八年级上期数学期中质量检测试题
辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)
金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
河北省石家庄市正定县2023-2024学年八年级上学期期中数学试题(含答案)
正定县2023-2024学年度第一学期期中质量检测八年级数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.)10,,,0.101001001……(相邻两个1之间依次多一个0),其中无理数有( )A .1个B .2个C .3个D .4个2.代数式,,,,,,中,属于分式的有()A .2个B.3个C .4个D .5个3x 的取值范围是( )A .B .C .D .4.精确到0.1,得到21.0的数是下面的( )A .21.12B .21.05C .20.95D .20.9455.若分式中的x ,y 都扩大原来的3倍,那么分式的值( )A .扩大为原来的9倍B .扩大为原来的3倍C .不变D .缩小到原来的6.如图,若两个三角形全等,图中字母表示三角形边长,则的度数为( )6题图A .40°B .50°C .60°D .70°7.如图,是嘉淇同学做的练习题,他最后的得分是( )π1325x 1π224x +223x -1x 12xx ++211x x --2x ≥2x <2x ≠-2x >232x yx y +-131∠(4)请写出一个无理数——7题图A .5分B .10分C .15分D .20分8.解分式方程时,去分母后变形为( )A .B .C .D .9.如图,将边长分别为2和1的矩形沿图中虚线剪开,拼成一个正方形,则该正方形的边长最接近整数( )9题图A .1B .2C .3D .410.在中,,为边上一点.将沿折叠,使点恰好落在边上的点处.若,,,则的周长是( )10题图A .6B .7C .8D .911.若运算的结果为整式,则“□”中的式子可能是( )A .B .C .D .12.若关于的方程的解为正数,则的取值范围是( )A .B .C .且D .且13.在和中,,,.已知,则( )A .40°B .40°或140°C .或D .14.老师上课提出问题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )π-22311x x x++=--()()2231x x ++=-()2231x x -+=-()()2231x x -+=-()()2231x x -+=-Rt ABC △90ACB ∠=︒D AB ABC △CD A BC E 3AC =4BC =5AB =BDE △22x x y y x ÷+- y x-y x +1x 3x x 2111x m x x ++=--m 3m <3m >3m >1m ≠3m <1m ≠ABC △A B C '''△40B B '∠=∠=︒6AB A B ''==4AC A C ''==C n ∠=︒C ∠'=n ︒180n ︒-︒n ︒甲:设该品牌的饮料每瓶是元,则 乙:设该品牌饮料每箱瓶,则丙:设该品牌的饮料每瓶是元,则 丁:设该品牌饮料每箱瓶,则A .甲、丁B .甲、乙C .乙、丙D .甲、乙、丙15.如图,在和中,点A ,E ,B ,D 在同一直线上,,,只添加一个条件,能判定的是( )15题图A .B .C .D .16.如图,点在线段上,于点,于点,,且,,点从点开始以速度沿向终点运动,同时点以的速度从点开始,在线段上往返运动(即沿运动),当点到达终点时,、同时停止运动.过、分别作的垂线,垂足分别为、.设运动的时间为,当以、、三点为顶点的三角形与全等时,t 的值为( )s .16题图A .1B .1或3C .2或4D .1或4二、填空题(本大题共4小题,每小题3分,20题第一个空1分,第二个空2分,共12分,请把答案填在题中的横线上)17的平方根是______.18.是方程的解,则a 的值为______.19.化简:的结果为______.20.如图,在中,,.点在线段上运动(不与,重合),连接,作,交线段于点.(1)当时,______°;x 363620.9x x-=x 36360.92x x ⨯=+x ()0.936236x ⨯+=x 36360.92x x ⨯=+ABC △DEF △//AC DF AC DF =ABC DEF ≌△△BC DE =ABC D ∠=∠A DEF ∠=∠AE DB=C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒7cm AC =8cm CE =P A 2cm/s AC C Q 3cm/s E EC E C E →→P P Q P Q BD M N s t P C M QCN △5x =122x x a=-+2211x x x+--ABC △3AB AC ==40B C ∠=∠=︒D BC D B C AD 40ADE ∠=︒DE AC E 120BDA ∠=︒DEC ∠=(2)当______时,.三、解答题(本大题共6小题,共56分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本小题满分8分)以下是某同学化简分式的部分运算过程:解:原式①②③…(1)上面的运算过程中第______步出现了错误;(2)请你写出完整的解答过程.22.(本小题满分8分)已知点A ,B 在数轴上所对应的数分别为,,A ,B 两点关于原点对称.(1)当时,求的值;(2)若不存在满足条件的,求的值.23.(本小题满分8分)已知正数的两个平方根分别是和互为相反数,求的平方根.24.(本小题满分8分)如图,已知,,,.求的值.25.(本小题满分12分)为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知型充电桩比型充DC =ABD DCE ≌△△2113422x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()1122223x x x x x ⎡⎤+-=-⋅⎢⎥+-+⎣⎦()()()()12222223x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦()()122223x x x x x +---=⋅+-8m x -78x x--2m =x x m a 3x +26x -2a b +EC AC =BCE DCA ∠=∠A E ∠=∠4BC =DC A B电桩的单价少0.3万元,且用12万元购买型充电桩与用18万元购买型充电桩的数量相等.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买20个A ,B 型充电桩,购买总费用不超过15万元,且型充电桩购买数量不超过12个.问:共有哪几种购买方案?哪种方案所需购买总费用最少?26.(本小题满分12分)如图所示,在中,,点是线段延长线上一点,且,点是线段上一点,连接,以为斜边作等腰,连接,且.(1)过点作,垂足为.①求证:②求证:;(2)如图2,若点是线段延长线上一点,其他条件不变,请写出线段,,之间的数量关系,并说明理由.图1 图2A B A Rt ABC △90C ∠=︒D CA AD AB =F AB DF DF Rt DFE △EA EA AB ⊥D DG AE ⊥G DEG EFA≌△△AE AF BC =+F BA AE AF BC正定县2023-2024学年度第一学期期中教学质量检测八年级数学答案一、选择题1--5DCDCC 6--10ABCAA 11--15DDCCDB二、填空题17.; 18.1; 19.; 20.(1)120°;(2)3三、解答题21.(本题满分8分)解:(1)③--------------------------------2分(2)原式--------------------------------4分----------------------------------------6分-----------------------------------------------8分22.(本题满分8分)解:(1)根据题意得:把代入得:----------------------1分去分母得:--------------------------------------2分解得:-------------------------------------------3分经检验,是分式方程的解.--------------------------4分(2)去分母得:------------------------------------------5分已知不存在满足条件的x 的值,则,--------------------------6分把代入得-------------------------------------------------------------7分2±2-()()1122223x x x x x ⎡⎤+--⋅⎢⎥+-+⎣⎦()()()()12222223x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦()()122223x x x x x +-+-=⋅+-()()32223x x x -=⋅+-12x =+7088m x x x-+=--2m =27088x x x -+=--()270x --=9x =9x =7088m x x x-+=--()70m x --=8x =8x =()70m x --=()870m --=解得----------------------------------------------------------8分23.(本题满分8分)解:∵正数a 的两个平方根分别是和∴--------------------------------------------2分∴----------------------------------------------------3分∴------------------------------------------4分∴,-------------------------------------------5分∴,-----------------------------------------------------6分∴------------------------------7分∴的平方根是------------------------------8分24.(本题满分8分)解:∵,∴---------------------------------------2分在和中------------------------------5分∴--------------------------------6分∴.--------------------------------------------------8分25.(本题满分12分)解:(1)设A 型充电桩的单价为x 万元,则B 型充电桩的单价万元,根据题意得----------------------------------4分解得,经检验是原方程的解,---------------------6分答:A 型充电桩的单价为0.6万元,则B 型充电桩的单价为0.9万元;(2)设购买A 型充电桩m 个,则购买B 型充电桩个,根据题意,得:-----------------------------------------------------------------9分解得:又因,且是整数-∴,11,12--------------------------------------------------------10分∴该停车场有3种购买方案,1m =3x +26x -()3260x x ++-=1x =()2316a x =+=()23430b b -+-=10b =21621036a b +=+⨯=2a b +6±BCE ACD ∠=∠ACB ECD ∠=∠ACB △ECD △A E AC ECBCA DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ACB ECD ≌△△4BC CD ==()0.3x +12180.3x x =+0.6x =0.6x =0.30.9x +=()20m -()0.60.92015m m +-≤10m ≥12m ≤10m =方案一:购买10个A 型充电桩、10个B 型充电桩;方案二购买11个A 型充电桩、9个B 型充电桩;方案三:购买12个A 型充电桩、8个B 型充电桩.----------------------------------------11分∵A 型机床的单价低于B 型机床的单价,∴购买方案三总费用最少,最少费用(万元)--------------------------12分26.(本题满分12分)证明(1)∵①,∴,∵,∴∴---------------------------2分在△DEG 和△EFA 中,∴---------------------------4分②证明:∵,,∴,∵,,∴----------------------6分∴,∵,∴,∴-----------------------8分(2),--------------------------------9分理由如下,如图2,过点D 作,交AE 的延长线于点G ,则,∵,∴,∵△DEE 是以DF 为斜边的等腰直角三角形,∴,,∴,∴,∴,---------------------10分∴,∵,∴,∴------------------------------------11分120.680.914.4=⨯+⨯=DG AE ⊥90DEG EDG ∠+∠=︒90DEF ∠=︒90DEG AEF ∠+∠=︒EDG FEA ∠=∠DGE EAF EDG FEADE EF ∠=∠∠=∠=⎧⎪⎨⎪⎩()AAS DEG EFA ≌△△90GDA GAD ∠+∠=︒90GAD BAC ∠+∠=︒GDA BAC ∠=∠AD AB =90DGA C ∠=∠=︒()AAS GDA CAB ≌△△BC AG =DEG EFA ≌△△EG AF =AE AG GE AF BC =+=+BC AE AF =+DG AE ⊥90DGE ∠=︒AE AB ⊥90EAF DGE ∠=∠=︒90DEF ∠=︒DE EF =90GDE GED GED AEF ∠+∠=∠+∠=︒GDE AEF ∠=∠()AAS GDE AEF ≌△△GE AF =90DGE EAF ∠=∠=︒//DG AB GDA CAB ∠=∠在和中,∴,∴,∴------------------------------------12分GDA∠CAB∠DGA CGDA CABAD AB∠=∠∠=∠=⎧⎪⎨⎪⎩()AASGDA CAB≌△△BC AG= BC EG AE AF AE=+=+。
八年级数学上学期期中考试试卷及答案
