高中数学第二章随机变量及其分布23离散型随机变量的均值与方差232离散型随机变量的方差课后训练新人教A版选
高中数学—— 离散随机变量及其分布
上”.
问题 1. 你能说出下列各试验的结果吗? 各试验 结果是否能用数量表示?
(1) 掷一枚骰子; (2) 掷一枚硬币; (3) 测一病人体温.
(3) 测一病人体温的试验, 可能出现的结果有很多, 这些结果不能一一举出.
(1) 抛掷两枚骰子, 所得点数之和; (2) 某足球队在 5 次点球中射进的球数; (3) 任意抽取一瓶某种标有 2500 ml 的饮料, 其实际量 与规定量之差. 解: (2) 能用离散型随机变量表示. 随机变量的可能取 值为 Y{0, 1, 2, 3, 4, 5}.
{Y=0} 表示一次都没射进.
如果我们只关心其体温是否正常, 还是低热, 还是 高烧, 那么试验结果有: 正常, 低热, 高烧三个结果.
我们可用数字 0 表示 “正常”,用 1 表示 “低热”, 用 2 表示 “高烧”.
问题 1. 你能说出下列各试验的结果吗? 各试验 结果是否能用数量表示?
(1) 掷一枚骰子; (2) 掷一枚硬币; (3) 测一病人体温.
对于上面的三个试验, 我们得到三个对应:
出现点数
1
1
2 3
2 3
正面 向上
正常
0
1
低热
1
4 5
4 5
反面 向上
0
高烧
2
6
6
出现点数
1
1
2 3
2 3
正面 向上
正常
0
1
低热
1
4 5
4 5
反面 向上
0
高烧
2
6
6
高中数学2-3-2 离散型随机变量的方差 名师公开课市级获奖课件(人教A版选修2-3)
0.2 0.3 0.2 0.1
∴ D(2X - 1) = ( - 1 - 2.6)2×0.2 + (1 - 2.6)2×0.2 + (3 - 2.6)2×0.3+(5-2.6)2×0.2+(7-2.6)2×0.1=6.24. 方法 2:利用方差的性质 D(aX+b)=a2D(X). ∵D(X)=1.56. ∴D(2X-1)=4D(X)=4×1.56=6.24.
2 ( x - E ( X )) 则 i 描述了 x (i=1,2,…,n)相对于均值 E(X)的
i
偏离程度,而 D(X)=
i=1
xi-EX2pi
n
为这些偏离程度的加权
平均,刻画了随机变量 X 与其均值 E(X)的 平均偏离程度. 我 们称 D(X)为随机变量 X 的方差,其算术平方根 DX为随机变 量 X 的 标准差.
[答案]
[ 解析 ]
B.2 和 2.4 D.6 和 5.6
B
∵ X ~ B(10,0.6) ,∴ E(X) = 10×0.6 = 6 , D(X) =
10×0.6×(1-0.6)=2.4, ∴E(η)=8-E(X)=2,D(η)=(-1)2D(X)=2.4.
建模应用引路
方差的实际应用
A、B 是治疗同一种疾病的两种药,用若干试验组 进行对比实验. 每个试验组由 4 只小白鼠组成, 其中 2 只服用 A, 另 2 只服用 B,然后观察疗效.若在一个试验组中,服用 A 有效 的小白鼠的只数比服用 B 有效的多, 就称该试验组为甲类组. 设 2 1 每只小白鼠服用 A 有效的概率为 ,服用 B 有效的概率为 . 3 2 (1)求一个试验组为甲类组的概率; (2)观察 3 个试验组,用 ξ 表示这 3 个试验组中甲类组的个 数,求 ξ 的分布列和数学期望.
2014-2015学年高中数学(人教版选修2-3)配套课件第二章 2.3.1 离散型随机变量的均值
栏 目 链 接
自 测 自 评
1.分布列为 ξ P 的期望值为( C ) A.0 B.-1 C.- 2.设 ξ 的分布列为: 1 1 P 6 又设 η=2ξ+5,则 E(η)=( 7 17 17 32 A. B. C. D. 6 6 3 3 ξ 2 1 6 3 1 3 4 1 3 -1 1 2 0 1 3 1 1 6 1 3 D. 1 2
栏 目 链 接
每个单位的节目集中安排在一起,若采用抽签的方式随机 确定各单位的演出顺序(序号为1,2,…,6),求: (1)甲、乙两单位的演出序号至少有一个为奇数的概率;
(2)甲、乙两单位之间的演出单位个数ξ的分布列与数
学期望.
解析:只考虑甲、乙两单位的相对位置,故可用组合计算基本事 件数. (1)设 A 表示“甲、乙的演出序号至少有一个为奇数”,则- A 表示 “甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式得 C2 1 4 3 - P(A)=1-P( A )=1- 2=1- = . C6 5 5 (2)ξ 的所有可能值为 0,1,2,3,4,且 5 1 4 4 3 1 2 P(ξ=0)= 2= , P(ξ=1)= 2= , P(ξ=2)= 2= , P(ξ=3)= 2 C6 3 C6 15 C6 5 C6 2 1 1 = ,P(ξ=4)= 2= . 15 C6 15
栏 目 链 接
(1)求 m 的值; (2)求 E(X); (3)若 Y=2X-3,求 E(Y).
解析:(1)由随机变量分布列的性质,得 1 1 1 1 1 + + +m+ =1,解得 m= . 4 3 5 20 6
高二数学2.3.2 离散型随机变量的方差
探究一
探究二
探究三
探究四
探究一 求离散型随机变量的方差
求离散型随机变量的方差的步骤: (1)列出随机变量的分布列; (2)求出随机变量的均值; (3)求出随机变量的方差.
探究一
探究二
探究三
探究四
【典型例题 1】 袋中有 20 个大小相同的球,其中标记 0 的有 10 个,标 记 n 的有 n 个(n=1,2,3,4).现从袋中任取一球.ξ 表示所取球的标号.
探究一
探究二
探究三
探究四
错因分析:忽略了随机变量分布列的性质出现错误,这里只是机械地套 用公式,且对 D(ax+b)=a2D(x)应用错误.
正解:∵0.2+0.2+a+0.2+0.1=1,∴a=0.3. ∴E(X)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.
D(X)=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0
均值 E(X)的平均偏离程度,我们称 D(X)为随机变量 X 的方差,并称其算术平 方根 ������(������)为随机变量 X 的标准差.
(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值 的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小.
(3)离散型随机变量的方差的性质: 设 a,b 为常数,则 D(aX+b)=a2D(X).
探究一
探究二
探究三
探究四
(2)由 D(η)=a2D(ξ),得 a2×2.75=11,得 a=±2. 又 E(η)=aE(ξ)+b,所以, 当 a=2 时,由 1=2×1.5+b,得 b=-2; 当 a=-2 时,由 1=-2×1.5+b,得 b=4.
