串联型稳压电源

合集下载

串联型直流稳压电源电路电容作用

串联型直流稳压电源电路电容作用

串联型直流稳压电源电路电容作用串联型直流稳压电源电路是一种常见的电源电路,它通过串联电容来实现稳压功能。

电容在直流稳压电路中发挥着重要的作用,它能够提供滤波、稳压和储能功能,确保电源输出的稳定性和可靠性。

首先,电容在直流稳压电路中具有滤波功能。

在电源输入端的电容会平滑输入电压的波动,使得电源输出的直流电压更加稳定。

当电源电压波动时,电容可以储存电荷并在电源电压下降时释放电荷,从而提供稳定的电压输出。

电容的电荷储存特性使得电源电压的纹波得到有效的滤波,减小电源电压的波动幅度。

其次,电容在直流稳压电路中起到稳压的作用。

电容的电流和电压之间的关系可以用电容的电压-电荷公式表示,即Q=CV,其中Q表示电容器的电荷,C表示电容器的电容,V表示电容器的电压。

电容的电压与电压源电压之差(即输入电压和输出电压之差)成反比。

当输入电压上升时,电容会充电,从而增加电容器的电压;当输入电压下降时,电容会放电,从而减小电容器的电压。

通过选择合适的电容容值,可以实现对电压的稳定调节,确保输出电压的稳定性。

此外,电容还可以提供短时间的电源输出能力。

在电源电路中,电容能够储存电荷,当电源电压突然下降或负载电流突然增大时,电容可以迅速释放储存的电荷,提供额外的电流支持,保证电源输出的稳定性。

这在某些需要短时间高电流输出的电子设备中非常重要,如电动机的启动、电子电路的开关动作等。

总的来说,电容在串联型直流稳压电源电路中具有滤波、稳压和储能的作用。

它能够平滑电源输入电压的波动,提供稳定的电压输出;通过电容的电压-电荷关系,实现电压的稳定调节;同时,电容还能够提供短时间的电源输出能力,保证电源电压的稳定性。

在设计电源电路时,选择合适的电容容值和类型是非常重要的,它们会直接影响电源电路的稳定性和性能。

需要注意的是,在使用电容时要合理选择电容的额定电压和容值,以免超过电容的额定值导致损坏。

此外,电容的极性也需要注意,要按照电容的极性标记正确连接,否则可能会引起电容的烧毁或电路的故障。

串联稳压电路的分析

串联稳压电路的分析

简易串联稳压电源1、原理分析图4-1-1是简易串联稳压电源,T1是调整管,D1是基准电压源,R1是限流电阻,R2是负载。

由于T1基极电压被D1固定在UD1,T1发射结电压(UT1)BE在T1正常工作时基本是一个固定值(一般硅管为0.7V,锗管为0.3V),所以输出电压UO=UD1-(UT1)BE。

当输出电压远大于T1发射结电压时,可以忽略(UT1)BE,则UO≈UD1。

下面我们分析一下建议串联稳压电源的稳压工作原理:假设由于某种原因引起输出电压UO降低,即T1的发射极电压(UT1)E降低,由于UD1保持不变,从而造成T1发射结电压(UT1)BE上升,引起T1基极电流(IT1)B上升,从而造成T1发射极电流(IT1)E被放大β倍上升,由晶体管的负载特性可知,这时T1导通更加充分管压降(UT1)CE将迅速减小,输入电压UI更多的加到负载上,UO得到快速回升。

这个调整过程可以使用下面的变化关系图表示:UO↓→(UT1)E↓→UD1恒定→(UT1)BE↑→(IT1)B↑→(IT1)E↑→(UT1)CE↓→UO↑当输出电压上升时,整个分析过程与上面过程的变化相反,这里我们就不再重复,只是简单的用下面的变化关系图表示:UO↑→(UT1)E↑→UD1恒定→(UT1)BE↓→(IT1)B↓→(IT1)E↓→(UT1)CE↑→UO↓这里我们只分析了输出电压UO降低的稳压工作原理,其实输入电压UI降低等其他情况下的稳压工作原理都与此类似,最终都是反应在输出电压UO降低上,因此工作原理大致相同。

从电路的工作原理可以看出,稳压的关键有两点:一是稳压管D1的稳压值UD1 要保持稳定;二是调整管T1要工作在放大区且工作特性要好。

其实还可以用反馈的原理来说明简易串联稳压电源的工作原理。

由于电路是一个射极输出器,属于电压串联负反馈电路,电路的输出电压为UO=(UT1)E≈(UT1)B,由于(UT1)B保持稳定,所以输出电压UO也保持稳定。

串联稳压电路

串联稳压电路

稳压电路稳压电源是电子电路设计中必不可少的一部分,它的主要作用是为后期的工作提供一个稳定平时的直流电。

稳压电源发展到今天已经出现多种多样的形式。

随着现代的电气设备对电压要求的提高,因此也就更加需要一个比较可靠的电源来供给电力。

在这样的情况下,稳压电源电路也得到了很大的改进和发展。

并且出现了多种形式的电源形态。

这种带有数字显示的电源。

可以根据人们的不同需要输出不同的电压电流。

往往功率高达几百瓦。

稳压电源电路板这种电源采用固定输出的方式,往往可以提供很大的功率,和多种不同电源等级的输出。

他镂空的设计为电路板的散热提供了更加良好的条件。

因为它的高可靠性,和低廉的成本,被广泛应用在,对电压,对电流,要求比较高的场合。

要想对稳压电源彻底的了解,我们必须从最简单的电路开始一步一步分析,就能够知道稳压电源的,基本工作原理。

下面我们来谈一谈稳压电路的基本构成和原理。

下面我们就来讲一讲最简单的三极管单管稳压电路的原理和结构。

我们通常所用的三极管有硅管和锗管两种,硅管的应用范围会更广泛一些。

l一、简易串联稳压电源1、原理分析图1图1是简易串联稳压电源,T1是调整管,D1是基准电压源,R1是限流电阻,R2是负载由于T1基极电压被D1固定在UD1,T1发射结电压(UT1)BE在T1正常工作时基本是一个固定值(一般硅管为0.7V,锗管为0.3V),所以输出电压UO=UD1-(UT1)BE。

