7上第2章知识点归纳与总结(有填空有答案)

合集下载

2021年七年级数学上册第二章《整式的加减》知识点总结(答案解析)(1)

2021年七年级数学上册第二章《整式的加减》知识点总结(答案解析)(1)

1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C 解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.4.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.5.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( )A .﹣7B .﹣1C .5D .11A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.7.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D 解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.8.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b A解析:A【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b ,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.9.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项,∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.10.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 11.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++ B解析:B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 12.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】 用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.15.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】 解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.4.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.5.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x 2+5x -4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x 的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x 的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.6.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.7.用代数式表示:(1)甲数与乙数的和为10,设甲数为y,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x,则乙数为____;(3)大华身高为a(cm),小亮身高为b(cm),他们俩的平均身高为____cm;(4)把a(g)盐放进b(g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h,顺流行驶速度是y km/h,则这条河的水流速度是______km/h.(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b)÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x-(3)2a b+(4)100aa b+(5)52y-【分析】(1)乙数=和-甲数y,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.8.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.9.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.10.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m + 【分析】 根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3n m n m +=+-, 故填:43n m +. 【点睛】 此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式. 11.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=- 故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 1.已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.2.一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.3.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.4.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

部编版初中地理七年级上第二章陆地和海洋带答案知识点归纳超级精简版

部编版初中地理七年级上第二章陆地和海洋带答案知识点归纳超级精简版

(名师选题)部编版初中地理七年级上第二章陆地和海洋带答案知识点归纳超级精简版选择题1、几乎全部是海洋的板块是()A.太平洋板块B.印度洋板块C.美洲板块D.南极洲板块2、下图中的信息在一定程度上说明了()A.甲、丙两大洲可能曾经连为一体B.甲、丙两大洲之间距离不断缩短C.鸵鸟具有长途飞行能力D.海牛具有远渡重洋的游泳能力3、下列关于海陆分布的说法,正确的有()①两极周围均是陆地②陆地主要集中在北半球③东、西半球海陆分布比较均匀④除了北冰洋以外,其他大洋均跨南、北半球A.③④B.①③C.②④D.①②4、我国东部濒临的大洋是()A.太平洋B.大西洋C.印度洋D.北冰洋5、位于亚洲、非洲、大洋洲、南极洲之间的大洋是()A.太平洋B.印度洋C.大西洋D.北冰洋6、据地震局专家介绍,虽然深圳地区近400年来无强震发生,但深圳一直是国家确定的地震重点监视防御区。

地震发生时,以下做法不正确的是()A.在家中,选择浴室、厕所等有管道支撑的空间小、不易塌落空间避震,不能使用电梯B.在教学楼内,应在老师的指挥下用书包护住头部,躲在安全位置;主震过后,迅速有序撤离C.在操场或室外的应该马上回到教室去D.在商场里,应躲在近处的大柱子和大商品旁边(避开商品陈列橱),或朝着没有障碍的通道躲避,然后屈身蹲下,等待地震平息7、关于“大陆漂移学说”的主要观点正确的是()A.现在的七大洲、四大洋的分布自有地球以来便是如此B.七大洲、四大洋的位置以后都将固定不变C.两亿年前地球上只有一块大陆,没有海洋D.七大洲、四大洋是原始大陆分裂、缓慢漂移而形成的8、下列各组地名中,均为大洲分界线的是A.京杭运河、苏伊士运河B.巴拿马运河、苏伊士运河C.乌拉尔山脉、阿尔卑斯山脉D.土耳其海峡、霍尔木兹海峡填空题9、________ 认为,由岩石组成的地球表层并不是整体一块,而是由板块拼合而成.10、荷兰1/4的陆地低于海平面,说明可以影响海陆的变化。

