高三物理统考复习试卷(含解析)

合集下载

高三物理联考试题及答案

高三物理联考试题及答案

高三物理联考试题及答案一、选择题(每题4分,共40分)1. 下列关于光的波动性的描述,正确的是:A. 光的干涉和衍射现象是波动性的体现B. 光的直线传播是波动性的体现C. 光的偏振现象是粒子性的体现D. 光的反射现象是波动性的体现答案:A2. 以下关于电磁波的描述,错误的是:A. 电磁波在真空中传播速度为光速B. 电磁波具有能量C. 电磁波的频率与波长成反比D. 电磁波的传播不需要介质答案:C3. 一个质量为m的物体从静止开始下落,忽略空气阻力,其加速度为:A. gB. 2gC. mgD. 1/2g答案:A4. 根据牛顿第三定律,以下说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力作用在不同的物体上C. 作用力和反作用力同时产生,同时消失D. 作用力和反作用力可以是同种性质的力答案:A、B、C5. 以下关于电场的描述,正确的是:A. 电场线是闭合的B. 电场线的方向是正电荷的受力方向C. 电场线越密,电场强度越大D. 电场线是真实存在的答案:C6. 一个电路中,电阻R1和R2串联,总电阻R等于:A. R1 + R2B. R1 * R2 / (R1 + R2)C. R1 / R2 + R2 / R1D. R1 * R2答案:A7. 根据欧姆定律,以下说法正确的是:A. 电阻是导体本身的一种性质B. 电流与电压成正比C. 电阻与电流成正比D. 电压与电流成反比答案:A、B8. 以下关于磁场的描述,错误的是:A. 磁场对放入其中的磁体有磁力作用B. 磁场对放入其中的电流有磁力作用C. 磁场对放入其中的电荷有磁力作用D. 磁场对放入其中的导体没有作用答案:C9. 以下关于能量守恒定律的描述,错误的是:A. 能量不能被创造B. 能量不能被消灭C. 能量可以无限制地转化D. 能量的总量是恒定的答案:C10. 以下关于热力学第一定律的描述,正确的是:A. 热力学第一定律是能量守恒定律的一种表述B. 热力学第一定律表明热能可以完全转化为机械能C. 热力学第一定律表明机械能可以完全转化为热能D. 热力学第一定律表明能量的总量是不变的答案:A、D二、填空题(每题4分,共20分)1. 光年是______单位。

高三物理试题及答案word

高三物理试题及答案word

高三物理试题及答案word一、选择题(每题3分,共30分)1. 光在真空中传播的速度是()。

A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^7 m/s答案:A2. 一个物体的质量为2kg,受到的重力为()。

A. 19.6 NB. 9.8 NC. 39.2 ND. 4.9 N答案:C3. 下列哪项不是牛顿运动定律的内容?()A. 惯性定律B. 力的作用是相互的C. 力可以改变物体的运动状态D. 力是物体运动的原因答案:D4. 根据能量守恒定律,下列说法正确的是()。

A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量的总量可以增加答案:C5. 一个完全弹性碰撞中,两个物体碰撞前后的动量守恒,下列说法正确的是()。

A. 动能守恒B. 动能不守恒C. 动量守恒D. 动量不守恒答案:C6. 电场强度的定义式是()。

A. E = F/qB. E = qFC. F = qED. F = E/q答案:A7. 电流的单位是()。

A. 伏特B. 欧姆C. 安培D. 瓦特答案:C8. 根据欧姆定律,下列说法正确的是()。

A. 电压一定时,电阻越大,电流越小B. 电压一定时,电阻越小,电流越大C. 电流一定时,电压越大,电阻越大D. 电流一定时,电压越小,电阻越小答案:A9. 电磁感应现象是由()发现的。

A. 牛顿B. 法拉第C. 欧姆D. 安培答案:B10. 光的折射定律是()。

A. 斯涅尔定律B. 牛顿定律C. 欧姆定律D. 法拉第定律答案:A二、填空题(每题3分,共15分)1. 光在空气中的传播速度约为______。

答案:3×10^8 m/s2. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,那么它在第3秒内的位移是______。

答案:9m3. 一个电路中,电阻为10Ω,通过的电流为0.5A,那么这个电路的电压为______。

高三物理试题及答案

高三物理试题及答案

高三物理试题及答案一、选择题(每题3分,共30分)1. 根据牛顿第二定律,物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。

以下哪项描述是错误的?A. 加速度与合外力成正比B. 加速度与质量成反比C. 加速度与合外力无关D. 加速度与质量无关2. 一个物体从静止开始自由下落,其下落的高度h与时间t的关系为:A. h = gtB. h = 1/2 gt^2C. h = 1/2 gtD. h = gt^23. 在电路中,电阻R、电流I和电压U之间的关系为:A. U = IRB. U = R/IC. I = U/RD. R = U/I4. 光在真空中的传播速度为:A. 3×10^8 m/sB. 3×10^4 km/sC. 3×10^5 km/sD. 3×10^6 km/s5. 根据能量守恒定律,在一个封闭系统中,能量的总量是:A. 增加的B. 减少的C. 不变的D. 无法确定的6. 一个质量为m的物体以速度v在水平面上做匀速直线运动,其动能为:A. 1/2 mv^2B. mv^2C. 2mv^2D. 07. 两个点电荷之间的库仑力与它们之间的距离的平方成:A. 正比B. 反比C. 无关D. 对数关系8. 以下哪种情况不满足动量守恒定律?A. 系统合外力为零B. 系统所受合外力不为零C. 系统内部力远大于外部力D. 系统内部力远小于外部力9. 一个物体在水平面上做匀速圆周运动,其向心力的大小为:A. mv^2/rB. v^2/rC. F = maD. F = mω^2r10. 根据热力学第一定律,系统吸收的热量与对外做功之间的关系为:A. 吸收的热量等于对外做的功B. 吸收的热量加上对外做的功等于内能的增加量C. 吸收的热量减去对外做的功等于内能的增加量D. 吸收的热量与对外做功无关二、填空题(每题2分,共20分)11. 一个物体的质量为2kg,受到的合外力为10N,根据牛顿第二定律,其加速度为______ m/s²。

高三物理试题及答案

高三物理试题及答案

高三物理试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

以下哪个选项描述正确?A. 质量越大,加速度越小B. 质量不变,加速度与作用力成正比C. 作用力不变,加速度与质量成反比D. 所有选项都正确答案:D2. 以下哪个公式描述了电场强度与电势的关系?A. E = Q / r²B. E = kQ / r²C. E = q / ε₀D. E = -dV/dr答案:D3. 电磁波的传播速度在真空中是恒定的,这个速度是多少?A. 299792458 m/sB. 3×10⁸ m/sC. 光速D. 以上都是答案:D4. 根据能量守恒定律,以下哪个描述是错误的?A. 能量不能被创造或销毁B. 能量可以转化为其他形式C. 能量的总量在封闭系统中是恒定的D. 能量可以在不同物体间转移答案:无错误描述5. 以下哪个选项是描述电流的?A. I = Q/tB. I = V/RC. I = P/VD. 所有选项都是答案:D6. 欧姆定律描述了电压、电流和电阻之间的关系,其公式为:A. V = IRB. I = V/RC. R = V/ID. 所有选项都是答案:D7. 以下哪个现象是描述电磁感应的?A. 导体在磁场中运动时产生电流B. 导体在电场中运动时产生电流C. 导体在磁场中静止时产生电流D. 导体在电场中静止时产生电流答案:A8. 以下哪个公式描述了光的折射定律?A. Snell's Law: n₁sinθ₁ = n₂sinθ₂B. Brewster's Law: tanθp = n₂/n₁C. Both A and BD. None of the above答案:C9. 以下哪个选项是描述热力学第一定律的?A. ΔU = Q - WB. ΔH = Q + WC. ΔS = Q/TD. ΔG = H - TS答案:A10. 根据热力学第二定律,以下哪个描述是错误的?A. 热能自发地从高温物体传递到低温物体B. 热机的效率不可能达到100%C. 熵总是增加的D. 热能可以完全转化为机械能答案:D二、填空题(本题共5小题,每小题2分,共10分)11. 一个物体的质量为2kg,受到的重力为________N。

江苏高三物理试题及答案

江苏高三物理试题及答案

江苏高三物理试题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是()A. 300,000 km/sB. 299,792 km/sC. 1,000 km/sD. 1,000,000 km/s答案:B2. 根据牛顿第二定律,力等于质量与加速度的乘积,其公式表示为()A. F = maB. F = ma^2C. F = m/aD. F = a*m答案:A3. 一个物体在水平面上受到一个恒定的力,其加速度会()A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小答案:A4. 电流通过导体时,导体两端的电压与电流的关系遵循()A. 欧姆定律B. 牛顿定律C. 库仑定律D. 法拉第定律答案:A5. 以下哪种物质是超导体?()A. 铁B. 铜C. 铝D. 汞答案:D6. 一个物体从静止开始做匀加速直线运动,其速度与时间的关系是()A. v = atB. v = at^2C. v = a*t^(1/2)D. v = a*t^3答案:A7. 根据能量守恒定律,物体的动能和势能之和在没有外力作用下是()A. 不断增加B. 不断减少C. 保持不变D. 先增加后减少答案:C8. 以下哪种波是横波?()A. 声波B. 电磁波C. 光波D. 无线电波答案:A9. 一个物体在重力作用下自由下落,其加速度为()A. 9.8 m/s^2B. 10 m/s^2C. 11 m/s^2D. 12 m/s^2答案:A10. 以下哪种现象属于光的折射?()A. 光的反射B. 光的衍射C. 光的干涉D. 光的色散答案:D二、填空题(每题4分,共20分)1. 一个物体的质量为2 kg,受到的力为10 N,则其加速度为______ m/s^2。