当输出电压远大于T1发射结电压时,可以忽略(UT1)BE,则UO≈UD1。

下面我们分析一下串联稳压电源的稳压工作原理:假设由于某种原因引起输出电压UO降低,即T1的发射极电压(UT1)E降低,由于UD1保持不变,从而造成T1发射结电压(UT1)BE上升,引起T1基极电流(IT1)B上升,从而造成T1发射极电流(IT1)E被放大β倍上升,由晶体管的负载特性可知,这时T1导通更加充分管压降(UT1)CE将迅速减小,输入电压UI更多的加到负载上,UO得到快速回升。

串联可调稳压电源课件

串联可调稳压电源课件

变压器绕组
分为初级绕组和次级绕组 ,初级绕组接输入电压, 次级绕组接输出电压。
整流电路
整流电路
将交流电转换为直流电, 为后续电路提供直流电源 。
整流二极管
利用二极管的单向导电性 实现整流功能。
整流电路类型
半波整流、全波整流、桥 式整流等。
滤波电路
滤波电路
电感滤波
将整流后的脉动直流电转换为平滑的 直流电。
绿色能源的整合
串联可调稳压电源应积极整合绿色能源,如太阳能、风能等,以实现能源的可持续发展和环境保护。
Байду номын сангаас5
串联可调稳压电源的实际应用案 例
在电子设备中的应用
串联可调稳压电源在电子设备中主要用于提供稳定的直流电压,以确保电子设备 正常工作。
例如,在电脑、手机、电视等电子产品中,串联可调稳压电源能够确保主板、显 示屏等部件得到稳定的电压供应,从而保证产品的性能和稳定性。
2. 在长时间不使用时,应关闭电源 以节省能源。
3. 注意保持设备清洁,定期除尘,确 保散热良好。
常见故障与排除方法
常见故障 1. 无输出电压。 2. 输出电压不稳定。
常见故障与排除方法
排除方法 2. 检查电位器是否正常,如有故障需更换。
1. 检查电源线是否完好,如有破坏需更换。 3. 检查内部电路是否正常,如有故障需维修或更换。
串联可调稳压电源的优缺点
优点
结构简单、价格便宜、调节方便、稳定性较好。
缺点
效率较低、有较大的热量产生、对电网有较大的谐波干扰。
02
串联可调稳压电源的组成与电路 分析
电源变压器
01
02
03
电源变压器
将电网电压转换为所需电 压等级,为整个稳压电源 提供输入电压。

串联式稳压电源

串联式稳压电源
压进行比较
当输出电压降低时,调 整管基极上的电压减小, 调整管的电流增加,输
出电压升高
这样,通过负反馈的作 用,串联式稳压电源能
够保持输出电压的稳定
特点
串联式稳压电源具有以下特点
特点
稳压范围宽
由于负反馈的作 用,串联式稳压 电源的输出电压 能够稳定地适应 负载的变化和输 入电压的变化
线性调整率好
20XX
串联式稳压电 源
1 工作原理 3 性能指标 5 总结
-
2 特点 4 应用场景
串联式稳压电源
串联式稳压电源是一种电子设备,它通过调整 串联在电路中的调整管基极上的电压,改变其
放大倍数,从而保持输出电压的稳定
这种稳压电源通常被用于各种电子设备中,如 计算机、通信设备、工业控制系统等
工作原理
可靠性高和体积小等特点,被 广泛应用于各种电子设备中
总结
串联式稳压电源是一种常见的 电子设备,它通过调整串联在 电路中的调整管基极上的电压, 改变其放大倍数,从而保持输 出电压的稳定
了解串联式稳压电源的工作原 理、特点和应用场景,对于电 子设备的设计和维护具有重要 的意义
-
XXX
谢谢观看
汇报人:xxxx
应用场景
1
串联式稳压电源被广泛应用于各种电子设备中,如计算机中的ATX 电源、通信设备中的开关电源、工业控制系统中的线性稳压电源等
在这些应用场景中,串联式稳压电源能够提供稳定的输出电压,保 障设备的正常运行
2
3
同时,由于其具有较高的可靠性和较小的体积,因此也适合于小型 电子设备中用
这种稳压电源具有稳压范围宽、 线性调整率好、电路结构简单、
起源
它由调整管、取样电 阻、比较放大器等组

串联稳压电源

串联稳压电源
T'1 R为一小电阻,用于检测负载电流。
当IL不超过额定值时, T’1截止; 当IL超过额定值时, T'1导通,其集电极 从T1的基极分流。18
2)截流型: 过流时使调整管截止或接近截止。应用于 大功率电源电路中。
输出电流在额定值内时:
三极管T2截止,这时, 电压负反馈保证电 路正常工作。
输出电流超出额定值时:
IE
UO
T通过对电流的调整实现UO的稳定,故称T为调整管。1
+
+
T
iL
UI iR

iZ
UZ
RL UO –
实际上是射极输出器,Uo=UZ -UBE 。但带负载 的能力比稳压管强。
iR 0, iZ iB iL iE (1 )iB
负载电流的变化量可以比稳压管工作电流的变
化量扩大(1+)倍。
2
2
UI
CI
Co
0.1~1F
1µF
_
+
Uo
_
W7800系列稳压器 基本接线图 注意:输入与输出端之间的电压不得低于3V! 27
2 、输出正负电压的电路
+
1WΒιβλιοθήκη 8XX3+ UO
2
CI
CO
UI
_
CI
1
CO
_
2
W79XX
3
UO
正负电压同时输出电路
28
3、提高输出电压的电路
1 +
W78XX 3
2
UXX R
UIVC2 Uo 2. 流过稳压管的电压随 UI 波动,使UZ 不稳定,
降低了稳压精度。
3. 温度变化时,T2组成的放大电路产生零点