河南省七年级数学上册第二章整式的加减知识点归纳超级精简版

河南省七年级数学上册第二章整式的加减知识点归纳超级精简版

河南省七年级数学上册第二章整式的加减知识点归纳超级精简版单选题1、下列算式中正确的是()A.4x−3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2−3x2=−2x2答案:D分析:根据合并同类项的法则计算即可得出正确结论.解:A. 4x−3x=x,故本选项错误,不符合题意;B. 2x与3y不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;C. 3x2与2x3不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;D. x2−3x2=−2x2,本选项正确,符合题意;故选:D小提示:本题主要考查了合并同类项,熟记同类项的概念是解题的关键.2、有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.2答案:B分析:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解:观察图形知道点数三和点数四相对,点数二和点数五相对且滚动四次一循环,∵2022÷4=505…2,∴滚动第2022次后与第2次相同,∴朝下的数字是4的对面3,故选:B .小提示:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.3、多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( )A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关答案:C分析:根据合并同类项法则化简,再进行判断即可.解:﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3=(﹣2x 2y +2x 2y )+(﹣9x 3+3x 3+6x 3)+(6x 3y ﹣6x 3y )=0.∴多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值与x ,y 都无关. 故选:C .小提示:题目主要考查整式的化简,熟练掌握运用合并同类项法则是解题关键.4、数学家华罗庚曾经说过:“数形结合百般好,隔裂分家万事休”.如图,将一个边长为1的正方形纸板等分成两个面积为12的长方形,接着把面积为12的长方形分成两个面积为14的长方形,如此继续进行下去,根据图形的规律计算:12+(12)2+(12)3+⋯+(12)10的值为( )A .(12)10B .1-(12)10C .(12)11D .1-(12)11 答案:B分析:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.解:分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即为所求.最后一个小长方形的面积= (12)n故12+(12)2+(12)3+⋯+(12)n =1−(12)n即12+(12)2+(12)3+⋯+(12)10=1−(12)10故选B.小提示:本题主要考查了学生的分析、总结、归纳能力,通过数形结合看出前面所有小长方形的面积等于总面积减去最后一个空白的小长方形的面积是解答此题的关键.5、已知单项式3a m+1b与−b n−1a3可以合并同类项,则m,n分别为()A.2,2B.3,2C.2,0D.3,0答案:A分析:根据同类项的定义得出关于m,n的式子,计算求出m,n即可.解:∵单项式3a m+1b与−b n−1a3可以合并同类项,∴m+1=3,n-1=1,∴m=2,n=2,故选:A.小提示:本题考查了合并同类项及同类项的定义,如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.6、化简a-2a的结果是()A.-a B.a C.3a D.0答案:A分析:根据整式的加减运算中合并同类项计算即可;解:a−2a=(1−2)a=−a;故选:A.小提示:本题主要考查整式加减中的合并同类项,掌握相关运算法则是解本题的关键.7、若|a−2|+|b+3|=0,则b a的值为()A.1B.﹣1C.﹣6D.9答案:D分析:根据绝对值的非负性得到a与b的值,代入求值即可.解:∵|a−2|≥0,|b+3|≥0,∴当|a−2|+|b+3|=0时,∴a﹣2=0,b+3=0,解得a=2,b=﹣3,∴b a=(−3)2=9,故选:D.小提示:本题考查代数式求值,涉及到绝对值的非负性及幂的运算,熟练掌握非负式的和为零的条件是解决问题的关键.8、下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.x−y−1=x−(y−1)D.a−b=+(a−b)答案:D分析:根据添括号的法则即可进行解答.解:A、−b−c=−(b+c),故A不正确,不符合题意;B、−2x+6y=−2(x−3y),故B不正确,不符合题意;C、x−y−1=x−(y+1),故C不正确,不符合题意;D、a−b=+(a−b),故D正确,符合题意;故选:D.小提示:本题主要考查了添括号的法则,解题的关键是熟练掌握添加括号的法则,添加括号时,括号前是正号时,括号里面符号不改变;括号前是负号时,括号里面要变号.9、多项式4x3−3x2y4+2m−7的项数和次数分别是()A.4,9B.4,6C.3,9D.3,6答案:B分析:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,然后根据多项式的项的定义,多项式的次数的定义即可确定其项数与次数.解:由于组成该多项式的单项式(项)共有四个4x3,﹣3x2y4,2m,﹣7,其中最高次数为2+4=6.故选:B.小提示:本题考查了对多项式的项和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.10、已知关于x、y的多项式mx2+4xy−7x−3x2+2nxy−5y合并后不含有二次项,则m+n的值为()A.-5B.-1C.1D.5答案:C分析:先对多项式mx2+4xy−7x−3x2+2nxy−5y进行合并同类项,然后再根据不含二次项可求解m、n的值,进而代入求解即可.解:mx2+4xy−7x−3x2+2nxy−5y=(m−3)x2+(4+2n)xy−7x−5y,∵不含二次项,∴m−3=0,4+2n=0,∴m=3,n=−2,∴m+n=3−2=1.故选:C小提示:本题主要考查整式的加减,熟练掌握整式的加减是解题的关键.11、按一定规律排列的单项式:2x,-3x2,4x3,-5x4,6x5,-7x6,…第n个单项式是()A.(n+1)x n B.−(n+1)x n C.(−1)n(n+1)x n D.(−1)n+1(n+1)x n答案:D分析:通过观察题意可得:奇数项的系数为正,偶数项的系数为负,且系数的绝对值是从2开始的连续整数,次数是连续整数,由此可解出本题.解:第1个单项式是2x=(-1)1+1(1+1)x1,第2个单项式是-3x2=(-1)2+1(1+2)x2,第3个单项式是4x3=(-1)3+1(1+3)x3,•••,第n个单项式是(-1)n+1(n+1)xn.故选:D.小提示:本题考查单项式规律题,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.12、若x+y−2=0,则代数式−x−y+8的值是()A .10B .8C .6D .4答案:C分析:由题意得x +y =2,将代数式﹣x ﹣y +8变形为﹣(x +y )+8,再将x +y =2整体代入进行计算即可. 解:∵x +y ﹣2=0,∴x +y =2,∴﹣x ﹣y +8=﹣(x +y )+8=﹣2+8=6,故选:C .小提示:本题考查了运用整体思想求代数式的值的能力,关键是能通过观察、变形,运用整体思想进行代入求值.13、代数式1x , 2x +y , 13a 2b , x−y π, 5y 4x , 0.5 中整式的个数( ) A .3个B .4个C .5个D .6个答案:B分析:根据单项式和多项式统称为整式.单项式是字母和数的乘积,单个的数或单个的字母也是单项式.多项式是若干个单项式的和,再逐一判断可得答案.解:整式有2x +y , 13a 2b , x−y π,0.5共有4个;故选:B .小提示:本题考查了整式.解题的关键是掌握整式的定义:单项式和多项式统称为整式,注意分母中含有字母的式子是分式不是整式.14、用同样大小的黑色棋子按如图所示的规律摆放,第1个图形有6颗棋子,第2个图形有9颗棋子,第3个图形有12颗棋子,第4个图形有15颗棋子……,以此类推,第( )个图形有2022颗棋子.A .672B .673C .674D .675答案:B分析:观察图形,根据给定图形中棋子颗数的变化,找出变化规律:第n个图形有(3n+3)颗棋子,然后计算即可.解:观察图形,可知:第1个图形有6=3×2颗棋子,第2个图形有9=3×3颗棋子,第3个图形有12=3×4颗棋子,第4个图形有15=3×5颗棋子,……,∴第n个图形有3×(n+1)=(3n+3)颗棋子,当3n+3=2022时,解得:n=673,故选:B.小提示:本题考查了规律型:图形的变化类,根据给定图形中棋子颗数的变化情况,找出变化规律是解题的关键.15、要使多项式mx2−2(x2+3x−1)化简后不含x的二次项,则m的值是()A.2B.0C.−2D.3答案:A分析:先将原式化简,再根据题意判断m的值即可;解:原式=mx2−2x2−6x+2=(m−2)x2−6x+2∵原式化简后不含x的二次项,∴m−2=0,∴m=2,故选:A.小提示:本题主要考查代数式的应用,掌握相关运算法则是解题的关键.填空题16、如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第20个图形需要___________根火柴棍.答案:41分析:分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,∴拼成第20个图形共需要2×19+2=41根火柴棍,所以答案是:41.小提示:此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.17、将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)a×a×2−b×13,应写成______;(4)143x, 应写成______.答案: 5a st 2a2−b37x3分析:(1)根据代数式书写规范将数字因数写在代数式前省略乘号即可得到结果.(2)根据代数式书写规范将除法算式写成分数形式即可得到结果.(3)根据代数式书写规范将数字因数写在代数式前省略乘号,同时将相同字母的乘积写成乘方形式即可得到结果.(4)根据代数式书写规范将数字因数的带分数化为假分数即可得到结果.解:(1)a×5=5a,故答案为∶5a;(2)S÷t=st,故答案为∶st;(3)a×a×2−b×13=2a2−b3,故答案为∶2a2−b3;(4)143x=73x故答案为∶7x3.小提示:本题考查代数式书写规范,熟知代数式的书写规范要求是解题关键.18、已知x=−5−y,xy=2,计算3x+3y−4xy的值为______.答案:−23分析:将已知式子代入代数式中求解即可.∵x=−5−y∴x+y=−5将x+y=−5,xy=2代入3x+3y−4xy中,可得原式=3(x+y)−4xy=3×(−5)−4×2=−15−8=−23所以答案是:−23.小提示:本题考查了代数式的计算问题,掌握代入法是解题的关键.19、也许你认为数字运算是数学中常见而又枯燥的内容,但实际上,它里面也蕴藏着许多不为人知的奥妙,下面就让我们来做一个数字游戏:第一步:取一个自然数n1=3,计算n12+2得a1;第二步:计算出a1的各位数字之和得n2,再计算n22+2得a2;第三步:计算出a2的各位数字之和得n3,再计算n32+2得a3;……依此类推,则a2020=_______.答案:123分析:根据游戏的规则进行运算,求出a1、a2、a3、a4、a5,再分析其规律,从而可求解.解:∵a1=n12+2=32+2=11,∴n2=1+1=2,a2=n22+2=22+2=6,n3=6,a3=n32+2=62+2=38,n4=3+8=11,a4=n42+2=112+2=123,n5=1+2+3=6,a5=n52+2=62+2=38,……∴从第3个数开始,以38,123不断循环出现,∵(2020﹣2)÷2=1009,∴a2020=a4=123.所以答案是:123.小提示:本题主要考查数字的变化规律,解答的关键是由所给的规则得到存在的规律.20、计算:3a−a=_____________.答案:2a分析:按照合并同类项法则合并即可.3a-a=2a,所以答案是:2a.小提示:本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.。