答案:52. 光在玻璃中的传播速度约为真空中的______倍。

答案:2/33. 一个电路的电阻为20 Ω,通过的电流为0.5 A,则该电路两端的电压为______ V。

答案:104. 一个物体从10 m高处自由落体,忽略空气阻力,其落地时的速度为______ m/s。

高三物理试题分析及答案

高三物理试题分析及答案

高三物理试题分析及答案一、选择题(每题3分,共30分)1. 以下关于牛顿第二定律的表述,正确的是:A. 力是物体运动的原因B. 力是改变物体运动状态的原因C. 力是维持物体运动的原因D. 力是物体运动的必然结果答案:B2. 根据能量守恒定律,下列说法正确的是:A. 能量可以在不同形式之间转换B. 能量可以在不同物体之间转移C. 能量的总量在转换和转移过程中保持不变D. 所有上述说法答案:D3. 电磁感应现象中,感应电动势的方向与:A. 磁场方向相同B. 磁场方向相反C. 导体运动方向相同D. 导体运动方向相反答案:D4. 光的折射定律中,入射角和折射角之间的关系是:A. 入射角大,折射角也大B. 入射角大,折射角小C. 入射角小,折射角也小D. 入射角和折射角没有固定关系答案:A5. 根据热力学第一定律,下列说法正确的是:A. 能量可以在不同形式之间转换B. 能量可以在不同物体之间转移C. 能量的总量在转换和转移过程中保持不变D. 所有上述说法答案:C6. 根据麦克斯韦方程组,电磁波的传播速度与:A. 真空中的光速相同B. 介质的折射率有关C. 电磁波的频率有关D. 电磁波的波长有关答案:A7. 根据量子力学,下列说法正确的是:A. 电子在原子核外的轨道是确定的B. 电子在原子核外的位置是不确定的C. 电子在原子核外的运动是确定的D. 电子在原子核外的运动是不确定的答案:B8. 根据相对论,下列说法正确的是:A. 物体的质量随速度的增加而增加B. 物体的长度随速度的增加而增加C. 时间会随着速度的增加而变慢D. 所有上述说法答案:C9. 在理想气体状态方程中,下列说法正确的是:A. 气体的压强与体积成反比B. 气体的压强与温度成正比C. 气体的压强与分子数密度成正比D. 所有上述说法答案:C10. 根据电磁波谱,下列说法正确的是:A. 无线电波的波长最长B. 微波的频率最高C. 红外线的波长比可见光长D. 所有上述说法答案:A二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等,方向______,作用在不同的物体上。

高三物理考试试题带答案解析

高三物理考试试题带答案解析

高三物理考试试题带答案解析一、单选题(共5小题,每小题6.0分,共30分)1. 如图所示,固定在水平面上的光滑半球半径为R,球心O的正上方固定一定滑轮,细线一端绕定滑轮,今将小球的初始位置缓慢拉至B点,在小球到达B点前的过程中,小球对半球的压力F N,细线的拉力T大小变化情况是()A. F N变大T变大B. F N变小T变大C. F N不变T变小D. F N变大T变小【答案】C【解析】对小球受力分析如图:学*故选:C2. 如图所示,一带负电的油滴,从坐标原点O以速率v0射入水平的匀强电场,v0的方向与电场方向成θ角,已知油滴质量为m,测得它在电场中运动到最高点P时的速率恰为v0,设P点的坐标为(x p,y p),则应有()A. x p>0B. x p<0C. x p=0D. 条件不足,无法判定【答案】B【解析】试题分析:竖直方向在重力作用下做竖直上抛运动,水平方向在电场力作用下做匀减速直线运动,在最高点竖直分速度为零,水平速度为v0,由此可判断电场力正功,B正确;考点:考查了带电粒子在电场中的运动点评:做本题的关键是对油滴的运动进行分解,根据运动性质判断分析3. 如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0。

使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化。

为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为()A. B. C. D.【答案】C【解析】试题分析:设半圆弧的半径为L,导线框的电阻为R,当从静止开始绕过圆心O以角速度ω匀速转动时,根据转动切割感应电动势公式得:线框中产生的感应电动势大小为,由欧姆定律得感应电流为;当线框保持图中所示位置,磁感应强度大小随时间线性变化时,根据法拉第电磁感应定律得,又,根据欧姆定律得感应电流为.由题设知:,于是得:,解得:故ABD错误,C正确.考点:本题考查导体切割磁感线时的感应电动势、闭合电路的欧姆定律、法拉第电磁感应定律,意在考查考生的综合应用能力.视频4. 如图所示,在正方形区域的四个顶点固定放置四个点电荷,它们的电量的绝对值相等,电性如图中所示.K,L,M,N分别为正方形四条边的中点,O为正方形的中心.下列关于各点的电场强度与电势的判断正确的是( )A. K点与M点的电场强度大小相等,方向相反B. O点的电场强度为零C. N点电场强度的大小大于L点电场强度的大小D. K,O,M三点的电势相等【答案】D考点:电势和电场强度。

高三物理试题大全及答案

高三物理试题大全及答案

高三物理试题大全及答案一、选择题(每题3分,共30分)1. 光在真空中传播的速度是()。

A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^2 km/hD. 3×10^2 m/s答案:A2. 根据牛顿第三定律,作用力与反作用力的关系是()。

A. 方向相反,大小相等B. 方向相同,大小相等C. 方向相反,大小不等D. 方向相同,大小不等答案:A3. 一个物体从静止开始做匀加速直线运动,其加速度为2m/s^2,那么在第2秒末的速度是()。

A. 2m/sB. 4m/sC. 6m/sD. 8m/s答案:B4. 根据能量守恒定律,下列说法正确的是()。

A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造,也不能被消灭D. 能量可以被创造,也可以被消灭答案:C5. 一个物体在水平面上受到一个恒定的力作用,其运动状态是()。

A. 静止B. 匀速直线运动C. 匀加速直线运动D. 曲线运动答案:C6. 电流通过导体产生的热量与电流的平方、导体的电阻以及通电时间成正比,这个关系由()定律描述。

A. 欧姆定律B. 焦耳定律C. 法拉第定律D. 基尔霍夫定律答案:B7. 电磁波的传播不需要介质,可以在()中传播。

A. 真空B. 空气C. 水D. 所有选项答案:D8. 一个物体在水平面上受到一个恒定的力作用,其运动状态是()。

A. 静止B. 匀速直线运动C. 匀加速直线运动D. 曲线运动答案:C9. 根据牛顿第一定律,一个物体在没有外力作用时将保持()。

A. 静止B. 匀速直线运动C. 匀加速直线运动D. 曲线运动答案:B10. 一个物体的动能与它的质量以及速度的平方成正比,这个关系由()定律描述。

A. 牛顿第二定律B. 动能定理C. 动量定理D. 牛顿第一定律答案:B二、填空题(每题2分,共20分)1. 一个物体的惯性大小与其_________有关。

答案:质量2. 光的折射现象说明光在不同介质中的传播速度_______。

高三物理试题答案及解析

高三物理试题答案及解析

高三物理试题答案及解析一、选择题1. 光的折射现象是指光从一种介质斜射入另一种介质时,传播方向发生偏折的现象。

以下关于光的折射现象的描述,错误的是()。

A. 折射角大于入射角B. 折射角小于入射角C. 折射角与入射角的正弦值之比等于两种介质的折射率之比D. 折射角与入射角的正弦值之比等于两种介质的折射率之比的倒数答案:D解析:根据斯涅尔定律,当光从一种介质斜射入另一种介质时,折射角与入射角的正弦值之比等于两种介质的折射率之比。

因此,选项D 描述错误。

2. 一个质量为m的物体从静止开始自由下落,忽略空气阻力,经过时间t后的速度为()。

A. gtB. 2gtC. gt^2D. 2gt^2答案:A解析:根据自由落体运动的公式,速度v=gt,其中g是重力加速度,t 是时间。

因此,选项A正确。

二、填空题3. 根据牛顿第二定律,质量为m的物体受到的合力为F时,其加速度a等于______。

答案:F/m解析:牛顿第二定律表明,一个物体的加速度与作用在其上的合力成正比,与物体的质量成反比。

因此,加速度a=F/m。

4. 一个电路中,电阻R1和R2串联,总电阻R等于______。

答案:R1+R2解析:当两个电阻串联时,总电阻等于各个电阻之和。

三、计算题5. 一辆质量为1000kg的汽车,以20m/s的速度行驶,突然遇到紧急情况需要刹车。

假设刹车时汽车的加速度为-5m/s²,求汽车刹车后10秒内滑行的距离。

答案:100m解析:首先计算汽车停止所需的时间t=v/a=20/5=4秒。

因为汽车在4秒后已经停止,所以10秒内滑行的距离等于4秒内滑行的距离。

根据公式s=vt+1/2at²,代入数据得s=20*4+1/2*(-5)*4²=80-40=40m。

但因为汽车在4秒后停止,所以实际滑行距离为40m。

6. 一个质量为2kg的物体从高度h=10m的平台上自由下落,求物体落地时的速度。

答案:14.14m/s解析:根据自由落体运动的公式v²=2gh,代入数据得v²=2*9.8*10,解得v=√(2*9.8*10)≈14.14m/s。

物理高三测试题及答案

物理高三测试题及答案

物理高三测试题及答案一、选择题(每题3分,共30分)1. 物体从静止开始做匀加速直线运动,经过时间t,速度达到v,则在这段时间内的平均速度为:A. v/2B. vC. 2vD. t/v2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

如果一个物体的质量增加为原来的两倍,而作用力保持不变,则其加速度将:A. 增加为原来的两倍B. 减少为原来的一半C. 保持不变D. 无法确定3. 一个物体在水平面上以初速度v0开始做匀减速直线运动,直到静止。

如果物体的加速度大小为a,则物体停止运动所需的时间是:A. v0/aB. v0/2aC. 2v0/aD. a/v04. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^7 m/s5. 根据能量守恒定律,一个物体从高处自由落下,不计空气阻力,其机械能:A. 增加B. 减少C. 保持不变D. 无法确定6. 两个完全相同的弹簧,分别挂在天花板上,下面挂上质量不同的物体,若两弹簧的伸长量相同,则这两个物体的质量关系是:A. 相等B. 不相等C. 无法确定D. 质量大的物体质量是质量小的物体的两倍7. 一个物体在水平面上受到一个恒定的拉力作用,做匀速直线运动。

如果拉力增大,则物体将:A. 继续做匀速直线运动B. 做加速直线运动C. 做减速直线运动D. 静止不动8. 根据电磁感应定律,当一个闭合电路中的磁通量发生变化时,电路中会产生:A. 电流B. 电压C. 电阻D. 电容9. 一个非弹性碰撞中,两个物体碰撞后合并为一个物体,那么碰撞前后的总动量:A. 增加B. 减少C. 保持不变D. 无法确定10. 一个物体在竖直方向上做自由落体运动,其加速度大小为:A. 9.8 m/s^2B. 10 m/s^2C. 11 m/s^2D. 12 m/s^2二、填空题(每题2分,共20分)1. 根据牛顿第三定律,作用力和反作用力大小________,方向________。