第二章 2.3 2.3.2 离散型随机变量的方差(优秀经典课时作业练习及答案详解)
[A 组 学业达标]1.下面说法中正确的是( )A .离散型随机变量的均值E (ξ)反映了取值的概率的平均值B .离散型随机变量的方差D (ξ)反映了取值的平均水平C .离散型随机变量的均值E (ξ)反映了取值的平均水平D .离散型随机变量的方差D (ξ)反映了取值的概率的平均值 解析:由E (ξ)与D (ξ)的意义知选C. 答案:C2.已知随机变量X 的分布列为P (X =k )=13,k =3,6,9.则D (X )等于( )A .6B .9C .3D .4解析:由题意得E (X )=3×13+6×13+9×13=6.D (X )=(3-6)2×13+(6-6)2×13+(9-6)2×13=6.答案:A3.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ) A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32D .n =7,p =0.45解析:由已知有⎩⎪⎨⎪⎧np =1.6,np (1-p )=1.28,解得n =8,p =0.2.答案:A4.甲、乙两人对同一目标各射击一次,甲命中目标的概率为23,乙命中目标的概率为45,设命中目标的人数为X ,则D (X )等于( )A.86225 B.259675 C.2215D.1522解析:X 取0,1,2,P (X =0)=13×15=115,P (X =1)=25,P (X =2)=815,所以E (X )=2215,D (X )=86225.答案:A5.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大 D .D (ξ)先增大后减小解析:由分布列可知E (ξ)=0×1-p 2+1×12+2×p 2=p +12,所以方差D (ξ)=⎝⎛⎭⎫0-p -122×1-p 2+⎝⎛⎭⎫1-p -122×12+⎝⎛⎭⎫2-p -122×p 2=-p 2+p +14,所以D (ξ)是关于p 的二次函数,开口向下,所以D (ξ)先增大后减小.答案:D6.若D (ξ)=1,则D (ξ-D (ξ))=________. 解析:D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 答案:17.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.解析:∵D (x )=8, ∴D (2x -1)=4D (x )=2D (x )=16.答案:168.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________.解析:由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 答案:0.4 0.1 0.59.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,求D (ξ)的值.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.10.甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲,乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率.(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. 解析:(1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为:E (ξ)=0×19+1×718+2×12=2518,D (ξ)=⎝⎛⎭⎫0-25182×19+⎝⎛⎭⎫1-25182×718+⎝⎛⎭⎫2-25182×12=149324,所以D (ξ)=14918.[B 组 能力提升]11.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( ) A .0.6和0.7 B .1.7和0.09 C .0.3和0.7D .1.7和0.21 解析:E (ξ)=1×0.3+2×0.7=1.7,D (ξ)=(1-1.7)2×0.3+(2-1.7)2×0.7=0.21. 答案:D12.若随机变量X 的分布列为P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .1C .4D .2解析:由分布列的性质,得a +13=1,a =23.∵E (X )=2,∴m 3+2n3=2.∴m =6-2n .∴D (X )=13×(m -2)2+23×(n -2)2=23×(n -2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n =2时,D (X )取最小值0. 答案:A13.已知某随机变量X 的分布列如表(p ,q ∈R ):X 1 -1 Ppq且X 的数学期望E (X )=12,那么X 的方差D (X )=________.解析:根据题意可得⎩⎪⎨⎪⎧p +q =1,p -q =12,解得p =34,q =14,故X 的方差D (X )=⎝⎛⎭⎫1-122×34+⎝⎛⎭⎫-1-122×14=34.答案:3414.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,均值E (X )及方差D (X ).解析:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03×(1-0.6)3=0.064,P(X=1)=C13×0.6×(1-0.6)2=0.288,P(X=2)=C23×0.62×(1-0.6)=0.432,P(X=3)=C33×0.63=0.216,则X的分布列为:因为X~B(3,0.6)方差D(X)=3×0.6×(1-0.6)=0.72.。
高中数学第2章概率5离散型随机变量的均值与方差第1课时离散型随机变量的均值课件北师大版选修2_3
x(0≤x≤0.29).
依题意,EX≥4.73,即 4.76-x≥4.73,
解得 x≤0.03,所以三等品率最多为 3%.
1.实际问题中的均值问题 均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测, 消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等 方面,都可以通过随机变量的均值来进行估计.
0.2
Eη=200×0.4+250×0.4+300×0.2=240(元).
1.求随机变量的数学期望的方法步骤: (1)写出随机变量所有可能的取值. (2)计算随机变量取每一个值对应的概率. (3)写出分布列,求出数学期望.
2.离散型随机变量均值的性质 (1)Ec=c(c 为常数); (2)E(aX+b)=aEX+b(a,b 为常数); (3)E(aX1+bX2)=aEX1+bEX2(a,b 为常数).
4.已知 X~B100,12,则 E(2X+3)=________. 103 [EX=100×12=50,E(2X+3)=2EX+3=103.]
5.某运动员投篮投中的概率 P=0.6.
(1)求一次投篮时投中次数 ξ 的均值;
(2)求重复 5 次投篮时投中次数 η 的均值.
[解] (1)ξ 的分布列为:
2.均值的性质 (1)若 X 为常数 C,则 EX=_C_. (2)若 Y=aX+b,其中 a,b 为常数,则 Y 也是随机变量,且 EY =E(aX+b)=__a_E_X_+__b___.
(3)常见的离散型随机变量的均值
分布名称
参数
超几何分布
N,M,n
二项分布
n,p
均值 M nN
_n_p__
思考:两点分布与二项分布有什么关系?
[母题探究 1] 本例条件不变,若 Y=2X-3, 求 EY.
高中数学离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一
高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.2 离散型随机变量的
2.3.2 离散型随机变量的方差课堂导学三点剖析一、随机变量的方差与标准差的求法【例1】 设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX.解析:由于离散型随机变量的分布列满足 (1)p i ≥0,i=1,2,3,...; (2)p 1+p 2+...+p n + (1)故⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+112101)21(2122q q q q 解得 q=1-22 故X 的分布列为∴EX=(-1)×2+0×(2-1)+1×(22-)=-2321++(-2)=1-2 DX=[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(223-)=(2-2)2×21+(2-1)3+2(223-)=2-1温馨提示解本题时,要防止机械地套用均值与方差的计算公式,即EX=(-1)×21+0×(1-2q)+1×q 2=q 2-21; DX=[-1-(q 2-21)]2×21+(q 2-21)2×(1-2q)+[1-(q 2-21)]2×q 2这是由于忽略了随机变量分布列的性质所出现的误解,求离散型随机变量的均值与方差,应明确随机变量的分布列,若分布列中的概率值是待定常数时,应先求出待定常数后,再求其均值与方差.二、两点分布、二项分布的方差【例2】 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值.思路分析:根据题意,可知本题主要考查服从二项分布的随机变量的标准差公式,所以解本题的关键就是找出几个变量之间的关系.