河南省初中地理七年级上第二章陆地和海洋知识点总结归纳

河南省初中地理七年级上第二章陆地和海洋知识点总结归纳

河南省初中地理七年级上第二章陆地和海洋知识点总结归纳选择题1、下图中濒临太平洋、北冰洋、印度洋的大洲是( )A.B.C.D.答案:C本题主要考查的是大洲大洋的相关知识。

亚洲C同时濒临太平洋、北冰洋、印度洋,A为北美洲,濒临北冰洋、太平洋、大西洋,B为非洲,濒临大西洋、印度洋,D为南美洲,濒临大西洋、太平洋,故C符合题意。

2、海陆变迁的主要原因有()①气候变化②人类活动③地壳的变动④海平面的升降A.①③B.③④C.②④D.①②答案:B海陆变迁就是在地球表面某位置发生的由海变为陆地或是由陆地变为海的变化。

造成海陆变迁的原因分为自然原因和人为原因,自然原因是地壳的变动和海平面的升降,人为原因是人类活动的填海造陆,影响较小,不是主要原因,气候变化与大气运动有关,不会造成海陆变迁,故③④正确。

故选B。

小提示:3、关于大洲和大洋的叙述正确的是()A.亚洲是世界上跨经度最广的大洲B.大高加索山脉是亚洲和欧洲的分界线C.大西洋是世界上面积最大的大洋D.亚洲濒临的大洋,按顺时针方向依次是印度洋、太平洋、北冰洋答案:B亚洲是世界上跨纬度最广的大洲,跨经度最广的大洲是南极洲,故A错误。

大高加索山脉是亚洲和欧洲的分界线,故B正确。

太平洋是世界上面积最大的海洋,大西洋排名第二,故C错误。

亚洲濒临的大洋,按顺时针方向依次是北冰洋、太平洋、印度洋,故D错误。

故选B。

小提示:4、在青藏高原上发现海陆变迁的证据是()A.青藏高原目前正在不断抬升B.古代书籍记载此外是海洋C.在岩层中发现海洋生物化石D.南部边缘的喜马拉雅山曾是海洋答案:C青藏高原目前正在不断抬升是板块与板块碰撞挤压导致,A错误;古代书籍记载此外是海洋,古代书籍的记载不能成为海陆变迁的证据,B错误;青藏高原的岩层中发现海洋生物化石说明青藏高原在很久以前是海洋,后来地壳隆起抬升,形成现在的高原,属于海陆变迁现象,C正确;南部边缘的喜马拉雅山曾是海洋也不是青藏高原海陆变迁的证据,D错误,故排除ABD选项,故选C。

最新浙教版七年级上册第二章有理数的运算 知识点总结及配套练习

最新浙教版七年级上册第二章有理数的运算 知识点总结及配套练习

二 有理数的运算一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________.2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法.【答案】1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数. 考点精练倒数的概念例1 (1)2020的倒数为( ) A .-2020 B .2020 C .- D .(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________. 【答案】 (1)D (2)12有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1; (2)(-112)2-23=114-6=-434; (3)23-6÷3×13=6-6÷1=0.【答案】(1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335; (2)运算法则错.改正为:(-112)2-23=94-8=-234; (3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713. 有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2;(2)-32-[-(12)2-116]×(-2)÷(-1)2017.【答案】(1)-18 (2)-838有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5);(2)19999899×(-11);(3)(-5)×713+7×(-713)-(+12)×713.【答案】 (1)-63 (2)-2199989 (3)-176近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A.0.361×109B.3.61×108 C.3.61×107D.36.1×107(2)下列近似数精确到哪一位?①4.7万②17.68(3)用四舍五入法按要求取下列各数的近似数:①0.61548(精确到千分位);②73540(精确到千位).【答案】 (1)B(2)①千位②百分位 (3)①0.615 ②7.4×104有理数混合运算的应用例6出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置?(2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【答案】 (1)正西方向3千米处(2)67.8元课后练习1.计算:3×(-1)3+(-5)×(-3)____________.2y+6=0,则x+y=____________.2.已知(x-2)2+||3.如图,数轴上A、B两点分别对应实数a、b,则a与b之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x※y=xy +1.(1)求2※3的值;(2)求(3※5)※(-2)的值;(3)探索a※(b+c)与a※b+a※c 的关系,并用等式把它们表达出来.【答案】.12 2.-1 3.答案不唯一,如a >b4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60. (2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31 (3)∵a※(b+c)=a(b +c)+1=ab +ac +1,a ※b +a※c=ab +1+ac +1.∴a※(b+c)+1=a※b+a※c.。

河南省初中地理七年级上第二章陆地和海洋知识点归纳总结(精华版)

河南省初中地理七年级上第二章陆地和海洋知识点归纳总结(精华版)

河南省初中地理七年级上第二章陆地和海洋知识点归纳总结(精华版)选择题1、根据有关板块的知识,未来地中海的面积应()A.扩大B.缩小C.不变D.有时扩大有时缩小答案:B板块学说认为,地球表层并不是整体一块,而是大致由六大板块和一些小板块构成。

板块是不断运动的,包括挤压运动和张裂运动,挤压运动形成高山和高原,张裂运动形成裂谷和海洋,地中海位于亚欧板块和非洲板块交界处,而这两个板块是在做挤压运动,故地中海未来的发展趋势是越来越小,甚至会消失,故B符合题意,故选B。

小提示:2、在宇宙中看地球更像一个“水球”,原因是A.地球表面全部是海洋B.地球上七分海洋三分陆地C.地球被水汽所包围D.地球上没有水答案:B地球总面积约5 .1亿平方千米,海洋越占71%,陆地约占29%,即“三分陆地,七分海洋”。