高三物理试题及答案大全

高三物理试题及答案大全

高三物理试题及答案大全一、选择题(每题4分,共40分)1. 以下哪种情况不属于牛顿第一定律的适用范围?A. 静止的物体B. 匀速直线运动的物体C. 受到平衡力作用的物体D. 受到非平衡力作用的物体答案:D2. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^4 km/hD. 3×10^2 m/s答案:A3. 根据能量守恒定律,以下说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量可以被转移但不能被转化答案:C4. 以下哪种情况不符合动量守恒定律?A. 两个物体发生完全弹性碰撞B. 两个物体发生完全非弹性碰撞C. 一个物体在水平面上滑行D. 两个物体在光滑水平面上发生碰撞答案:C5. 根据电磁感应定律,以下说法正确的是:A. 只有变化的磁场才能产生感应电流B. 静止的导体在磁场中不能产生感应电流C. 导体在磁场中运动就一定能产生感应电流D. 导体在磁场中运动,但导体两端没有闭合回路,不能产生感应电流答案:D6. 以下哪种情况不属于机械能守恒?A. 物体在光滑水平面上自由滑行B. 物体在竖直平面内做圆周运动C. 物体在斜面上下滑D. 物体在竖直方向上自由落体答案:B7. 根据热力学第一定律,以下说法正确的是:A. 物体吸收热量,内能一定增加B. 物体对外做功,内能一定减少C. 物体吸收热量,同时对外做功,内能可能增加也可能减少D. 物体对外做功,同时吸收热量,内能可能增加也可能减少答案:D8. 以下哪种情况不属于热力学第二定律?A. 热量不能自发地从低温物体传到高温物体B. 热量可以自发地从高温物体传到低温物体C. 不可能从单一热源吸取热量,使之完全变为功而不产生其他影响D. 不可能使热量由低温物体传递到高温物体而不引起其他变化答案:B9. 根据麦克斯韦方程组,以下说法正确的是:A. 变化的磁场一定产生电场B. 变化的电场一定产生磁场C. 均匀变化的磁场不会产生电场D. 均匀变化的电场不会产生磁场答案:A10. 以下哪种情况不属于波的干涉现象?A. 两个波源发出的波相遇时,振幅相加B. 两个波源发出的波相遇时,振幅相互抵消C. 两个波源发出的波相遇时,波的传播方向不变D. 两个波源发出的波相遇时,波的传播方向发生改变答案:D二、填空题(每题4分,共20分)1. 根据牛顿第二定律,力的大小等于物体质量与加速度的乘积,公式为:_______。

高三物理考试试题含答案

高三物理考试试题含答案

高三物理考试试题含答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列哪个选项是描述物体做匀速直线运动的正确表述?A.速度大小和方向都不变B.速度大小变化,方向不变C.速度大小不变,方向变化D.速度大小和方向都变化答案:A2.在自由落体运动中,物体的速度随时间的变化关系是?A.线性增加B.指数增加C.对数增加D.无关答案:A二、判断题(每题1分,共20分)1.力是改变物体运动状态的原因。

()答案:√2.重力加速度在地球表面上是恒定的。

()答案:×三、填空题(每空1分,共10分)1.物体做匀速直线运动时,速度v=______,加速度a=______。

答案:常数;02.在自由落体运动中,物体的初速度v0=______,加速度a=______。

答案:0;g(重力加速度)四、简答题(每题10分,共10分)1.简述牛顿第一定律的内容及其意义。

答案:牛顿第一定律,也称为惯性定律,指出一个物体若不受外力作用,将保持静止状态或匀速直线运动状态。

这一定律强调了力和运动的关系,即力是改变物体运动状态的原因,而非维持物体运动的原因。

五、综合题(1和2两题7分,3和4两题8分,共30分)1.一辆小车从静止开始做匀加速直线运动,加速度为2m/s²,求5秒后小车的速度和位移。

答案:速度v=at=2m/s²5s=10m/s;位移s=0.5at²=0.52m/s²(5s)²=25m2.从高为h的位置释放一个物体,不计空气阻力,求物体落地时的速度。

答案:使用能量守恒定律,mgh=0.5mv²,解得v=√(2gh)3.一辆小车在水平路面上做匀速直线运动,速度为20m/s。

突然刹车,小车以2m/s²的加速度做匀减速直线运动,求小车停下来所需的时间和经过的位移。

答案:时间t=v/a=20m/s/2m/s²=10s;位移s=v²/(2a)=(20m/s)²/(22m/s²)=100m4.一颗子弹以500m/s的速度射入一块木板,木板对子弹的阻力为f,木板的厚度为d,求子弹穿过木板所需的时间。

物理高三考试题及答案

物理高三考试题及答案

物理高三考试题及答案一、单项选择题(每题3分,共30分)1. 一个物体从静止开始做匀加速直线运动,经过时间t后的速度为v,那么在这段时间内物体的平均速度为:A. \(\frac{v}{2}\)B. \(\frac{v}{2t}\)C. \(\frac{v}{t}\)D. \(\frac{2v}{t}\)答案:A2. 根据牛顿第二定律,作用在物体上的合力等于物体的质量乘以加速度,即 \(F=ma\)。

若物体的质量为2kg,加速度为3m/s²,则合力的大小为:A. 6NB. 9NC. 12ND. 15N答案:A3. 一个物体在水平面上受到一个斜向上的力F,使其沿斜面向上做匀速直线运动。

若斜面的倾角为30°,物体的质量为5kg,重力加速度为9.8m/s²,则作用在物体上的摩擦力大小为:A. 49NB. 59NC. 69ND. 79N答案:B4. 一个质量为m的物体从高度h处自由落体,忽略空气阻力,物体落地时的速度v为:A. \(\sqrt{2gh}\)B. \(\sqrt{gh}\)C. \(\sqrt{\frac{2gh}{m}}\)D. \(\sqrt{\frac{gh}{m}}\)答案:B5. 根据能量守恒定律,一个物体从高度h处自由落体,落地时的动能等于其初始势能,即 \(E_k = mgh\)。

若物体的质量为1kg,高度为10m,则落地时的动能为:A. 98JB. 100JC. 105JD. 110J答案:B6. 一个弹簧振子的振动周期为T,振幅为A,若弹簧的劲度系数为k,质量为m,则根据胡克定律,弹簧的劲度系数k为:A. \(\frac{4\pi^2m}{T^2}\)B. \(\frac{4\pi^2A}{T^2}\)C. \(\frac{4\pi^2mA}{T^2}\)D. \(\frac{4\pi^2A^2}{mT^2}\)答案:A7. 一个带电粒子在电场中受到的电场力F,根据库仑定律,电场力的大小与电荷量q和电场强度E的关系为 \(F=qE\)。

高三物理统考复习试卷(含解析)

高三物理统考复习试卷(含解析)

