规范。

第1.0.2条本规范适用于电压为 35~110kV,单台变压器容量为 5000kVA 及以上新建变电所的设计。

第1.0.3条变电所的设计应根据工程的 5~10 年发展规划进行,做到远、近期结合,以近期为主,正确处理近期建设与远期发展的关系,适当考虑扩建的可能。

第1.0.4条变电所的设计,必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,结合国情合理地确定设计方案。

第1.0.5条变电所的设计,必须坚持节约用地的原则。

第1.0.6条变电所设计除应执行本规范外,尚应符合现行的国家有关标准和规范的规定。

第二章所址选择和所区布置第2.0.1条变电所所址的选择,应根据下列要求,综合考虑确定:一、靠近负荷中心;二、节约用地,不占或少占耕地及经济效益高的土地;三、与城乡或工矿企业规划相协调,便于架空和电缆线路的引入和引出;四、交通运输方便;五、周围环境宜无明显污秽,如空气污秽时,所址宜设在受污源影响最小处;六、具有适宜的地质、地形和地貌条件(例如避开断层、滑坡、塌陷区、溶洞地带、山区风口和有危岩或易发生滚石的场所),所址宜避免选在有重要文物或开采后对变电所有影响的矿藏地点,否则应征得有关部门的同意;七、所址标高宜在 50 年一遇高水位之上,否则,所区应有可靠的防洪措施或与地区(工业企业)的防洪标准相一致,但仍应高于内涝水位;八、应考虑职工生活上的方便及水源条件;九、应考虑变电所与周围环境、邻近设施的相互影响。

第2.0.2条变电所的总平面布置应紧凑合理。

第2.0.3条变电所宜设置不低于 2.2m 高的实体围墙。

城网变电所、工业企业变电所围墙的高度及形式,应与周围环境相协调。

某学校10kv变电所及配电系统设计

某学校10kv变电所及配电系统设计

目录1课程设计原始数据 (4)1.1设计题目 (4)1.2设计要求 (4)1.3设计依据 (5)1.4设计任务 (6)2负荷计算及功率补偿 (6)2.1负荷计算的方法 (6)2.2无功功率补偿 (8)3变电所位置和型式的选择 (9)3.1根据变配电所位置选择一般原则: (9)3.2变电所的型式与方案: (9)4变电所变压器和主接线方案的选择 (10)4.1主变压器的选择 (10)4.2装设一台主变压器的主接线方案 (10)5 短路电流的计算 (11)5.1绘制计算电路 (11)5.2确定短路计算基准值 (11)5.3计算短路电路中个元件的电抗标幺值 (11)5.4 K-1点(10.5K V侧)的相关计算 (12)5.5 K-2点(0.4K V侧)的相关计算 (12)6变电所一次设备的选择校验 (14)6.1选择校验条件 (14)6.210KV侧一次设备的选择校验 (15)6.30.4KV侧一次设备的选择校验 (16)7变压所进出线与邻近单位联络线的选择 (17)7.110KV高压出线的选择: (17)7.2变电所及邻近单位焦点路线的选择 (17)7.30.4KV低压出线选择 (17)7.4按发热条件选择 (18)7.5校验电压损耗 (18)7.6短路热稳定校验 (19)设计总结 (20)致谢 (21)参考文献 (22)附图 (23)***学校课程设计某学校10kv变电所及配电系统设计系部:机械工程系班级:机电10-12(1)班学生姓名: ***学号: ***指导教师:何颖完成日期: 2012年6月15日新疆工业高等专科学校课程设计评定意见设计题目:某学校10kv变电所及配电系统设计学生姓名:*** 专业机电一体化班级机电10-12(1)班评定意见:评定成绩:指导教师(签名):年月日评定意见参考提纲:1.学生完成的工作量与内容是否符合任务书的要求。

2.学生的勤勉态度。

3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计(论文)35KV变电所及配电线路设计(牛圣迪)2011.12.10本科毕业设计(论文)(35KV变电所及配电线路设计)学院(系):继续教育学院专业:电气工程及自动化学生姓名:牛圣迪学号: 39指导教师:杨丽君答辩日期:2011-12-15(此页空白)摘要摘要随着现代文明的发展与进步,社会生产和生活对电能供应的质量和管理提出了越来越高的要求。