因此人们经常说应该把我们所生活的星球命名为“水球”更为贴切,主要就是因为地球表面七分为海洋,三分为陆地。

故B符合题意。

3、下列关于地球表面形态说法正确的是()A.地球表面形态是固定不变的B.地球表面形态处于不停的运动和变化之中C.地球表面形态自古就是这样的D.地球表面形态部分地区变化,部分地区不变答案:B地球表面形态处于永不停息的运动与变化之中,海洋可能变成陆地,陆地也可能变成海洋,地球表面形态既有海陆面积的变化,也有海陆分布的变化。

根据题意排除ACD,故选B。

4、海牛生活在热带浅海环境中,鸵鸟生活在陆地上且不会飞,它们分布在大西洋两岸的原因是()A.两个大陆上的人们进行国际贸易的结果B.在地质时期,两个大陆曾是紧密相连的整体C.海洋干涸或大洋海水变浅时,它们从一个大陆迁移到另一个大陆D.两大陆间的距离不断缩小,在偶然的机会中,它们在两大陆间来回活动答案:B两个大陆上的人们进行国际贸易,并不是鸵鸟、海牛生活在大西洋两岸的原因,A错误;在地质时期,两个大陆曾是紧密相连的整体,后来经大陆板块的漂移,形成了现在的鸵鸟、海牛分布在大西洋两岸的情况,B正确;海洋干涸或大洋海水变浅时,它们从一个大陆迁移到另一个大陆,这种说法的可能性不大,C错误;大西洋在不断扩张,两大陆间的距离是不断扩大的,D错误。

苏教版七年级数学上册 第二章《有理数》选择、填空专题练习(含答案)

苏教版七年级数学上册 第二章《有理数》选择、填空专题练习(含答案)

第二章《有理数》选择、填空专题练习一.选择题1.下面几个数中,属于正数的是()A.3 B.﹣0.5 C.﹣10 D.02.上升5cm,记作+5cm,下降6cm,记作()A.6cm B.﹣6cm C.+6cm D.负6cm3.下列数是无理数的是()A.πB.C.D.04.如图,数轴上A,B两点之间表示的整数共有()A.5个B.6个C.7个D.8个5.﹣8的相反数是()A.﹣8 B.C.8 D.﹣6.﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣7.|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣8.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣19.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1 B.3 C.﹣1 D.﹣310.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和11.若a≠0,b≠0,则代数式的取值共有()A.2个B.3个C.4个D.5个12.若|a﹣b|=1,|b+c|=1,|a+c|=2,则|a+b+2c|等于()A.3 B.2 C.1 D.013.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣314.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)15.计算+++++……+的值为()A.B.C.D.16.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大17.﹣|﹣|的负倒数是()A.B.C.D.18.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×10619.遗爱湖有5400亩,15亩=10000平方米,用科学记数法表示遗爱湖面积为()A.8.1×105平方米B.8.1×106平方米C.3.6×105平方米D.3.6×106平方米20.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为()A.4.07×105元B.4.07×106元C.4.07×107元D.4.07×108元21.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F (n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201822.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入﹣1,并将所显示的结果再次输入,这时显示的结果应当是()A.2 B.3 C.4 D.523.定义一种运算:C=,则C=()A.10 B.C.D.2024.定义运算a⊗b=a(1﹣b),则下面的结论正确的是()A.2⊗(﹣2)=﹣2 B.a⊗b=b⊗aC.若a+b=0,则(a⊗a)+(b⊗b)=2ab D.若a⊗b=0,则a=025.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元二.填空题26.如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.27.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.28.﹣2018的绝对值是.29.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.30.若x是实数,则y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为.31.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b﹣c|+|c ﹣d|+|d﹣a|的最大值是.32.计算:|﹣3|﹣1=.33.计算1+4+9+16+25+…的前29项的和是.34.从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有个.35.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.36.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为元.37.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为.38.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.39.按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)40.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.答案与解析一.选择题1.【分析】根据正数和负数的定义可直接解答.【解答】解:根据正数和负数的定义可知,四个选项中只有A符合题意.故选:A.【点评】此题考查的知识点是正数和负数,解答此题要熟知正数和负数的概念:大于0的数叫正数,小于0的数为负数,0既不是正数也不是负数.2.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可知上升为+,则下降为﹣,所以下降6cm,记作﹣6cm.故选答案B.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、、0是有理数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【分析】首先正确估算﹣2和﹣2的范围,再进一步找到之间的整数.【解答】解:∵6<<7,∴4﹣2<5,∴数轴上点A和点B之间表示整数的点有﹣1,0,1,2,3,4共6个.故选:B.【点评】此题考查了无理数的估算以及数轴上的点和数之间的对应关系,关键是能够根据一个数的平方正确估算无理数的大小,结合数轴确定两点之间的整数.5.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.6.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.7.【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.8.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.9.【分析】根据绝对值的性质即可求出答案.【解答】解:由于a<0,ab<0,∴b>0,∴a﹣b﹣1<0,2+b﹣a>0,∴原式=﹣(a﹣b﹣1)﹣(2+b﹣a)=﹣a+b+1﹣2﹣b+a=﹣1故选:C.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.10.【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.11.【分析】本题可分4种情况分别讨论,解出此时的代数式的值,然后综合得到所求的值.【解答】解:由分析知:可分4种情况:①a>0,b>0,此时ab>0所以=1+1+1=3;②a>0,b<0,此时ab<0所以=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0所以=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0所以=﹣1+1﹣1=﹣1;综合①②③④可知:代数式的值为3或﹣1.故选:A.【点评】本题主要考查了绝对值的运用,绝对值都为非负数.这一点必须牢记.12.【分析】把a+c写成a﹣b+b+c,然后根据绝对值的性质求出a﹣b、b+c,再求出a+c,然后代入代数式根据绝对值的性质解答即可.【解答】解:|a+c|=|a﹣b+b+c|=2,∵|a﹣b|=1,|b+c|=1,∴a﹣b=b+c=1或a﹣b=b+c=﹣1,①a﹣b=b+c=1时,a+c=2,所以,|a+b+2c|=|a+c+b+c|=|1+2|=3,②a﹣b=b+c=﹣1时,a+c=﹣2,所以,|a+b+2c|=|a+c+b+c|=|﹣1﹣2|=3,故|a+b+2c|=3.故选:A.【点评】本题考查了绝对值,熟记性质并观察已知条件的特征求出a﹣b=b+c=1或a﹣b=b+c=﹣1是解题的关键.13.【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.15.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.【点评】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.16.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.17.【分析】根据相反数,倒数的定义,负倒数是相反数的倒数.【解答】解:﹣|﹣|=﹣,﹣的负倒数是.故选:B.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.19.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5400÷15×10000=3600000=3.6×106,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:四千零七十万元,则此营业额可表示为4.07×107元,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.22.【分析】先根据显示屏的结果总等于所输入有理数的平方与1之和这个条件,由此得出显示屏的结果,即可得出正确结论.【解答】解:∵当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,∴若输入﹣1,则显示屏的结果为(﹣1)2+1=2,再将2输入,则显示屏的结果为22+1=5.故选:D.【点评】本题主要考查了有理数的混合运算,在解题时要注意这个计算程序的条件.23.【分析】根据题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:==10,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】根据定义的运算方法逐一运算,【解答】解:A、2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,此选项不正确;B、a⊗b=a(1﹣b),b⊗a=b(1﹣a),a⊗b=b⊗a只有在a=b时成立,此选项不正确;C、a+b=0,a=﹣b,(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a+b﹣a2﹣b2=2ab,此选项正确;D、a⊗b=0,a(1﹣b)=0,a=0或b=1,此选项不正确.故选:C.【点评】此题主要考查了有理数的混合运算,理解和掌握新运算的计算方法是解决问题的关键.25.【分析】认真分析表格,弄清返购物券的标准与使用购物券的条件,从而确定最佳方案.【解答】解:∵买化妆品不返购物券,∴先购买鞋,利用所得购物券再买衣服,需要现金(280+220)元,得到200购物券,利用购物券,现金100元,购买化妆品即可.张阿姨购买这三件物品实际所付出的钱的总数为:280+220+100=600元.故选:B.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.二.填空题26.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.27.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.28.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:2018【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.29.【分析】分三种情况:x<﹣1;﹣1≤x≤4;x>4;去绝对值后解方程即可求解.【解答】解:x<﹣1时,﹣x﹣1﹣x+4=7,解得x=﹣2;﹣1≤x≤4时,x+1﹣x+4=7,方程无解;x>4时,x+1+x﹣4=7,解得x=5.故答案为:﹣2或5.【点评】考查了绝对值,注意分类思想的运用,是中档题型.30.【分析】分6个区域:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55;比较最小值,即可求得答案.【解答】解:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x,则x=1时,有最小值40;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x,则x=2时,有最小值27;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x,则x=3时,有最小值18;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x,则x=4时,有最小值15;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5,则y没有最小值;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55,则y没有最小值;故当x=4时,|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为15.故答案为:15.【点评】此题考查了绝对值的最值问题.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.31.【分析】若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,再代入计算即可求解.【解答】解:若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的最大值=0+0+8+8=16.故答案为:16.【点评】此题考查了绝对值,要使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1,再根据低位上的数字不小于高位上的数字解答.32.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.33.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n﹣1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n﹣1)n]=+{(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[(n ﹣1)•n•(n+1)﹣(n﹣2)•(n﹣1)•n]}=+[(n﹣1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为8555.【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.34.【分析】两个数相加最小的和是1+4=5,最大的和是295+298=593,和也是隔3的自然数,根据等差数列通项公式求出项数即可求解.【解答】解:1+4=5,295+298=593,和是隔3的自然数,n=(593﹣5)÷3+1=588÷3+1=197.故答案为:197.【点评】考查了有理数的加法,等差数列通项公式,关键是求出两个数相加最小的和,以及最大的和.35.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4×…×(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∵1×2×3×4=24,∴m=4,故答案为:4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.36.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:300亿元=3×1010元.故答案为:3×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.37.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.【点评】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x 的一元一次方程是解题的关键.39.【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.40.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.。