解:设成功次数为随机变量X ,由题意可知X —B (100,p ),那么σX=)1(100p p DX -=,因为DX=100p(1-p)=100p-100p 2(0≤p≤1)把上式看作一个以p 为自变量的一元二次函数,易知当p=21时,DX 有最大值25.所以DX 的最大值为5,即当p=21时,成功次数的标准差的最大值为5. 温馨提示要求成功次数标准差的最大值,就需先建立标准差关于变量p 的函数关系式,另外要注意利用分布列的性质求出定义域0≤p≤1. 三、方差的应用【例3】 海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s ),根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量. 解:∵EX 1=0,EX 2=0 ∴EX 1=EX 2∵DX 1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5DX 2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2 ∴DX 1<DX 2由上可知,A 面大钟的质量较好. 温馨提示随机变量X 的方差的意义在于描述随机变量稳定与波动或集中与分散的状况.标准差σX=DX 则体现随机变量取值与其均值的偏差,在实际问题中,若有两个随机变量X 1、X 2,且EX 1=EX 2或EX 1与EX 2比较接近时,我们常用DX 1与DX 2来比较这两个随机变量,方差值大的,则表明X 较为离散,反之则表明X 较为集中.同样,标准差的值较大,则标明X 与其均值的偏差较大,反之,则表明X 与其均值的偏差较小. 各个击破【类题演练1】若随机事件A 在一次试验中发生的概率为2a.随机变量ξ表示在一次试验中发生的次数.求方差Dξ的最值.解析:由题意得ξ的分布列为∴Eξ=0×(1-2a)+1×2a=2a∴Dξ=(0-2a)2(1-2a)+(1-2a)22a =(1-2a)2a(2a+1-2a) =2a(1-2a)=-4[a-41]2+41 由分布列的性质得0≤1-2a≤1 且0≤2a≤1 ∴0≤a≤21∴当a=41时Dξ最大值为41; 当a=0或21时Dξ的最小值为0.【变式提升1】某射击手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ的分布列,并求出ξ的期望Eξ与方差Dξ(保留两位小数).解析:该组练习耗用的子弹数ξ为随机变量,ξ可以取值为1,2,3,4,5. ξ≈1表示一发即中,故概率为 P (ξ=1)=0.8ξ=2,表示第一发未中,第二发命中, 故P (ξ=2)=(1-0.8)×0.8=0.16;ξ=3,表示第一、二发未中,第三发命中,故P (ξ=3)=(1-0.8)2×0.8=0.032;ξ=4,表示第一、二、三发未中,第四发命中,故P (ξ=4)=(1-0.8)3×0.8=0.006 4;ξ=5,表示第一、二、三、四发未中,第五发命中,4Dξ=(1-1.25)2×0.8+(2-1.25)2×0.16+(3-1.25)2×0.032+(4-1.25)2×0.0064+(5-1.25)2×0.001 6=0.31.【类题演练2】若随机变量A 在一次试验中发生的概率为p(0<p <1),用随机变量ξ表示A 在1次试验中发生的次数. (1)求方差Dξ的最大值; (2)求ξξE D 12-的最大值. 解析:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而Eξ=0×(1-p)+1×p=p,Dξ=(0-p)2×(1-p)+(1-p)2×p=p -p 2. (1)Dξ=p -p 2=-(p-21)2+41,∵0<p <1, ∴当p=21时,Dξ取得最大值为41. (2)ξξE D 12-=)12(21)(22p p p p p +-=--, ∵0<p <1,∴2p+p1≥22. 当且仅当2p=p1,即p=22时,ξξE D 12-取得最大值2-22.【变式提升2】证明:事件在一次实验中发生的次数的方差不超过14.证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则p (ξ=0)=1-p,P(ξ=1)=p,Eξ=0×(1-p)+1×p=p,Dξ=(1-p)·(0-p)2+p(1-p)2= p(1-p)≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41. 【类题演练3】甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ与η,计算ξ、η的期望与方差,并以此分析甲、乙的技术优劣. 解析:依题意,有Eξ=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). E η=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).D ξ=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1×…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5.D η=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24.所以Eξ<Eη,说明甲的平均水平比乙高,又因为Dξ<Dη,说明甲射中的环数比较集中,比较稳定,而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 【变式提升3】现要从甲、乙两个技工中选派一个参加技术比赛,已知他们在同样的条件下乙根据以上条件,选派谁去合适?解析:Eξ1=0×0.1+1×0.5+2×0.4=1.3,Eξ2=0×0.3+1×0.3+2×0.2+3×0.2=1.3.由于Eξ1=Eξ2,所以甲技工与乙技工出现次品数的平均水平基本一致,因而还需考查稳定性.Dξ1=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41;Dξ2=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.因此Dξ1<Dξ2,所以技工乙波动较大,稳定性较差.综上所述,应选派技工甲去参加比赛.。
高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案(含解析)新人教A版选修2-
2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。
最新-2021高中数学选修23课件:第二章23231离散型随机变量的均值 精品
值,是随机变量 X 的一个固有的数字特征,不具有随机
性.
2.离散型随机变量的性质
如果 X 为(离散型)随机变量,则 Y=aX+b(其中 a,b 为常数)也是(离散型)随机变量,且 P(X=xi)=P(Y=axi+ b),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.
解析:(1)错,随机变量 X 的数学期望是一个常量. (2)错,随机变量的均值与样本的平均值是两个不同 的概念. (3)对,E(2X)=2E(X)=2×3=6. 答案:(1)× (2)× (3)√
2.已知 ξ 的分布列为:
ξ -1 0 1 2
P
1 4
311 848
则 ξ 的均值为( )
A.0
B.-1
法二 由于 Y=2X-3,
所以 Y 的分布列如下:
Y -7 -5 -3 -1 1
P
1 4
1 3Leabharlann 1 511 6 20所以
E(Y) =
(
-
7)× 14
+(-
5)×
1 3
+
(
- 3)× 15 + ( -
1)×16+1×210=-6125.
归纳升华 若给出的随机变量 ξ 与 X 的关系为 ξ=aX+b,a,b 为常数.一般思路是先求出 E(X),再利用公式 E(aX+b) =aE(X)+b 求 E(ξ).也可以利用 ξ 的分布列得到 η 的分 布列,关键由 ξ 的取值计算 η 的取值,对应的概率相等, 再由定义法求得 E(η).
防范措施:在求随机变量取各值的概率时,务必理解
各取值的实际意义,以免失误.另外,可以利用分布列的
n
性质:(1)pi≥0(i=1,2,3,…,n),(2) pi=1 来检验.
高中数学选修2-3精品课件:2.3.1 离散型随机变量的均值
所以X的分布列为
X 10 20 100 -200
P
3 8
3 8
1 8
1 8
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则 P(A1)=P(A2)=P(A3)=P(X=-200)=18. 所以“三盘游戏中至少有一次出现音乐”的概率为 1-P(A1A2A3)=1-(18)3=1-5112=551112. 因此,玩三盘游戏至少有一盘出现音乐的概率是551112.
且事件 E 与 F,E 与 F , E 与 F, E 与 F 都相互独立.
(1)记 H={至少有一种新产品研发成功},则 H = E F , 于是 P( H )=P( E )P( F )=13×25=125, 故所求的概率为 P(H)=1-P( H )=1-125=1135.
(2) 设 企 业 可 获 利 润 为 X 万 元 , 则 X 的 可 能 取 值 为
(1)设每盘游戏获得的分数为X,求X的分布列.
解 X可能的取值为10,20,100,-200.
根据题意,有 P(X=10)=C13×(21)1×(1-21)2=83, P(X=20)=C23×(21)2×(1-21)1=83, P(X=100)=C33×(12)3×(1-12)0=18, P(X=-200)=C03×(21)0×(1-21)3=81.