八年级数学上学期期中考试试卷及答案一、选择题(每题5分,共25分)1. 已知实数 $a$,$b$ 满足 $a^2 + b^2 = 6$,则下列选项中正确的是:A. $a^2 + b^2 \geq 6$B. $a^2 + b^2 \leq 6$C. $a^2 + b^2 = 6$D. $a^2 + b^2 \in [4,8]$2. 已知函数 $f(x) = x^3 - 3x$,则 $f'(x)$ 是:A. $f'(x) = 3x^2 - 3$B. $f'(x) = 3x^2$C. $f'(x) = 3x$D. $f'(x) = 1$3. 下列等式正确的是:A. $\sqrt[3]{27} = 3$B. $\sqrt{9} = 3$C. $\sqrt[4]{64} = 4$D. $\sqrt{2} \times \sqrt{2} = 2$4. 若 $a$,$b$ 是方程 $x^2 - 4x + 3 = 0$ 的根,则 $a + b$ 的值为:A. $1$B. $2$C. $3$D. $4$5. 已知等差数列的前三项分别为 $a-2$,$a$,$a+2$,则该数列的通项公式为:A. $a_n = 3n-4$B. $a_n = 2n-3$C. $a_n = n^2-3n+2$D. $a_n = 3n^2-4n+2$二、填空题(每题5分,共25分)1. 若 $a$,$b$ 是方程 $x^2 - 2ax + a^2 = 0$ 的根,则 $a^2 +b^2 = ______.$2. 函数 $f(x) = 2x^3 - 6x + 1$ 的导数 $f'(x)$ 在 $x = 1$ 处的值为______.3. 若等差数列的前三项分别为 $2$,$5$,$8$,则该数列的通项公式为 ______.4. 下列等式中正确的是 ______: $\sqrt{36} = 6$,$\sqrt[3]{27} = 3$,$\sqrt{9} = 3$,$\sqrt[4]{64} = 4$.5. 若复数 $z$ 满足 $|z| = 2$,且 $z$ 在复平面内对应的点位于第二象限,则 $z$ 可能的值为 ______.三、解答题(每题10分,共30分)1. 解方程:$2x^2 - 5x + 2 = 0$2. 已知函数 $f(x) = x^3 - 3x$,求 $f'(x)$ 的值。
湖南省娄底市涟源市2024-2025学年八年级上学期11月期中考试数学试题(含答案)
2024-2025学年上学期期中质量检测卷八年级数学时量为120分钟,满分为120分题号一二三四五六总分得分一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
)题序12345678910答案1. 分式x−3x+2有意义的条件是()A. x≠3B. x≠-2C. x=3D. x=-22. 下列分式是最简分式的是()A.2a+64aB.3a−3ba2−b2C.m−n−m+nD.m−5m+53. 下列计算正确的是A.a2÷1a =a3B.12a+13a=15aC.1a−1b=a−babD.a÷b⋅1b=a4. 下列长度的三条线段,能组成三角形的是()A. 3, 4, 7B. 6, 7, 12C. 5, 8, 14D. 3, 3, 85. 下列命题是真命题的是()A. 两条直线被第三条直线所截,同旁内角互补B. 相等的角是对顶角C. 三个角对应相等的两个三角形全等D. 有两个内角是60°的三角形是等边三角形6. 若a=−22,b=2−2,c=(12)−2,d=(12)0,则()A. a<b<d<cB. a<b<c<dC. b<a<d<cD. a<c<b<d7. 如图, 在△ABC中, ∠A=74°,∠B=56°.尺规作图的步骤为: ①以点C为圆心,任意长为半径画弧,分别交AC于点D,交BC的延长线于点E;②分别以D,E为圆心,大于12DE为半径画弧,两弧交于点F;③作射线CF. 则∠ECF的度数为()A. 74°B. 65°C. 60°D. 56°8. 已知3x−4(x−1)(x−2)=Ax−1+Bx−2,则A+B的值为()A. 1B. 2C. 3D. 49. 如图, ∠ABC的平分线 BF, 与△ABC的外角∠ACG的平分线相交于点 F , 过点 F作DF∥BC交AB于点D, 交AC于点E, 若BD=8, CE=6, 则DE的长为()A. 4B. 2.5C. 2D. 1.510. 如图, 在△ABC中, ∠ABC=45°,过点C作CD⊥AB于点D, 过点B作BM⊥AC于点M, 连接MD, 过点 D作DN⊥MD,交BM于点N, CD与BM相交于点E. 则下列结论:①AC=BE;②DM=DN;③∠AMD=45°;④S△EDN=S△ADM.其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(本题共8小题,每小题3分,共24分)11. 一张新版百元人民币的厚度约为0. 00009米,数据“0. 00009”用科学记数法表示为 .12. “对顶角相等”的逆命题是.13. 已知关于x的分式方程kx−2−32−x=1有增根, 则k= .14. 计算:15.把一副三角板按如图所示的方式摆放,∠A=60°,∠F=45° , DE⊥BC,则∠CHE的度数为.16. 如图,是一个瓶子的切面图,测量得到瓶子的外径AB的长度是 18cm ,为了得到瓶子的壁厚 acm,小庆把两根相同长度的木条DE和CF的中点O固定在一起,做了一个简单的测量工具,如图,得到EF的长为12cm,则瓶子的壁厚a的值为 cm.17. 如图,∠ACB=90°, AC=BC. AD⊥CE,BE⊥CE,垂足分别是点 D、E, AD=6,BE=2, 则 DE的长是 .18. 若x²−4x+1=0,则x2+1=¯.x2三、解答题 (本题共2小题,每小题6分,共12分)19.计算: −12024+|−6|−(3.14−π)0+(−13)−220. 如图,CE是△ABC的外角∠ACD的平分线, 且CE交BA的延长线于点E, 若∠B=35° , ∠E=25° . 求∠BAC的度数.四、解答题 (本题共2小题,每小题8分,共16分)21. 先化简:m2−4m+4÷(m+1−3m−1),再从±1,±2中选择一个合适的m m−1值代入求值.22. 如图, 在△ABC中, AB 的垂直平分线MN交AB于点E, 交AC于点D,且.AC=15cm, △BCD的周长等于25cm.(1) 求BC的长;(2) 若∠A=36°,并且AB=AC, 求证: BC=BD.五、解答题(本题共2小题,每小题9分,共18分)23. 为了美化环境,建设生态南岸,某社区需要对8400平方米的区域进行绿化改造,计划由甲、乙两个绿化工程队合作完成,已知甲队每天能完成的绿化改造面积比乙队多100平方米,甲队单独完成全部任务所需时间是乙队的2.3(1) 甲、乙两队每天分别能完成多少平方米的绿化改造面积?(2) 已知甲队每天施工费用为2400元,乙队每天施工费用为1800元,若先由甲队施工若干天后,再由甲、乙两个施工队合作完成,恰好20天完成绿化改造,求完成这项绿化改造任务总共需要施工费用多少元?24. 如图,BD⊥AC于点 D,CE⊥AB于点E,BE=CD,BD与CE交于点 O.(1) 求证:△COD≅△BOE;(2) 若CD=2,AE=5,求AC的长.六、综合题(本题共2小题,每小题10分,共20分)25. 阅读材料:通过小学的学习,我们知道,83=6+23=2+23=223,在分式中,类似地,2x+4x+1=2x+2+2x+1=2(x+1)+2x+1=2+2x+1.探索:(1)如果3x+4x+1=3+mx+1,则m= ;如果3x−1x+1=3+mx+1,则m=;总结:(2) 如果ax+bx−c =a+mx−c(其中a、b、c为常数) , 则求m的值. (用含a、b、c的代数式表示)应用:(3) 利用上述结论解决:若代数式2x−1x+1的值为整数,求满足条件的整数x的值.26.如图1, 已知△ABC和△DBE都是等边三角形,且点 D 在边AC上,AD>CD.(1) 求证:△ABD≅△CBE.(2) 求∠DCE的度数.(3) 如图2, 过点B作BF⊥AC于点F,设△BCE的面积为S₁,△BCD的面积为S₂,求△BFD的面积(用含S₁,S₂的代数式表示) .2024-2025学年上学期期中质量检测卷八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,满分30分)12345678910B D A B D A BC C D二、填空题(本大题共6个小题,每小题3分,满分18分)11.9×10-5; 12.如果两个角相等,那么这两个角是对顶角;13.﹣3;14.;15.15°;16.3;17.4;18.14 三、解答题(每小题6分,共12分)19.解:原式=﹣1+6﹣1+9=13.20.解:∵∠B=35°,∠E=25°,∴∠DCE=∠B+∠E=60°,∵CE平分∠ACD,∴∠ACD=2∠DCE=120°,∵∠ACD=∠B+∠BAC,∴∠BAC=120°﹣35°=85°.四、解答题(每小题8分,共16分)21.解:原式=÷=•=•=,∵m=1或±2时,原分式无意义,∴x=﹣1,当x=﹣1时,原式==﹣3.22.(1)解:∵MN是AB的垂直平分线,∴AD=BD,∵AC=15cm,△BCD的周长等于25cm,∴BC+CD+BD=BC+CD+AD=BC+AC=25cm,∴BC=10cm.(2)证明:∵∠A=36°,AB=AC,∴∠ABC=∠C==72°,∵BD=AD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=36°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠C=∠BDC,∴BC=BD.五、解答题(每小题9分,共18分)23.解:(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+100)平方米的绿化改造面积,依题意得:,解得:x=200,经检验,x=200是原方程的解,∴原方程的解为x=200,∴x+100=300.答:甲工程队每天能完成300平方米的绿化改造面积,乙工程队每天能完成200平方米的绿化改造面积;(2)设甲工程队先做了x天,则甲乙合作了(20﹣x)天,则:300x+(20﹣x)(300+200)=8400,解得x=8,∴完成这项绿化改造任务总共需要施工费用为2400×8+(2400+1800)×(20﹣8)=69600(元).24.(1)证明:∵BD⊥AC,CE⊥AB∴∠CDO=∠BEO=90°在△COD和△BOE中,,∴△COD ≌△BOE (AAS );(2)解:∵△COD ≌△BOE ,∴OC =OB ,OD =OE ,∴OC +OE =OB +OD ,即CE =BD ,在△ACE 和△ABD 中,,∴△ACE ≌△ABD (AAS ),∴AE =AD =5,∵CD =2,∴AC =AD +CD =7.六、综合题(每小题10分,共20分)25.(1)①1;②﹣4;(2)∵.∴m =ac +b ;(3)===2﹣,∵结果为整数,∴当x =﹣4或﹣2或0或2时,代数式的值为整数.26.(1)证明:∵△ABC 和△DBE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABD =60°﹣∠DBC =∠CBE ,在△ABD 和△CBE 中,,∴△ABD ≌△CBE (SAS );(2)解:∵△ABC 是等边三角形,∴∠ACB =60°,由(1)知:△ABD ≌△CBE ,∴∠CEB =∠A =60°,()cx bac a c x b ac c x a c x b ax -++=-++-=-+∴∠DCE=∠ABC+∠BCE=60°+60°=120°;(3)解:∵△ABC是等边三角形,BF⊥AC,∴AF=CF,由(1)知:△ABD≌△CBE,∴△ABD的面积=△BCE的面积=S1=AD•BF=(AF+FD)•BF=AF•BF+FD•BF,∵△BCD的面积=S2=CD•BF=(CF﹣FD)•BF=(AF﹣FD)•BF=AF•BF﹣FD•BF,∴S1﹣S2=(AF•BF+FD•BF)﹣(AF•BF﹣FD•BF)=FD•BF,∴△BFD的面积=FD•BF=(S1﹣S2).。
数学八年级上册期中考试试卷【含答案】
数学八年级上册期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项是正确的?A. a b > 0B. a + b > 0C. a × b > 0D. a ÷ b > 02. 下列哪个数是负数?A. -(-5)B. -|5|C. |-5|D. -5的平方3. 若 a = 3,b = -2,则a × b 等于多少?A. 6B. -6C. 5D. -54. 下列哪个数是无理数?A. √9B. √16C. √3D. √15. 下列哪个数是实数?A. √-1B. 3/0C. ∞D. -5二、判断题(每题1分,共5分)1. 若 a > b,则 a b > 0。
()2. 任何数的平方都是正数。
()3. 0既不是正数也不是负数。
()4. 若a × b = 0,则 a 和 b 中至少有一个数为0。
()5. 任何实数都有平方根。
()三、填空题(每题1分,共5分)1. 若 a = 3,b = -2,则 a + b = _______。
2. 若 a = 5,b = -5,则a × b = _______。
3. 若 a = 4,b = 2,则a ÷ b = _______。
4. 若 a = -3,则 a 的相反数是 _______。
5. 若 a = 9,则 a 的平方根是 _______。
四、简答题(每题2分,共10分)1. 解释什么是有理数。
2. 解释什么是无理数。
3. 解释什么是实数。
4. 解释什么是相反数。
5. 解释什么是平方根。
五、应用题(每题2分,共10分)1. 若 a = 4,b = -3,求 a + b 的值。
2. 若 a = 6,b = 2,求a × b 的值。
3. 若 a = 9,求 a 的平方根。
4. 若 a = -5,求 a 的相反数。
八年级上册数学期中检测共5套及答案
八年级上册数学期中测试卷一、选择题(每题3分,共30分)1.下列图形中,不是轴对称图形的是( )2.如果等腰三角形的两边长分别为3和6,那么它的周长为( ) A.9 B.12 C.15 D.12或153.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) A.(-2,-3) B.(2,-3) C.(-3,-2) D.(3,-2) 4.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A.6 B.7 C.8 D.95.如图,在△ABC中,边AC的垂直平分线交边AB于点D,∠A=50°,则∠BDC=( )A.50°B.100°C.120°D.130°6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为( )A.40°B.45°C.60°D.70°7.如图,在△ABC中,∠C=90°,BC=35,∠BAC的平分线AD交BC于点D.若DC DB=25,则点D到AB的距离是( )A.10 B.15 C.25 D.208.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为( )A.4 B.3 C.2 D.19.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F 是AD上的动点,E是AC边上一点.若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )A.15°B.22.5°C.30°D.45°10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中正确的个数是( )A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.一木工师傅有两根木条,木条的长分别为40 cm和30 cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是____________.12.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________.13.如图,在△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是________.14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.15.