作为电能传输与控制的中间枢纽,变电所必须改变传统的设计和控制模式,才能适应现代电力系统、现代化工业生产和社会生活的发展趋势。

此工厂供电设计包括:负荷的计算及无功功率的补偿;变电所主变压器台数和容量、型式的确定;变电所主接线方案的选择;进出线的选择;短路计算和开关设备的选择;二次回路方案的确定及继电器保护的选择和整定;防雷保护与接地装置的设计;车间配电线路布线方案的确定;线路导线及其配电设备和保护设备的选择;以及电气照明的设计,还有电路图的绘制。

关键词变电所变压器断路器继电器隔离开关互感器熔断器燕山大学本科生毕业设计(论文)AbstractWith development and progress of modern civilization, social production and is it put forward high request more and more to quality and management that electric energy supply to live. As the pivot between what the electric energy is transmitted and controlled, the transformer substation must change the traditional design and control the mode , could meet modern power system , modernized industrial production and development trend of social life . This factory supplies power and designs including: Calculation of load and compensation of the inactive power; Transformer substation main voltage transformer platform count and capacity , sureness of pattern; Mainly wire the choice of the scheme in the transformer substation; Pass in and out the choice of the thread; Choice of shorting out and calculating and switchgear ; Two return circuit sureness and choice that relay protect of scheme exactly make; Defend the thunder and protect the design with the earth device ; The workshop distribution line connects up the sureness of the scheme; Circuit wire and distribution equipment and protecting the choice of the equipment; And the electric design that lighted, there is drawing of circuit diagram.Keywords Transformer substation V oltage transformer Circuit breaker Relay Isolate the switch Mutual inductor Fuse box.目录摘要 (I)Abstract (II)第1章绪论 (4)1.1课题背景 (4)第2章 35KV变电所及低压配电线路设计 (5)2.1负荷计算 (5)2.2无功补偿计算及设备选择 (8)2.3变电所位置的选择 (14)2.3.1变电所的分类 (14)2.3.2变电所所址选择的一般的应遵循的原则 (14)2.4变电所的主变压器台数和容量的选择 (16)2.4.1主变压器台数的选择 (16)2.4.2主变压器容量的选择 (16)2.5变电所主接线方案的设计 (17)2.7变电所一次设备的选择 (27)2.7.1一次设备选择的一般要求 (27)2.7.2选择各类电气设备的特别的要求 (27)2.7.3一次设备校验应满足的条件 (28)2.8变电所高压进线和低压出线的选择 (37)2.8.1变电所进线方式的选择 (37)2.8.2 变配电所进出导线和电缆的选择 (37)2.8.3各类电力线路的导线截面的选择步骤 (38)2.8.4电力线路选择的具体公式 (39)2.8.5设计进出线的选择 (40)2.8.6 6KV高压母线的选择 (43)2.8.7车间变电所低压侧母线的选择 (44)第3章继电保护以及二次回路的设计 (45)3.1继电保护装置的基本要求 (45)3.2二次回路的接线安装要求 (45)3.3引入盘、柜的电缆及其芯线应符合的要 (46)3.435KV主变压器的保护装置设计 (46)3.56.3KV车间变压器的保护装置设计 (49)3.6备用电源自动投入装置的选 (51)3.7高压断路器的操动机构控制与信号回路 (51)3.8防雷保护和接地装置设计 (53)结论 (54)参考文献 (55)致谢 (57)附录1 (5)附录2 (8)附录3 (10)第1章绪论1.1 课题背景所谓电力系统,就是包括不同类型的发电机,配电装置,输、配电线路,升压及降压变电所和用户,组成的一个整体,对电能进行不间断的生产和分配。

工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。

工厂供电系统是电力系统的一个组成部分,它主要反映工厂用户的特点和要求。

电能是现代工业的主要能源和动力,做好工厂供电工作对发展工业生产,实现工业现代化,有十分重要的意义。

电能的输送和分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。

因此,电能在现代工业生产及整个国民经济生活中和国家经济建设中应用极为广泛。

随着现代文明的发展与进步,社会生产和生活对电能供应的质量和管理提出了越来越高的要求。

作为电能传输与控制的中间枢纽,变配电所必须改变传统的设计和控制模式,才能适应现代电力系统、现代化工业生产和社会生活的发展趋势。

近年来,微电子技术、微机控制与应用技术、计算机通信与网络技术的高速发展和应用,为变电所的自动化和自能化提供了强大的技术支持。

随着国民经济的持续发展,电网装机容量迅速增长,电力供应紧张状况已得到缓解。

目前存在的主要问题是变配电网薄弱,难以满足用户对供电质量越来越高的要求,由此,只有加大变电所的科技含量,汲取国内外先进技术,向自动化、现代化、智能化发展,才能更好的为社会主义现代化建设服务。