1234
现按表中对阵方式出场胜队得1分,负队得0分,设A队,B 队最后所得总分分别为X,Y. (1)求X,Y的分布列; 解 X的可能取值分别为3,2,1,0. P(X=3)=23×25×25=785,
P(X=2)=23×25×35+13×25×25+23×35×25=2785, P(X=1)=23×35×35+13×25×35+13×35×25=25, P(X=0)=13×35×35=235; 根据题意X+Y=3,
高中数学选修2-3 (57)
第二章随机变量及其分布2.3 离散型随机变量的均值与方差2.3.2 离散型随机变量的方差课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首学习目标:1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.(重点)3.掌握方差的性质以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.(难点)课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[自 主 预 习·探 新 知]1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为 X x 1 x 2 … x i … x n Pp 1p 2…p i…p n课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首则__________描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=_______________为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D X 为随机变量X 的标准差.(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于____的平均程度.方差或标准差越小,则随机变量偏离于均值的____________.(x i -E (X ))2i =1nx i -E X 2p i均值 平均程度越小课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个_____,样本的方差则是_________,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.3.服从两点分布与二项分布的随机变量的方差(1)若X 服从两点分布,则D (X )=________; (2)若X ~B (n ,p ),则D (X )=________. 4.离散型随机变量方差的线性运算性质设a ,b 为常数,则D (aX +b )=________. 常数 随机变量 p (1-p ) np (1-p ) a 2D (X )课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)离散型随机变量¾的期望E (¾)反映了¾取值的概率的平均值; ( ) (2)离散型随机变量¾的方差D (¾)反映了¾取值的平均水平; ( ) (3)离散型随机变量¾的方差D (¾)反映了¾取值的波动水平. ( ) (4)离散型随机变量的方差越大,随机变量越稳定.()课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解析] (1)× 因为离散型随机变量¾的期望E (¾)反映了¾取值的平均水平.(2)× 因为离散型随机变量¾的方差D (¾)反映了随机变量偏离于期望的平均程度.(3)√ 由方差的意义可知.(4)× 离散型随机变量的方差越大,说明随机变量的稳定性越差,方差越小,稳定性越好.[答案] (1)× (2)× (3)√ (4)×课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.若随机变量X 服从两点分布,且在一次试验中事件A 发生的概率P =0.5,则E (X )和D (X )分别为( )【导学号:95032190】A .0.25 0.5B .0.5 0.75C .0.5 0.25D .1 0.75C [E (X )=0.5,D (X )=0.5×(1-0.5)=0.25.]课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首3.已知随机变量¾,D (¾)=19,则¾的标准差为________. 13[¾的标准差D ¾ =19=13.]课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首4.已知随机变量¾的分布列如下表: ¾ -1 0 1 P121316则¾的均值为________,方差为________.【导学号:95032191】-13 59 [均值E (¾)=x 1p 1+x 2p 2+x 3p 3=(-1)×12+0×13+1×16=-13; 方差D (¾)=(x 1-E (¾))2·p 1+(x 2-E (¾))2·p 2+(x 3-E (¾))2·p 3=59.]课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[合 作 探 究·攻 重 难]求随机变量的方差与标准差已知X 的分布列如下: X-1 0 1 P1214a(1)求X 2的分布列; (2)计算X 的方差;(3)若Y =4X +3,求Y 的均值和方差.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] (1)由分布列的性质,知12+14+a =1,故a =14,从而X 2的分布列为X 20 1 P1434课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(2)法一:(直接法)由(1)知a =14,所以X 的均值E (X )=(-1)×12+0×14+1×14=-14.故X 的方差D (X )= -1+142×12+ 0+142×14+1+142×14=1116.法二:(公式法)由(1)知a =14,所以X 的均值E (X )=(-1)×12+0×14+1×14=-14,X 2的均值E (X 2)=0×14+1×34=34,所以X 的方差D (X )=E (X 2)-[E (X )]2=1116.(3)因为Y =4X +3,所以E (Y )=4E (X )+3=2,D (Y )=42D (X )=11.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[规律方法] 方差的计算需要一定的运算能力,公式的记忆不能出错!在随机变量X 2的均值比较好计算的情况下,运用关系式D (X )=E (X 2)-[E (X )]2不失为一种比较实用的方法.另外注意方差性质的应用,如D (aX +b )=a 2D (X ).课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[跟踪训练]1.已知·的分布列为: · 0 10 20 50 60 P1325115215115(1)求·的方差及标准差; (2)设Y =2·-E (·),求D (Y ).课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] (1)∵E (·)=013+10×25+20×115+50×215+60×115=16, D (·)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D · =8 6. (2)∵Y =2·-E (·), ∴D (Y )=D (2·-E (·)) =22D (·)=4×384=1 536.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首两点分布与二项分布的方差设X 的分布列为P (X =k )=C k 513k235-k(k =0,1,2,3,4,5),则D (3X )=()【导学号:95032192】A .10B .30C .15D .5课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首A[由P (X =k )=C k5 13k235-k(k =0,1,2,3,4,5)可知随机变量服从二项分布X ~B5,13所以D (X )=5×13× 1-13=109,D (3X )=9D (X )=10.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首母题探究:1.(变换条件、改变问法)本例题改为随机变量X 服从二项分布B (n ,p ),且E (3X +2)=9.2,D (3X +2)=12.96,求二项分布的参数n ,p 的值.[解] 由E (3X +2)=9.2,D (3X +2)=12.96及X ~B (n ,p )知E 3X +2 =3E X +2,*D 3X +2 =9D X , 即3np +2=9.2*9np 1-p =12.96,解得n =6*p =0.4, 所以二项分布的参数n =6,p =0.4.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.(改变问法)本例题条件不变,求E (3X +2).[解] 由例题可知X ~B 5,13所以E (X )=5×13=53. 故E (3X +2)=3E (X )+2=7.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[规律方法] 求离散型随机变量的均值与方差的关注点 (1)写出离散型随机变量的分布列. (2)正确应用均值与方差的公式进行计算.(3)对于二项分布,关键是通过题设环境确定随机变量服从二项分布,然后直接应用公式计算.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首均值、方差的实际应用[探究问题]1.A ,B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表:A 机床次品数X 10 1 2 3 P 0.7 0.2 0.060.04B 机床 次品数X 20 1 2 3 P0.80.060.040.10课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[提示] E (X 1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44. E (X 2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.在探究1中,由E (X 1)和E (X 2)的值能比较两台机床的产品质量吗?为什么?[提示] 不能.因为E (X 1)=E (X 2).3.在探究1中,试想利用什么指标可以比较A 、B 两台机床加工质量? [提示] 利用样本的方差.方差越小,加工的质量越稳定.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首 甲、乙两名射手在一次射击中得分为两个相互独立的随机变量¾,·,已知甲、乙两名射手在每次射击中射中的环数大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a ,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求¾,·的分布列;(2)求¾,·的均值与方差,并以此比较甲、乙的射击技术.【导学号:95032193】[思路探究] (1)由分布列的性质先求出a 和乙射中7环的概率,再列出¾,·的分布列.(2)要比较甲、乙两射手的射击水平,需先比较两射手击中环数的均课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] (1)由题意得:0.5+3a +a +0.1=1,解得a =0.1.因为乙射中10,9,8环的概率分别为0.3,0.3,0.2.所以乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.所以¾,·的分布列分别为 ¾10 9 8 7 P 0.5 0.3 0.1 0.1 · 10 9 8 7 P0.30.30.20.2课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(2)由(1)得:E (¾)=10×0.5+9×0.3+8×0.1+7×0.1=9.2; E (·)=10×0.3+9×0.3+8×0.2+7×0.2=8.7;D (¾)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;D (·)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.由于E (¾)>E (·),D (¾)<D (·),说明甲射击的环数的均值比乙高,且成绩比较稳定,所以甲比乙的射击技术好.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[规律方法] 利用均值和方差的意义分析解决实际问题的步骤 1.比较均值.离散型随机变量的均值反映了离散型随机变量取值的平均水平,因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高.2.在均值相等的情况下计算方差.方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.通过计算方差,分析一下谁的水平发挥相对稳定.3.下结论.依据方差的几何意义做出结论.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[跟踪训练]2.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:甲:分数X 80 90 100 概率P 0.20.60.2乙:分数Y 80 90 100 概率P0.40.20.4试分析两名学生的成绩水平.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] 因为E (X )=80×0.2+90×0.6+100×0.2=90,D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, E (Y )=80×0.4+90×0.2+100×0.4=90,D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80,即E (X )=E (Y ),D (X )<D (Y ),所以甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[当 堂 达 标·固 双 基]1.设随机变量X ~B8,12,则D12X 的值等于( )A .1B .2C .12D .4C [随机变量X 服从二项分布所以D 12X =14D (X )=14×8×12×1-12=12]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.已知X 的分布列为X -1 0 1 P0.50.30.2则D (X )等于( )【导学号:95032194】A .0.7B .0.61C .-0.3D .0B [E (X )=-1×0.5+0×0.3+1×0.2=-0.3,D (X )=0.5×(-1+0.3)2+0.3×(0+0.3)2+0.2×(1+0.3)2=0.61.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首3.已知随机变量X ,D (10X )=1009,则X 的方差为________. 19 [D (10X )=100D (X )=1009, ∴D (X )=19.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首4.有两台自动包装机甲与乙,包装质量分别为随机变量X 1,X 2,已知E (X 1)=E (X 2),D (X 1)>D (X 2),则自动包装机________的质量较好.乙 [因为E (X 1)=E (X 2),D (X 1)>D (X 2),故乙包装机的质量稳定.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首5.为防止风沙危害,某地政府决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,已知各株沙柳成活与否是相互独立的,成活率为p ,设X 为成活沙柳的株数,已知E (X )=4,D (X )=43,求n ,p 的值.【导学号:95032195】[解] 由题意知,X 服从二项分布B (n ,p ),由E (X )=np =4,D (X )=np (1-p )=43, 得1-p =13, ∴p =2,n =6.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首课时分层作业(十五)点击上面图标进入…谢谢观看。
人教版高中数学选修2-3课件:2.3.1 离散型随机变量的均值
当堂自测
[答案] A
当堂自测
3.设随机变量X~B(3,0.2),则
E(2X+1)= ( )
A.0.6
B.1.2
C.2.2
D.3.2
[答案] C
[解析] ∵随机变量 X~B(3,0.2),∴E(X)=3×0.2=0.6,∴E(2X+1)=2E(X)+1 =2×0.6+1=2.2,故选C.