一、选择题:本题共7题.在每小题给出四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求.全部选对得6分,选对但选不全得3分,有选错的得0分.1.(6分)物理学的发展丰富了人类对物质世界的认识,推动了科学技术的革命和创新,促进了物质生产的繁荣与人类文明的进步,下列表述正确的是( )A. 水面上的油膜在阳光照射下会呈现彩色,这是光的衍射现象B. 麦克斯韦首先预言了电磁波的存在,并通过实验加以证实C.机械波和电磁波在介质中传播速度大小均只与介质有关D. 根据狭义相对论的原理可知,在不同的惯性参考系中,一切物理规律都是相同的【考点】:物理学史;波的形成和传播.【分析】:本题根据常见的物理现象、物理学史等等知识进行解答.【解析】:解:A、水面上的油膜在阳光照射下会呈现彩色,这是由于油膜的上下表面对光的干涉形成的.故A错误;B、历史上,麦克斯韦首先预言了电磁波的存在,是赫兹通过实验对此进行了证实.故B错误.C、机械波在介质中传播速度大小只与介质有关,而电磁波在介质中传播速度大小既与介质有关,还与电磁波本身的频率有关,故C错误.D、根据狭义相对论的原理可知,在不同的惯性参考系中,一切物理规律都是相同的,故D正确.故选:D【点评】:本题关键要掌握波动部分的物理学史,知道机械波和电磁波特性的差异,掌握相对论的基本原理.2.(6分)北京时间2012年2月25日凌晨O时12分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,将第十一颗“北斗”导航卫星成功送入太空预定转移轨道,这是一颗地球静止轨道卫星,“北斗”导航卫星定位系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成,中轨道卫星轨道半径约为27900公里,静止轨道卫星的半径约为42400公里.(≈0.53可供应用),下列说法正确的是()A. 静止轨道卫星的向心加速度比中轨道卫星向心加速度大B. 静止轨道卫星和中轨道卫星的线速度均大于地球的第一宇宙速度C. 中轨道卫星的周期约为12.7hD. 地球赤道上随地球自转物体的线速度比静止轨道卫星线速度大【考点】:人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.【专题】:人造卫星问题.【分析】:根据万有引力提供向心力=m=m=ma比较向心加速度、线速度和周期.知道第一宇宙速度的特点.【解析】:解:A、根据万有引力提供向心力,=ma,加速度a=,轨道半径越大,向心加速度越小,中轨道卫星的轨道半径小,向心加速度大.故A错误;B、根据=m,速度v=,知道轨道半径越大,线速度越小,第一宇宙速度的轨道半径为地球的半径,所以第一宇宙速度是绕地球做匀速圆周运动最大的环绕速度,所以静止轨道卫星和中轨卫星的线速度均小于地球的第一宇宙速度.故B错误.C、根据=m,T=2π,所以中轨道卫星和静止轨道卫星的周期比≈0.53.则中轨道卫星的周期T1=0.53×24h=12.7h.故C正确;D、地球赤道上随地球自转物体和静止轨道卫星具有相同的角速度,根据a=rω2,知静止轨道卫星的向心加速度大.故D错误.故选:C.【点评】:解决本题的关键掌握万有引力提供向心力=m=m=ma,会根据轨道半径的关系比较向心加速度、线速度和周期.3.(6分)如图甲所示,理想变压器原、副线圈的匝数比为4:1,电压表和电流表均为理想电表,原线圈接如图乙所示的正弦交流电,图甲中的R1为正温度系数的热敏电阻,R为定值电阻.下列说法正确的是()A.在0.5×10﹣2S时,电压表V2的示数为9VB. R1处温度升高时,电流表的示数变小,电压表V2的示数不变C.原线圈两端电压的瞬时值表达式为u=36sin50πt(V)D. 变压器原线圈的输入功率和副线圈的输出功率之比为1:4【考点】:变压器的构造和原理.【专题】:交流电专题.【分析】:由图乙可知交流电压最大值,周期,可由周期求出角速度的值,则可得交流电压u的表达式 u=Um sinωt(V),由变压器原理可得变压器原、副线圈中的电流之比,输入、输出功率之比,R1处温度升高时,阻值减小,根据负载电阻的变化,可知电流、电压变化.【解析】:解:A、由图知最大电压36V,有效值为36V,电压与匝数成正比,所以副线圈两端电压有效值即电压表V2的示数为9V,A错误;B、R1温度升高时,阻值增大,电流表的示数变小,但不会影响输入和输出电压值,故B正确;C、原线圈接的图乙所示的正弦交流电,由图知最大电压36V,周期0.02S,故角速度是ω=100π,U=36sin100πt(V),故C错误;D、理想变压器的输入、输出功率之比应为1:1,故D错误;故选:B.【点评】:根据图象准确找出已知量,是对学生认图的基本要求,准确掌握理想变压器的特点及电压、电流比与匝数比的关系,是解决本题的关键.4.(6分)如图所示,一细束由黄、蓝、紫三种色光组成的复色光通过三棱镜折射后分为a、b、c三种单色光,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,下列说法中正确的是( )A. a种色光为紫光B.在三棱镜中a光的传播速度最大C. 在相同实验条件下用a、b、c三种色光做双缝干涉实验,c光相邻亮条纹间距一定最大D. 若复色光绕着入射点O顺时针转动至与AB面垂直时,屏上最终只有a光【考点】:光的折射定律.【专题】:光的折射专题.【分析】:复色光经过三棱镜色散后,从a到c形成黄、蓝、紫三种彩色光带,根据黄光的折射率最小,偏折角最小,紫光的折射率最大,偏折角最大,判断哪束光是黄光,哪束光是紫光.由公式v=分析光在玻璃三棱镜中的传播速度的大小.c光的波长最短,a光波长最长.干涉条纹的间距与波长成正比.即可判断干涉条纹间距的大小.根据sinC=,分析临界角的大小,判断入射角增大时,哪束光在AC面上先发生全反射.【解析】:解:A、黄光的折射率最小,通过三棱镜后偏折角最小,紫光的折射率最大,偏折角最大,所以可知,c光是紫光.a光是黄光,故A错误.B、由图看出,a光的折射率最小,c光的折射率最大,由公式v=分析可知,a光在三棱镜中的传播速度最大.故B正确.C、a光黄光,波长最长,干涉条纹的间距与波长成正比.所以a光形成的干涉条纹间距最大,故C错误.D、复色光绕着入射点O顺时针转动至与AB面垂直时,光线射到AC面上的入射角增大,光线与AB垂直时入射角等于∠A.由sinC=,分析知c光的临界角最小.据题,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,则c光发生全反射,而ab两光束都没有发生全反射,屏上最终有a光和b光.故D错误.故选:B【点评】:本题是光的色散现象与干涉、光电效应的综合,关键要掌握光的色散研究的结果,知道七种色光排列顺序、折射率大小等等要记牢,同时,要记住折射率与波长、频率、临界角的关系.5.(6分)一列简谐波在t=0时刻的波形图如图所示,经过0.1s,平衡位置位于x=2m的点M第一次到达波峰,关于该波的下列说法正确的是()A. 波速可能为20m/sB.波的传播方向一定沿x正方向C.波的频率f=2.5HzD. N点的速度不可能正在增大【考点】:横波的图象;波长、频率和波速的关系.【专题】:振动图像与波动图像专题.【分析】:由图象读出波长,根据经过0.1s,平衡位置位于x=2m的点M第一次到达波峰,分波沿x轴正方向和负方向传播两种情况讨论,求出波速和频率,由最大位移处向平衡位置运动时,速度增大.【解析】:解:A、若波沿x轴正方向传播,根据经过0.1s,当x=0的位置传给x=2m的点M时,M第一次到达波峰,则v=,故A正确;B、根据题意可知,波可以沿x轴正方向也可以沿负方向传播,故B错误;C、由图象读出波长λ=16m,若波沿x轴负方向传播,根据经过0.1s,当x=16m的位置传给x=2m的点M时,M第一次到达波峰,则v,此时f=,故C错误;D、N点此时由负的最大位移处向平衡位置运动,速度增大,故D错误.故选:A【点评】:本题注意要分沿x轴正方向和负方向传播两种情况讨论,能根据波的平移原则求解波速,难度适中.6.(6分)如图所示,一轻质弹簧下端固定在粗糙的斜面底端的档板上,弹簧上端处于自由状态,斜面倾角为θ,一质量为m的物块(可视为质点)从离弹簧上端距离为L1处由静止释放,物块与斜面间动摩擦因数为µ,物块在整个过程中的最大速度为v,弹簧被压缩到最短时物体离释放点的距离为L2(重力加速度为g).则()A. 从物块释放到弹簧被压缩到最短的过程中,系统损失的机械能为µmgL2cosθB. 从物块释放到弹簧压缩到最短的过程中,物体重力势能的减少量等于弹簧弹性势能的增加量与系统产生的内能之和C.物块的速度最大时,弹簧的弹性势能为mgL1(sinθ﹣µcosθ)﹣mv2D.物块的最大动能为mgL1(sinθ﹣µcosθ)【考点】:功能关系;动能和势能的相互转化.【分析】:物块下滑做匀加速直线运动,接触弹簧时,沿斜面方向又受到向上的弹力作用,物体做加速度减小的加速运动,当弹簧弹力等于重力在斜面向下的分量时,加速度为零,速度最大,动能最大,根据动能定理求出刚与弹簧接触时的动能即可判断A,弹黉被压缩到最短时.物块速度为零,根据动能定理即可求出此时弹簧的弹性势能,系统损失的机械能为滑动摩擦力做的功.【解析】:解:A、系统损失的机械能为滑动摩擦力做的功,所以物块运动到最低点时,机械能的损失量为△E=μmgcosθL2,A正确;B、根据能量守恒定律可知,从物块释放到弹簧压缩到最短的过程中,物体重力势能的减少量等于弹簧弹性势能的增加量与系统产生的内能之和,故B正确.C、物块的最大速度是在合力为零时,即受力平衡时,设速度最大时设弹簧压缩量x则:根据功能关系E弹=(mgsinθ﹣μmgcosθ)(L1+x)﹣mv2,故C错误;D、根据题意可知,物块下滑做匀加速直线运动,接触弹簧时,沿斜面方向又受到向上的弹力作用,物体做加速度减小的加速运动,当弹簧弹力等于重力在斜面向下的分量时,加速度为零,速度最大,动能最大,从物块刚开始运动到刚与弹簧接触的过程中,根据动能定理得:EK﹣0=mgsinθL1﹣μmgcosθL1所以物块的最大动能大于mgL1(sinθ﹣μcosθ),故D错误;故选:AB.【点评】:本题主要考查了动能定理及能量守恒定律的直接应用,要求同学们能正确分析物体的运动情况,知道什么时候速度最大,难度适中.7.(6分)如图所示,一个带正电的小球穿在一根绝缘的粗糙直杆AC上,杆与水平方向成θ角,整个空间存在着竖直向上的匀强电场和垂直于杆方向斜向上的匀强磁场.小球沿杆向下运动,在A点时的动能为100J,在C点时动能减为零,D为AC的中点,在运动过程中,则()A.小球在D点时的动能为50 JB. 到达C点后小球可能沿杆向上运动C.小球电势能的增加量一定等于重力势能的减少量D. 小球在AD段克服摩擦力做的功与小球在DC段克服摩擦力做的功不相等【考点】:带电粒子在混合场中的运动.【专题】:带电粒子在复合场中的运动专题.【分析】:由于从A到C的过程中小球的动能减小,则运动速度减小,小球所受的洛伦兹力减小,导致滑动摩擦力减小,所以在下滑过程中,电场力、摩擦力做负功,重力做正功.【解析】:解:A、D、小球与杆之间的压力减小,摩擦力也在减小,所以小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不相等;AD段和DC段合外力不同,因此合外力做的功也不同,所以根据动能定理,动能的变化量不同,故A错误,D正确;B、小球运动到C点后,有可能静止,也有可能沿杆向上运动,故B正确;C、电势能增加是由电场力做功决定,而重力势能减小是由重力做功决定,由于动能与重力势能减少,转化小球的电势能,故C错误;故选:BD.【点评】:考查动能大小与速度大小关系,及速度大小与洛伦兹力大小,洛伦兹力与滑动摩擦力的关系,同时突出电场力做功与重力做功及摩擦力做功与能量的关系.二、解答题(共2小题,满分17分)8.(8分)测量小物块Q与平板P之间的动摩擦因数的实验装置如图所示.AB是半径足够大的、光滑的四分之一圆弧轨道,与水平固定放置的P板的上表面BC在B点相切,C点在水平地面的垂直投影为C′.重力加速度为g.实验步骤如下:①用天平称出物块Q的质量m;②测量出轨道AB的半径R、BC的长度L和CC′的高度h;③将物块Q在A点由静止释放,在物块Q落地处标记其落地点D;④重复步骤③,共做10次;⑤将10个落地点用一个尽量小的圆围住,用米尺测量圆心到C′的距离s.用实验中的测量量表示:(ⅰ)物块Q到达B点时的动能E kB= mgR ;(ⅱ)物块Q到达C点时的动能E kC= ;(ⅲ)在物块Q从B运动到C的过程中,物块Q克服摩擦力做的功Wf= ;(ⅳ)物块Q与平板P之间的动摩擦因数μ=.【考点】:探究影响摩擦力的大小的因素.【专题】:实验题.【分析】:(1)物块由A到B点过程,由动能定理可以求出物块到达B时的动能;(2)物块离开C点后做平抛运动,由平抛运动的知识可以求出物块在C点的速度,然后求出在C点的动能;(3)由B到C,由动能定理可以求出克服摩擦力所做的功;(4)由功的计算公式可以求出动摩擦因数.【解析】:解:(1)从A到B,由动能定理得:mgR=E KB﹣0,则物块到达B时的动能EKB=mgR;(2)离开C后,物块做平抛运动,水平方向:s=vCt,竖直方向:h=gt2,物块在C点的动能EKC=mv C2,解得:EKC=;(3)由B到C过程中,由动能定理得:﹣Wf=mv C2﹣mv B2,克服摩擦力做的功Wf=;(4)B到C过程中,克服摩擦力做的功:W f=μmgL=,则μ=;故答案为:(1)mgR;(2);(3);(4).【点评】:熟练应用动能定理、平抛运动规律、功的计算公式即可正确解题.9.(9分)在测定一节干电池的电动势和内电阻的实验中,备有下列器材:A.待测的干电池(电动势约为1.5V,内电阻小于1.0)B.电流表G(量程0~3mA,内阻R g1=10Ω)C.电流表A(量程0~0.6A,内阻Rg2=0.1Ω)D.滑动变阻器R1(0~20Ω,10A)E.滑动变阻器R2(0~200Ω,1A)F.定值电阻R3(990Ω)G.开关和导线若干(1)为方便且能较准确地进行测量,其中应选用的滑动变阻器是D(填写器材前的序号). (2)请画出利用本题提供的器材设计测量电池电动势和内阻的电路图如图1.(3)如图2示为某同学根据他所设计的实验数据绘出的I1﹣I2图线(I1为电流表G的示数,I2为电流表A的示数,且I2的数值远大于I1的数值).则由图线可得被测电池的电动势E= 1.5 V,内阻r= 0.89 Ω.(计算结果保留两位有效数字)【考点】:测定电源的电动势和内阻.【专题】:实验题.【分析】: (1)因为电源的内阻较小,所以应该采用较小最大值的滑动变阻器,有利于数据的测量和误差的减小.(2)根据实验原理明确原理图;(3)根据欧姆定律和串联的知识求出I1和电源两端电压U的关系,根据图象与纵轴的交点求出电动势,由与横轴的交点可得出路端电压为某一值时电流,则可求得内阻.【解析】:解:(1)因为电源的内阻较小,所以应该采用较小最大值的滑动变阻器,有利于数据的测量和误差的减小.滑动变阻器应选D,(2)本实验中没有电压表,故应采用电流表G及定值电阻串联充当电压表使用,滑动变阻器与电流表串联;答案如图所示;(3)图象与纵轴的交点得最大电流为1.5mA.根据欧姆定律和串联的知识得电源两端电压U=I1(990+10)=1000I1,根据图象与纵轴的交点得电动势E=1.48mA×1000Ω=1.5V与横轴的交点可得出路端电压为1.1V时电流是0.45A;r===r=0.89Ω;故答案为:(1)D;(2)如图;(3)1.5;0.89.【点评】:在测量电源电动势和内阻时,要注意根据画出的U﹣I图象分析出电动势及内阻的方法.三、计算题(本题共3个小题,共计51分,解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)10.(15分)某兴趣小组对一辆自制遥控小车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为υ﹣t图象,如图所示(除2s~10s时间段图象为曲线外,其余时间段图象均为直线).已知在小车运动的过程中,2s~14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行,小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变.求:(1)小车所受到的阻力大小;(2)小车匀速行驶阶段的功率;(3)小车在加速运动过程中(指图象中0~10秒内)位移的大小.【考点】:动能定理;功率、平均功率和瞬时功率.【专题】:动能定理的应用专题.【分析】:(1)在14s末停止遥控而让小车自由滑行,小车只受摩擦力,故可以可以先求加速度,再求出合力,等于摩擦力;(2)匀速阶段,牵引力等于阻力,速度已知,直接根据公式P=Fv求解;(3)前2秒位移根据运动学公式求解,2s到10s为变加速过程,其位移可以由动能定理求解.【解析】:解:(1)由图象可得:在14 s~18 s时间段a=m/s2=﹣1.5m/s2小车受到阻力大小:Ff=ma=﹣1.5N(负号表示力的方向与运动方向相反)(2)在10s~14s小车做匀速运动,牵引力大小F 与 Ff大小相等 F=1.5NP=Fυ=1.5×6W=9W(3)速度图象与横轴之间的“面积”等于物体运动的位移0~2s内x1=×2×3m=3m2s~10s内根据动能定理Pt﹣F f x2=﹣解得x2=39 m加速过程中小车的位移大小为:x=x1+x2=42 m答:(1)小车所受到的阻力大小为1.5N;(2)小车匀速行驶阶段的功率为9W;(3)小车在加速运动过程中位移的大小为42m.【点评】:本题关键分析清楚小车各段的运动规律以及力的变化情况,结合牛顿第二定律和动能定理求解.11.(17分)水上滑梯可简化成如图所示的模型:倾角为θ=37°斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7.0m,BC长d=2.0m,端点C距水面的高度h=1.0m.一质量m=50kg的运动员从滑道起点A点无初速地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.10,(cos37°=0.8,sin37°=0.6,运动员在运动过程中可视为质点)求:(1)运动员沿AB下滑时加速度的大小a;(2)运动员从A滑到C的过程中克服摩擦力所做的功W和到达C点时速度的大小υ;(3)保持水平滑道端点在同一竖直线上,调节水平滑道高度h和长度d到图中B′C′位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B′C′距水面的高度h′.【考点】:牛顿第二定律;功的计算.【专题】:牛顿运动定律综合专题.【分析】:(1)运动员沿AB下滑时,受到重力mg、支持力和滑动摩擦力,根据牛顿第二定律求解加速度.(2)运动员从A滑到C的过程中,克服摩擦力做功为W=μmgcosθ()+μmgd=μmg[d+(H﹣h)cotθ].根据动能定理求解到达C点时速度的大小υ;(3)运动员从A滑到C的过程中,克服摩擦力做功W保持不变,根据动能定理得到运动员滑到C点时的速度大小.从C到水平地面,运动员做平抛运动,由平抛运动的规律得到水平位移h′的关系式,由数学知识求解水平位移最大时h′的值.【解析】:解:(1)运动员沿AB下滑时,受力情况如图所示Ff=μFN=μmgcosθ根据牛顿第二定律:mgsinθ﹣μmgcosθ=ma得运动员沿AB下滑时加速度的大小为:a=gsinθ﹣μgcosθ=5.2 m/s2(2)运动员从A滑到C的过程中,克服摩擦力做功为:W=μmgcosθ()+μmgd=μmg[d+(H﹣h)cotθ]=500J由动能定理得 mg(H﹣h)﹣W=,得运动员滑到C点时速度的大小 v=10 m/s(3)在从C点滑出至落到水面的过程中,运动员做平抛运动的时间为t,由h′=,得下滑过程中克服摩擦做功保持不变W=500J根据动能定理得:mg(H﹣h′)﹣W=,解得v=运动员在水平方向的位移:x=vt=•=当h′=时,水平位移最大答:( 1)运动员沿AB下滑时加速度的大小a是5.2 m/s2;(2)运动员从A滑到C的过程中克服摩擦力所做的功W为500J,到达C点时速度的大小υ为10m/s;(3)滑道B′C′距水面的高度h′为3m时,水平位移最大.【点评】:本题中关键之处要抓住滑动摩擦力做功W=μmg[d+(H﹣h)cotθ],与AC间水平位移大小成正比,AC间水平位移不变,W不变.第3问得到水平位移x与h′的关系式,根据数学知识求解极大值的条件.12.(19分)如图甲所示,有一磁感强度大小为B、垂直纸面向外的匀强磁场,磁场边界OP与水平方向夹角为45°,紧靠磁场右上边界放置长为L,间距为d的平行金属板M、N,磁场边界上的O点与N板在同一水平面上,O1、O2电场左右边界中点.在两板间存在如图乙所示的交变电场(取竖直向下为正方向).某时刻从O点竖直向上同时发射两个相同的粒子a和b,质量为m,电量为+q,初速度不同.粒子a在图乙中的t=时刻,从O1点水平进入板间电场运动,由电场中的O2点射出.粒子b恰好从M板左端进入电场.(不计粒子重力和粒子间相互作用,电场周期T未知)求:(1)粒子a、b从磁场边界射出时的速度va、v b;(2)粒子a从O点进入磁场到射出O2点运动的总时间;(3)如果交变电场的周期T=,要使粒子b能够穿出板间电场,求则电场强度大小E0满足的条件.【考点】:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.【专题】:带电粒子在复合场中的运动专题.【分析】:(1)求出粒子轨道半径,应用牛顿第二定律可以求出粒子a、b从I磁场边界射出时的速度va、vb.(2)求出粒子在磁场中、在电场中、在电磁场外的运动时间,然后求出总运动时间.(3)作出粒子在电场中的运动轨迹,应用类平抛运动规律分析答题.【解析】:解:(1)如图所示,粒子a、b在磁场中均速转过90°,平行于金属板进入电场. 由几何关系可得:,r b=d…①由牛顿第二定律可得…②…③解得:,(2)粒子a在磁场中运动轨迹如图在磁场中运动周期为:…④在磁场中运动时间:…⑤粒子在电磁场边界之间运动时,水平方向做匀速直线运动,所用时间为…⑥由④⑤⑥则全程所用时间为:(3)粒子在磁场中运动的时间相同,a、b同时离开Ⅰ磁场,a比b进入电场落后时间…⑦故粒子b在t=0时刻进入电场.由于粒子a在电场中从O2射出,在电场中竖直方向位移为0,故a在板间运动的时间t a是周期的整数倍,由于v b=2v a,b在电场中运动的时间是t b=t a,可见b在电场中运动的时间是半个周期的整数倍即…⑧…⑨粒子b在内竖直方向的位移为…⑩粒子在电场中的加速度由题知粒子b能穿出板间电场应满足ny≤d解得答:(1)粒子a、b从磁场边界射出时的速度va、vb分别是:和;(2)粒子a从O点进入磁场到射出O2点运动的总时间是;(3)如果交变电场的周期T=,要使粒子b能够穿出板间电场,则电场强度大小E0满足的条件.【点评】:本题考查了带电粒子在电场与磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的关键,应用牛顿第二定律、粒子在磁场中做匀速圆周运动的周期公式、牛顿第二定律、运动学公式即可正确解题.。