由于木制衣架没有柔性,在挂置衣服的时候不大方便操作,小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图①,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图②,则此时A,B两点之间的距离是________ cm.16.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.17.如图,在2×2的正方形网格中,有一个以格点为顶点的△ABC,请你找出网格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个.18.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从点B出发,以1 cm/s的速度沿B→A→C的方向运动.设运动时间为t s,当t=____________时,过点D,P两点的直线将△ABC的周长分成两部分,使其中一部分是另一部分的2倍.三、解答题(19~21题每题6分,23,24题每题8分,26题12分,其余每题10分,共66分)19.如图,在五边形ABCDE中,∠A=∠C=90°.求证∠B=∠DEF+∠EDG.20.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4 cm.求BP的长.21. 已知:如图,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E.求证OB=OC.22.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)求△A1B1C1的面积;(4)在y轴上画出点P,使PB+PC最小.23.如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.(1)试判断DF与EF的数量关系,并给出证明;(2)若CF的长为2 cm,试求等边三角形ABC的边长.24.如图,在等腰直角三角形ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC,交DE的延长线于点F,连接CF,交AD于点G.(1)求证AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.25.如图,把三角形纸片A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含x或y的式子表示)?(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.26.如图,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点.(1)如果点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,1 s后,△BPD与△CQP是否全等?请说明理由.②若点Q的运动速度与点P的运动速度不相等,则点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以第(1)题②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,经过多少时间,点P与点Q第一次在△ABC的哪条边上相遇?答案一、1.C 2.C 3.A 4.D 5.B 6.A7.A 8.D 9.C 10.D二、11.10<x <70 12.25° 13.10.5 14.55° 15.18 16.108°17.5 18.7或17三、19.证明:在五边形ABCDE 中,∠A +∠B +∠C +∠EDC +∠AED =180°×(5-2)=540°. ∵∠A =∠C =90°,∴∠B +∠AED +∠EDC =360°.又∵∠AED +∠DEF =180°,∠EDC +∠EDG =180°, ∴∠AED +∠EDC +∠DEF +∠EDG =360°. ∴∠B =∠DEF +∠EDG .20.解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =12(180°-∠BAC )=30°.∵∠PAC =∠BAC -∠BAP =120°-90°=30°,∴∠C =∠PAC . ∴AP =CP =4 cm.在Rt △ABP 中,∵∠B =30°, ∴BP =2AP =8 cm.21.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 与△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO (ASA). ∴OB =OC .22.解:(1)△A 1B 1C 1如图所示.(2)(3,2);(4,-3);(1,-1)(3)△A1B1C1的面积=3×5-12×2×3-12×1×5-12×2×3=6.5.(4)如图,P点即为所求.23.解:(1)DF=EF.证明:∵△ABC是等边三角形,∴∠BAC=60°.又∵AD⊥BC,∴AD平分∠BAC.∴∠DAC=30°.∵△ADE是等边三角形,∴∠DAE=60°.∴∠DAF=∠EAF=30°.∴AF为△ADE的中线,即DF=EF.(2)∵AD⊥DC,∴∠ADC=90°.∵△ADE是等边三角形,∴∠ADE=60°.∴∠CDF=∠ADC-∠ADE=30°.∵∠DAF=∠EAF,AD=AE,∴AF⊥DE.∴∠CFD=90°.∴CD=2CF=4 cm.∵AD⊥BC,AB=AC,∴BD=CD,∴BC=2CD=8 cm.故等边三角形ABC 的边长为8 cm. 24.(1)证明:∵BF ∥AC ,∠ACB =90°,∴∠CBF =180°-90°=90°. ∵△ABC 是等腰直角三角形, ∠ACB =90°,∴∠ABC =45°. 又∵DE ⊥AB , ∴∠BDF =45°, ∴∠BFD =45°=∠BDF . ∴BD =BF .∵D 为BC 的中点, ∴CD =BD .∴BF =CD . 在△ACD 和△CBF 中,⎩⎨⎧AC =CB ,∠ACD =∠CBF =90°,CD =BF ,∴△ACD ≌△CBF (SAS). ∴∠CAD =∠BCF .∴∠CGD =∠CAD +∠ACF =∠BCF +∠ACF =∠ACB =90°. ∴AD ⊥CF .(2)解:△ACF 是等腰三角形.理由如下: 由(1)可知BD =BF . 又∵DE ⊥AB ,∴AB 是DF 的垂直平分线. ∴AD =AF .又由(1)可知△ACD ≌△CBF , ∴AD =CF ,∴AF =CF . ∴△ACF 是等腰三角形.25.解:(1)△EAD ≌△EA ′D ,其中∠EAD 与∠EA ′D ,∠AED 与∠A ′ED ,∠ADE与∠A ′DE 是对应角. (2)∵△EAD ≌△EA ′D ,∴∠A ′ED =∠AED =x ,∠A ′DE =∠ADE =y .∴∠AEA ′=2x ,∠ADA ′=2y . ∴∠1=180°-2x ,∠2=180°-2y . (3)规律为∠1+∠2=2∠A .理由:由(2)知∠1=180°-2x ,∠2=180°-2y , ∴∠1+∠2=180°-2x +180°-2y =360°-2(x +y ). ∵∠A +∠AED +∠ADE =180°, ∴∠A =180°-(x +y ). ∴2∠A =360°-2(x +y ). ∴∠1+∠2=2∠A .26.解:(1)①△BPD 与△CQP 全等.理由如下:运动1 s 时,BP =CQ =3×1=3(cm). ∵D 为AB 的中点,AB =10 cm , ∴BD =5 cm.∵CP =BC -BP =5 cm , ∴CP =BD .又∵AB =AC ,∴∠B =∠C . 在△BPD 和△CQP 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CQ ,∴△BPD ≌△CQP (SAS).②∵点Q 的运动速度与点P 的运动速度不相等, ∴BP ≠CQ . 又∵∠B =∠C ,∴两个三角形全等需BP =CP =4 cm ,BD =CQ =5 cm. ∴点P ,Q 运动的时间为4÷3=43(s).∴点Q 的运动速度为5÷43=154(cm/s).(2)设x s 后点Q 第一次追上点P .根据题意,得⎝ ⎛⎭⎪⎫154-3x =10×2.解得x =803.∴点P 共运动了3×803=80(cm). ∵△ABC 的周长为10×2+8=28(cm), 80=28×2+24=28×2+8+10+6,∴点P 与点Q 第一次在△ABC 的AB 边上相遇.八年级(上)期中数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的) 1.下列图形中不是轴对称图形的是( ) A .B .C .D .2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,1B .1,2,2C .1,2,3D .1,2,43.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或126.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.97.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC 于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是.16.如果一个n边形的内角和等于900°,那么n的值为.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= °.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为cm.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于度.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)求图中x的值.22.(10分)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.23.(10分)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.24.(8分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.25.(10分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.26.(12分)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)八年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【点评】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或12【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况:①当腰是2时,②当腰是5时,看看三角形的三边是否符合三角形的三边关系定理,求出即可.【解答】解:分为两种情况:①当腰是2时,三边为2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此种情况不可能;②当腰是5时,三边为2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;故选C.【点评】本题考查了等腰三角形的性质和三角形三边关系定理的应用,注意要进行分类讨论.6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选C.【点评】本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【考点】翻折变换(折叠问题).【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°【考点】三角形内角和定理;角平分线的定义.【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【解答】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故选:D.【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形【考点】三角形的外角性质.【分析】根据三角形的外角和是360°,则第三个外角是90°,则与其相邻的内角是90°,即该三角形一定是直角三角形.【解答】解:∵一个三角形的两个外角的和是270°,∴第三个外角是90°,∴与90°的外角相邻的内角是90°,∴这个三角形一定是直角三角形.故选B.【点评】本题考查了三角形内角和定理的应用,能求出∠BAC+∠ACB的度数是解此题的关键,注意:三角形的内角和等于180°.13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE +S△ACE=S△ABC,∴S△BCE =S△ABC,∵点F是CE的中点,∴S△BEF =S△BCE.∴△ABC的面积等于△BEF的面积的4倍.故选C.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个【考点】等腰三角形的判定;坐标与图形性质.【分析】分三种情形考虑∠O为顶角,∠P为顶角,∠A为顶角即可解决问题.【解答】解:如图,△AOP为等腰三角形,则符合条件的点P的个数共有4个.故选A.【点评】本题考查等腰三角形的判定和性质、坐标与图形性质等知识,解题的关键是考虑问题要全面,不能漏解,属于基础题,中考常考题型.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是55°,55°或70°,40°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【解答】解:已知等腰三角形的一个内角是70°,根据等腰三角形的性质,当70°的角为顶角时,三角形的内角和是180°,所以其余两个角的度数是(180﹣70)×=55;当70°的角为底角时,顶角为180﹣70×2=40°.故填55°,55°或70°,40°.【点评】本题主要考查等腰三角形的性质以及三角形的内角和为180度.分类讨论是正确解答本题的关键.16.如果一个n边形的内角和等于900°,那么n的值为7 .【考点】多边形内角与外角.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=900°,然后解方程即可求解.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=900°,解得n=7.故答案为:7.【点评】本题考查了多边行的内角和定理:n边形的内角和为(n﹣2)•180°.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是12 .【考点】多边形内角与外角.【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【解答】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点评】本题考查根据多边形的内角与外角.关键是明确多边形的外角和为360°.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= 19 °.【考点】三角形内角和定理.【分析】由三角形的高得出∠ADC=90°,求出∠ADC,由三角形内角和定理求出∠BAC,由角平分线求出∠EAC,即可得出∠EAD的度数.