最全面七年级数学上册知识点总结(精华版)

最全面七年级数学上册知识点总结(精华版)

提分数学七年级上知识清单第一章有理数一.正数和负数1 .正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,是负数;当a表示负数时,是正数;当a表示0 时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“ +”,有时省略不写。

所以省略“ +”的正数的符号是正号。

2 .具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8c表示为:・8 °C支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3 .0表示的意义⑴0表示“没有。

如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二,有理数1 .有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①H是无限不循环小数,不能写成分数形式,不是有理数。

②有小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,・4,・6,-8 也是偶数,也是奇数。

2.(1)凡能写成9 (P, q为整数且H0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负P 分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,+a也不一定是正数;正是有理数;「匚右刑物f正整数正有理数I正分数⑵有理数的分类:①按正、负分类:有理数{零负有理数[ [■正整数整数彳零②按有理数的意义来分:有理数出整数分数年分数分数一分数■总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑶注意:有理数中,1、0、・1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域, 这四个区域的数也有自己的特性;(4)自然数U 0和正整数;a>0 U a是正数;a< 0 a是负数;a20 = a是正数或0 u a是非负数;aW 0 = a是负数或0 u a是非正数.三.数轴1 .数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级数学上册第二章有理数的运算讲义(含解析)

七年级数学上册第二章有理数的运算讲义(含解析)

七年级数学上册第二章有理数的运算考试要求:重难点:1.理解并掌握加减法法则且能熟练运用法则计算2.理解并掌握乘除法法则且能熟练运用法则计算3.能利用有理数的运算法则简化运算4.能借助数轴比较有理数的大小例题精讲:模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;①求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)①三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.a b c a b c++=++(加法结合律)()()有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.①带分数可分为整数与分数两部分参与运算.①多个加数相加时,若有互为相反数的两个数,可先结合相加得零.①若有可以凑整的数,即相加得整数时,可先结合相加.①若有同分母的分数或易通分的分数,应先结合在一起.①符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。

七年级上期末复习《第二章整式的加减》知识点+易错题(含答案)

七年级上期末复习《第二章整式的加减》知识点+易错题(含答案)

七年级数学上册 期末复习 整式的加减知识点+易错题整式的加减知识点整式知识点1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.11. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.12.代数式的值根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数式的值.13. 列代数式要注意①数字与字母、字母与字母相乘,要把乘号省略;②数字与字母、字母与字母相除,要把它写成分数的形式;③如果字母前面的数字是带分数,要把它写成假分数。

初一地理上册知识点总结(最全面最详细)

初一地理上册知识点总结(最全面最详细)

地理七年级上册知识结构第一章地球和地图第一节地球和地球仪第二节地球的运动第三节地图第二章陆地和海洋第一节大洲和大洋第二节海陆的变迁第三章天气和气候第一节多变的天气第二节气温和气温的分布第三节降水和降水的分布第四节世界的气候第四章居民与聚落第一节人口与人种第二节世界的语言和宗教第三节人类的居住地──聚落 第五章发展与合作一、地球和地图1.地球的形状和大小①地球是一个两极稍扁,赤道略鼓的椭球体。