2024高考物理试题及答案解析

2024高考物理试题及答案解析

2024高考物理试题及答案解析一、选择题(每题3分,共30分)1. 下列关于光的描述中,正确的是:A. 光在真空中传播速度为3×10^8 m/sB. 光在所有介质中传播速度都比在真空中快C. 光是电磁波的一种D. 光的传播不需要介质答案:AC解析:光在真空中传播速度确实是3×10^8 m/s,这是光速的常数值。

光在介质中传播速度会因为介质的折射率不同而变慢,所以选项B是错误的。

光是电磁波的一种,这是正确的,因此选项C也正确。

光的传播不需要介质,这是光的波动性质决定的,所以选项D也是正确的。

2. 根据牛顿第三定律,下列说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力作用在不同的物体上C. 作用力和反作用力同时产生,同时消失D. 作用力和反作用力是同一种力答案:ABC解析:牛顿第三定律指出,对于两个相互作用的物体,它们之间的力是大小相等、方向相反的,并且作用在不同的物体上,同时产生和消失。

因此,选项A、B和C都是正确的。

选项D是错误的,因为作用力和反作用力虽然是大小相等、方向相反的,但它们是作用在不同物体上的,所以它们不是同一种力。

3. 以下关于电场的描述中,错误的是:A. 电场线是电场中实际存在的线B. 电场线的方向是正电荷所受电场力的方向C. 电场线越密,电场强度越大D. 电场线是正电荷运动的轨迹答案:AD解析:电场线是人为引入的虚拟线,用于描述电场的分布和方向,因此选项A是错误的。

电场线的方向确实是正电荷所受电场力的方向,所以选项B是正确的。

电场线越密,表示电场强度越大,因此选项C是正确的。

电场线并不是正电荷运动的轨迹,因此选项D是错误的。

二、填空题(每题4分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在没有外力作用下保持______。

答案:不变解析:能量守恒定律指出,一个封闭系统的总能量是恒定的,即能量不能被创造或消失,只能从一种形式转化为另一种形式。

高三物理联考试卷含解析

高三物理联考试卷含解析

高三物理联考试卷含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 如图所示,在水平传送带上有三个质量分别为m1、m2、m3的木块1、2、3, 1和2及2和3间分别用原长为L,劲度系数为k的轻弹簧连接起,木块与传送带间的动摩擦因数均为μ,现用水平细绳将木块1固定在左边的墙上,传送带按图示方向匀速运动,当三个木块达到平衡后,1、3两木块之间的距离是()A.B.C. D.参考答案:【知识点】力的合成与分解的运用、共点力平衡的条件及其应用B3 B7【答案解析】B解析:对木块3分析,摩擦力与弹簧弹力平衡,有:μm3g=kx,则x=.对木块2和3整体分析,摩擦力和弹簧弹力平衡,有:μ(m2+m3)g=kx′,则.则1、3两木块的距离s=2L+x+x′=2L+.故A、C、D错误,选B.【思路点拨】分别对木块3和木块2和3整体分析,通过共点力平衡,结合胡克定律求出两根弹簧的形变量,从而求出1、3量木块之间的距离.2. (单选)如图所示,质量为m2的小球B静止在光滑的水平面上,质量为m1的小球A 以速度v0靠近B,并与B发生碰撞,碰撞前后两个小球的速度始终在同一条直线上。