【解答】解:∵△ABC中,AD是BC边上的高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=90°﹣78°=12°,∵∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣78°=62°,∵AE平分∠BAC,∴∠EAC=∠BAC=×62°=31°,∴∠EAD=∠EAC﹣∠DAC=31°﹣12°=19°.故答案为:19.【点评】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为21 cm.【考点】线段垂直平分线的性质.【分析】要求周长,就要求出三角形的三边,利用垂直平分线的性质计算.【解答】解:因为DE⊥AC,AE=CE,则DA=DC,于是C=AB+BD+DA=AB+(BD+DC)=AB+BC=10+11=21.△ABD∴△ABD的周长为21.【点评】此题设计巧妙,解答时要根据垂直平分线的性质将三角形ABC的周长问题转化为三角形ABC的两边长问题.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于90 度.【考点】方向角;平行线的性质;三角形内角和定理.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.【解答】解:∵C岛在A岛的北偏东50°方向,∴∠DAC=50°,∵C岛在B岛的北偏西40°方向,∴∠CBE=40°,∵DA∥EB,∴∠DAB+∠EBA=180°,∴∠CAB+∠CBA=90°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°.故答案为:90.【点评】解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)(2016秋•秦皇岛期中)求图中x的值.【考点】多边形内角与外角;三角形的外角性质.【分析】(1)根据三角形外角等于与它不相邻的两个内角的和,列出方程即可解决问题.(2)根据四边形内角和为360°,列出方程即可解决问题.【解答】(1)由三角形外角等于与它不相邻的两个内角的和,得x+70°=x+x+10°,解得x=60°,∴x=60°(2)由四边形内角和等于360°,得x+x+10°+60°+90°=360°解得:x=100°,∴x=100°.【点评】本题考查三角形的外角,多边形内角和等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.22.(10分)(2016秋•秦皇岛期中)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.【考点】轴对称-最短路线问题;作图-轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于y轴对称的点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(2)根据网格结构找出点C关于x轴的对称点C″的位置,连接AC″与x轴相交于点P,根据轴对称确定最短路线问题,点P即为所求作的点.【解答】解:(1)△A′B′C′如图所示,A′(﹣1,2),B′(﹣3,1),C′(﹣4,3);(2)如图所示,点P即为使PA+PC最小的点.作法:①作出C点关于x轴对称的点C″(4,﹣3),②连接C″A交x轴于点P,点P点即为所求点.【点评】本题考查了利用轴对称确定最短路线问题,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(10分)(2014春•邵阳期末)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.【考点】作图—复杂作图.【分析】(1)利用角平分线的作法以及过一点作已知直线的作法得出即可;(2)利用角平分线的性质以及三角形面积求法求出即可.【解答】解:(1)如图所示:CE为∠ACB的角平线,(2)∵CE为∠ACB的角平线,∠EMC=∠ENC=90°,∴EM=EN=2,∴S=AC×EM=4.【点评】此题主要考查了复杂作图以及角平分线的性质,得出EM的长是解题关键.24.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.【考点】全等三角形的判定与性质.【分析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.【解答】证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(10分)(2011•德州)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD 相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE,(2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.【点评】本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中.26.(12分)(2016秋•秦皇岛期中)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)【考点】三角形综合题.【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH 全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt △DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;【解答】(1)解:HL;故答案为:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,∴△CBG≌△FEH(AAS),。
2023-2024学年陕西省西安市八年级上学期期中数学质量检测模拟试题(含解析)
2023-2024学年陕西省西安市八年级上学期期中数学质量检测模拟试题一、选择题(本大题共8小题,每小题3分,满分24分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各数是无理数的是()A .0.B .2-C .2πD2A .BCD 3.关于一次函数2y x =-+,下列说法正确的是()A .图象经过点()2,1B .图象与x 轴交于点()2,0C .图象不经过第二象限D .函数值y 随x 的增大而增大4.在平面直角坐标系中,点()3,21P a a -+在x 轴上,则a 的值为()A .3B .3-C .12D .12-5.如图,在数轴上点A 所表示的数为a ,则a 的值为()A .1-B .1-CD .1+6.若1k >,则一次函数()11y k x k =-+-的图象可能是()A .B .C .D .7.若点()()()122,,1,3,3,A y B C y -在一次函数4(y mx m =+起常数的图象上,则12,y y 的大小关系是()A .12y y >B .12y y <C .12y y =D .无法确定8.如图,一个长方体蛋糕盒的长、宽、商分别为40cm 30cm 20cm 、、,点E 到点D 的距离为10cm .现有一只蚂蚁从点B 出发,沿着长方体的表面爬行到点E 处,则蚂蚁需要爬行的报短距离是()A .B .C .50cmD .45cm二、填空题(本大题共5小题,每小题3分,满分15分)9.点()4,3A -关于x 轴的对称点的坐标是________________.10.一个正数的平方根分别是1x +和42x -,则这个正数是________________.11.若直线y kx b =+与直线23y x =-平行,且过点()1,5-,则该直线的表达式为________________.12.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线,AC BD 交于点O .若1,4AD BC ==,则22AB CD +=________________.13.如图,一次函数334y x =-+的图象与x 轴、y 轴交于,A B 两点,P 是x 轴正半轴上的一个动点,连接BP ,将OBP 沿BP 翻折,点O 恰好落在AB 上,则直线BP 的表达式是________________.三、(本大题共13小题,满分81分)14.(5+15.(5÷-+16.(5分)已知2y +与x 成正比例,当3x =时,7y =,求y 与x 的函数表达式.17.(5分)如图,已知ABC △,作出ABC △关于y 轴对称的A B C '''△,其中点A 的对应点是点A ',点B 的对应点是点B ',点C 的对应点是C '.18.(5分)如图,正方形网格中每个小正方形方格的边长都为1,且点,,A B C 均为格点.求证:ABC △是直角三角形.19.(5分)实数,a b -.20.(5分)如图,一根竖直的旗杆高为8米,被台风从B 处吹折,旗杆的顶端C 刚好触地,且离旗杆底端A 的距离AC 是4米,求这根旗杆折断处B 与旗杆底端A 的距离AB .21.(6分)已知在平面直角坐标系中,点()4,27P m m -+到两坐标轴的距离相等,求m 的值.22.(7分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先列终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的离y (米)与甲发的时间(分)之间的关系如图所示.(1)求甲步行的速度(2)求乙到达终点时,甲离终点的距离.23.(7分)阅读下面的文字,解答问题:【阅读材料】现规定:分别用[]x 和()x 表示实数x 的整数部分和小数部分.例如:实数3.14的整数部分是[]3.143=,小数部分是()3.140.14=;实数的整数部分是2=,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即的小数部分,所以2=-.(1)=________________,=________________.(2)如果,a b ==,求a b +-24.(8分)2023年7月五号台风“杜苏芮”登陆,使我国很多地区受到严重影响.据报道,这是今年以来对我国影响最大的台风,风力影响半径250km (即以台风中心为圆心,250km 为半径的圆形区域都会受台风影响).如图,线段BC 是台风中心从C 市向西北方向移动到B 市的大致路线,A 是某个大型农场,且AB AC ⊥.若,A C 之间相距300km,,A B 之间相距400km .(1)判断农场A 是否会受到台风的影响,请说明理由.(2)若台风中心的移动速度为25km /h ,则台风影响该农场持续时间有多长?25.(8分)在平面直角坐标系xOy 中,对于,P Q 两点给出如下定义:若点P 到x 轴、y 轴的距离之差的绝对值等于点Q 到x 轴、y 轴的距离之差的绝对值,则称,P Q 两点互为“等差点”.例如.点()1,2P -与点()4,3Q 到x 轴、y 轴的距离之差的绝对值都等于1.它们互为“等差点”.(1)下列各点中,与()2,5-互为“等差点”的有________________.①()4,7B -;②()3,1-;③()3,6-.(2)若点()3,5M -与点()1,1N n -互为“等差点”,求n 的值.26.(10分)如图,在平面直角坐标系中,直线26y x =-+交坐标轴于,A D 两点,过x 轴负半轴上一点C 作直线BC 交y 轴正半轴于点B ,且AOD BOC △≌△.(1)求出直线BC 的函数表达式.(2)P 是x 轴上一点,请问在线段BC 上是否存在点E ,连接EP ,使得BEP △点以BP 为直角边的等腰直角三角形,若存在,请求出点E 的坐标,若不存在,请说明理由.答案和解析1.C2.D3.B4.D5.B6.A7.A8.C9.()4,3--10.3611.27y x =-12.713.23y x =-+14.解:原式431=--0=.15.解:原式=4=+.16.解:设2y kx +=,把3,7x y ==代入,得372k =+,解得3k =,所以23y x +=,所以y 与x 的函数表达式为32y x =-.17.解:如图,A B C '''△即为所求.18.证明:由题意得,2222222222420,215,3425AC BC AB =+==+==+=,所以222AC BC AB +=,所以ABC 是直角三角形.19.解:由数轴可知0a b <<,且0,0b a a b ->+<,-a b a a b=---+()()a b a a b =---++a =.20.解:由题意知8,90BC AB BAC +=∠=︒,所以设AB 的长为x 米,则BC 的长为()8x -米.在Rt CBA △中,有222AB AC BC +=,即2216(8)x x +=-,解得3x =,所以旗杆折断处B 与旗杆底端A 的距离AB 为3米.21.解:根据题意,得427m m -=+或4270m m -++=,解得11m =-或1m =-.(只求到一个值给3分)22.解:(1)甲步行的速度为240460÷=(米/分).答:甲步行的速度为60米/分.(2)乙步行的速度为16601280⨯÷=(米/分),乙走完全程用的时间为24008030÷=(分),乙到达终点时,甲离终点的距离是()240043060360-+⨯=(米).答:乙到达终点时,甲距离终点360米.23.(1)11-.(2)因为23,67<<<,所以2,6a b ==-==,所以264a b +-=+-,所以a b +-的算术平方根是2.24.解:(1)会受到台风的影响.理由:如图1,过点A 作AD BC ⊥,垂足为D .图1因为在Rt ABC △中,,400km,300km AB AC AB AC ⊥==,所以500km BC ===.因为AD BC ⊥,所以1122BC AD AB AC ⋅=⋅,所以400300240km 500AB AC AD BC ⋅⨯===.因为250km AD <,所以农场A 会受到台风的影响.(2)如图2,假设台风在线段EF 上移动时,会对农场A 造成影响,图2所以250km,240km AE AF AD ===,由勾股定理,可得()22270140km EF DF ==⨯=⨯=,因为台风的速度是25km /h ,所以受台风影响的时间为()14025 5.6h ÷=.答:台风影响该农场持续时间为5.6h .25.解:(1)①③.(2)由题意可以分两种情况:①当11n -<时,1153n --=--,此方程无解.②当11n ->时,1153n --=--解得2n =-或4n =.综上所述,2n =-或4n =.26.(1)把0x =代入26y x =-+,得6y =,所以点()0,6D ,所以6OD =.把0y =代入26y x =-+,得3x =,所以点()3,0A ,所以3OA =.因为AOD BOC △≌△,所以6,3OC OD OB OA ====,所以点()6,0C -,点()0,3B .设直线BC 的函数表达式为3y kx =+,所以630k -+=,解得12k =,所以直线BC 的函数表达式为132y x =+.(2)存在.理由:如图1,当90PBE ∠=︒时,过点B 作GH x ∥轴,过点E 作EG GH ⊥交于点G ,过点P 作PH GH ⊥交于点H .因为90PBE ∠=︒,所以90EBG PBH ∠+∠=︒.因为90GBE BEG ∠+∠=︒,所以PBH BEG ∠=∠.因为BE BP =,所以()AAS BEG PBH △≌△,所以3,GB PH GE BH ===,图1所以点E 的横坐标为3-.把3x =-代入132y x =+中,得32y =,所以点E 的坐标为33,2⎛⎫- ⎪⎝⎭.如图2,当90BPE ∠=︒时,过点E 作EF x ⊥轴交于点F .同理,可得()AAS PEF BPO △≌△.图2设OP t =,所以点,3EF OP t FP OB ====,所以点()3,E t t --,所以()1332t t =--+,解得1t =,所以点E 的坐标为()4,1-.综上所述,点E 的坐标为33,2⎛⎫- ⎪⎝⎭或()4,1-.。