串联型稳压电源的安装与调试

串联型稳压电源的安装与调试

任务二、串联型稳压电源的装配与调试任务描述:随着人们生活水平的日益提高,通信技术不断的进展,同学们每天使用手机,手机的充电器就是一个稳压电源。

在我们电子生产实习中,常常需要用到稳压电源,为后一级电路供给稳定的直流电压,图 2-2-1 为串联型稳压电源的原理图。

图2-2-1 串联型稳压电源原理图活动 1识读电路元件,实施元件检测技能目标1、能够识读和检测常用电子元器件2、能够识读和检测稳压二极管3、能够用 MF-47 型万用表检测各元器件学问贮存一、稳压二极管〔一〕简介稳压二极管,英文名称 Zener diode,又叫齐纳二极管。

利用 pn 结反向击穿状态,其电流可在很大范围内变化而电压根本不变的现象,制成的起稳压作用的二极管。

此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是依据击穿电压来分档的,由于这种特性,稳压管主要被作为稳压器或电压基准元件使用。

稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更高的稳定电压。

其图形符号和封装形式如图2-2-2。

图2-2-2 稳压二极管的图形符号及其封装形式〔二〕原理稳压二极管的伏安特性曲线的正向特性和一般二极管差不多如图 2-2-3,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流微小。

但是,当反向电压接近反向电压的临界值时,反向电流突然增大,称为击穿,在这一临界击穿点上,反向电阻突然降至很小值。

尽管电流在很大的范围内变化,而二极管两端的电压却根本上稳定在击穿电压四周,从而实现了二极管的稳压功能。

图2-2-3 稳压二极管特性曲线〔三〕主要参数1、Uz—稳定电压指稳压管通过额定电流时两端产生的稳定电压值。

该值随工作电流和温度的不同而略有转变。

由于制造工艺的差异,同一型号稳压管的稳压值也不完全全都。

例如,2CW51 型稳压管的 Vzmin 为3.0V, Vzmax 则为3.6V。

串联型直流稳压电源.课件

串联型直流稳压电源.课件
输出电压不稳定
输出电压不稳定可能是由于电源内部稳压电路故障、输出电容容量减小 或漏电等原因。应检查电源的稳压电路和输出电容,排除故障。
03
过热
电源过热可能是由于散热不良、负载过大或电源内部电路故障等原因。
应加强散热措施、减小负载或检查电源的内部电路,排除故障。
维护与保养
定期清洁
定期清洁电源外壳表面,保持清洁卫生。
高稳定性
随着电子设备在各个领域的广泛应用,对电源的稳定性要求也越来越高。串联型直流稳压 电源的高稳定性能够保证电子设备的稳定运行,提高设备的使用寿命和可靠性。
高可靠性
在许多关键领域,如医疗、航空航天、军事等,设备的可靠性至关重要。串联型直流稳压 电源的高可靠性能够保证在这些领域中设备的正常运行,避免因电源故障而引起的安全事 故。
检查保险丝
定期检查并更换电源的保险丝,确保电源的正常运行。
定期维护
定期对电源进行全面维护,包括清洁内部灰尘、检查连接线是否松 动或破坏、检查元件是否老化或破坏等。
串联型直流稳压电源的发展
06
趋势与展望
高效率、高稳定性、高可靠性
高效率
随着能源危机的加剧,节能减排成为全球共同关注的问题。串联型直流稳压电源的高效率 能够减少能源浪费,降低碳排放,符合绿色环保的发展趋势。
分类与用途
分类
根据输出电压的调节方式,串联型直流稳压电源可分为模拟式和开关式两类。模拟式稳压电源 通过连续改变调整管的导通程度来稳定输出电压,而开关式稳压电源则是通过改变调整管的开 关状态来调节输出电压。
用途
串联型直流稳压电源广泛应用于各种电子设备和仪器中,如通讯设备、测量仪器、计算机、医 疗器械等,为这些设备提供稳定的直流电源,保证其正常工作。

串联型直流稳压电源

串联型直流稳压电源

串联型直流稳压电源一、设计任务与要求要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。

指标:1、输出电压6V、9V两档,正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、纹波电压峰值▲V op-p≤5mv,稳压系数Sr≤5%,电网电压波动正负10%。

任务:1、了解带有放大环节串联型稳压电路的组成和工作原理;2、识图放大环节串联型稳压电路的电路图;3、仿真电路并选取元件;4、安装调试带有放大环节串联型稳压电路;5、用仪器仪表对电路调试和测量相关参数;6、撰写设计报告、调试二、电路原理分析与方案设计采用变压器、二极管、集成运放,电阻、稳压管、三极管等元器件。

220V 的交流电经变压器变压后变成电压值较小的交流,再经桥式整流电路和滤波电路形成直流,稳压部分采用串联型稳压电路。

比例运算电路的输入电压为稳定电压,且比例系数可调,所以其输出电压也可以调节;同时,为了扩大输出大电流,集成运放输出端加晶体管,并保持射极输出形式,就构成了具有放大环节的串联型稳压电路。

1、方案比较方案一:用晶体管和集成运放组成的基本串联型直流稳压电源方案二:用晶体管和集成运放组成的具有保护环节的串联型直流稳压电源方案三:用晶体管和集成运放组成的实用串联型直流稳压电源可行性分析:上面三种方案中,方案一最简单,但功能也最少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一;方案三功能最强大,但是由于实验室条件和经济成本的限制,我们也抛弃方案三,因为它是牺牲了成本来换取方便。