A、B两球的半径相等,且碰撞过程没有机械能损失。

当m1、v0一定时,若m2越大,则()A.碰撞后A的速度越小B.碰撞后A的速度越大C.碰撞过程中B受到的冲量越小D.碰撞过程中A受到的冲量越大参考答案:D碰撞过程中,动量守恒,则,3. (单选题)如图(a)所示,A、B为钉在光滑水平面上的两根铁钉,小球C用细绳拴在铁钉B上(细绳能承受足够大的拉力),A、B、C在同一直线上。

t=0时,给小球一个垂直于绳的速度,使小球绕着两根铁钉在水平面上做圆周运动。

在0≤t≤10s时间内,细绳的拉力随时间变化的规律如图(b)所示,则下列说法中正确的有( )A.小球在t=5s时的线速度大于t=8s时的线速度B.小球在t=10s时的角速度小于t=10.5s时的角速度C.细绳第三次碰钉子到第四次碰钉子的时间间隔为2sD.两钉子间的距离为绳长的1/6参考答案:D4. (单选)如图所示,在竖直平面内有一个半径为R,粗细不计的圆管轨道.半径OA水平、OB竖直,一个质量为m的小球自A正上方P点由静止开始自由下落,小球恰能沿管道到达最高点B,已知AP=2R,重力加速度为g,则小球从P到B的运动过程中A.重力做功2mgRB.机械能减少mgRC.合外力做功mgRD.克服摩擦力做功mgR参考答案:B5. 如图所示,MN右侧一正三角形匀强磁场区域,上边界与MN垂直。

广州市2024届越秀区高三物理10月统考试题含答案解析

广州市2024届越秀区高三物理10月统考试题含答案解析

广州市2024届越秀区高三物理10月统考试题一、单选题(共42 分)1.小华准备驾驶汽车从教研院出发到火车站接一位老师。

他用高德地图导航,导航推荐了三种方案,如图,小华按方案一驾车从教研院出发,历时20分钟,里程表显示行驶了6.6km,到达火车站。

则()A.题中的20分钟指的是某个时刻B.汽车运动的平均速度大小约为19.8km/hC.汽车加速时,速度均匀增大,加速度可能逐渐减小D.根据高德地图,理论上三种方案汽车行驶的平均速度相同【答案】D【详解】A.题中的20分钟指的是时间间隔,故A错误;B.根据题意无法求出平均速度,可以求出汽车运动的平均速率大小约为19.8km/h,故B错误;C.汽车加速时,速度均匀增大,则加速度恒定,故C错误;D.根据高德地图,汽车的位移相等,时间相等,理论上三种方案汽车行驶的平均速度相同,故D正确。

故选D。

2.生活中经常用刀来劈开物体。

如图是刀刃的横截面,F是作用在刀背上的力,若刀刃的横截面是等腰三角形,刀刃两侧面的夹角为θ,则刀劈物体时对物体侧向推力F N的大小为()A.F 2sinθ2B.F2sinθC.F 2cosθ2D.F2cosθ【答案】A 【详解】将力F 根据平行四边形定则分解由几何知识得,侧向推力的大小为F ′=F 2sin θ2=F 2sin θ2故A 正确,BCD 错误。

故选A 。

3.摩托车飞越表演是一项惊险刺激的运动,如图。

假设在一次飞越河流的表演中,摩托车以20m/s 的水平速度离开平台,刚好成功落到对面的平台上,测得两岸平台高度差为5m 。

若飞越过程中不计空气阻力,摩托车可以看成质点,重力加速度g =10m/s 2,则下列说法正确的是( )A.水面宽度可能为21mB.摩托车落到平台前瞬间的速度大小为30m/sC.若仅增加右侧平台的高度,则摩托车在空中的飞行时间将变长D.若仅增加摩托车飞离平台时的速度,则摩托车在空中的飞行时间将变短 【答案】C 【详解】C .根据平抛运动竖直距离与时间关系得ℎ=12gt 2解得t =√2ℎg可知若仅增加右侧平台的高度,则摩托车在空中的飞行时间将变长,故C 正确; A .代入数据解得t =1s水面最大宽度为x =v 0t =20m故A 错误;B .落地时竖直速度为v y =gt =10m/s由速度的合成得v =√v 02+v y2=10√5m/s 故B 错误;D .根据t =√2ℎg 可知仅增加摩托车飞离平台时的速度,则摩托车在空中的飞行时间不变,故D 错误。

高三物理试卷带答案解析

高三物理试卷带答案解析

高三物理试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列说法正确的是A .质量相同的物体,速度大的惯性大B .紫外线比红外线更容易产生显著的衍射现象C .根据麦克斯韦电磁场理论,变化的电场周围一定产生变化的磁场D .根据狭义相对论的原理,对不同的惯性系,物理规律都是一样的2.如图所示,当小车向右加速运动时,物块M 相对于车厢静止于竖直车厢壁上,当车的加速度增大时,则( )A .M 受静摩擦力增大B .物块M 对车厢壁的压力不变C .物块M 仍能相对于车厢壁静止D .M 受静摩擦力变小3.如图所示的电路中,R 1、R 2、R 3是固定电阻,R 4是光敏电阻,其阻值随光照的强度增强而减小。

当开关S 闭合且没有光照射时,电容器C 不带电。

当用强光照射R 4且电路稳定时,则与无光照射时比较A .电容器C 的上极板带正电B .电容器C 的下极板带正电C .通过R 4的电流变小,电源的路端电压增大D .通过R 4的电流变大,电源提供的总功率变小4.物理学中用到大量的科学研究方法,在推导匀变速直线运动位移公式时,把整个运动过程等分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这是物理学中常用的微元法。