福建省三明市三元区2023-2024学年八年级上学期期中质量检测数学试卷(含解析)
三元区2023-2024学年第一学期期中质量检测八年级数学(满分:150分;考试时间:120分钟)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.注意事项:第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,最小的是()A.0B.C.D.2.下列各数中,没有平方根的数的是()A.B.0C.D.23.在下列各组数中,是勾股数的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、64.下列二次根式中,属于最简二次根式的是()A.B.C.D.5.点与点关于轴对称,则点的坐标是()A.B.C.D.6.一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,数轴上的点P表示的数可能是()A.B.C.D.8.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是(小圆半径是).若小艇相对于游船的位置可表示为,则描述图中另外两艘小艇,的位置,正确的是()A.小艇,小艇B.小艇,小艇C.小艇,小艇D.小艇,小艇9.如图,有三个正方形,,,点,,,,都在同一直线上,若正方形,的面积分别为和,则正方形的面积为()A.4B.5C.6D.1110.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形,正方形,正方形的面积分别为,,.若,则的值是()A.20B.24C.30D.36第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,(填写已知村庄的坐标为,一辆汽车从原点出发沿轴向右行驶汽车离村最近的距离为15.如图,在网格中每个小正方形的边长均为,,,三点均在格点上,以为圆心,长为半径画弧,交最上方的网格线于点,则的长是16.如图1,在中,动点从点出发,沿折线匀速运动至点后停止.设点的运动路程为,线段的长度为,图是与的函数关系的大致图象,其中点为曲线的最低点,则的高的长为图1图2三、解答题:本题共9小题,共86分.解答应写出文字说明、计算过程或演算步骤.17.计算:.18.计算:.19.已知,求代数式的值.20.已知:如图,四边形ABCD中,∠ACB=90°,AB=15,BC=9,AD=5,DC=13,求证:△ACD是直角三角形.21.如图,这是某校的平面示意图,图中每个小正方形的边长为1,已知艺体馆的坐标是,图书馆的坐标是.(1)写出表示坐标原点的建筑物,并在图中画出相应的平面直角坐标系;(2)分别用坐标表示校门、升旗台、实验楼和宿舍楼的位置.22.已知点P(8–2m,m–1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.23.如图,已知一次函数的图象经过点,.(1)求,的值;(2)若点的坐标为,判断点是否在直线上,说明理由;(3)将直线向左平移3个单位,得到一个新一次函数的图象,求这个新一次函数的表达式.24.定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形.邻等四边形中,相等两邻边的夹角称为邻等角.(1)如图1,在四边形中,,对角线平分,求证:四边形是邻等四边形;(2)如图2,在的方格纸中,,,三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点,并分别用,,,……表示;(3)如图3,四边形是邻等四边形,,为邻等角.若,,求邻等四边形的周长.25.某实验基地内有一段笔直的长度为的轨道,一块长度为的金属滑块在上面做往返滑动.如图,滑块首先沿方向从左向右匀速滑动,滑动速度为,滑动开始前滑块左端与点重合,当滑块右端到达点时,滑块停顿,然后再以小于的速度匀速返回,直到滑块的左端与点重合,滑动停止.设时间为时,滑块左端离点的距离为,右端离点的距离为,记,与具有函数关系.请你根据所给条件解决下列问题:(1)若,滑块右端仍未到达点,求的值;(2)在滑块从左向右匀速滑动过程中,当时,用含的代数式表示;(3)已知滑块在从左向右滑动过程中,当和时,与之对应的的两个值互为相反数;滑块从点出发到最后返回点,整个过程总用时(含停顿时间).求滑块从点到点的滑动过程中,与的函数表达式.答案与解析1.D解析:解:∵,∴,∴最小的是;故选D.2.A解析:解:∵正数有两个平方根,0有一个平方根,负数没有平方根,∴没有平方根.故选:A3.C解析:A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选C.4.D解析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、,可化简,原式不是最简二次根式;B、,可化简,原式不是最简二次根式;C、,可化简,原式不是最简二次根式;D、不可化简,原式是最简二次根式,符合题意.故选D.5.C解析:解:点与点关于轴对称,∴点的坐标是;故选C.6.A解析:解:∵,,∴一次函数的图象经过二、三、四象限,不经过第一象限;故选A.7.C解析:解:设点P表示的实数为x,由数轴可知,,∴符合题意的数为.故选:C.8.D解析:解:图中另外两个小艇、的位置,正确的是小艇,小艇,故选:D.9.B解析:解:∵四边形,,都是正方形,∴,;∴,∴,∴(),∴,,∵正方形,的面积分别为和,∴,∴正方形的面积故选∶B.10.A解析:解:设,,,由题意,可知:.由图可知:,,.因为,所以,即,则,所以.故选:A.11.3解析:∵,∴9算术平方根为3.故答案为:3.12.>解析:解:,,,,故答案为:.13.解析:解:根据表格可知香蕉的单价为20元/千克,则.故答案为:.14.4解析:解:∵村庄的坐标为,∴点A到轴的距离为,又∵垂线段最短,∴行驶过程中汽车离A村最近的距离为4.故答案为:4.15.##解析:解:如图,连接,由题意知:,在中,由勾股定理得:,∴,故答案为:.16.解析:解:如图,过点A作于点Q,当点P与Q重合时,在图2中F点表示当时,点P到达点Q,此时当P在上运动时,最小,∴,,,在中,,,∴,∵,∴,故答案为:.17.10解析:解:原式.18.解析:解:原式.19.解析:∵∴.20.解析:试题分析:首先利用勾股定理计算出AC长,再利用勾股定理的逆定理证明可得是直角三角形.证明:∴△ACD是直角三角形.21.(1)教学楼,图见解析(2)校门,升旗台,实验楼,宿舍楼解析:(1)解:根据题意,得到以教学楼所在位置为坐标原点,建立坐标系,如图所示:(2)由图可知:校门,升旗台,实验楼,宿舍楼.22.(1);(2)或.解析:解:点在x轴上,,解得:;点P到两坐标轴的距离相等,,或,解得:或,或.23.(1)(2)不在直线上,理由见解析(3)解析:(1)解:把,代入中得:,∴;(2)解:不在直线上,理由如下:由(1)得一次函数解析式为,在中,当时,,∴不在直线上,(3)解:由题意得,直线向左平移3个单位所得的直线解析式为24.(1)见解析;(2)见解析;(3).解析:(1)证明:∵,∴,∴,∴,∵对角线平分,∴,∴,∴,∴四边形为邻等四边形.(2)解:,,即为所求;(3)解:∵四边形是邻等四边形,,为邻等角.∴,如图,过作于,∵,∴四边形是矩形,∴,,,∴即∴,∴邻等四边形的周长为.25.(1);(2);(3).解析:(1)解:当时,;(2)解:∵,,,∴,∴;(3)解:∵当滑块从左向右滑动时,,∴,∴∴是的一次函数,∵当和时,与之对应的的两个值互为相反数;∴,∴,∴滑块从点到点所用的时间为,∵整个过程总用时(含停顿时间).当滑块右端到达点时,滑块停顿,∴滑块从点到点的滑动时间为,∴滑块返回的速度为,∴当时,,∴,∴,∴与的函数表达式为.。
八年级上册数学期中测试题及答案
八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是实数?A. -3.14B. √2C. πD. i²2. 已知一个长方体的长、宽、高分别为8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 1003. 如果一个数的1/3加上2等于这个数本身,那么这个数是多少?A. 3B. 6C. -3D. -64. 下列哪个选项是二次根式?A. √3B. 3√2C. √16D. 4√55. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 1/5D. -1/56. 一个数的绝对值是8,那么这个数可能是:A. 8B. -8C. 8或-8D. 07. 下列哪个式子不是等式?A. 3x + 5 = 14B. 2y - 7 < 11C. 4z = 16D. 5w - 3 ≠ 28. 如果一个三角形的三个内角的度数之和是180度,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定9. 下列哪个选项是正确的不等式?A. 3 > 2 > 1B. 2 < 1 < 3C. 5 ≥ 5 ≥ 4D. 7 ≤ 6 ≤ 510. 一个数的平方根是3,那么这个数是:A. 6B. 9C. -9D. ±9二、填空题(每题4分,共20分)11. 一个数的立方是27,那么这个数是______。
12. 如果一个数除以-2的结果是3,那么这个数是______。
13. 一个长方体的长是10cm,宽是5cm,高是3cm,其表面积是______平方厘米。
14. 一个数的1/4加上3等于这个数的2倍,那么这个数是______。
15. 一个等腰三角形的两个底角相等,如果顶角是40度,那么底角是______度。
三、解答题(共50分)16. (10分)解方程组:\(\begin{cases} 2x + 3y = 11 \\ x - y = 2 \end{cases}\)17. (15分)已知一个长方体的长、宽、高分别是15cm、10cm和8cm,求其表面积和体积。
福建省福州市仓山区2023-2024学年八年级上学期期中数学试题(含答案)
2023—2024学年第一学期校内期中质量检查八年级数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间120分钟.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,属于轴对称图形的是( )A .B .C .D .2.下列长度的三条线段首尾相连能组成三角形的是( )A .4,6,9B .2,3,6C .5,4,9D .2,4,73.据文化和旅游部数据中心测算,2023年中秋节、国庆节假期8天,国内旅游出游人数8.26亿人次,数据8.26亿用科学记数法表示为( )A .B .C .D .4.已知一个多边形的内角和等于,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形5.下列计算结果为的是( )A .B .C .D .6.在平面直角坐标系xOy 中,点关于x 轴对称的点的坐标是( )A .B .C .D .7.如图,,若,则的度数为()A .B .C .D .8.如图,在中,D 是BC 的中点,F 是AC 的中点,E 在AD 上,且,若的面积90.82610⨯88.2610⨯98.2610⨯882.610⨯720︒6x 24x x +24x x ⋅()42x 42x x ÷()2,1P ()2,1-()2,1-()2,1--()2,1ABC ADE △≌△70,25B E ∠=︒∠=︒DAE ∠75︒80︒85︒90︒ABC △2AE DE =ABC △是18,则的面积是()A .2B .3C .4D .59.已知,若a ,b 均为整数,则c 的值不可能为( )A .B .1C .3D .510.在平面直角坐标系xOy 中,,动点B 在x 轴上,连接AB ,将线段AB 绕点A 逆时针旋转至AC ,连接OC ,则线段OC 长度最小为()A .0B .1C .2D .3第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.在等腰中,周长为14,底边长为6,则腰长等于__________.12.如图,,若,则的度数为___________.13.如图,在中,,E 在AC 上,D 在BC 的延长线上,若,则的度数为___________.EFC △()()26x a x b x cx ++=+-1-()0,4A 60︒ABC △,DE BC DF AC ∥∥120DFB ∠=︒DEC ∠ABC △60,50A B ∠=︒∠=︒20D ∠=︒CED ∠14.如图,在中,,AD 是的角平分线,若,则点D 到AC 的距离为__________.15.已知.m ,n 为正整数,则_________(用含a ,b 的式子表示).16.如图,在中,,BD ,CE 是的角平分线,BD 与CE 交于点F ,则下面结论正确的是_________.(写出所有正确结论的序号)①;②;③若D 是AC 的中点,则是等边三角形;④.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.(8分)计算:.18.(8分)解不等式组:19.(8分)如图,AC ,BD 相交于点E ,.求证:.ABC △90,30B C ∠=︒∠=︒ABC △6AD =3,3m n a b ==323m n +=ABC △60A ∠=ABC △120BFC ∠=︒BE CD BC +>ABC △::BEF BFC S S AE AC =△△()()4234242x x x x x ⋅⋅-+2123224x x x+≤⎧⎪⎨-+<⎪⎩,AB DC A D =∠=∠AC DB =20.(8分)某班去看演出,甲种票每张24元,乙种票每张30元.如果45名学生购票恰好用去1230元,甲,乙两种票各买了多少张?21.(8分)如图,在中,DE 是线段AB 的垂直平分线,,求证:.22.(10分)求证:全等三角形对应边上的中线相等.(要求补全下图并根据图形写出已知、求证和证明过程)23.(10分)如图,是等边三角形,D 是内一点,.(1)求作点D 关于直线BC 的对称点E ;(要求:尺规作图,不写做法,保留作图痕迹)(2)在(1)的条件下连接AE ,BE ,CE ,延长BE 至F ,使得,求证:.24.(12分)如图,轴于点B ,点C 在线段OB 上运动(点C 不与O ,B 重合),,且.ABC △AD CD =AC AB ⊥ABC △ABC △120BDC ∠=︒EF EC =AE BF =()4,4,A AB y ⊥CD AC ⊥CD AC =(1)如图1,当点C 的坐标为时,①求点D 的坐标;②设CD 与x 轴交于点M ,求的面积;(2)如图2,C 是OB 的中点,过点B 作于点E ,BF 与OA 交于点F ,求证:.25.(14分)如图,在中,,将BC 绕点B 逆时针旋转至BD ,点C 的对应点为点D ,连接AD ,CD ,其中.(1)求证:,(2)如备用图,延长CD 至点M ,使得.求证:①AD 平分﹔②A ,M ,B 三点共线.2023—2024学年第一学期校内期中质量检查八年级数学参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.