②葡萄牙航海家麦哲伦率领的船队首次实现了人类环绕地球一周的航行。

③地球表面积5.1亿平方千米,最大周长4万千米,赤道半径6378千米,极半径6357千米,平均半径6371千米。

2.纬线和经线①纬线:与地轴垂直并且环绕地球一周的圆圈。

纬线是不等长的,赤道是最大的纬线圈。

②经线:连接南北两极,并且与纬线垂直相交的半圆。

经线是等长的。

3.纬度和经度①纬度的变化规律:由赤道(0°纬线)向南、北两极递增。

最大的纬度是90度,在南极、北极。

②赤道以北的纬度叫北纬,用“N”表示;赤道以南的纬度叫南纬,用“S”表示。

③以赤道为界,将地球平均分为南、北两个半球,赤道以北是北半球,赤道以南是南半球。

④经度的变化规律:由本初子午线(0°经线)向西、向东递增到180°。

⑤本初子午线以东的经度叫东经,用“E”表示;本初子午线以西的经度叫西经,用“W”表示。

⑥东、西半球的分界线是:20°W、160°E组成的经线圈。

20°W以西到160°E属于西半球(大于20°W或大于160°E)20°W以东到160°E属于东半球(小于20°W或小于160°E)4.地球的运动①地球运动绕什么转方向周期产生的自然现象自转地轴自西向东约24小时昼夜交替公转太阳自西向东一年形成四季②北半球与南半球的季节相反(春——秋;夏——冬)③地球表面五带的划分:北寒带(66.5°N--90°N)、北温带(23.5°N--66.5°N)、热带(23.5°N--23.5°S)、南温带(23.5°S--66.5°S)、南寒带(66.5°S--90°S)寒带:有极昼极夜现象热带:有阳光直射现象温带:既无阳光直射现象,又无极昼极夜现象,四季变化明显④低纬:0°--30°;中纬:30°--60°;高纬:60°--90°⑤自西向东拨动地球仪,从北极上空看,地球仪按逆时针方向转;从南极上空看,地球仪按顺时针方向转。

七年级上册英语二单元总结知识点

七年级上册英语二单元总结知识点

七年级上册英语二单元总结知识点七年级上册英语二单元主要涵盖了以下几个知识点:
1. 介绍自己和他人,学习如何用英语介绍自己的姓名、年龄、
家庭成员以及喜好等个人信息,并且能够询问他人的相关信息。

2. 询问和表达兴趣爱好,学习如何用英语询问他人的兴趣爱好,并且能够表达自己的兴趣爱好。

3. 描述外貌和个性,学习如何用英语描述人的外貌特征和个性
特点,包括身高、体型、发型、眼睛颜色以及性格等。

4. 询问和表达时间,学习如何用英语询问时间,并且能够表达
时间的方式,包括具体的时间点和时间段。

5. 询问和表达日常活动,学习如何用英语询问他人的日常活动,并且能够表达自己的日常活动,包括学习、运动、娱乐等。

6. 询问和表达地点,学习如何用英语询问地点,并且能够表达
自己所在的地点以及他人所在的地点。

7. 询问和表达交通方式,学习如何用英语询问和表达出行的交通方式,包括步行、骑自行车、乘坐公共交通工具等。

8. 表达喜欢和不喜欢,学习如何用英语表达对事物的喜好和不喜好,包括食物、运动、音乐等。

9. 描述学校和课程,学习如何用英语描述学校的地点、设施以及各种课程科目。

10. 询问和表达价格,学习如何用英语询问物品的价格,并且能够表达自己购买物品的价格。

以上是七年级上册英语二单元的主要知识点总结。

希望对你有所帮助!。

大连市七年级数学上册第二章《整式的加减》知识点(含答案解析)

大连市七年级数学上册第二章《整式的加减》知识点(含答案解析)

一、选择题1.(0分)代数式x 2﹣1y 的正确解释是( ) A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】 本题考查了代数式,理解题意(代数式的意义)是解题关键.2.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.(0分)已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4.(0分)如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.5.(0分)下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ A 解析:A根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.6.(0分)把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.7.(0分)下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y xx y x +--=+-+ D .()()223423422x y x x y x --+=--+ C【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y xx y x +--=+-+,此选项正确; D. ()()223423422x y xx y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.8.(0分)张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.9.(0分)某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.10.(0分)多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规解析:42n +【分析】 发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形.【详解】解:第一个图形中有6个白色六边形,第二个图形有6+4个白色六边形,第三个图形有6+4+4个白色六边形,根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形.故答案是:4n +2.【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 13.(0分)合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)===,……=m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9【分析】13n +,将210n +=代入即可得出答案. 【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+=故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.15.(0分)礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.16.(0分)有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键. 17.(0分)已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.18.(0分)多项式223324573x x y x y y --+-按x 的降幂排列是______。

2022年七年级数学上册 第二章 有理数及其运算知识点归纳 (新版)北师大版

2022年七年级数学上册 第二章 有理数及其运算知识点归纳 (新版)北师大版

第二章知识点整理七年级上册第二章有理数及其运算1.有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…〔负号不能省略〕.l 0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。

有理数的大小比拟:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:〔1〕只有符号不同的两个数叫做互为相反数〔在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等〕,0的相反数是0;a,b互为相反数 a+b=0;〔2〕求一个数的相反数,只要在它的前面添上负号“-〞即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-〞;下面的a,b即可以是数字,字母,也可以是代数式;〔3〕一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4. 绝对值:〔1〕几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;〔2〕代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.〔3〕对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;假设几个数的绝对值的和等于0,那么这几个数同时为0;〔4〕比拟两个负数,绝对值大的反而小;5.倒数:〔1〕乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是 1/a,0没有倒数;〔2〕求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.〔3〕用1除以一个非0数,商就是这个数的倒数.6. 有理数的四那么运算:⑴加法法那么:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时〔即互为相反数的两个数〕相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律〔互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加〕.⑵减法法那么:①减去一个数,等于加上这个数的相反数,依据加法法那么②加减混合运算,通过减法法那么将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法那么:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;〔另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.〕③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法那么:①两数相除,同号得正,异号得负,把绝对值相除;② 0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即 .⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数〔奇次幂2n+1,2n-1; 偶次幂 2n〕;0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法〔1〕把一个大于10的数表示成的形式〔其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,〕,这种记数方法叫科学记数法;〔2〕准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;〔3〕精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;〔4〕有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。

(完整版)人教版初一数学上册知识点归纳总结

(完整版)人教版初一数学上册知识点归纳总结

第一章有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

七年级地理上册知识点总结填空归纳

七年级地理上册知识点总结填空归纳

七年级地理上册知识点总结填空归纳第一章:让我们走进地理
第二章:地球的面貌
①赤道穿过的洲有②南美洲、③非洲、⑤亚洲、⑥大洋州
②赤道穿过哪些洲的大陆?②南美洲、③非洲
③太平洋沿岸的洲有①北美洲②南美洲⑤亚洲⑥大洋州⑦南极洲大西洋沿岸的洲有①北美洲②南美洲③非洲④欧洲⑦南极洲
④南极洲被哪些大洋包围?B大西洋 C太平洋 D印度洋
⑤主要位于西半球的洲有①北美洲②南美洲
46. 其中太平洋板块几乎全部是海洋。