如图所示的四个实验中,哪一个采用了微元法5.完全相同的两个三角形滑块、,按图所示方式叠放在水平面上。

设、接触的斜面光滑,与桌面的动摩擦因数为,现在上作用一水平推力,恰好使、一起在桌面上匀速运动,、保持相对静止。

则与桌面的摩擦因数跟斜面倾角的关系为( )A. B. C. D.与无关6.图为室外晒衣服的一种方式,MN、PQ为固定的竖直直竿,光滑轻绳AB两端分别固定在MN、PQ上,衣架(上面的挂钩挂在绳上)和衣服总质量为M,图中α=300,两边绳的拉力分别为FA 、FB,下列表述正确的是A.FA小于MgB.FA 大于FBC.FA 与FB大小之和等于MgD.FA 与FB大小相等7.利用速度传感器与计算机结合,可以自动作出物体运动的图像. 某同学在一次实验中得到的运动小车的速度—时间图像如图2所示,由此可以知道()①小车先做加速运动,后做减速运动②小车运动的最大速度约为0.8m/s③小车的最大位移是0.8m④小车做曲线运动A.①② B.③④ C.①③ D.②④8.一列简谐横波在x轴上传播,某一时刻的波形如图中实线所示,a、b、c三个质元,a向上运动,由此可知()A.该波沿x轴正方向传播B.c正向上运动C.该时刻以后,b比c先到达平衡位置D.该时刻以后,b比c先到达离平衡位置最远处9.树上的椰子长熟了以后无人采摘会自己落下来,一个质量为m的椰子从树上掉下来落入树下的静水中,因受到水的阻力而竖直向下做减速运动,假设水对椰子的阻力大小恒为F,则在椰子减速下降深度为h的过程中,下列说法正确的是(g为当地的重力加速度)()A.其机械能减少了(F-mg)hB.其机械能减少了FhC.其重力势能减少了mghD.其动能减少了Fh10.神州十一号已于10月19日凌晨成功与天宫二号成功实施自动交会对接,神州十一号发射过程为变轨发射,示意图如图所示,其中1为近地圆轨道,2为椭圆变轨轨道,3为天宫二号所在轨道,P为1、2轨道的交点,以下说法正确的是:A.神州十一号在1轨道运行时的动能大于其在3轨道运行时的动能B .神州十一号在1轨道运行时的机械能大于其在2轨道运行时的机械能C .神州十一号在2轨道运行时的机械能小于其在3轨道运行时的机械能D .神州十一号在1轨道运行时经过P 点的动能大于其在2轨道运行时经过P 点的动能 评卷人 得 分二、多选题11.质量为1kg 的物体静止在光滑水平面上,某时刻受到水平拉力F 的作用(F -t 图像如图所示),若在第1 s 内物体受到的拉力F 向右,关于物体在0~3 s 时间内的运动情况,下列说法正确的是A .0~3 s 时间内物体先向右运动,再向左运动B .0~3 s 时间内物体始终向右运动C .物体在第1 s 末的速度最大D .物体在第3 s 末的速度最大12.如图所示,两根足够长的直金属导轨平行放置在倾角为的绝缘斜面上,两导轨间距为L ,底端接有阻值为R 的电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:本题共7题.在每小题给出四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求.全部选对得6分,选对但选不全得3分,有选错的得0分.1.(6分)物理学的发展丰富了人类对物质世界的认识,推动了科学技术的革命和创新,促进了物质生产的繁荣与人类文明的进步,下列表述正确的是()A.水面上的油膜在阳光照射下会呈现彩色,这是光的衍射现象B.麦克斯韦首先预言了电磁波的存在,并通过实验加以证实C.机械波和电磁波在介质中传播速度大小均只与介质有关D.根据狭义相对论的原理可知,在不同的惯性参考系中,一切物理规律都是相同的【考点】:物理学史;波的形成和传播.【分析】:本题根据常见的物理现象、物理学史等等知识进行解答.【解析】:解:A、水面上的油膜在阳光照射下会呈现彩色,这是由于油膜的上下表面对光的干涉形成的.故A错误;B、历史上,麦克斯韦首先预言了电磁波的存在,是赫兹通过实验对此进行了证实.故B错误.C、机械波在介质中传播速度大小只与介质有关,而电磁波在介质中传播速度大小既与介质有关,还与电磁波本身的频率有关,故C错误.D、根据狭义相对论的原理可知,在不同的惯性参考系中,一切物理规律都是相同的,故D正确.故选:D【点评】:本题关键要掌握波动部分的物理学史,知道机械波和电磁波特性的差异,掌握相对论的基本原理.2.(6分)北京时间2012年2月25日凌晨O时12分,中国在西昌卫星发射中心用“长征三号丙”运载火箭,将第十一颗“北斗”导航卫星成功送入太空预定转移轨道,这是一颗地球静止轨道卫星,“北斗”导航卫星定位系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成,中轨道卫星轨道半径约为27900公里,静止轨道卫星的半径约为42400公里.(≈0.53可供应用),下列说法正确的是()A.静止轨道卫星的向心加速度比中轨道卫星向心加速度大B.静止轨道卫星和中轨道卫星的线速度均大于地球的第一宇宙速度C.中轨道卫星的周期约为12.7hD.地球赤道上随地球自转物体的线速度比静止轨道卫星线速度大【考点】:人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.【专题】:人造卫星问题.【分析】:根据万有引力提供向心力=m=m=ma比较向心加速度、线速度和周期.知道第一宇宙速度的特点.【解析】:解:A、根据万有引力提供向心力,=ma,加速度a=,轨道半径越大,向心加速度越小,中轨道卫星的轨道半径小,向心加速度大.故A错误;B、根据=m,速度v=,知道轨道半径越大,线速度越小,第一宇宙速度的轨道半径为地球的半径,所以第一宇宙速度是绕地球做匀速圆周运动最大的环绕速度,所以静止轨道卫星和中轨卫星的线速度均小于地球的第一宇宙速度.故B错误.C、根据=m,T=2π,所以中轨道卫星和静止轨道卫星的周期比≈0.53.则中轨道卫星的周期T1=0.53×24h=12.7h.故C正确;D、地球赤道上随地球自转物体和静止轨道卫星具有相同的角速度,根据a=rω2,知静止轨道卫星的向心加速度大.故D错误.故选:C.【点评】:解决本题的关键掌握万有引力提供向心力=m=m=ma,会根据轨道半径的关系比较向心加速度、线速度和周期.3.(6分)如图甲所示,理想变压器原、副线圈的匝数比为4:1,电压表和电流表均为理想电表,原线圈接如图乙所示的正弦交流电,图甲中的R1为正温度系数的热敏电阻,R为定值电阻.下列说法正确的是()A.在0.5×10﹣2S时,电压表V2的示数为9VB. R1处温度升高时,电流表的示数变小,电压表V2的示数不变C.原线圈两端电压的瞬时值表达式为u=36sin50πt(V)D.变压器原线圈的输入功率和副线圈的输出功率之比为1:4【考点】:变压器的构造和原理.【专题】:交流电专题.【分析】:由图乙可知交流电压最大值,周期,可由周期求出角速度的值,则可得交流电压u 的表达式 u=U m sinωt(V),由变压器原理可得变压器原、副线圈中的电流之比,输入、输出功率之比,R1处温度升高时,阻值减小,根据负载电阻的变化,可知电流、电压变化.【解析】:解:A、由图知最大电压36V,有效值为36V,电压与匝数成正比,所以副线圈两端电压有效值即电压表V2的示数为9V,A错误;B、R1温度升高时,阻值增大,电流表的示数变小,但不会影响输入和输出电压值,故B正确;C、原线圈接的图乙所示的正弦交流电,由图知最大电压36V,周期0.02S,故角速度是ω=100π,U=36sin100πt(V),故C错误;D、理想变压器的输入、输出功率之比应为1:1,故D错误;故选:B.【点评】:根据图象准确找出已知量,是对学生认图的基本要求,准确掌握理想变压器的特点及电压、电流比与匝数比的关系,是解决本题的关键.4.(6分)如图所示,一细束由黄、蓝、紫三种色光组成的复色光通过三棱镜折射后分为a、b、c三种单色光,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,下列说法中正确的是()A. a种色光为紫光B.在三棱镜中a光的传播速度最大C.在相同实验条件下用a、b、c三种色光做双缝干涉实验,c光相邻亮条纹间距一定最大D.若复色光绕着入射点O顺时针转动至与AB面垂直时,屏上最终只有a光【考点】:光的折射定律.【专题】:光的折射专题.【分析】:复色光经过三棱镜色散后,从a到c形成黄、蓝、紫三种彩色光带,根据黄光的折射率最小,偏折角最小,紫光的折射率最大,偏折角最大,判断哪束光是黄光,哪束光是紫光.由公式v=分析光在玻璃三棱镜中的传播速度的大小.c光的波长最短,a光波长最长.干涉条纹的间距与波长成正比.即可判断干涉条纹间距的大小.根据sinC=,分析临界角的大小,判断入射角增大时,哪束光在AC面上先发生全反射.【解析】:解:A、黄光的折射率最小,通过三棱镜后偏折角最小,紫光的折射率最大,偏折角最大,所以可知,c光是紫光.a光是黄光,故A错误.B、由图看出,a光的折射率最小,c光的折射率最大,由公式v=分析可知,a光在三棱镜中的传播速度最大.故B正确.C、a光黄光,波长最长,干涉条纹的间距与波长成正比.所以a光形成的干涉条纹间距最大,故C错误.D、复色光绕着入射点O顺时针转动至与AB面垂直时,光线射到AC面上的入射角增大,光线与AB垂直时入射角等于∠A.由sinC=,分析知c光的临界角最小.据题,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,则c光发生全反射,而ab两光束都没有发生全反射,屏上最终有a光和b光.故D错误.故选:B【点评】:本题是光的色散现象与干涉、光电效应的综合,关键要掌握光的色散研究的结果,知道七种色光排列顺序、折射率大小等等要记牢,同时,要记住折射率与波长、频率、临界角的关系.5.(6分)一列简谐波在t=0时刻的波形图如图所示,经过0.1s,平衡位置位于x=2m的点M 第一次到达波峰,关于该波的下列说法正确的是()A.波速可能为20m/sB.波的传播方向一定沿x正方向C.波的频率f=2.5HzD. N点的速度不可能正在增大【考点】:横波的图象;波长、频率和波速的关系.【专题】:振动图像与波动图像专题.【分析】:由图象读出波长,根据经过0.1s,平衡位置位于x=2m的点M第一次到达波峰,分波沿x轴正方向和负方向传播两种情况讨论,求出波速和频率,由最大位移处向平衡位置运动时,速度增大.【解析】:解:A、若波沿x轴正方向传播,根据经过0.1s,当x=0的位置传给x=2m的点M 时,M第一次到达波峰,则v=,故A正确;B、根据题意可知,波可以沿x轴正方向也可以沿负方向传播,故B错误;C、由图象读出波长λ=16m,若波沿x轴负方向传播,根据经过0.1s,当x=16m的位置传给x=2m的点M时,M第一次到达波峰,则v,此时f=,故C错误;D、N点此时由负的最大位移处向平衡位置运动,速度增大,故D错误.故选:A【点评】:本题注意要分沿x轴正方向和负方向传播两种情况讨论,能根据波的平移原则求解波速,难度适中.6.(6分)如图所示,一轻质弹簧下端固定在粗糙的斜面底端的档板上,弹簧上端处于自由状态,斜面倾角为θ,一质量为m的物块(可视为质点)从离弹簧上端距离为L1处由静止释放,物块与斜面间动摩擦因数为µ,物块在整个过程中的最大速度为v,弹簧被压缩到最短时物体离释放点的距离为L2(重力加速度为g).则()A.从物块释放到弹簧被压缩到最短的过程中,系统损失的机械能为µmgL2cosθB.从物块释放到弹簧压缩到最短的过程中,物体重力势能的减少量等于弹簧弹性势能的增加量与系统产生的内能之和C.物块的速度最大时,弹簧的弹性势能为mgL1(sinθ﹣µcosθ)﹣mv2D.物块的最大动能为mgL1(sinθ﹣µcosθ)【考点】:功能关系;动能和势能的相互转化.【分析】:物块下滑做匀加速直线运动,接触弹簧时,沿斜面方向又受到向上的弹力作用,物体做加速度减小的加速运动,当弹簧弹力等于重力在斜面向下的分量时,加速度为零,速度最大,动能最大,根据动能定理求出刚与弹簧接触时的动能即可判断A,弹黉被压缩到最短时.物块速度为零,根据动能定理即可求出此时弹簧的弹性势能,系统损失的机械能为滑动摩擦力做的功.【解析】:解:A、系统损失的机械能为滑动摩擦力做的功,所以物块运动到最低点时,机械能的损失量为△E=μmgcosθL2,A正确;B、根据能量守恒定律可知,从物块释放到弹簧压缩到最短的过程中,物体重力势能的减少量等于弹簧弹性势能的增加量与系统产生的内能之和,故B正确.C、物块的最大速度是在合力为零时,即受力平衡时,设速度最大时设弹簧压缩量x则:根据功能关系E弹=(mgsinθ﹣μmgcosθ)(L1+x)﹣mv2,故C错误;D、根据题意可知,物块下滑做匀加速直线运动,接触弹簧时,沿斜面方向又受到向上的弹力作用,物体做加速度减小的加速运动,当弹簧弹力等于重力在斜面向下的分量时,加速度为零,速度最大,动能最大,从物块刚开始运动到刚与弹簧接触的过程中,根据动能定理得:E K﹣0=mgsinθL1﹣μmgcosθL1所以物块的最大动能大于mgL1(sinθ﹣μcosθ),故D错误;故选:AB.【点评】:本题主要考查了动能定理及能量守恒定律的直接应用,要求同学们能正确分析物体的运动情况,知道什么时候速度最大,难度适中.7.