本设计的内容可大概的分为:负荷计算、变压器的无功补偿、变压器的选择、变电所主结线方案的设计、短路电流和容量的计算、一次设备选择、变电所进出线的选择及二次回路方案的选择及继电保护的整定进行设计。

为了响应国家计划用电、节约用电、安全用电的号召,在设计中负荷计算、无功补偿、一次设备选择、进出线选择、二次回路方及继电保护设计、谐波危害的抑制和消除,都是关键的步骤,要十分注意。

本设计的指导老师为杨丽君老师,在此感谢她的耐心指导和辛勤的教诲。

由于本人水平有限,设计中难免出现不足之处,敬请各位老师批评指正。

章及标题2.1负荷计算求计算负荷这相工作称为负荷计算。

显然负荷计算是根据已知的工厂用电设备的安装容量确定、预期不变的最大假想负荷。

这个负荷是设计是作为选择工厂电力系统供电线路导线的截面积、变压器容量、开关电器和互感器等的额定参数的依据。

电力负荷又叫电力负载,它是指耗用电能的用电设备或用电单位。

另一是指用电设备或用电单位所耗用的电功率或电流的大小。

根据电力复核对供电可靠性的要求及中断供电在政治、经济上造成的损失或影响程度,电力负荷一般分为三级:一级负荷:一级负荷为中断供电将造成人身伤亡者,或者中断供电将在政治、经济上造成重大损失者,如重大设备损坏、重大产品报废等等。

在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应看着特别重要的负荷。

二级负荷:二级负荷为中断供电将在政治、经济上造成较大损失者,如大量产品报废、中断供电将影响重要用电部门正常工作等。

三级负荷:三级负荷为一般电力负荷,所有不属于上述的一、二级负荷者。

由于计算负荷是供电设计的基本依据,所以计算负荷确定的是否合理,直接影响到工厂电力设计的质量,电力设计的经济性问题。

如计算负荷估算太大,将增加供电设备的容量,使工厂电网变的复杂,浪费有色金属,在无形中就增加了初投资和运行工作量。

特别是由于工厂企业是国家电力的主要用户,以不和理的工厂电力需要量作为基础的国家电力系统的建设,将给整个国民经济建设带来很大的危害。

如果选的过小,又使电器和导线电缆处在过负荷下运行,增加了电能的损耗,导致绝缘过早老化甚至烧毁,降低了设备的使用寿命。

可见,正确计算负荷计算,有很大设计决定作用,其意义重大。

但是由于负荷情况复杂,影响因素多,很难准确的确定出来。

设备的计算负荷的变化也有一定的计算规律,它与设备的性能、生产的形式、能源的供应的状况等多种因素有关。

所以,负荷计算只是电力系统设备选择的一个估算负荷。

我国的确定负荷的方法,主要有需要系数法、二项式法,需要系数法是普遍采用的计算负荷的基本方法,二项式法应用局限很大,但确定设备台数教少而容量差别悬殊的分支干线的计算负荷时,比较的合理,而且方便。

本设计的车间设备台数较多、设备容量都相差不大,所以宜采用需要系数法。

负荷计算公式如下:有功计算负荷:P30=KdPe (1.1)式中:Pe—用电设备组总容量(不含用电设备容量,单位:Kw)Kd—用电设备组的需要系数无功计算负荷为: Q30=P30tanф(1.2)式中:tanф—对应于用电设备组功率因数cosф的正切值视在计算负荷为:S30=P30 /cosф(1.3)计算电流为 : I30=S30 /(31/2Un) (1.4)式中:Un—用电设备组的额定电压(单位:KV)功率因数COSΦ=P30/S30 (1.5)根据需要系数计算法和变电所的设计依据,通过计算可以得出此变电所的计算负荷.其计算结果如下表:章及标题各车间和车间变电所负荷计算表下页:表1.2 各车间和车间变电所负荷计算表(380V)2.2无功补偿计算及设备选择变电所的无功补偿对于整个工厂的设计是极为重要的。

相关文档
最新文档