当堂自测
故选D. (2)设该学生在这次测验中选对的题数 为X,该学生在这次测验中成绩为Y,则 X~B(20,0.9),Y=5X.由二项分布的均值公
式得E(X)=20×0.9=18.由随机变量均值 的线性性质得E(Y)=E(5X)=5×18=90.
考点类析
考点三 利用随机变量均值的性质解决问题
[导入] 若X是随机变量,且Y=aX+b,其中a,b为常数,试分析随机变量Y的均值E(Y)和E(X) 的关系.
考点一 随机变量X均值定义的应用
ξ012345 P 2x 3x 7x 2x 3x x
[答案] C
考点类析
例2 袋中有4只红球、3只 黑球,现从袋中随机取出4 只球,设取到1只红球得2分, 取得1只黑球得1分,试求得 分X的均值.
X5678 P
考点类析
考点二 两点分布、二项分布的均值
例3 (1)设X~B(40,p),且E(X)=16,则p=
的均值. (2)随机变量的均值是常数,其值不随X的变化而变化.
预习探究
[探究] 随机地抛掷一枚骰子,怎样求向上的点数X的均值?
X123456 P
预习探究
知识点二 离散型随机变量均值的性质
若Y=aX+b(a,b为常数),则E(Y)=E(aX+b)=
人教版高中数学选修2-3第二章2.3.2离散型随机变量的方差
导入新课复习回顾1 .离散型随机变量 X 的均值 均值反映了离散型随机变量取值的平均水平.2 . 两种特殊分布的均值(1)若随机变量X 服从两点分布,则EX=p.(2)若X~B(n ,p) ,则EX=np.ni ii=1EX =x p数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.2.3.2离散型随机变量的方差教学目标知识与技能(1)了解离散型随机变量的方差、标准差的意义;(2)会根据离散型随机变量的分布列求出方差或标准差.过程与方法了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1-p)”,并会应用上述公式计算有关随机变量的方差 .情感、态度与价值观承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值.教学重难点重点离散型随机变量的方差、标准差.难点比较两个随机变量的期望与方差的大小,从而解决实际问题 .思考要从两名同学中挑选出一名,代表班级参加射击比赛. 根据以往的成绩记录,第一名同学击中目标靶的环数X1的分布列为X1 5 6 7 8 9 10P 0.03 0.09 0.20 0.31 0.27 0.10第二名同学击中目标靶的环数X2的分布列为X2 5 6 7 8 9P 0.01 0.05 0.20 0.41 0.33根据已学知识,可以从平均中靶环数来比较两名同学射击水平的高低,即通过比较X1和X2的均值来比较两名同学射击水平的高低. 通过计算E(X1)=8,E(X2)=8,发现两个均值相等,因此只根据均值不能区分这两名同学的射击水平.思考除平均中靶环数外,还有其他刻画两名同学各自射击特点的指标吗?图(1)(2)分别表示X 1和X 2的分布列图. 比较两个图形,可以发现,第二名同学的射击成绩更集中于8环,即第二名同学的射击成绩更稳定. O 5 6 7 10 9 8 P 1X 0.10.20.30.40.5O 5 6 7 9 8 P 2X 0.1 0.2 0.3 0.4 0.5 (1) (2) 怎样定量刻画随机变量的稳定性?1.方差设离散型随机变量X 的分布列为知识要点X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E(X))2描述了x i (i=1,2,…,n)相对于均值E(X)的偏离程度.为这些偏离程度的加权平均,刻画了随机变量 X 与其均值 EX 的平均偏离程度.我们称 DX 为随机变量 X 的方差(variance). 其算术平方根 为随机变量X 的标准差(standard deviation). 记为 n2i ii=1DX =(x -EX)p DX σX 随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.说明:随机变量集中的位置是随机变量的均值;方差或标准差这种度量指标是一种加权平均的度量指标.思考随机变量的方差与样本的方差有何联系与区别?随机变量的方差是常数,而样本的方差是随着样本的不同而变化的,因此样本的方差是随机变量.对于简单随机样本,随着样本容量的增加,样本方差越来越接近总体方差,因此常用样本方差来估计总体方差.现在,可以用两名同学射击成绩的方差来刻画他们各自的特点,为选派选手提供依据.由前面的计算结果及方差的定义,得∑102DX=(i-8)P(X=i)=1.50,11i=5∑92DX=(i-8)P(X=i)=0.8222i=5因此第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于8环左右.知识要点2.几点重要性质(1)若X服从两点分布,则D(X)=p(1-p); (2)若X~B(n,p),则D(X)=np(1-p); (3)D(aX+b)=a2D(X).例题1A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:0 1 2 3次品数ξ1概率P 0.7 0.2 0.06 0.040 1 2 3次品数ξ1概率P 0.8 0.06 0.04 0.10问哪一台机床加工质量较好?解:Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44, Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44. 它们的期望相同,再比较它们的方差Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2 ×0.06+(3-0.44)2×0.04=0.6064,Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2 ×0.04+(3-0.44)2×0.10=0.9264.∴Dξ1< Dξ2 故A 机床加工较稳定、质量较好.例题2有甲乙两个单位都愿意聘用你,而你能获得如下信息:/元1200 1400 1600 1800 甲单位不同职位月工资X10.4 0.3 0.2 0.1获得相应职位的概率P1乙单位不同职位月工资X/元1000 1400 1800 220020.4 0.3 0.2 0.1获得相应职位的概率P2根据工资待遇的差异情况,你愿意选择哪家单位?解:根据月工资的分布列,利用计算器可算得1EX =12000.4 + 1 4000.3 + 16000.2 + 18000.1 =1400⨯⨯⨯⨯2221DX = (1200-1400) 0. 4 + (1400-1400 )0.3 + (1600 -1400 )0.2⨯⨯⨯2+(1800-1400) 0. 1= 40 000⨯2EX =1 0000.4 +1 4000.3 + 1 8000.2 + 22000.1 = 1400⨯⨯⨯⨯2222DX = (1000-1400)0. 4+(1 400-1400)0.3 + (1800-1400)0.2⨯⨯⨯2+ (2200-1400 )0.l = 160000 .⨯分析:因为 ,所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.1212EX =EX ,DX <DX例题3有同寝室的四位同学分别写一张贺年卡,先集中起来,然后每人去拿一张,记自己拿自己写的贺年卡的人数为X.(1)求随机变量的概率分布;(2)求X的数学期望和方差.4411689P(X =4)==,P(X =3)=0,P(X =2)=,P(X =1)=,P(X =0)=A 242424249861E(X)=0+1+2+30+4=124242424⨯⨯⨯⨯⨯222229861V(X)=(0-1)+(1-1)+(2-1)+(3-1)0+(4-1)=124242424⨯⨯⨯⨯⨯解:(1)因此X 的分布列为(2) X 0 1 23 4 P 9/24 8/24 6/24 0 1/24例题3有一庄家为吸引顾客玩掷骰子游戏,以便自己轻松获利,以海报形式贴出游戏规则:顾客免费掷两枚骰子,把掷出的点数相加,如果得2或12,顾客中将30元;如果得3或11,顾客中将20元;如果得4或10,顾客中将10元;如果得5或9,顾客应付庄家10元;如果得6或8,顾客应付庄家20元;如果得7,顾客应付庄家30元.试用数学知识解释其中的道理.解 :设庄家获利的数额为随机变量,根据两枚骰子的点数之和可能的结果以及游戏规则可得随机变量的概率分布为:X -30 -20 -10 10 20 30 P 2/36 4/36 6/36 8/36 10/36 6/36 246810665 E(X)=(-30)+(-20)+(-10)+10+20+30=⨯⨯⨯⨯⨯⨯3636363636369因此,顾客每玩36人次,庄家可获利约260元,但不确定顾客每玩36人次一定会有些利润;长期而言,庄家获利的均值是这一常数,也就是说庄家一定是赢家.1.熟记方差计算公式课堂小结n 2i i i=1DX =(x -EX)p 2=E(X-EX)22=EX -(EX)2. 三个重要的方差公式(1)若 X 服从两点分布,则 (2)若 ,则 X ~B(n,p)DX =np(1-p)DX =p(1-p)2(3)D(aX +b)=a DX3.求离散型随机变量X的方差、标准差的一般步骤:①理解X 的意义,写出X 可能取的全部值;②求X取各个值的概率,写出分布列;③根据分布列,由期望的定义求出EX;④根据方差、标准差的定义求出、σXDX高考链接1. (2005年天津)某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:投资成功投资失败192次8次则该公司一年后估计可获收益的期望是_____(元).[答案]4760提示:分布列为ξ0.6 -2.5P 192/200 8/192故1928Eξ=0.6-2.5=4760()200200元⨯⨯2.(2002年天津)甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:5t/hm2)表所示:品种第一年第二年第三年第四年第五年甲9.8 9.9 10.1 10 10.2 乙9.4 10.3 10.8 9.7 9.8则其中产量比较稳定的小麦品种是_______.[答案]甲种3.(2004年湖北)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用,单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率分别为0.9和0.85,若预防方案允许甲、乙两种预防措施单独采用,联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值)[解析]①不采用预防措施时,总费用即损失期望值为400×0.3=120(万元);②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.l=40(万元),所以总费用为45+40=85(万元);③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元);继续④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.1.