第三章:世界的居民
第四章:世界的气候
78. 天气指某个地方距离地表较近的大气层在短时间内的具体状态。

79. 天气的突出特点是多变。

第五章:世界的发展差异。

浙教版《科学》七年级上(第二章)知识点整理

浙教版《科学》七年级上(第二章)知识点整理

第2章观察生物2.1 生物与非生物1.生物对刺激有反应,非生物对刺激没有反应。

所有生物都具有共同的特征:能呼吸、能生长、能繁殖后代、对外界刺激有反应、能遗传和变异、能进化。

蜗牛:触角两对,口(摄取食物);足(腹足)运动、爬行;眼;壳(保护)。

有视觉、触觉、味觉、嗅觉。

没听觉。

2.我们把生物对外界刺激做出反应的特征叫做生物的应激性。

3.生物与非生物的差别:生物非生物1 对刺激有反应(有应激性)对刺激没有反应(无应激性)2 能生长不能生长3 需要营养(会新陈代谢)不需要营养(不会新陈代谢)4 有严整的结构无严整的结构5 能生殖和发育不能生殖和发育6 有遗传和变异的特性没有遗传和变异的特性7 能适应环境、影响环境不能适应环境、影响环境4.动物与植物最主要的 2 个区别:(1)运动:有些植物可以局部运动,动物可以自由快速运动。

(2)光合作用:植物可以,动物不可以。

2.2 细胞1.1665 年,英国科学家罗伯特·胡克用自制的显微镜观察木栓切片时,发现了细胞。

细胞很小,一般只有一到几十微米之间。

2.动物和植物都是由相同的基本单位——细胞构成的。

3.动物细胞细胞膜:保护作用,并且控制细胞与外界物质交换。

细胞质:许多生命活动的场所。

细胞核:球状,含有遗传物质,起传宗接代的作用。

4.植物细胞细胞壁:最外层,由纤维素组成,具有支持保护作用,使植物具有一定的形状。

叶绿体:内含叶绿素,是进行光合作用的场所,椭圆形。

液泡:含有细胞液。

细胞膜:保护作用,并且控制细胞与外界物质交换。

细胞质:许多生命活动的场所。

细胞核:球状,含有遗传物质,起传宗接代的作用。

5.植物细胞和动物细胞的结构比较:植物细胞和动物细胞都具有细胞膜,细胞质,细胞核。

除此之外,植物细胞还有细胞壁,液泡,叶绿体。

6.1831 年英国科学家布朗发现了植物细胞内有细胞核。

19 世纪 40 年代,德国科学家施莱登和施旺提出了动物和植物都是由相同的基本单位——细胞所构成。

人教版初一数学上册知识点归纳总结(精华版)

人教版初一数学上册知识点归纳总结(精华版)

第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)细胞壁的作用:主要由
组成,具有


作用
(5)叶绿体的作用:内含有
,是植物进行
作用的场所
(6)液泡的作用:含有
4、显微镜的使用方法
(1)目镜:_____螺纹,目镜长度越长目镜放大倍数越_____
(2)物镜:_____螺纹,物镜长度越长物镜放大倍数越_____
(3)显微镜放大倍数=_____放大倍数×_____放大倍数
6、 分生组织 、 输导组织 、 营养组织 、 保护组织 、 机
械组织 ; 神经组织 、 结缔组织 、 肌肉组织 、 上皮组织
7 消化系统 、 循环系统 、 呼吸系统 、 泌尿系统 、 神
经系统、 运动系统 、生殖系统 、 内分泌系统
8、 消化腺 ;口腔 、 咽 、 食道 、 胃 、 小肠 、
大肠
、肛门; 消化腺
原生动物
腔肠动物
扁形动物
棘皮动物
软体动物
环节动物
线形动物 10、(1)植物分类(有无以下器官,有就√,无就×)
根 茎 叶 花 果 种子 代表植物(写5个) 实
被子植 物
裸子植 物
(2) 被子植物与裸子植物的区别是:
(3)植物与动物的最重要的区别:
单细胞生物包括:衣藻、
:唾液腺、 胃腺
、 胰腺
、 肠腺 、肝脏
9动物根据有无 脊椎骨 分为脊椎动物和无脊椎动物
________________________________ (3)根据此实验所得的结论,请你谈谈感想和建议. ________________________________
聚集教材 1、有无生命;应激性 、新陈代谢 、生长 、繁殖和发育、遗传和变异 、具有细胞结构 、能适应和影响环境 2、:视觉 、嗅觉 、味觉 、触觉 ,不具有听觉 3、细胞各部分的功能: (1)细胞膜的作用(2)细胞核的作用:含有遗传物质,是生命活动的 控制中心 (3)细胞质的作用:(4)细胞壁的作用:主要由纤维素组成,具有保 护和支持的作用 (5)叶绿体的作用:内含有叶绿素,是植物进行光合作用作用的场所 (6)液泡的作用:含有细胞液 4、显微镜的使用方法 (1)目镜:无,大(2)物镜:_有_,小(3)目镜,物镜 (4)显微镜的使用一般包括安放、对光、放片、调焦和观察 一、安放:__右___,__左___,__左___ 二、对光:__低____遮光器____,__右__ 三、放片,调焦:__粗___,__物镜___,__粗___。___细__,变___暗 __,__大__,_凹____面,__细__,_少___,____大_ (6)如何改变视野的明暗: 调节光圈的大小:光圈_大___,视野亮;光圈__小__,视野暗; 调节反光镜:_凹___面镜,视野亮;_平___面镜,视野暗; 5、细胞分裂、细胞分化、细胞生长
(6)植物和动物的受精卵是一个细胞,他经过多次分裂和生长后,除
少数细胞继续分裂外,其余大部分细胞则分化成形成各种不同形态和功
能的细胞群,这些细胞群就是________
(7)经过细胞分化,细胞的形态和功能发生差异,但细胞内的遗传物
质______(填“变化”或“不变”);细胞分化的结果是:形成各种
________
科学 七年级上册 第二单元
班级
姓名
1、生物与非生物本质的区别:




2、蜗牛具有:
觉、


3、细胞各部分的功能:
;生物的基本特征:

觉、
觉、
、 觉 ,不具
(1) 换的作用
的作用:主要起保护和控制细胞外界物质之间进行物质交
(2)
的作用:含有
,是生命活动的控制中心
(3)
的作用:细胞核和细胞膜之间,它是许多生命活动的场所
D.消化系统、肝脏、萝卜、香