所以从简单、合理、可靠、经济从简单而且便于购买的前提出发,我们选择方案二为我们最终的设计方案。

2、整体电路框图3、单元电路设计及参数计算、元器件选择 交流电经过电源变压器、整流电路、滤波电路和稳压电路转换成稳定的直流 电,其方框图及各电路的输出波形如图所示,下面就个部分的作用加以介绍。

1)电源变压器直流电源的输入为220V 的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压处理。

串联型直流稳压电源实验报告

串联型直流稳压电源实验报告

串联型直流稳压电源实验报告一、实验介绍串联型直流稳压电源是一种常见的电源类型,它可以将交流电转化为稳定的直流电,并且可以调节输出的电压和电流。

本次实验旨在通过搭建一个串联型直流稳压电源,加深对其原理和构造的理解,并掌握其使用方法。

二、实验器材1.变压器:输入220V,输出18V/2A2.桥式整流器:4个1N4007二极管3.滤波电容:2200uF/35V4.稳压管:LM317T5.可变电阻:10KΩ6.固定电阻:240Ω、330Ω、1KΩ、2KΩ、5KΩ、10KΩ各若干个7.万用表三、实验步骤1.将变压器的输入线接入市电(220V),输出线接入桥式整流器中间两个引脚。

2.将桥式整流器两端分别连接滤波电容正负极。

3.将LM317T三个引脚依次连接可变电阻中间引脚、固定电阻240Ω中间引脚和滤波后的正极。

4.将固定电阻330Ω连接在LM317T的调节引脚和负极之间。

5.将固定电阻1KΩ、2KΩ、5KΩ、10KΩ分别连接在可变电阻两端和负极之间,以便调节输出电压。

6.使用万用表测量输出电压和电流。

四、实验结果通过搭建串联型直流稳压电源,我们成功地将220V的交流电转化为了稳定的直流电,并且可以通过调节可变电阻和固定电阻的值来控制输出的电压和电流。

经过实验测量,我们得到了以下数据:输出电压:0-15V可调输出电流:0-2A可调五、实验分析1.桥式整流器的作用是将交流信号转化为直流信号,滤波器则可以去除直流信号中的杂波。

2.LM317T是一种常见的线性稳压器件,它可以通过控制其输入端与输出端之间的参考电压来实现对输出端稳定直流电压的调节。

3.可变电阻和固定电阻可以通过改变其阻值来控制LM317T输入端与输出端之间的参考电压,从而达到对输出直流信号的调节。

六、实验总结通过本次实验,我们深入了解了串联型直流稳压电源的原理和构造,并掌握了其使用方法。

同时,我们也意识到了电路中各个元件的重要性和作用,这对我们今后的学习和实践都有着重要的意义。

串联型稳压电源实验报告

串联型稳压电源实验报告

串联型稳压电源实验报告串联型稳压电源实验报告引言:稳压电源是电子设备中常用的电源供应装置,它能将不稳定的输入电压转换为稳定的输出电压,为电子设备的正常运行提供稳定的电能。

本实验旨在通过搭建一个串联型稳压电源电路,了解其工作原理和特性,并对其进行实验验证。

一、实验目的:1. 了解串联型稳压电源的工作原理;2. 学习使用基本电子元件进行电路搭建;3. 掌握稳压电源的调节性能和稳定性。

二、实验原理:串联型稳压电源是一种常见的电源稳压方式,其基本原理是通过串联一个稳压二极管和一个可变电阻,将输入电压调节为稳定的输出电压。

稳压二极管具有反向击穿电压稳定的特性,当输入电压超过其反向击穿电压时,稳压二极管会开始导通,将多余的电压通过自身消耗,从而保持输出电压稳定。

三、实验器材和元件:1. 直流电源;2. 电阻、稳压二极管、电容等基本电子元件;3. 示波器、万用表等测试仪器。

四、实验步骤:1. 按照电路图搭建串联型稳压电源电路,注意连接的正确性;2. 将直流电源的电压调节至合适的范围,连接至电路输入端;3. 使用万用表测量电路的输入电压和输出电压,并记录数据;4. 调节可变电阻,观察输出电压的变化情况,并记录数据;5. 使用示波器观察电路的波形,分析电路的稳定性和调节性能。

五、实验结果与分析:通过实验测量得到的数据,我们可以得出以下结论:1. 串联型稳压电源能够将输入电压稳定在一定范围内的输出电压;2. 当输入电压超过稳压二极管的反向击穿电压时,稳压二极管开始导通,将多余的电压通过自身消耗,保持输出电压的稳定;3. 可变电阻的调节能够改变输出电压的大小,但在一定范围内保持稳定。

六、实验总结:本实验通过搭建串联型稳压电源电路,对其工作原理和特性进行了验证。

通过实验结果的分析,我们了解到串联型稳压电源能够将输入电压稳定在一定范围内的输出电压,并且可变电阻的调节能够改变输出电压的大小。

这对于电子设备的正常运行具有重要意义。

串联型直流稳压电源

串联型直流稳压电源

串联型直流稳压电源集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#1串联型直流稳压电源为克服稳压管稳压电路输出电流较小,输出电压不可调的缺点,引入串联型稳压电路。

串联型稳压电路以稳压管稳压电路为基础,利用由晶体管电流放大作用增大负载电流,并在电路中引入深度电压负反馈,使输出电压稳定,通过改变网络参数使输出电压可调。

直流稳压电源主要由四部分组成:变压部分、整流部分、滤波部分、稳压部分。

除变压器部分外,其它部分都有多种形式。

其中串联反馈型直流稳压电源是比较典型的一种。

整体电路框图串联型直流稳压电源的整体电路框架图如图所示。

2从交流电压转换为直流电压。

为了减小电压的脉动,需要通过低通滤波电路滤波,使输出电压平滑。

再经过稳压电路使输出的直流电压基本不受电网电压波动和负载电阻变化 实用的串联想稳压电路至少包含调整管、基准点压电路、采样电路和比较放大电路等四个部分。

此外,为使电路安全工作,还在电路中加保护电路,所以串联想稳压电路串联型直流稳压电源的整流电路采用桥式整流电路,电路如图所示。

图输出波形、D 3截止;U 2的负半周内,D 3导截止。

正负半周内部都有电流流过的负载电阻R L ,且方向是一致的。

电路在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即I f =I o1/22(U 2是变压副边电压有效值) [1]。