()0,3OMC △BF AC ⊥AFB OFC ∠=∠ABC △,AB AC BAC α=∠=β2180αβ+=︒ABD ACD ∠=∠CM BC =BDM ∠4.只给整数分数,选择题和填空题不给中间分.一、选择题(每小题4分,共40分)1.D 2.A3.B 4.D 5.B 6.A 7.C 8.B 9.C 10.C二、填空题(每小题4分,共24分)11.4 12. 13.14.3 15. 16.①③④三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:解:原式6分.8分(注:同底数幂的乘法,幂的乘方,积的乘方运算各2分)18.(8分)解不等式组:解:解不等式①,1分2分解不等式②,5分, 6分7分∴不等式组的解集为.8分19.证明:在和中∴ 3分∴ 5分∴ 7分∴.8分20.解:设甲种票买了x 张,乙种票买了y 张. 1分根据题意得:5分解得.7分60︒50︒32a b ()()4234242x x x x x -+⋅⋅8884x x x =-+84x =2123224x x x+≤⎧⎪⎨-+<⎪⎩①②21x ≤-+1x ≤-2238x x +-<2382x x -<-6x -<6x >-61x -<≤-ABE △DCE △AEB DECA DAB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩()ABE DCE AAS △≌△,AE DE BE CE ==AE CE DE BE +=+AC DB =4524301230x y x y +=⎧⎨+=⎩2025x y =⎧⎨=⎩答:甲种票买了20张,乙种票买了25张. 8分(注:列方程组共4分,列对一个方程2分,解出得1分,解出得1分)21.证明:∵DE 是线段AB 的垂直平分线,∴ 2分∴3分∵,∴ 5分设在中,∴,∴,∴ 7分∴.8分22.(10分)求证:全等三角形对应边上的中线相等.(要求补全下图并根据图形写出已知、求证和证明过程)已知:如图,,AG ,DH 分别是和的中线3分求证:.4分证明:∵,∴ 5分∵AG ,DH 分别是和的中线∴ 6分∴6分在和中∴ 9分∴. 10分(注:补全图形得1分,写出已知得2分)23.(1)解:如图所示,点E 即为所求;3分20x =25y =AD BD =B BAD ∠=∠AD CD =C DAC ∠=∠,B BAD C DAC αβ∠=∠=∠=∠=ABC △180B C BAC ∠+∠+∠=︒22180αβ+=︒90αβ+=︒90BAC ∠=︒AC AB ⊥ABC DEF △≌△ABC △DEF △AG DH =ABC DEF △≌△,,AB DE BC EF B E ==∠=∠ABC △DEF △11,22BG BC EH EF ==BG EH =ABG △DEH △AB DE B EBG EH ⎧=∠=∠=⎪⎨⎪⎩()ABG DEH SAS △≌△AG DH =(注:作图正确得2分,文字叙述完整得1分)(2)证明:连接CF ,根据对称性可知,∴ 4分∵,∴是等边三角形 5分∴6分∵是等边三角形,∴ 7分∴,∴8分在和中∴ 9分∴. 10分24.(1)解:①作轴于点H120BEC BDC ∠=∠=︒18060CEF BEC ∠=︒-∠=︒EF EC =CEF △,60CE CF ECF =∠=︒ABC △,60AC BC ACB =∠=︒ACB BCE ECF BCE ∠+∠=∠+∠ACE BCF ∠=∠ACE △BCF △AC BC ACE BCFCE CF =∠=∠=⎧⎪⎨⎪⎩()ACE BCF SAS △≌△AE BF =DH y ⊥∵轴,轴,∴ 1分∵,∴ ∵∴2分在和中∴∴ 3分∵,∴∴,∴; 4分②连接OD ,∵ 5分∴由①知, 6分∴, 7分∴,∴, 8分DH y ⊥AB y ⊥90ABC CHD ∠=∠=︒CD AC ⊥90ACD ∠=︒,ACH BAC ABC ACH DCH ACD ∠=∠+∠∠=∠+∠BAC HCD ∠=∠ABC △CHD △ABC CHD BAC HCDAC CD ∠=∠∠=∠=⎧⎪⎨⎪⎩()ABC CHD AAS △≌△,AB CH BC HD ==()()4,4,0,3A C 4,3,1AB OC BC ===1,1HD OH ==()1,1D -OMC OMD OCD S S S +=△△△111222OM OC OM OH OC HD ⋅+⋅=⋅1,3,1HD OC OH ===322OM =34OM =113932248OMCS OM OC =⋅=⨯⨯=△(2)证明:延长BF 交x 轴于点P ,∵C 是OB 的中点∴,∵轴,∴∴∴9分在和中∴∴ 10分∴在和中∴∴ 11分∴.12分25.(1)证明:根据题意可得∴ 1分在中,∴ 2分∵,∴ 3分在中,2OC BC ==AB y ⊥BF AC ⊥90ABC AEB ∠=∠=︒90,90OBP EBA BAC EBA ∠+∠=︒∠+∠=︒BAC OBP ∠=∠ABC △BOP △BAC OBP AB BOABC BOP ∠=∠=∠=∠⎧⎪⎨⎪⎩()ABC BOP ASA △≌△BC OP =,45OC OP COF POF =∠=∠=︒COF △POF △OC OP COF POFOF OF =∠=∠=⎧⎪⎨⎪⎩()COF POF SAS △≌△OFC OFP ∠=∠AFB OFC ∠=∠,BC BD CBD β=∠=BDC BCD ∠=∠BCD △180BDC BCD CBD ∠+∠+∠=︒2180BDC β∠+=︒2180αβ+=︒BDC α∠=ABC △180ABC ACB α∠+∠=-在中,∴∴∴; 4分(2)证明:①过点A 作,垂足分别为H ,K 5分∴在和中∴ 6分∴ 7分∵,∴AD 平分﹔ 8分②连接AM ,设AC 与BD 交于点G在和中∴ 9分∴,∴ 10分∵,∴ 11分BCD △180DBC DCB α∠+∠=-ABC ACB DBC DCB∠+∠=∠+∠ABD DBC ACB DBC ACB ACD∠+∠+∠=∠+∠+∠ABD ACD ∠=∠,AH CM AK BD ⊥⊥90AKB AHC ∠=∠=︒ABK △ACH △AKB AHCABK ACHAB AC∠=∠∠=∠=⎧⎪⎨⎪⎩()ABK ACH AAS △≌△AK AH =,AH CM AK BD ⊥⊥BDM ∠ABD △ACM △AB ACABD ACMBD CM=∠=∠=⎧⎪⎨⎪⎩()ABD ACM SAS △≌△BAD CAM ∠=∠BAC DAM α∠=∠=AB AC =902BCG α∠=︒-由(1)知,且AD 平分∴ 12分∵ ∴ 13分∴∴A ,M ,B 三点共线. 14分BDC α∠=BDM ∠902ADG α∠=︒-,AGB CAD ADG AGB CBD BCG ∠=∠+∠∠=∠+∠CAD CBD β∠=∠=2180BAC DAM CAD αβ∠+∠+∠=+=︒。
八年级上学期期中考试数学试卷含答案(共5套)
八年级上学期期中质量检测数学试题一、选择题(本大题共10小题,共40.0分)1.以下微信图标不是轴对称图形的是A. B. C. D.2.如图,下列条件中,不能证明≌的是A. ,B. ,C. ,D. ,3.如图,将三角形纸板的直角顶点放在直尺的一边上,,,则等于A.B.C.D.4.到三角形三个顶点的距离都相等的点是这个三角形的A. 三条高的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条边的垂直平分线的交点5.在中,,,则的度数是A. B. C. D.6.如图所示,在中,,,AD是的角平分线,,垂足于E,,则BC等于A. 1B. 2C. 3D. 47.下列运算正确的是A. B. C. D.8.如图,已知D为边AB的中点,E在AC上,将沿着DE折叠,使A点落在BC上的F处若,则等于A.B.C.D.9.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是A. kB.C.D.10.如图,,E是BC的中点,DE平分,下列说法:平分,点E到AD的距离等于CE,,其中正确的有A. 3个B. 2个C. 1个D. 4个二、填空题(本大题共6小题,共24.0分)11.等腰三角形的两边分别为1和2,则其周长为______.12.已知点与点关于y轴对称,则______.13.如图所示,有一块三角形田地,,作AB的垂直平分线ED交AC于D,交AB于E,量得BC的长是7m,请你替测量人员计算的周长为______14.等腰三角形一腰上的高与另一腰的夹角为,则顶角的度数为______.15.如图,AD是的角平分线,,垂足为F,,和的面积分别为48和26,求的面积______.16.如图,和都是等腰直角三角形,,连结CE交AD于点F,连结BD交CE于点G,连结下列结论中,正确的结论有______填序号;是等腰直角三角形;;;三、计算题(本大题共2小题,共19.0分)17.如图,,点E是CD的中点,BE的延长线与AD的延长线交于点若,,求AD长.18.如图,在平面直角坐标系中,,,.在图中作出关于y轴对称的,写出点,,的坐标直接写答案.的面积为______.在y轴上画出点Q,使的周长最小.四、解答题(本大题共7小题,共67.0分)19.如图所示,在中:画出BC边上的高AD和中线AE.若,,求和的度数.20.如图,已知是等边三角形,过点B作,过A作,垂足为D,若的周长为12,求AD的长.21.如图,中,,于D点,于点E,于点F,,求BF的长.22.已知,如图,中,,D是BC上一点,点E、F分别在AB、AC上,,,G为EF的中点,问:与全等吗?请说明理由.判断DG与EF的位置关系,并说明理由.23.已知:在中,,D为AC的中点,,,垂足分别为点E,F,且求证:是等边三角形.24.如图1,,,以B点为直角顶点在第二象限作等腰直角.求C点的坐标;在坐标平面内是否存在一点P,使与全等?若存在,直接写出P点坐标,若不存在,请说明理由;如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角,过M作轴于N,直接写出的值为.25.如图,在中,,,点D为内一点,且.求证:;,E为AD延长线上的一点,且.求证:DE平分;若点M在DE上,且,请判断ME、BD的数量关系,并给出证明;若N为直线AE上一点,且为等腰三角形,直接写出的度数.参考答案1【答案】D【解析】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选:D.根据轴对称图形的概念求解,看图形是不是关于直线对称.本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2【答案】D【解析】解:A、依据SSS可知≌,故A不符合要求;B、依据SAS可知≌,故B不符合要求;C、依据AAS可知≌,故C不符合要求;D、依据SSA可知≌,故D符合要求.故选:D.依据全等三角形的判定定理解答即可.本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3【答案】C【解析】解:由题意得:;由外角定理得:,,故选:C.如图,首先运用平行线的性质求出,然后借助三角形的外角性质求出,即可解决问题.该题主要考查了三角形外角的性质、平行线的性质等几何知识点及其应用问题;解题的关键是牢固掌握三角形外角的性质、平行线的性质等几何知识点,这也是灵活运用、解题的基础.4【答案】D【解析】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5【答案】C【解析】解:在中,,,.故选:C.由已知条件,根据等腰三角形的性质可得,,再由三角形的内角和可得.此题主要考查三角形的内角和定理和等腰三角形的性质;利用三角形的内角和求角度是很常用的方法,要熟练掌握.6【答案】C【解析】解:是的角平分线,,,,又直角中,,,.故选:C.根据角平分线的性质即可求得CD的长,然后在直角中,根据的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.本题考查了角的平分线的性质以及直角三角形的性质,的锐角所对的直角边等于斜边的一半,理解性质定理是关键.7【答案】C【解析】解:A:因为,不是同类项,所以故计算错误;B:因为,所以计算错误;C:因为,所以计算正确;D:,所以计算错误.故选:C.根据同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法的法则可判断各个选项.本题考查了同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,熟练运用法则是本题的关键.8【答案】B【解析】解:是沿直线DE翻折变换而来,,是AB边的中点,,,,,.故选:B.先根据图形翻折不变性的性质可得,根据等边对等角的性质可得,再根据三角形的内角和定理列式计算即可求解.本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.9【答案】C【解析】解:设这个多边形的边数是n,则,解得.故选:C.根据多边形的内角和公式与外角和等于列式,然后解方程即可得解.本题考查了多边形的内角和公式与外角和定理,任何多边形的外角和都是,与边数无关.10【答案】A【解析】解:,,;如图,作垂足为点F,,,平分,点E到AD的距离等于CE,正确,又,≌;,,,又,,≌;,,,平分,正确正确;,,错误;故选:A.根据平行线的性质和据全等三角形全等的判定判断即可.本题考查了平行线的判定及性质、等腰三角形的性质、全等三角形的判定等知识点,关键是根据平行线的性质和据全等三角形全等的判定判断.11【答案】5【解析】解:是腰长时,三角形的三边分别为1、1、2,,不能组成三角形;是底边时,三角形的三边分别为1、2、2,能组成三角形,周长,综上所述,三角形的周长为5.故答案为:5.分1是腰长与底边两种情况讨论求解.本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系判断是否能组成三角形.12【答案】【解析】解:点与点关于y轴对称,,,.故答案为:.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入代数式进行计算即可得解.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.13【答案】17【解析】解:根据中垂线的性质得:,所以,而,的周长为:17m.根据中垂线的性质进行解答,线段中垂线上的点到线段两端点的距离相等,点D在中垂线上,所以,所以,而BC的长度又已知,所以的周长可求出.本题主要根据中垂线的性质进行解答线段中垂线上的点到线段端点的距离相等.14【答案】或【解析】解:当为锐角三角形时,如图1,,,,三角形的顶角为;当为钝角三角形时,如图2,,,,,三角形的顶角为,故答案为或.本题要分情况讨论当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.15【答案】11【解析】解:如图,作于H,是的角平分线,,,,在和中,,≌,同理,≌,设的面积为x,由题意得,,解得,即的面积为11,故答案为:11.作于H,根据角平分线的性质得到,证明≌,≌,根据题意列方程,解方程即可.本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16【答案】【解析】解:和都是等腰直角三角形,,,,,,在和中,,≌,,故正确;,,在中,,,,故正确;只有时,,,无法说明,故错误;≌,,与相等无法证明,不一定成立,故错误;综上所述,正确的结论有共2个.故答案为:.根据等腰直角三角形的性质可得,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判断正确;根据全等三角形对应角相等可得,从而求出,再求出,从而得到,根据四边形的面积判断出正确;再求出时,,判断出错误;与不一定相等判断出错误.