(6分)如图所示,一个带正电的小球穿在一根绝缘的粗糙直杆AC上,杆与水平方向成θ角,整个空间存在着竖直向上的匀强电场和垂直于杆方向斜向上的匀强磁场.小球沿杆向下运动,在A点时的动能为100J,在C点时动能减为零,D为AC的中点,在运动过程中,则()A.小球在D点时的动能为50 JB.到达C点后小球可能沿杆向上运动C.小球电势能的增加量一定等于重力势能的减少量D.小球在AD段克服摩擦力做的功与小球在DC段克服摩擦力做的功不相等【考点】:带电粒子在混合场中的运动.【专题】:带电粒子在复合场中的运动专题.【分析】:由于从A到C的过程中小球的动能减小,则运动速度减小,小球所受的洛伦兹力减小,导致滑动摩擦力减小,所以在下滑过程中,电场力、摩擦力做负功,重力做正功.【解析】:解:A、D、小球与杆之间的压力减小,摩擦力也在减小,所以小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不相等;AD段和DC段合外力不同,因此合外力做的功也不同,所以根据动能定理,动能的变化量不同,故A错误,D正确;B、小球运动到C点后,有可能静止,也有可能沿杆向上运动,故B正确;C、电势能增加是由电场力做功决定,而重力势能减小是由重力做功决定,由于动能与重力势能减少,转化小球的电势能,故C错误;故选:BD.【点评】:考查动能大小与速度大小关系,及速度大小与洛伦兹力大小,洛伦兹力与滑动摩擦力的关系,同时突出电场力做功与重力做功及摩擦力做功与能量的关系.二、解答题(共2小题,满分17分)8.(8分)测量小物块Q与平板P之间的动摩擦因数的实验装置如图所示.AB是半径足够大的、光滑的四分之一圆弧轨道,与水平固定放置的P板的上表面BC在B点相切,C点在水平地面的垂直投影为C′.重力加速度为g.实验步骤如下:①用天平称出物块Q的质量m;②测量出轨道AB的半径R、BC的长度L和CC′的高度h;③将物块Q在A点由静止释放,在物块Q落地处标记其落地点D;④重复步骤③,共做10次;⑤将10个落地点用一个尽量小的圆围住,用米尺测量圆心到C′的距离s.用实验中的测量量表示:(ⅰ)物块Q到达B点时的动能E kB= mgR ;(ⅱ)物块Q到达C点时的动能E kC= ;(ⅲ)在物块Q从B运动到C的过程中,物块Q克服摩擦力做的功W f= ;(ⅳ)物块Q与平板P之间的动摩擦因数μ= .【考点】:探究影响摩擦力的大小的因素.【专题】:实验题.【分析】:(1)物块由A到B点过程,由动能定理可以求出物块到达B时的动能;(2)物块离开C点后做平抛运动,由平抛运动的知识可以求出物块在C点的速度,然后求出在C点的动能;(3)由B到C,由动能定理可以求出克服摩擦力所做的功;(4)由功的计算公式可以求出动摩擦因数.【解析】:解:(1)从A到B,由动能定理得:mgR=E KB﹣0,则物块到达B时的动能E KB=mgR;(2)离开C后,物块做平抛运动,水平方向:s=v C t,竖直方向:h=gt2,物块在C点的动能E KC=mv C2,解得:E KC=;(3)由B到C过程中,由动能定理得:﹣W f=mv C2﹣mv B2,克服摩擦力做的功W f=;(4)B到C过程中,克服摩擦力做的功:W f=μmgL=,则μ=;故答案为:(1)mgR;(2);(3);(4).【点评】:熟练应用动能定理、平抛运动规律、功的计算公式即可正确解题.9.(9分)在测定一节干电池的电动势和内电阻的实验中,备有下列器材:A.待测的干电池(电动势约为1.5V,内电阻小于1.0)B.电流表G(量程0~3mA,内阻R g1=10Ω)C.电流表A(量程0~0.6A,内阻R g2=0.1Ω)D.滑动变阻器R1(0~20Ω,10A)E.滑动变阻器R2(0~200Ω,1A)F.定值电阻R3(990Ω)G.开关和导线若干(1)为方便且能较准确地进行测量,其中应选用的滑动变阻器是 D (填写器材前的序号).(2)请画出利用本题提供的器材设计测量电池电动势和内阻的电路图如图1.(3)如图2示为某同学根据他所设计的实验数据绘出的I1﹣I2图线(I1为电流表G的示数,I2为电流表A的示数,且I2的数值远大于I1的数值).则由图线可得被测电池的电动势E= 1.5 V,内阻r= 0.89 Ω.(计算结果保留两位有效数字)【考点】:测定电源的电动势和内阻.【专题】:实验题.【分析】:(1)因为电源的内阻较小,所以应该采用较小最大值的滑动变阻器,有利于数据的测量和误差的减小.(2)根据实验原理明确原理图;(3)根据欧姆定律和串联的知识求出I1和电源两端电压U的关系,根据图象与纵轴的交点求出电动势,由与横轴的交点可得出路端电压为某一值时电流,则可求得内阻.【解析】:解:(1)因为电源的内阻较小,所以应该采用较小最大值的滑动变阻器,有利于数据的测量和误差的减小.滑动变阻器应选D,(2)本实验中没有电压表,故应采用电流表G及定值电阻串联充当电压表使用,滑动变阻器与电流表串联;答案如图所示;(3)图象与纵轴的交点得最大电流为1.5mA.根据欧姆定律和串联的知识得电源两端电压U=I1(990+10)=1000I1,根据图象与纵轴的交点得电动势E=1.48mA×1000Ω=1.5V与横轴的交点可得出路端电压为1.1V时电流是0.45A;r===r=0.89Ω;故答案为:(1)D;(2)如图;(3)1.5;0.89.【点评】:在测量电源电动势和内阻时,要注意根据画出的U﹣I图象分析出电动势及内阻的方法.三、计算题(本题共3个小题,共计51分,解答应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)10.(15分)某兴趣小组对一辆自制遥控小车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为υ﹣t图象,如图所示(除2s~10s时间段图象为曲线外,其余时间段图象均为直线).已知在小车运动的过程中,2s~14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行,小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变.求:(1)小车所受到的阻力大小;(2)小车匀速行驶阶段的功率;(3)小车在加速运动过程中(指图象中0~10秒内)位移的大小.【考点】:动能定理;功率、平均功率和瞬时功率.【专题】:动能定理的应用专题.【分析】:(1)在14s末停止遥控而让小车自由滑行,小车只受摩擦力,故可以可以先求加速度,再求出合力,等于摩擦力;(2)匀速阶段,牵引力等于阻力,速度已知,直接根据公式P=Fv求解;(3)前2秒位移根据运动学公式求解,2s到10s为变加速过程,其位移可以由动能定理求解.【解析】:解:(1)由图象可得:在14 s~18 s时间段a=m/s2=﹣1.5m/s2小车受到阻力大小:F f=ma=﹣1.5N(负号表示力的方向与运动方向相反)(2)在10s~14s小车做匀速运动,牵引力大小F 与 F f大小相等 F=1.5NP=Fυ=1.5×6W=9W(3)速度图象与横轴之间的“面积”等于物体运动的位移0~2s内 x1=×2×3m=3m2s~10s内根据动能定理Pt﹣F f x2=﹣解得x2=39 m加速过程中小车的位移大小为:x=x1+x2=42 m答:(1)小车所受到的阻力大小为1.5N;(2)小车匀速行驶阶段的功率为9W;(3)小车在加速运动过程中位移的大小为42m.【点评】:本题关键分析清楚小车各段的运动规律以及力的变化情况,结合牛顿第二定律和动能定理求解.11.(17分)水上滑梯可简化成如图所示的模型:倾角为θ=37°斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7.0m,BC长d=2.0m,端点C距水面的高度h=1.0m.一质量m=50kg的运动员从滑道起点A点无初速地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.10,(cos37°=0.8,sin37°=0.6,运动员在运动过程中可视为质点)求:(1)运动员沿AB下滑时加速度的大小a;(2)运动员从A滑到C的过程中克服摩擦力所做的功W和到达C点时速度的大小υ;(3)保持水平滑道端点在同一竖直线上,调节水平滑道高度h和长度d到图中B′C′位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B′C′距水面的高度h′.【考点】:牛顿第二定律;功的计算.【专题】:牛顿运动定律综合专题.【分析】:(1)运动员沿AB下滑时,受到重力mg、支持力和滑动摩擦力,根据牛顿第二定律求解加速度.(2)运动员从A滑到C的过程中,克服摩擦力做功为W=μmgcosθ()+μmgd=μmg[d+(H﹣h)cotθ].根据动能定理求解到达C点时速度的大小υ;(3)运动员从A滑到C的过程中,克服摩擦力做功W保持不变,根据动能定理得到运动员滑到C点时的速度大小.从C到水平地面,运动员做平抛运动,由平抛运动的规律得到水平位移h′的关系式,由数学知识求解水平位移最大时h′的值.【解析】:解:(1)运动员沿AB下滑时,受力情况如图所示F f=μF N=μmgcosθ根据牛顿第二定律:mgsinθ﹣μmgcosθ=ma得运动员沿AB下滑时加速度的大小为:a=gsinθ﹣μgcosθ=5.2 m/s2(2)运动员从A滑到C的过程中,克服摩擦力做功为:W=μmgcosθ()+μmgd=μmg[d+(H﹣h)cotθ]=500J由动能定理得 mg(H﹣h)﹣W=,得运动员滑到C点时速度的大小 v=10 m/s(3)在从C点滑出至落到水面的过程中,运动员做平抛运动的时间为t,由h′=,得下滑过程中克服摩擦做功保持不变 W=500J根据动能定理得:mg(H﹣h′)﹣W=,解得 v=运动员在水平方向的位移:x=vt=•=当h′=时,水平位移最大答:( 1)运动员沿AB下滑时加速度的大小a是5.2 m/s2;(2)运动员从A滑到C的过程中克服摩擦力所做的功W为500J,到达C点时速度的大小υ为10m/s;(3)滑道B′C′距水面的高度h′为3m时,水平位移最大.【点评】:本题中关键之处要抓住滑动摩擦力做功W=μmg[d+(H﹣h)cotθ],与AC间水平位移大小成正比,AC间水平位移不变,W不变.第3问得到水平位移x与h′的关系式,根据数学知识求解极大值的条件.12.(19分)如图甲所示,有一磁感强度大小为B、垂直纸面向外的匀强磁场,磁场边界OP 与水平方向夹角为45°,紧靠磁场右上边界放置长为L,间距为d的平行金属板M、N,磁场边界上的O点与N板在同一水平面上,O1、O2电场左右边界中点.在两板间存在如图乙所示的交变电场(取竖直向下为正方向).某时刻从O点竖直向上同时发射两个相同的粒子a和b,质量为m,电量为+q,初速度不同.粒子a在图乙中的t=时刻,从O1点水平进入板间电场运动,由电场中的O2点射出.粒子b恰好从M板左端进入电场.(不计粒子重力和粒子间相互作用,电场周期T未知)求:(1)粒子a、b从磁场边界射出时的速度v a、v b;(2)粒子a从O点进入磁场到射出O2点运动的总时间;(3)如果交变电场的周期T=,要使粒子b能够穿出板间电场,求则电场强度大小E0满足的条件.【考点】:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.【专题】:带电粒子在复合场中的运动专题.【分析】:(1)求出粒子轨道半径,应用牛顿第二定律可以求出粒子a、b从I磁场边界射出时的速度v a、v b.(2)求出粒子在磁场中、在电场中、在电磁场外的运动时间,然后求出总运动时间.(3)作出粒子在电场中的运动轨迹,应用类平抛运动规律分析答题.【解析】:解:(1)如图所示,粒子a、b在磁场中均速转过90°,平行于金属板进入电场.由几何关系可得:,r b=d…①由牛顿第二定律可得…②…③解得:,(2)粒子a在磁场中运动轨迹如图在磁场中运动周期为:…④在磁场中运动时间:…⑤粒子在电磁场边界之间运动时,水平方向做匀速直线运动,所用时间为…⑥由④⑤⑥则全程所用时间为:(3)粒子在磁场中运动的时间相同,a、b同时离开Ⅰ磁场,a比b进入电场落后时间…⑦故粒子b在t=0时刻进入电场.由于粒子a在电场中从O2射出,在电场中竖直方向位移为0,故a在板间运动的时间t a是周期的整数倍,由于v b=2v a,b在电场中运动的时间是t b=t a,可见b在电场中运动的时间是半个周期的整数倍即…⑧…⑨粒子b在内竖直方向的位移为…⑩粒子在电场中的加速度由题知粒子b能穿出板间电场应满足ny≤d解得答:(1)粒子a、b从磁场边界射出时的速度v a、v b分别是:和;(2)粒子a从O点进入磁场到射出O2点运动的总时间是;(3)如果交变电场的周期T=,要使粒子b能够穿出板间电场,则电场强度大小E0满足的条件.【点评】:本题考查了带电粒子在电场与磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的关键,应用牛顿第二定律、粒子在磁场中做匀速圆周运动的周期公式、牛顿第二定律、运动学公式即可正确解题.。

相关文档
最新文档