滤波电路整流电路的输出电压虽然是单一方向的,但含较大的交流成分,不能适应多数电子设备的需要。

因此,整流后还需要滤波电路将脉动的直流电压变为平滑的直流电压。

滤波电路分为:电容滤波电路和电感滤波电路。

本设计采用电容滤波电路。

电容滤波电路利用电容的充电放电作用,使输出电压平滑。

其电路如图所示。

直流稳压电源电路图直流稳压电源电路如图所示。

差分比例运算电路电路中有两个输入,且参数对称,如图所示,则:3串联型稳压直流电源总电路图串联型稳压直流电源电路如图所示。

串联型直流稳压电源

串联型直流稳压电源

设计指标输出电压:+12V ,-12V ,+5V+5V 单独输出最大输出电流A I o 3max =mV V opp 1<最大输出电流皆为A I o 5.0max =mV V opp 10=以上稳压系数4105-⨯<V S串联型直流稳压电源电源电路的作用是把交流市电(220V)变换成稳定的直流电压,直接或间接地给各个部分电路提供适当的供电,以保证负载电路能正常地进行工作。

对电源电路总的要求是:稳压性能好,纹波系数小,功率损耗小,过载过压保护能力强等。

电源电路的常见形式有:一般型的可调串联稳压电路,泵电源,高速可控硅稳压电源,开关式稳压电源等。

开关式稳压电源具有工作效率高,稳压范围大特点。

串联型稳压电源虽然具有功耗较大,效率低,笨重的缺点,但同时因为其具有结构简单,安全可靠,维修容易等优点而被广泛使用,鉴于这些优点我们决定设计串联型直流稳压电源。

一、串联型直流稳压电源的组成与原理1、串联型直流稳压电源的组成直流稳压电源一般有电源变压器、整流滤波电路及稳压电路所组成。

如图1所示图1 直流稳压电源组成框图其中稳压电路部分包括:调整,误差取样,比较放大和基准电路几个部分。

2、稳压原理稳压电路部分是串联型稳压电路的主体部分。

其中调整电路的作用相当于一个与负载串联的可变电阻。

当输出的直流电压U0,因某种因素影响而升高时,通过误差取样电路,取出其变化值。

此变化量经比较放大电路而形成控制电压,去控制这个可变电阻,使其电阻增大,其上的压降增大,使输出电压下降,仍回到U0,当输出电压U0变化时,按照上述同样的过程,但变化的极性相反,使这个可变电阻的阻值变小,其上的压降减小,使输出电压U0回升,这样就起到了稳定电压的作用。

随着集成电路的发展,把调整管、误差取样、基准和比较放大电路等部分做在一起成为集成化器件。

如LM78XX系列,LM79XX系列等。

为使电路简洁,可靠,我们使用三端稳压集成块。

二、串联型稳压电源设计串联型稳压电源总体电路图如下:图 2 串联稳压电源电路图1、电源变压器电源变压器的作用是将电网220V 的交流电压变换成整流滤波电路所需的交流电压。

串联型稳压电源工作原理

串联型稳压电源工作原理

串联型稳压电源工作原理串联型稳压电源,听名字就有点复杂,别担心,我来给你解读解读!想象一下,你在日常生活中用的电子设备,手机、电脑、电视,没电了可不行啊!这个时候,就需要稳压电源来帮忙了。