此题考查了全等三角形的判定与性质,等腰直角三角形的性质,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键.17【答案】解:点E是DC中点,,又,F在AD延长线上,,,在与中,≌,,,.【解析】根据点E是DC中点,得到,根据平行线的性质得到,,根据全等三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.18【答案】【解析】解:如图所示:即为所求;由图可知:,,;.故答案为:;连接交y轴于Q,则此时的周长最小.根据关于y轴对称的点的坐标特点作出,根据各点在坐标系中的位置写出点,,的坐标即可;根据进行解答即可;连接交y轴于Q,于是得到结论;本题考查的是作图轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.19【答案】解:如图:,,,,,,.【解析】延长BC,作于D;作BC的中点E,连接AE即可;可根据三角形的内角和定理求,由外角性质求,那可得.此题是计算与作图相结合的探索考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.20【答案】解:为等边三角形,且的周长为12,,.,,,,.【解析】根据等边三角形的性质可得出,,进而可得出,在中,利用角所对的直角边等于斜边的一半即可求出AD的长.本题考查了等边三角形的性质以及含30度角的直角三角形,利用等边三角形的性质找出及AB的值是解题的关键.21【答案】解:中,,,是的中线,,,,,,.【解析】先得出AD是的中线,得出,又,将代入即可求出BF.本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.22【答案】解:与全等,理由:,,在和中,,≌,,理由:≌,,是EF的中点,.【解析】根据SAS证明与全等即可;利用全等三角形的性质、等腰三角形的三线合一即可证明;此题主要考查了全等三角形的性质与判定,以及等腰三角形的性质,关键是掌握全等三角形的判定定理.23【答案】证明:,,垂足分别为点E,F,,为AC的中点,,在和中,,≌,,,,,是等边三角形.【解析】只要证明≌,推出,推出,又,即可推出;本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24【答案】解:作轴于E,如图1,,,,,,,,,,在和中,,≌,,,即,.存在一点P,使与全等,分为四种情况:如图2,当P和C重合时,和全等,即此时P的坐标是;如图3,过P作轴于E,则,,,,在和中,≌,,,,即P的坐标是;如图4,过C作轴于M,过P作轴于E,则,≌,,,,,,,在和中,,≌,,,,,,,即P的坐标是;如图5,过P作轴于E,≌,,,则,,,,在和中,,≌,,,,即P的坐标是,综合上述:符合条件的P的坐标是或或或.如图6,作轴于F,则,,,,在和中,≌,,,轴,轴,,四边形FONM是矩形,,.【解析】作轴于E,证≌,推出,,即可得出答案;分为四种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;作轴于F,证≌,求出EF,即可得出答案.本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.25【答案】证明:,,垂直平分线段AB,.证明:,,又,,又,,,,,,在和中,,≌,,,,平分;解:结论:,理由:连接MC,,,为等边三角形,,,,在和中,,≌,.当时,或;当时,;当时,,所以的度数为、、、.【解析】利用线段的垂直平分线的性质即可证明;易证,可得≌,即可求得即可解题;连接MC,易证为等边三角形,即可证明≌即可解题;分三种情形讨论即可;本题考查了全等三角形的判定、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2018-2019学年八年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列线段能组成三角形的是()A.3、4、8B.5、6、11C.5、6、10D.2、2、42.下列图案中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点A(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(﹣1,2)C.(2,1)D.(﹣1,﹣2)4.一个多边形的各个内角都等于120°,则它的边数为()A.3B.6C.7D.85.如图,已知CD=CA,∠D=∠A,添加下列条件中的()仍不能证明△ABC≌△DEC.A.DE=AB B.CE=CB C.∠DEC=∠B D.∠ECD=∠BCA6.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC的度数是()A.100°B.120°C.130°D.150°7.用一条长20cm的细绳围成一个三角形,已知第一条边长为xcm,第二条边长比第一条边长的2倍少4cm.若第一条边最短,则x的取值范围是()A.2<x<8B.C.0<x<10D.7<x<88.如图为正方形网格,顶点在格点上的三角形称为格点三角形,每个小正方形均为边长为1的正方形,图中与△ABC全等的格点三角形(不含△ABC)共有()个.A.4B.16C.23D.249.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个10.已知△ABC的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为()A.5B.6C.7D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.等腰三角形的一个角100°,它的另外两个角的度数分别为.12.如图,AD平分∠BAO,D(0,﹣3),AB=10,则△ABD的面积为.13.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=2,则AD=.14.平面直角坐标系中,已知A(4,3)、B(2,1),x轴上有一点P,要使PA﹣PB最大,则P点坐标为15.△ABC的三个内角满足5∠A>7∠B,5∠C<2∠B,则△ABC是三角形(填“锐角”、“直角”或“钝角”)16.在△ABC中,AB=AC,CE是高,且∠ECA=20°,平面内有一异于A、B、C、E的D点,若△ABC ≌△CDA,则∠DAE的度数为.三、解答题(共8题,共72分)17.(8分)如图,AB=AC,AD=AE.求证:∠B=∠C.18.(8分)已知等腰三角形的一边等于4,另一边等于9,求它的周长.19.(8分)如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,求证:OP垂直平分AB.20.(8分)△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B(﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.21.(8分)如图,△ABC中,AB=AC,AD=AE,∠CAD=60°,∠C=α(1)用α表示∠BAD,则∠BAD=;(2)求∠EDB的度数.22.(10分)如图,AB=AC,AB⊥AC,∠ADC=∠BAE.(1)求证:∠DAE=45°;(2)过B作BF⊥AD于F交直线AE于M,连CM,画出图形并判断BM与CM的位置关系,说明理由.23.(10分)如图,牧马人从A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,要求指出最短路径.同学甲:牧马人把马牵到草地与河边的交汇处N点,牧马又饮马,然后回到B处同学乙:作A点关于直线MN的对称点A1,再作A1关于直线l的对称点A2,连A2B交直线l于P,连PA交MN于Q,则路径A→Q→P→B为最短路径.你认为哪位同学方案正确?并证明其正确性.24.(12分)在平面直角坐标系中,点A(m,1),点B(3,n),C,D是y轴上两点(1)如图1,△AOC和△ABD是等边三角形,连接BC并延长交x轴于E,求CE的长;(2)如图2,直线AC交x轴于E,∠DCA的平分线交直线OA于F,FD⊥y轴于D,交直线AC于G,若m=1,请你写出线段OD,EG与DG之间的数量关系,并证明;(3)如图3,若m=2,n=4,在x轴上是否存在点P,使△ABP为等腰三角形?若存在,求出P的坐标;若不存在,说明理由.2018-2019学年八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据三角形的三边满足任意两边之和大于第三边来进行判断.【解答】解:A、∵3+4<8,∴3、4、8不能组成三角形,故本选项错误;B、∵5+6=11,∴5、6、11不能组成三角形,故本选项错误;C、∵5+6>10,∴5、6、10能组成三角形,故本选项正确;D、∵2+2=4,∴2、2、4不能组成三角形,故本选项错误.故选:C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,不符合题意,本选项错误;B、是轴对称图形,不符合题意,本选项错误;C、不是轴对称图形,符合题意,本选项正确;D、是轴对称图形,不符合题意,本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】直接利用关于x轴对称,则其纵坐标互为相反数进而得出答案.【解答】解:点A(1,﹣2)关于x轴对称的点的坐标为:(1,2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.【分析】先求出这个多边形的每一个外角的度数,再用360°除以每一个外角的度数即可得到边数.【解答】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选:B.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.5.【分析】添加的条件取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【解答】解:A.当DE=AB,CD=CA,∠D=∠A时,可得△ABC≌△DEC(SAS).B.当CE=CB,CD=CA,∠D=∠A时,不能得到△ABC≌△DEC.C.当∠DEC=∠B,CD=CA,∠D=∠A时,可得△ABC≌△DEC(AAS).D.当∠ECD=∠BCA,CD=CA,∠D=∠A时,可得△ABC≌△DEC(ASA).故选:B.【点评】本题主要考查了全等三角形的判定,解题时注意:两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.6.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°.故选:B.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.7.【分析】根据第一条边长最短以及三角形的三边关系列出不等式组,即可求出x的取值范围.【解答】解:根据题意可得:第二条边长为(2x﹣4)米,∴第三条边长为20﹣x﹣(2x﹣4)=(24﹣3x)米;由题意得,解得<x<6.故选:B.【点评】本题主要考查了三角形的三边关系,在解题时根据三角形的三边关系,列出不等式组是本题的关键.8.【分析】用SSS判定两三角形全等.认真观察图形可得答案.【解答】解:如图所示:故选:C.【点评】本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.9.【分析】(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.【解答】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.【点评】本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.10.【分析】如果设△ABC的面积为S,所求的第三条高线的长为h,根据三角形的面积公式,先用含S、h 的代数式分别表示出三边的长度,再由三角形三边关系定理,列出不等式组,求出不等式组的解集,得到h的取值范围,然后根据h为整数,确定h的值.【解答】解:设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,则.由三边关系,得,解得.所以h的最大整数值为6,即第三条高线的长的最大值为6.故选:B.【点评】本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】先判断出100°的角是顶角,再根据等腰三角形的两底角相等解答.【解答】解:∵等腰三角形的一个角100°,∴100°的角是顶角,∴另两个角是(180°﹣100°)=40°,即40°,40°.故答案为:40°,40°.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,需要注意100°的角只能是顶角.12.【分析】过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,即可求得△ABD的面积.【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAO,∠AOD=90°,D(0,﹣3),∴DE=DO=3,∵AB=10,∴△ABD的面积=AB•DE=×10×3=15.故答案为:15.【点评】本题考查了角平分线的性质,能根据角平分线性质得出DE=OD是解此题的关键,解题时注意:角平分线上的点到这个角两边的距离相等.13.【分析】由含30°角的直角三角形的性质得出AB=2BC,BC=2BD=4,得出AB,即可得出AD.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=2BC,∠B=90°﹣∠A=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=90°﹣∠B=30°,∴BC=2BD=4,∴AB=2BC=8,∴AD=AB﹣BD=8﹣2=6,故答案为:6.【点评】本题考查了含30°角的直角三角形的性质、角的互余关系;熟练掌握含30°角的直角三角形的性质,并能进行推理计算是解决问题的关键.14.【分析】根据|PA﹣PB|≤AB,即可得到当A,B,P三点共线时,PA﹣PB最大值等于AB长,依据待定系数法求得直线AB的解析式,即可得到P点坐标.【解答】解:∵A(4,3)、B(2,1),x轴上有一点P,∴|PA﹣PB|≤AB,∴当A,B,P三点共线时,PA﹣PB最大值等于AB长,此时,设直线AB的解析式为y=kx+b,把A(4,3)、B(2,1)代入,可得,解得,∴直线AB的解析式为y=x﹣1,令y=0,则x=1,∴P点坐标为(1,0),故答案为:(1,0).【点评】本题主要考查了坐标与图形性质,利用待定系数法求得直线AB的解析式是解决问题的关键.15.【分析】利用已知条件,结合等式性质1可得5∠A+>5∠B+5∠C,整理得∠A>∠B+∠C,再利用等式性质,左右同加上∠A,结合∠A+∠B+∠C=180°,解不等式可得∠A>90°,从而可判断三角形的形状.【解答】解:∵5∠A>7∠B,2∠B>5∠C,∴5∠A+2∠B>7∠B+5∠C,即5∠A+>5∠B+5∠C,∴∠A>∠B+∠C,不等式两边加∠A,可得2∠A>∠A+∠B+∠C,而∠A+∠B+∠C=180°,∴2∠A>180°,即∠A>90°,∴这个三角形是钝角三角形.故答案是:钝角.【点评】本题考查了三角形内角和定理、不等式的性质的运用,解题的关键是掌握三角形内角和定理.16.【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【解答】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=20°,∴∠BAC=70°,∠ACB=∠ABC=55°,∵△ABC≌△CDA,∴∠CAD=∠ACB=55°,∴∠DAE=∠CAD+∠BAC=55°+70°=125°,当△ABC为钝角三角形时,∠DAE=15°、105°和35°故答案为:125°、15°、105°和35°【点评】此题考查全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.三、解答题(共8题,共72分)17.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.18.【分析】此题先要分类讨论,已知等腰三角形的一边等于4,另一边等于9,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当4为腰,9为底时,∵4+4<9,∴不能构成三角形;当腰为9时,∵9+9>4,∴能构成三角形,∴等腰三角形的周长为:9+9+4=22.【点评】此题考查了等腰三角形的基本性质及分类讨论的思想方法,另外求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.【分析】根据角平分线性质得出PA=PB,根据HL证Rt△PAO≌Rt△PBO,推出OA=OB,根据等腰三角形性质推出即可.。