填空课堂练习(1)已知x~B(100,0.5),则Ex=___,Dx=____,sx=___. E(2x-1)=____, D(2x-1)=____, s(2x-1)=_____. 50 25 59910010(1)已知随机变量x 的分布列如上表,则E x 与D x 的值为( )A. 0.6和0.7B. 1.7和0.3C. 0.3和0.7D. 1.7和0.21(2)已知x~B(n ,p),E x =8,D x =1.6,则n , p 的值分别是( )A .100和0.08;B .20和0.4;C .10和0.2;D .10和0.8 2.选择 √ x1 2 P 0.3 0.7√3.解答题(1)一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3①当ξ=0时,即第一次取得正品,试验停止,则P (ξ=0)= ②当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则P (ξ=1)= 43129=449119123=⨯③当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则P (ξ=2)= ④当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则 P (ξ=3)= 所以,Eξ= 3299=121110220⨯⨯32191=1211109220⨯⨯⨯399130+1+2+3=44422022010⨯⨯⨯⨯继续(2)有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξ~B(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直接进行计算.解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξ~ B(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.98.习题解答1. E(X)=0×0.1+1×0.2+2×0.4+3×0.2+4×0.1=2. D(X)=(0-2)2×0.1+(1-2)2×0.2+(2-2)2×0.4+(3- 2)2×0.2+(4-2)2×0.1=1.2.D(X) 1.095.2. E(X)=c×1=c,D(X)=(c-c)2×1=0.3. 略.。
高中数学第二章随机变量及其分布2.3.2离散型随机变量的方差学案新人教版选修2_32
2.3.2 离散型随机变量的方差[学习目标]1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差. [知识链接]1.某省运会即将举行,在最后一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下:甲运动员:7,8,6,8,6,5,8,10,7,5; 乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述数据,两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?如果你是教练,选哪位选手去参加正式比赛?答 x -甲=x -乙=7,利用样本的方差公式s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],求得: s 2甲=2.2,s 2乙=1.2.s 2甲>s 2乙,∴乙成绩较稳定,选乙参加比赛.2.随机变量的方差与样本的方差有何不同?答 样本的方差是随着样本的不同而变化的,因此它是一个随机变量,而随机变量的方差是通过大量试验得出的,刻画了随机变量X 与其均值E (X )的平均偏离程度,因此它是一个常量而非变量. [预习导引]1.离散型随机变量的方差、标准差 设离散型随机变量X 的分布列为则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑ni =1(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.我们称D (X )为随机变量X 的方差,并称其算术平方根D (X )为随机变量X 的标准差. 2.离散型随机变量方差的性质(1)设a ,b 为常数,则D (aX +b )=a 2D (X ); (2)D (c )=0(其中c 为常数).3.服从两点分布与二项分布的随机变量的方差(1)若X 服从两点分布,则D (X )=p (1-p )(其中p 为成功概率); (2)若X ~B (n ,p ),则D (X )=np (1-p ).要点一 求离散型随机变量的方差例1 甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率;(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. 解 (1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718. P (ξ=2)=23×34=12.故ξ的分布列为E (ξ)=0×19+1×718+2×12=2518,D (ξ)=(0-2518)2×19+(1-2518)2×718+(2-2518)2×12=149324,∴D (ξ)=14918. 规律方法 1.求离散型随机变量X 的方差的基本步骤:理解X 的意义,写出X 可能取的全部值 ↓写出X 取每个值的概率 ↓写出X 的分布列 ↓由均值的定义求出E (X ) ↓利用公式D (X )=∑ni =1(x i -E (X ))2p i 求值 2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (a ξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=a ξ+b 的分布列,又避免了繁杂的计算,简化了计算过程.跟踪演练1 已知X 的分布列为求:(1)E (X ),D (X );(2)设Y =2X +3,求E (Y ),D (Y ).解 (1)E (X )=-1×12+0×13+1×16=-13,D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59.(2)E (Y )=2E (X )+3=73,D (Y )=4D (X )=209.要点二 两点分布与二项分布的方差例2 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳.各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)为3,标准差D (ξ)为62. (1)求n 和p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.解 由题意知,ξ服从二项分布B (n ,p ),P (ξ=k )=C k n p k (1-p )n -k,k =0,1,…,n . (1)由E (ξ)=np =3,D (ξ)=np (1-p )=32,得1-p =12,从而n =6,p =12.ξ的分布列为(2)记“需要补种沙柳”为事件A ,则P (A )=P (ξ≤3),得P (A )=1+6+15+2064=2132,或P (A )=1-P (ξ>3)=1-15+6+164=2132.所以需要补种沙柳的概率为2132.规律方法 方差的性质:D (a ξ+b )=a 2D (ξ).若ξ服从两点分布,则D (ξ)=p (1-p ).若ξ~B (n ,p ),则D (ξ)=np (1-p ).跟踪演练2 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值. 解 设成功次数为随机变量X ,由题意可知X ~B (100,p ),则D (X )=100p (1-p ). 因为D (X )=100p (1-p )=100p -100p 2, 把上式看作一个以p 为自变量的二次函数, 易知当p =12时,D (X )有最大值为25.所以D (X )的最大值为5.即当p =12时,成功次数的标准差的值最大,最大值为5.要点三 均值与方差的综合应用例3 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (1)求ξ的分布列、期望和方差;(2)若η=a ξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解 (1)ξ的分布列为则E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5.D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (ξ),得a 2×2.75=11,得a =±2. 又E (η)=aE (ξ)+b ,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.所以⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4即为所求.规律方法 解均值与方差的综合问题时的注意事项(1)离散型随机变量的分布列、均值和方差是三个紧密联系的有机统一体,一般在试题中综合在一起考查,其解题的关键是求出分布列;(2)在求分布列时,要注意利用等可能事件、互斥事件、相互独立事件的概率公式计算概率,并注意结合分布列的性质,简化概率计算;(3)在计算均值与方差时要注意运用均值和方差的性质以避免一些复杂的计算.若随机变量X 服从两点分布、二项分布可直接利用对应公式求解.跟踪演练3 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X 表示所选3人中女生的人数. (1)求X 的分布列; (2)求X 的均值与方差;(3)求“所选3人中女生人数X ≤1”的概率. 解 (1)X 可能的取值为0,1,2. P (X =k )=C k2·C 3-k4C 36,k =0,1,2. X 的分布列(2)由(1),X 的均值与方差为E (X )=0×15+1×35+2×15=1.D (X )=(0-1)2×15+(1-1)2×35+(1-2)2×15=25.(3)由(1),“所选3人中女生人数X ≤1”的概率为P (X ≤1)=P (X =0)+P (X =1)=45.1.设随机变量X 的方差D (X )=1,则D (2X +1)的值为( ) A .2 B .3 C .4 D .5 答案 C解析 D (2X +1)=4D (X )=4×1=4.2.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D (ξ)等于( )A.158B.154C.52 D .5 答案 A解析 ξ~B (10,14),∴D (ξ)=10×14×(1-14)=158.3.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________. 答案 0.4 0.1 0.5解析 由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 4.有甲乙两个单位都愿意聘用你,而你能获得如下信息:根据工资待遇的差异情况,你愿意选择哪家单位?