它的作用就像是一个守护神,确保电压稳定,免得设备们出故障。

电压一不小心飙升,设备就“闪退”,你说气不气?先说说串联型,名字里有个“串”,就是把元件一个个串在一起。

这个电源一般是通过变压器把高电压变成低电压,然后经过整流、滤波等步骤,最终提供稳定的直流电压。

想象一下,把大河水通过一条小管子放出来,流出来的水量就稳得多,不会一下子猛涨猛落,电压也是这个道理。

我们不想要的,就是那种电压不稳的情况,太高了或太低了都让人心慌。

工作原理其实蛮简单的,电源里有个“调节器”,就像一个有责任心的班长,时时刻刻在监控电压。

如果电压太高,调节器就会把它“压下去”;如果太低,那它就会“提一提”。

就像是吃饭的时候,你多吃了一口,服务员看到会提醒你:“慢点儿,别噎着!”这调节器的存在就是为了让你的设备吃得舒坦。

再说说整流,电源从变压器出来的电流可能是交流的,就像波浪一样起伏不定。

整流器就像是个能把波浪平抚下来的高手,把这些波浪变成了平稳的直流电。

经过整流后的电流再经过滤波,波动就更小了,设备们再也不用担心会被“浪潮”冲走。

还有一个很重要的部分,那就是“电容”。

电容在这里就像是一个海绵,能储存电能,等到需要的时候再慢慢释放出来。

这样一来,就算在电流短暂波动的时候,设备也能得到足够的电量,继续“安安稳稳”工作。

试想一下,夏天的冰淇淋,吃的时候总是希望它能保持凉爽,不会一下子就化掉,这个海绵的作用就像给冰淇淋加了个“冷藏室”。

这个电源也有个“小脾气”,比如说当电流负载过大时,就会出现过载保护。

这就像是你带着朋友一起去吃火锅,大家吃得太开心,锅里的菜一下子太多,锅底就开始“冒烟”了。

这时候,你得赶紧减点菜,别让锅底焦了。

稳压电源也会自动断开,保护自己和设备,真是个“知心朋友”。

串联稳压电源的恒流原理

串联稳压电源的恒流原理

串联稳压电源的恒流原理
串联稳压电源的恒流原理是通过在电源输出端串联一个限流电路来实现恒流的输出。

限流电路可以是一个电阻、电流源、电感等元件,通过控制电流的大小,使得在整个负载范围内,输出电流保持不变。

在稳压电源中,电压是恒定的,但负载电阻的变化会导致输出电流的波动。

当负载电阻较小时,输出电流较大;当负载电阻较大时,输出电流较小。

为了保持输出电流的恒定,可以在电源输出端串联一个限流电路,限制输出电流的大小。

通过选择合适的限流元件和限流电路的设计,可以使得负载电阻的变化对输出电流的影响最小化。

常见的限流元件包括电阻、电流源、电感等,具体选择哪一种限流元件取决于具体的应用需求和设计要求。

需要注意的是,串联稳压电源的恒流原理只能在一定范围内实现恒流输出,超过限流电路所能承受的最大电流时,限流电路将失效,输出电流将受到限制。

因此,在设计稳压电源时,需要合理选择限流电路的参数,并考虑电流过载保护的措施,以保证电源的安全性和可靠性。

串联式稳压电路的组成及各部分的作用

串联式稳压电路的组成及各部分的作用

串联式稳压电路的组成及各部分的作用以串联式稳压电路的组成及各部分的作用为标题,本文将详细介绍串联式稳压电路的组成和各个部分的作用。

一、引言稳压电路是电子设备中常见的一种电路,它的作用是将不稳定的电压转换为稳定的电压,并提供给其他电子元件使用。

串联式稳压电路是稳压电路中的一种常见形式,下面将从组成和作用两个方面来介绍。

二、组成串联式稳压电路主要由电源、稳压器、负载和电容器组成。

1. 电源:电源是串联式稳压电路的能量来源,它提供电流和电压给稳压器。

电源可以是交流电或直流电,根据需要选择合适的电源。

2. 稳压器:稳压器是串联式稳压电路中最重要的部分,它负责将不稳定的电压转换为稳定的电压。

稳压器有很多种不同的类型,常见的有二极管稳压器、三极管稳压器和集成稳压器等。

稳压器可以通过调整电阻或变压器的参数来实现不同的输出电压。

3. 负载:负载是指稳压电路中需要使用稳定电压的电子元件或设备。

负载可以是电阻、电感、电容、集成电路等,它们需要稳定电压来正常工作。

4. 电容器:电容器是串联式稳压电路中的辅助元件,它可以提供额外的电容来改善稳压电路的性能。

电容器可以帮助稳压器提供更稳定的电压输出,并且减少电压波动对负载的影响。

三、各部分的作用1. 电源的作用是提供电流和电压给稳压器,它是整个稳压电路的能量来源。

电源的稳定性和输出能力会直接影响稳压电路的性能。

2. 稳压器的作用是将不稳定的电压转换为稳定的电压。

稳压器通过调整电阻或变压器的参数来实现不同的输出电压。

稳压器的稳定性和调节能力决定了稳压电路的精度和稳定性。

3. 负载的作用是消耗稳定电压并完成特定的功能。

负载可以是电阻、电感、电容、集成电路等,它们需要稳定电压来正常工作。

负载的大小和特性会影响稳压电路的稳定性和输出能力。

4. 电容器的作用是提供额外的电容来改善稳压电路的性能。

电容器可以帮助稳压器提供更稳定的电压输出,并且减少电压波动对负载的影响。

电容器的容值和质量会影响稳压电路的响应速度和抗干扰能力。

第26讲 串联型稳压电路 并联型稳 压电路【精选】

第26讲 串联型稳压电路 并联型稳 压电路【精选】

输出电压调节范围
UB2

RW 2 R2 R 1Rw R2
UO
U BE 2
UZ
B2
Uo

R1 RW R2 RW 2 R2
(U BE 2
UZ
)
当Rw滑动端调至最上端时, Rw2=Rw,Uo为最小。
U o min

R1 RW R2 RW R2
(U BE2 U Z )
定义为
Sr
=
U O U I
/UO /UI
RL 常数
一般特指Δ Ui/Ui=±10%时的Sr
Su
=
U O UO
100%
IL =0
ro =
U O I O
U I 常数
当输出电流从零变化到最大额定值时,
输出电压的相对变化值。
(4)电流调整率Si
Si =
U O UO
100%
Ui =0
R UImin U Z IZmin ILmax
(2)电网电压UI最高且负载电流IL最小时,稳压管的电流最大。
IZ

UImax UZ R

I Lmin

I Zmax
R UImax U Z IZmax ILmin
哈尔滨工程大学
模拟电子技术
实际R取值
UImax U Z R UImin U Z

R3
R3 R4
U
' o
Uo
UP


R2 R1 R2
Uo
输出电压可调的稳压电路
由UN=UP求得
Uo

(1
R2 ) R1
R3 R3 R4

线性串联型稳压电路的工作原理

线性串联型稳压电路的工作原理

线性串联型稳压电路的工作原理
⑴. 线性串联型稳压电源的构成
线性串联型稳压电源的工作原理可以用图1加以说明。

图1 串联稳压电源示意图显然,VO = VI - VR,当VI增加时,R 受控制而增加,使VR增加,从而在一定程度上抵消了VI增加对输出电压的影响。

若负载电流IL增加,R 受控制而减小,使VR减小,从而在一定程度上抵消了因IL增加,使VI减小,对输出电压减小的影响。

在实际电路中,可变电阻 R 是用一个三极管来替代的,控制基极电
位,从而就控制了三极管的管压降VCE,VCE相当于VR。

要想输出电压稳定,必须按电压负反馈电路的模式来构成串联型稳压电路。

典型的串联型稳压电路如图2所示。

它由调整管、放大环节、比较环节、基准电压源几个部分组成。

图2 串联型稳压电路方框图
⑵. 线性串联型稳压电源的工作原理
根据图2,分两种情况来加以讨论。

1.输入电压变化,负载电流保持不变
输入电压VI的增加,必然会使输出电压VO有所增加,输出电压经过取样电路取出一部分信号VF与基准源电压VREF比较,获得误差信号ΔV。