例3:今年夏天,一则“温岭大溪镇发现疑似蝉花虫草”的微博在网上 传播,蝉花虫草是从死亡的蝉蛹上长出的生物,具有较高的药用价值, 引起许多民众到山上采挖。蝉花虫草是什么生物?以下是四位同学的说 法,你认为最合理的是( ) A.甲同学认为蝉花虫草是动物,因为它从动物上长出来的 B.乙同学认为蝉花虫草不是动物,因为它不能运动,因为动物都能运动 C.丙同学认为蝉花虫草不是植物,因为它不是绿色的,植物都是绿色的 D.丁同学认为蝉花虫草不是植物,因为它不能进行光合作用制造有机物 例4:小明利用课余时间采集到了课堂上要用的两种实验样本:(甲) 洋葱、(乙)草履虫。学校提供了显微镜、解剖器等工具,请回答下列 有关小云做实验时的问题: (1) 小明在用低倍镜观察一临时装片时,在视野内看到一黑点。当他 移动装片时,黑点不动;当他换用高倍镜观察后,黑点还在原处,这一 现象最可能的解释是_____________________ (2)若样本(乙)从视野的正上方往下运动,则她的实际运动方向是 ______
碰到玻片标本)。左眼向目镜内看,同时反方向转动_____准焦螺旋,
使镜筒缓缓上升,直到看清物像为止。再略微转动_____准焦螺旋,使
看到的物像更加清晰。高倍物镜的使用:使用高倍物镜之前,必须先用
低倍物镜找到观察的物象,并调到视野的正中央,然后转动转换器再换
高倍镜。换用高倍镜后,视野内亮度变_____(填“亮”或“暗”),
6、植物的组织有:





动物的组织有:



7八大系统:







8、消化系统包括消化道和
;消化道:口腔 、

、、
、肛门;
:唾液腺、

、肝脏
9动物根据有无
分为脊椎动物和无脊椎动物
脊椎动 呼吸器 体温


生殖方式 代表动物(写三 个)
鱼类
两栖类
爬行类
鸟类
哺乳类
、 、
无脊椎动物
特征
代表动物(写三个)
因此一般选用较_____的光圈并使用反光镜的_____面,然后调节_____
准焦螺旋。观看的物体数目变_____(填“多”或“少”),但是体积
变_____(填“大”或“小”)。
(5)写出显微镜格结构名称
(6)如何改变视野的明暗:
调节光圈的大小:光圈____,视野亮;光圈____,视野暗;
调节反光镜:____面镜,视野亮;____面镜,视野暗;
左眼注视目镜内(_____眼睁开,便于以后同时画图)。转动反光镜,使
光线通过通光孔反射到镜筒内。通过目镜,可以看到明亮的圆形。
三、放片,调焦:把所要观察的玻片标本(载玻片)放在载物台上,用
压片夹压住,标本要正对通光孔的中心。转动_____准焦螺旋,使镜筒
缓缓下降,直到物镜接近玻片标本为止(眼睛看着_____镜,以免物镜
(7)装片上的字是“上”,目镜上看到的图像是________
5、细胞分裂、细胞分化、细胞生长
(1)细胞分裂导致的意义:a.使单细胞生物________增加; b.使多细
胞生物________增加。
(2)分裂过程中,最引人注意的变化是?
a.细胞核出现________; b.这些________复制后会平均分配到两个子
4、下列关于生物结构的叙述正确的是( ) A.构成生物体的细胞,其结构是相同的 B.植物都有根、茎、叶等器官构成 C.人体内功能相近的器官构成系统,再由系统来完成某项生理功能 D.凡是动物都由消化、循环、呼吸、泌尿、生殖、神经、运动等系统 构成 5、下表中有关生物的特征与生活实例搭配不当的是( )
选项

、变形虫
例1:你喜欢动画片吗?动画片里有许多以动物为原形的形象.下列四
种动物,属于地球上最高等的脊椎动物的是( )
A. 蜘蛛侠(蜘蛛) B. 唐老鸭
C. 米老鼠
D. 章鱼哥
(章鱼)
例2:下列依次属于系统﹑器官﹑组织﹑细胞的一组是(
)
A. 神经系统、心脏、血液、衣藻
B.运动系统、果实、皮肤、
叶绿体
C.呼吸系统、种子、甘薯、鸭蛋
例5:某中学生物学科兴趣小组在学习 了“保护生物的多样性”后,开 展“各种污染物对青蛙受精卵孵化率 的影响”的探究活动.他们采集了一 定数量的青蛙受精卵,以化肥、洗涤 剂作为污染物,在鱼缸中进行实验观
察. 【建立假设】各种污染物会降低青蛙 受精卵孵化率. 【设计实验】 ①将3个鱼缸中加入等量的清水,并编 号1、2、3; ②在l、2号鱼缸中分别加入一定量的 化肥、洗涤剂,3号鱼缸不加任何物质 ③把青蛙受精卵分成三等份(各100 粒),分别放人上述鱼缸中,在相同 适宜的环境中孵化. 回答下列问题: (1)青蛙在分类上属于脊椎动物中 ________动物 (2)实验时需要定时观察记录的内容 是____________________________ (3)支持上述假设的实验结果是 ________________________
(1)用来调节光线强弱的结构是_________和_________. (2)转动时,使镜筒的升降范围很小的结构是[ ]_________. (3)制作装片时,为使观察效果更好,可用_________对标本进行染色 处理. (4)把制作好的临时标本放上载物台后,要用标本夹压住,标本要正 对_________的中央.甲图中,选择标有_________×的物镜,可观察到 更大的物像; (5)乙图中,蓝蓝绘图时出现了失误,多画了_________,少画了 _________. 7、为了研究废电池、满江红(一种水生蕨类植物)对水质的影响,某 校自然科学兴趣小组做了如下实验: 实验一:在5只鱼缸上分别贴标签A、B、C、D、E;各放入3500ml未污染 的池塘水;在A、B、C、D4只鱼缸中分别放1节不同型号的电池(每节打 洞,以便有毒物质释放),E缸作为对照,不放废电池;再向各缸分别 放入1条健康、大小和体重相近的同种金鱼;定时喂养,观察并记录情 况. 实验二:在5只鱼缸上分别贴标签A、B、C、D、E;各放入3500毫升未污 染的池塘水;向各缸分别放入经过打洞处理的1节同型号的废电池;向 B、C、D、E缸放入不同数量的满江红,20天后,再向各缸分别入1条健 康、大小和体重相近的金鱼;定时喂养,观察并记录情况.结果如上 表: (1)通过实验一和实验二分别得出何种结论? ________________________________ (2)满江红在净化水质中的作用是什么?
相关文档
最新文档