解根据月工资的分布列,利用计算器可算得E(X1)=1 200×0.4+1 400×0.3+1 600×0.2+1 800×0.1=1 400,D(X1)=(1 200-1 400)2×0.4+(1 400-1 400)2×0.3+(1 600-1 400)2×0.2+(1 800-1 400)2×0.1=40 000;E(X2)=1 000×0.4+1 400×0.3+1 800×0.2+2 200×0.1=1 400,D(X2)=(1 000-1 400)2×0.4+(1 400-1 400)2×0.3+(1 800-1 400)2×0.2+2 200-1 400)2×0.1=160 000.因为E(X1)=E(X2),D(X1)<D(X2),所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差D(X)或标准差越小,则随机变量X偏离均值的平均程度越小;方差越大,表明平均偏离的程度越大,说明X的取值越分散.2.求离散型随机变量X的均值、方差的步骤(1)理解X的意义,写出X的所有可能的取值;(2)求X取每一个值的概率;(3)写出随机变量X的分布列;(4)由均值、方差的定义求E(X),D(X).特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E(X)和D(X).一、基础达标1.下列说法中,正确的是( )A.离散型随机变量的均值E(X)反映了X取值的概率平均值B .离散型随机变量的方差D (X )反映了X 取值的平均水平C .离散型随机变量的均值E (X )反映了X 取值的平均水平D .离散型随机变量的方差D (X )反映了X 取值的概率平均值 答案 C2.设一随机试验的结果只有A 和A -,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( ) A .m B .2m (1-m ) C .m (m -1) D .m (1-m ) 答案 D解析 随机变量ξ的分布列为∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ). ∴故选D.3.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( )A .6B .9C .3D .4 答案 A解析 E (X )=1×13+2×13+3×13=2,∴D (X )=13×[(1-2)2+(2-2)2+(3-2)2]=23,∴D (3X +5)=9D (X )=9×23=6.4.已知X ~B (n ,p ),E (X )=8,D (X )=1.6,则n 与p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2 D .10和0.8 答案 D解析 因随机变量X ~B (n ,p ), 则E (X )=np =8,D (X )=np ·(1-p )=1.6,所以n =10,p =0.8.5.若D (ξ)=1,则D (ξ-D (ξ))=________. 答案 1解析 D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.答案 59解析 由题意得2b =a +c ①,a +b +c =1②,c -a =13③,以上三式联立解得a =16,b =13,c =12,故D (ξ)=59.7.抛掷一枚质地均匀的骰子,用X 表示掷出偶数点的次数. (1)若抛掷一次,求E (X )和D (X ); (2)若抛掷10次,求E (X )和D (X ). 解 (1)X 服从两点分布∴E (X )=p =12,D (X )=p (1-p )=12×(1-12)=14.(2)由题意知,X ~B (10,12).∴E (X )=np =10×12=5,D (X )=np (1-p )=10×12×(1-12)=52.二、能力提升8.已知随机变量ξ的分布列如下表,则ξ的标准差为( )A.3.56B. 3.2 C .3.2 D. 3.56 答案 D解析 依题意:0.4+0.1+x =1, ∴x =0.5,∴E (ξ)=1×0.4+3×0.1+5×0.5=3.2,∴D (ξ)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=3.56, ∴D (ξ)= 3.56.9.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k (13)n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8 B .12 C.29 D .16答案 A解析 由题意可知ξ~B (n ,23),∴E (ξ)=23n =24.∴n =36.∴D (ξ)=36×23×(1-23)=8.10.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量X 表示A 在1次试验中发生的次数,则方差D (X )的最大值为________. 答案 14解析 随机变量X 的所有可能取值为0,1,由题意,得X 的分布列为从而E (X )=0×(1-p )+1×p =p ,D (X )=(0-p )2×(1-p )+(1-p )2×p =p -p 2.D (X )=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,因为0<p <1,所以当p =12时,D (X )取得最大值,最大值为14.11.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).解 这3张卡片上的数字之和为ξ,这一变量的可能取值为6,9,12.ξ=6表示取出的3张卡片上均标有2, 则P (ξ=6)=C 38C 310=715.ξ=9表示取出的3张卡片上两张标有2,一张标有5, 则P (ξ=9)=C 28C 12C 310=715.ξ=12表示取出的3张卡片上一张标有2,两张标有5, 则P (ξ=12)=C 18C 22C 310=115.∴ξ的分布列为∴E (ξ)=6×715+9×715+12×115=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.12.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示: 甲:乙:试分析两名学生的成绩水平.解 ∵E (X )=80×0.2+90×0.6+100×0.2=90,D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,E (Y )=80×0.4+90×0.2+100×0.4=90,D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80,∴E (X )=E (Y ),D (X )<D (Y ),∴甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.三、探究与创新13.(2013·北京理)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解设A i表示事件“此人于3月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=113,且A i∩A j=∅(i≠j).(1)设B为事件“此人到达当日空气重度污染”,则B=A5∪A8,所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=413,P(X=2)=P(A1∪A2∪A12∪A13)=P(A1)+P(A2)+P(A12)+P(A13)=413,P(X=0)=1-P(X=1)-P(X=2)=5 13,所以X的分布列为故X的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.。
2.3.2 人教A版数学选修2-3 第2章 随机变量及其分布
2.3.2 离散型随机变量的方差、标准差填一填1.(1)定义:设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑i =1n(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.(2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.3.服从两点分布与二项分布的随机变量的方差 (1)若X 服从两点分布,则D (X )=p (1-p ); (2)若X ~B (n ,p ),则D (X )=np (1-p ).4.离散型随机变量方差的线性运算性质设a,b为常数,则D(aX+b)=a2D(X).判一判判断(1.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值.(×)2.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平.(×)3.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平.(√)4.离散型随机变量的方差越大,随机变量越稳定.(×)5.若a是常数,则D(a)=0.(√)6.若随机变量X服从两点分布,且成功的概率p=0.5,则D(X)为0.5.(×)7.牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于0.196.(√)8.若X为随机变量则D(X-D(X))=D(X).(√)想一想1.提示:随机变量X的方差和标准差都反映了随机变量X取值的稳定与波动,集中与离散的程度,D(X)(或D(X))越小,稳定性越好,波动越小,显然D(X)≥0(D(X)≥0).2.离散型随机变量的方差与标准差的单位相同吗?提示:不同,方差的单位是随机变量单位的平方;标准差与随机变量本身有相同的单位.3.随机变量的方差与样本的方差有何联系与区别?提示:样本的方差是随着样本的不同而变化的,因此它是一个变量,而随机变量的方差是通过大量试验得出的,刻画了随机变量X 与其均值E (X )的平均偏离程度,因此它是一个常数(量).对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体的方差.4.决策问题中如何运用均值与方差?提示:离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先计算均值,看谁的平均水平高,然后再计算方差,分析谁的水平发挥相对稳定.当然不同的情形要求不同,应视情况而定。
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分
所以P(X=0)=CC06C13034=310,P(X=1)=CC16C13024=330, P(X=2)=CC26C13014=12,P(X=3)=CC36C13004=130. 所以X的概率分布为:
X
0
1
2
3
P
1 30
3 10
1
1
2
6
(2)由(1)知他能及格的概率为P(X=2)+P(X=3)=
4.从4名男生和2名女生中选3人参加演讲比赛,则 所选3人中女生人数不超过1人的概率是________.