误差信号经放大后,用VO1去控制调整管的管压降VCE增加,
从而抵消输入电压增加的影响。

2.负载电流变化,输入电压保持不变
负载电流IL的增加,必然会使输入电压VI有所减小,输出电压VO 必然有所下降,经过取样电路取出一部分信号VF与基准电压源VREF 比较,获得的误差信号使VO1增加,从而使调整管的管压降VCE下降,从而抵消因IL增加使输入电压减小的影响。

3.输出电压调节范围的计算
根据图2可知
VF≈VREF
调节R2显然可以改变输出电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子线路设计与制作论文院系:电子信息工程学院专业:电子组装技术与设备班级:电装12301班姓名:唐熊章课题名称:串联型稳压电源的设计指导老师:朱婷目录一、设计任务和要求1.直流稳压电源的组成2.直流稳压电源的技术指标要求二、设计过程电路工作原理(1)稳压过程(2)输出电压调整过程(3)过流保护过程三、确定电路参数四、测试要点1.空载测试2.带载测试五、结束语串联型稳压电源一、设计任务和要求本项目的设计任务就是采用分立元器件设计一台串联型稳压电源。

其功能和技术指标如下:(1)输出电压U可调:6~12V。

(2)输出额定电流I=500mA。

(3)电压调整率K小于等于0.5。

(4)电源内阻R小于等于0.1欧姆。

(5)文波电压小于等于5mA。

(6)过载电流保护:输出电流为600mA时,限流保护电路工作。

1.直流稳压电源的组成直流稳压电源一般由变压器、整流器、滤波电路、稳压电路与负载等组成。

变压器:将正弦工频交流电源电压变换为符合用电设备所需要的正弦工频交流电压。

整流电路:利用具有单向导通性能的整流元件,将正负交替变化的正弦交流电压变换成单方向的脉动直流电压。

滤波电路:尽可能的将单向脉动直流电压中的脉动部分(交流分量)减小,使输出电压成为比较平滑的直流电压。

稳压电路:采用某些措施,使输出的直流电压在电源发生波动或负载变化时保持稳定。

2.直流稳压电源的技术指标要求(1)输出电压要符合额定值:①固定U。

②可调。

(2)输出电压要稳定。

造成输出电压不稳的原因:①交流电压的供电电压不稳、整流器的输出电压也按比例变化。

②由于整流器都有一定电阻,当负载电流发生变化时,输出电压就要随之发生变化。

③当整流器的环境温度发生变化时,元器件的特性即发生变化,也导致输出电压的变化;在实际应用中常以电网电压变化正负10%是输出电压相对变化的百分数来表示。

(3)电源内阻要小。

电源内阻表示在输出电压不变的情况下,当负载电流变化时,引起输出电压变化量的大小。

R越大,当负载电流较大时,在内阻上产生的压降也较大,因此输出电压就较小。

(4)输出文波电压要小。

输出文波电压是指电源输出端的交流电压分量。

(5)要过流保护、过压保护等保护措施。

二、设计过程1.电路工作原理220V交流电经双15V变压器产生两组的15V低压交流电,VD1、VD2和C1构成整流滤波电路,产生20V的直流电压,VT4、VT3、VT4和R2为恒流源负载,VT5和R0为过流保护电路,VT2和VT2为电压调整器,VT3、VT5、R3、RP1、R5和R4构成输出电压取样比较电路,RP1调整输出电压大小。

(1)稳压过程。

当输出电压U0因某种原因下降时,VT3的基极电压U B也下降,VD5两端的电压恒定,因此VT3的U BE电压随之下降,VT3的工作点往截止区靠近,就造成VT3的集电极电压UC上升,即VT2的基极压上升,从而使调整管VT1的U CE电压下降,使输出电压上升。

总输出电压U0因某种原因上升时,其过程恰好相反。

这样输出电压因某种原因变化时,VT1和VT2构成的电压调整器就能够调整输出电压,使其保持恒定。

(2)输出电压调整过程。

RP1用于调整输出电压大小。

当RP1滑动端向上滑时,VT3的基极电压U B就上升,VD5两端的电压恒定,因此VT3的U BE电压随之上升,集电极电压UC就下降,即VT2的基极电压下降,从而使调整管VT1的U CE电压上升,使输出电压变小。

若当RP1滑动端向下滑时,输出电压则会变大。

(3)过流保护过程。

VT5和R0为过流保护电路,R0阻值比较小(大约为1欧姆)。

当输出电流I O较小时,在R0上产生的电压较小,不足以使VT5导通,其不起作用。

当输出电流I O过大时,在R0上产生的电压增大,使VT5导通,VT5的集电极电压下降,即VT2的基极电压下降,电压调整管VT1的U CE电压增大,使输出电压下降,起到保护作用。

三、确定电路参数(1)电源变压器TR。

电源变压器的作用是将来自电网的220V交流电压U1变换为整流电路所需要的交流电压U2。

若要求调整管VT1不进入饱和区,则Uimin≥U O max+(2~3)V=15V;为了使比较放大器增益足够大,又要求在电阻R4与VT4上的压降有4~`5V,则Uimin=Uomax+2U BE(OM)+(4~5)V=(14.4~15.4)V。

综合上述两点要求,则有U i =U imin /(1-10%)=20VU imax =U i /(1+10%)=21VU 2=U i /1.2=16.7V考虑整流二极管和变压器TR 的降压等因素,取U 2=15V 。

电源变压器的效率为:η=12P P 其中:P 2是变压器副边的功率,P 1是变压器原边的功率。

一般小型变压器的效率如表所示:21。

设计要求的电源变压器为双15/25W 。

原边输出功率为P 1=25W 。

副边输出功率为P 2≥I 2U 2=0.8*15=12W因为所选电源变压器为双15V/25W ,由表中数据可知η=0.7,则P 1=P 2/η=12/0.7=17.1W ,所选25W 符合要求。

电源变压器的实际效率η=12P P =2512*100%=48% 总之,电源变压器的次级为带中心轴头的双15V 绕组,输出功率为25W 。

(2) 整流二极管VD1与VD2I DM ≥1.5(I O /2)=175mAU RM ≥22U 2max =22(1+10%)U 2=51.8V整流二极管选1N4001,其极限参数为U RM ≥50V 。

(3) 滤波电容C1根据电容C1的表达式C1=min2)5~3(Rl T 已知输入交流电的周期T=1/f=0.02sR lmin =IoU 5.1min =24Ω 因此C1=min2*4Rl t =1667Uf 对于耐压,因为U RM ≥2U 2max =2(1+10%)U 2=25.9V所以C1选用2200Uf/25V 的铝电解电容。

(4) 调整管VT1U (BR)(CEO)>U CEImax =U imax -U omin = U imax =22VI CM1>1.5I O =750MaP CM1>1.5I O U CEimax =16.5W因此,调整管VT1选用D880三极管,参数为U (BR)CEO =60V ,I CM =3A , P CM =30W ;比测得β=50,r be1=40Ω。

(5) 其他小功率调整VT2,VT3,VT4U (BR)(CEO)>U CEmax =22VI CM1>βI 5.1Io =15MaP CM1>1.5I O U CEimax /Βi=330Ma因此,VT2,VT3,VT4选用9013,其U (BR)CEO =30V ,I CM =300mA ,P CM =700mW ;并测得β=100。

(6) 基准电路U Z 与R 3根据U Z ≤U omin =6V,I zmin =10mA 和a z ,r Z 尽量要小的原则,选用2CW11稳压管,其参数为:U Z =3.2~4.5V ,I zmin =10mA ,I zmax =55mA 。

由max 2max Iz U Uo -≤R3≤min2max Iz U Uo - 得148Ω≤R3≤215Ω因此,R3选取200Ω的电阻。

(7) 取样电路R5,RRP1,R4。

当负载开路时,提供调整管VT1的泄流通路,故通过取样电路的最小电流为2%×I O =10mA ,通过计算,可以选取R4=220Ω,R5=130Ω,RRP1=240Ω,功率为1/8W 。

(8) 保护电路R0当输出电路为600mA 并通过检测电阻R0,使U RO ≥U BEon 时,VT5导通,限流保护电路开始工作。

此时R 0=Io on Ube )(=3-10×6007.0=12Ω P R 0=I O 2R 0=0.62×1.2=0.43W因此,R O 选取1.2Ω/1W 的电阻。

四、 调试要点安装时要注意,D880调整管需加散热片,采用长度为10cm 的“L ”型铝材;RP1电位器直接安装在电路板上,电源变压器可外接。

安装完毕并检查无误后,方可开始通电调试。

调试所需要的仪器设备为:自耦变压器、稳压电源、电子毫伏表、滑动变阻器、万用表、电流表和毫伏表。

1. 空载测试在不加负载的条件下,使用万用表测量稳压电源的最大与最小输出电压,即可测出电压的可调范围,其值应满足技术指标的要求。

2. 带载测试(输出电流I O =500mA )(1) 输出电压的可调范围U Omax~U omin 。

(2) 在输出端接上滑动变阻器,使其输出电流在500mA ,在此条件下测量输出电压的可调范围。

(3)电压调整率Ku的测试,使用自耦变压器模拟电网电压的变化,以标准电源作为基准电源,来测试稳压电源输出电压的稳定度。

连接好测试电路。

调整自耦变压器,输出220V电压,并使被测电路输出9V/550mA电压,标准电源E也输出9V电压,这时V2表应为0V。

然后调整自耦变压器,使其输出电压上升10%,读出V2表的电压即为当输入电网变化±10%时输出电压的变化量ΔU O。

这样就可以算出电压调移率Ku=ΔU O/U O。

(4)电源内阻Rs的测试。

同样接好测试电路,使被测电路输出9V/500mA电压,标准电源E也输出9V电压,这时V2表应为0V,调整负载使输出电流为0mA,这时读出V2表的值,即为负载电流变化量ΔI O=500mA时所引起的输出电压的变化量ΔU O,这样就可以算出:Rs=ΔU O/I O。

(5)文波电压的测试。

连接好测试电路,其中G为电子毫伏表。

使被测电路输出9V/500mA电压,这时读出电子毫伏表的值就是文波电压。

(6)过流保护电路的测试。

调节电位器,使输出电压为9V,调节负载电阻R L的值从最大逐渐减小,直到输出电压Uo减少0.5V时输出电流的值,这就是限流保护电路的动作电流值。

五、结束语本课程的设计运用了模拟电路的基本知识,通过变压,整流,滤波,稳压等步骤。

输出可变的正负直流稳压电源。

结论如下:优点:该电路设计简单,输出电压稳定,文波值小,而且使用的元件较少,经济实惠,调整管承受的范围大。

心得体会:通过这次课程设计,我对模电知识有了更深的了解,尤其是对串联型直流稳压电源方面的知识有了进一步的研究,加深了我对模拟电路设计方面的兴趣。

我们需要严谨的思维来思考问题,科学的应用我们的知识。

学以致用,举一反三,这样我们才能获得更大的进步。

相关文档
最新文档