解析:设所选女生人数为X,则X服从超几何分布, 其中N=6,M=2,n=3,
则P(X≤1)=P(X=0)+P(X=1)=CC02C36 34+CC12C36 24=45. 答案:45
5.在掷一枚图钉的随机试验中,令X=
复习课件
高中数学 第二章 随机变量及其分布 2.1 离散型随机变量及其分布列 2.1.2 第2课时 两点分布与超几何分布同步课件 新人教A版选修2-3
1
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.2 离散型随机变量的分布列 第 2 课时 两点分布与超几何分布
[学习目标] 1.理解两点分布,并能进行简单的应用 (重点). 2.理解超几何分布及其推导过程,并能进行简 单的应用(重点、难点).
X0
1 …M
P
C0MCnN--0M CnN
C1MCnN--1M CnN
…
CmMCnN--mM CnN
如果随机变量 X 的分布列为超几何分布列,则称随
机变量 X 服从超几何分布.
温馨提示 两点分布的随机变量 X 只能取 0 和 1,否 则,只取两个值的分布不是两点分布.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.2 离散型随机变量的方差
课后训练
一、选择题
1.设随机变量ξ~B(n,p),且E(ξ)=1.6,D(ξ)=1.28,则( )
A.n=8,p=0.2 B.n=4,p=0.4
C.n=5,p=0.32 D.n=7,p=0.45
2.设随机变量X的分布列为P(X=k)=p k(1-p)1-k(k=0,1,0<p<1),则E(X)和D(X)的值分别为( )
A.0和1 B.p和p2
C.p和1-p D.p和(1-p)p
3.已知ξ的分布列为
若η=2ξ+2,则D(η)
A.
1
3
B.
5
9
C.
10
9
D.
20
9
4.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B(10,0.6),则E(η)和D(η)的值分别是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
5.已知A1,A2为两所高校举行的自主招生考试,某同学参加每所高校的考试获得通过
的概率均为1
2
,该同学一旦通过某所高校的考试,就不再参加其他高校的考试,设该同学
通过高校的个数为随机变量X,则D(X)=( )
A.
3
16
B.
5
4
C.25
64
D.
19
64
二、填空题
6.若随机变量ξ
若E(ξ)=1.1,则D(ξ)
7.随机变量ξ
其中a,b,c成等差数列.若E(ξ)=
3
,则D(ξ)的值是______.
三、解答题
8.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取1个,并且取出不再放回,若以ξ表示取出次品的个数,求ξ的分布列、期望值及方差.9.(2012湖北高考,理20)根据以往的经验,某工程施工期间的降水量X(单位:mm)对
0.3,0.7,0.9.求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.
10.(2013浙江高考,理19)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;
(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分
数.若E(η)=5
3
,D(η)=
5
9
,求a∶b∶c.
参考答案
1答案:A 解析:由已知
1.6,
(1) 1.28,
np
np p
=
⎧
⎨
-=
⎩
解得
8,
0.2.
n
p
=
⎧
⎨
=
⎩
2答案:D 解析:由分布列的表达式知随机变量X服从两点分布,所以E(X)=p,D(X)=(1-p)p.
3答案:D 解析:E(ξ)=-1×1
2
+0×
1
3
+1×
1
6
=-
1
3
,D(ξ)=
5
9
,D(η)=D(2ξ
+2)=4D(ξ)=20
9
.
4答案:B 解析:由已知E(ξ)=10×0.6=6,D(ξ)=10×0.6×0.4=2.4.∵ξ+η=8,∴η=8-ξ.
∴E(η)=-E(ξ)+8=2,D(ξ)=(-1)2D(ξ)=2.4.
5答案:A 解析:由已知X的取值可能为0,1.
P(X=0)=111
224
⨯=,P(X=1)=
1113
2224
+⨯=,
∴E(X)=0×1
4
+1×
3
4
=
3
4
,
D(X)=
91133 16416416
⨯+⨯=.
6答案:0.49 解析:由E(ξ)=0×1
5
+1×
1
2
+x×
3
10
=1.1,解得x=2,可得D(ξ)
=(0-1.1)2×1
5
+(1-1.1)2×
1
2
+(2-1.1)2×
3
10
=0.49.
7答案:5
9
解析:根据已知条件,得
1,
2,
1
,
3
a b c
b a c
a c
⎧
⎪++=
⎪
=+
⎨
⎪
⎪-+=
⎩
解得
1
3
b=,
1
6
a=,
1
2
c=,
∴D(ξ)=
222 1111115 101
6333239⎛⎫⎛⎫⎛⎫
⨯--+⨯-+⨯-=
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
.
8答案:
解:ξ的可能值为0,1,2,
P(ξ=0)=
03
210
3
12
C C6
C11
=;
P(ξ=1)=
12
210
3
12
C C9
C22
=;
P(ξ=2)=
21
210
3
12
C C1
C22
=.
∴ξ的分布列为
∴E(ξ)=0×6
11
+1×
9
22
+2×
1
22
=
1
2
,
D(ξ)=
222
16191139915 012
21122222222888844⎛⎫⎛⎫⎛⎫
-⨯+-⨯+-⨯=++=
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
.
9答案:
解:由已知条件和概率的加法公式有:
P(X<300)=0.3,
P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,
P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2.
P(X≥900)=1-P(X<900)=1-0.9=0.1.
所以Y的分布列为
于是,E(Y)
D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.
答案:由概率的加法公式,P(x≥300)=1-P(X<300)=0.7,
又P(300≤x<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.
由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)=
(300900)0.66 (300)0.77
P X
P X
≤<
==
≥
.
故在降水量X至少是300 mm的条件下,工期延误不超过6天的概率是6
7
.
10答案:
解:由题意得ξ=2,3,4,5,6.
故P(ξ=2)=331 664⨯
=
⨯
,
P(ξ=3)=2321 663⨯⨯
=
⨯
,
P(ξ=4)=231225
6618⨯⨯+⨯
=
⨯
,
P(ξ=5)=2211 669⨯⨯
=
⨯
,
P(ξ=6)=111 6636⨯
=
⨯
,
所以ξ的分布列为
答案:由题意知
所以E(η)=
a b c
+++
a b c
++
+
a b c
++
=
3
,
D(η)=
222
5555 123
3339
a b c
a b c a b c a b c
⎛⎫⎛⎫⎛⎫
-⋅+-⋅+-⋅=
⎪ ⎪ ⎪
++++++
⎝⎭⎝⎭⎝⎭
,
化简得
240,
4110.
a b c
a b c
--=
⎧
⎨
+-=⎩
解得a=3c,b=2c,故a∶b∶c=3∶2∶1.。