山东省济宁市曲阜市2023-2024学年八年级上学期期中数学试题(含解析)
20232024学年度第一学期期中教学质量监测考试八年级数学试题第I 卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求.1.下面由杭州亚运会比赛项目图标组成的四个图形中,可看作轴对称图形的是( )A .B .C .D .2.用下列长度的三根木棒首尾相接,能做成三角形框架的是( )A .2cm ,2cm ,4cmB .3cm ,4cm ,5cmC .1cm ,2cm ,3cmD .2cm ,3cm ,6cm3.已知等腰△ABC 中,AB =AC ,若该三角形有一个内角是70°,则顶角A 的度数为( )A .70°B .55°C .40°D .40°或70°4.如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定的是( )A .B .C .D .5.如图所示,△ABC 为钝角三角形,则边AC 上的高是( )ABC DEF A E B D AC DF AC DF =ABC DEF ≌AE DB=A DEF ∠=∠BC DE =ABC D∠=∠A.AD B.AE C.BF D.CH6.如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是( )A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短7.在平面直角坐标系中,已知点与点关于轴对称,那么的值为()A.B.C.1D.8.两把相同的长方形直尺按如图所示方式摆放,记两把直尺的接触点为,其中一把直尺边缘和射线重合,另一把直尺的下边缘与射线重合,连接并延长.若,则的度数为( )A.6B.5C.5D.49.如图是用正n边形地砖铺设小路的局部示意图,若用4块正n边形地砖围成的中间区域是一个小正方形,则n 的值为()A.4B.6C.7D.810.如图,,点在线段上,,则的度数是()(,3)A m(4,)B n y()2023m n+2015720157-1-P OAOB OP28BOP∠=︒AOB∠2︒6︒2︒6︒ABC AED≌△△E BC150∠=︒AED∠A .2B 12.如图,在中,再分别以点,为圆心,大于结论:①平分A .5个二.填空题、本大题共14.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点水平位置CD 下降30cm 时,这时小明离地面的高度是15.在中,已知点D ,E ,ABC B D AE BAC ∠ABC16.如图,的周长最小值为17.如图,已知等腰的直角顶点若,,则点A 的坐标是18.已知第二象限的点坐标为点关于轴对称点;作点三、解答题:共7小题,共19.如图,在中,(1)求证;(2)若,,求的长.20.如图,在中,平分的度数.Rt △ACP △Rt ABC △()0,3C -()5,0B 1A 3A x 4A ACD E AFB DFE ≌6AB =3DE CE =CD ABC CD ∠21.如图,在平面直角坐标系中,的三个顶点的坐标分别是,,.(1)在图中画出关于轴对称的;(2)直接写出,,三点的坐标;( ),( ),( );(3)如果要使以、、为顶点的三角形与全等,直接写出所有符合条件的点(除点外)坐标.22.如图,轮船从A 港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M 在北偏东30°的方向上.半小时后,轮船到达B 处,此时测得灯塔M 在北偏东60°的方向上.(1)求轮船在B 处时与灯塔M 的距离;(2)轮船从B 处继续沿正北方向航行,又经半小时后到达C 处.求:此时轮船与灯塔M 的距离是多少?灯塔M 在轮船的什么方向上?23.已知:如图中,,,,.(1)求证:;xOy ABC (2,3)A (1,0)B (1,2)C ABC y 111A B C △1A 1B 1C 1A 1B 1C B C D ABC D A ABC AB AC =30C ∠=︒AB AD ⊥DE AC ⊥AE EC =(1)我们把两组邻边分别相等的四边形叫做,试猜想筝形的对角线有什么性质?然后用全等三角形的知识证明你的猜想.AB CB =含答案与解析1.B【分析】本题考查轴对称图形的识别.根据能否找到一条直线使图形折叠后能够完全重合,进行判断即可;掌握轴对称图形的定义,是解题的关键.【详解】解:观察图形,只有选项B 能够找到一条直线使图形折叠后能够完全重合,是轴对称图形;故选B .2.B【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【详解】解:A 、2+2=4,不能组成三角形,故本选项不合题意;B 、3+4>5,能组成三角形,故本选项符合题意;C 、1+2=3,不能组成三角形,故本选项不合题意;D 、2+3<6,不能组成三角形,故本选项不合题意.故选:B .【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.D【分析】若70°是顶角,则可直接得出答案;若70°是底角,则设顶角是y ,根据三角形内角和为180°即可求解.【详解】若70°是顶角,则顶角为70°;若70°是底角,则设顶角是y ,∴2×70°+y =180°,解得:y =40°.故选D .【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,关键是注意分类讨论.4.A【分析】本题考查了全等三角形的判定,根据平行线的性质得到,加上,根据全等三角形的判定定理判断是解题的关键.【详解】解:∵,,∴,添加,则,根据“”判定,故选项A 符合题意;添加,不能判定,故选项B 不符合题意;添加,不能判定,故选项C 不符合题意;添加,不能判定,故选项D 不符合题意.故选:A .5.C【分析】根据三角形高线的定义,过点B 作BF ⊥AC 交CA 的延长线于点F ,则BF 为AC 边上的高.A D ∠=∠AC DF =AC DF AC DF =A D ∠=∠AE DB =AB DE =SAS ABC DEF ≌A DEF ∠=∠ABC DEF ≌BC DE =ABC DEF ≌ABCD ∠=∠ABC DEF ≌【详解】解:∵△ABC 为钝角三角形,∴边AC 上的高是BF ,故选:C .【点睛】本题主要考查了三角形的高线,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.6.A【分析】根据三角形具有稳定性解答即可.【详解】解:工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是三角形具有稳定性.故选:A .【点睛】本题主要考查三角形的稳定性,正确理解概念是解题的关键.7.D【分析】本题考查了关于y 轴对称的点的坐标,根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点与点关于轴对称,,.故选:D .8.B【分析】过点作,一把直尺边缘与的交点为,如图,根据题意得到,根据角平分线的性质定理的逆定理可判断平分,所以,然后根据平行线的性质求解.【详解】解:过点作,一把直尺边缘与的交点为,如图, 两把直尺为完全相同的长方形,,,平分,,,(,3)A m (4,)B n y 4,3m n ∴=-=()()02022323=43=1m n -++-∴P PD OB ⊥OA E PD PE =OP AOB ∠28AOP BOP ∠=∠=︒P PD OB ⊥OA E PD PE ∴=PE OA PD OB ⊥⊥ ,OP ∴AOB ∠28AOP BOP ∴∠=∠=︒56AOB ∴∠=︒∴△BEF ≌△CED (AAS )∴EF =DE ,BF =CD =3,∴AF =AB +BF =8,∵AE ⊥DE ,EF =DE ,∴AF =AD =8,故选:C .【点睛】本题考查全等三角形的判定与性质,以及垂直平分线的判定与性质,准确推导出全等三角形并理解线段垂直平分线的性质是解题关键.12.A【分析】由作图可判断①, 由, 可判断②,证明,可判断③,证明,可判断④,由,,,可判断⑤,从而可得答案.【详解】解:由作图可知平分,故①正确,∵,∴,由作图可得:,∴是等边三角形,故②正确,∵平分,∴是的垂直平分线,∴,而,∴,∴,∴,∴,∴ ,∴垂直平分线段,故③正确;∵,∴,∴是等腰三角形,故④正确;∵,,,∴,故⑤正确;正确的个数是个,,903060AB AD BAC =∠=︒-︒=︒,ED AC AD CD ⊥=30DBC C ∠=∠=︒90CDE ABC ∠=∠=︒EA EC =EB ED =AE BAC ∠90,30ABC C ∠=︒∠=︒903060BAC ∠=︒-︒=︒AB AD =ABD △AE BAC ∠AE BD EB ED =AE AE =ABE ADE ≌90ADE ABE ∠=∠=︒C CAE ∠=∠EA EC =AD CD =DE AC 90,60ABC ABD ∠=︒∠=︒30DBC C ∠=︒=∠BCD △90CDE ABC ∠=∠=︒EA EC =EB ED =ABE CDE ≌△△5故答案为:2.【点睛】本题考查了三角形中线的性质,熟知三角形中线将三角形面积分成相等两部分是解题的关键.16.7【分析】本题考查中垂线的性质.根据中垂线的性质得到,进而得到的周长,根据,得到当三点共线时,的值最小为的值,进而得到的周长的最小值为,即可.熟练掌握中垂线上的点到线段两端点的距离相等是解题的关键.【详解】解:连接,∵垂直平分,点为直线上一动点,∴,∴的周长,∵,∴当三点共线时,的值最小为的值,∴的周长的最小值为;故答案为:7.17.【分析】过点A 作轴于点D ,根据题意得出,再由全等三角形的判定和性质得出,,结合图形即可得出点的坐标.【详解】解:过点A 作轴于点D ,如图所示,∴,∵,,∴,PA PB =ACP △AC PA PC AC PB PC =++=++PB PC BC +≥,,P B C PB PC +BC ACP △AC BC +PB EF AB P EF PA PB =ACP △AC PA PC AC PB PC =++=++PB PC BC +≥,,P B C PB PC +BC ACP △7AC BC +=()3,2-AD y ⊥35OC OB ==,ACD CBO ≌53CD OB AD CO ====,AD y ⊥90ADO ∠=︒()0,3C -()5,0B 35OC OB ==,∵,即,∴,∵,∴,∴,∴,∵A 在第二象限,∴,故答案为:.【点睛】题目主要考查坐标与图形,全等三角形的判定和性质,理解题意,结合图形求解是解题关键.18.【分析】本题考查的是点的坐标,熟知两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数,两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变,可发现规律,进而得出答案.【详解】解:∵坐标为,∴点关于x 轴的对称点为是,点关于y 的对称点为是,点关于x 轴的对称点为是,点关于y 的对称点为是,显然4次为一循环,∵,∴点的坐标为.故答案为:.19.(1)证明见解析;(2).【分析】()利用证明;()根据,得到,求出,即可得到;此题考查了平行线的性质,三角形全等的判定及性质,熟记三角形全等的判定方法是解题的关键.【详解】(1)∵,90ACB ∠=︒9090ACO BCO OBC OCB ∠∠∠∠+=︒+=︒,ACO OBC ∠∠=90ACB ADO AC BC ∠∠==︒=,ACD CBO ≌53CD OB AD CO ====,2OD CD CO =-=()3,2A -()3,2-().m n --1A (),m n 1A 2A (),m n -2A 3A (),m n --3A 4A (),m n -4A 5A (),m n 202345053÷=⋯2023A (),m n --(),m n --8CD =1AAS 2AFB DFE ≌6AB DE ==CE CD AB CD ∥∴,,∵为的中点,∴,在和中,∴;(2)∵,∴,∵,∴,∴.20.【分析】本题考查了三角形的内角和定理及外角的定理,根据垂直的定义得到,根据角平分线的定义得到,由三角形的内角和定理得出,再根据三角形的外角定理即可求解.【详解】解:交于点,,平分,,,,,,,,,.21.(1)见解析;(2),,(3)或或【分析】本题主要考查了作轴对称图形,全等三角形的判定等知识,(1)分别作三个顶点关于y 轴的对称点,再连接即可;(2)根据(1)中的图形得出坐标;ABF DEF ∠=∠BAF D ∠=∠F AD AF DF =AFB △DFE △,ABF DEF BAF D AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFB DFE ≌△△AFB DFE ≌6AB DE ==3DE CE =2CE =268CD CE DE =+=+=70EAC ∠=︒AFC EFC ∠=∠ACF ECF ∠=∠CAF CEA ∠=∠AE CD ⊥Q CD F ∴90AFC EFC ∠=∠=︒ CD ACB ∠∴ACF ECF ∠=∠ 180AFC EAC ACF ∠+∠+∠=︒180EFC CEA ECF ∠+∠+∠=︒∴EAC CEA ∠=∠ CEA B BAE ∠=∠+∠37B ∠=︒33BAE ∠=︒∴70CEA ∠=︒∴70EAC ∠=︒1(2,3)A -1(1,0)B -1(1,2)C -(0,3)D (0,1)-(2,1)-(2)根据平面直角坐标系可得,点故答案为:,,;(3)以为一边,使另外两边长为,则,,.22.(1)轮船在B 处时与灯塔M 的距离为14【分析】(1)根据轮船到达B 处,此时测得灯塔(2)计算出BC 的长度,根据∠CBM=60°可以判断【详解】解:(1)根据题意可知BA=28×0.5=14因为此时灯塔M 在北偏东60°的方向上,根据三角形外角定理可以得到∠BAM=∠M所以BA=BM=14海里,即轮船在B 处时与灯塔M 的距离为14海里;1(2,3)A -(2,3)-(1,0)-(1,2)-BC 21(0,3)D 2(0,1)D -3(2,1)D -(1)轮船从B 处继续沿正北方向航行,又经半小时后到达C 处,所以BC=28×05=14海里,所以BC=BM又因为∠CBM=60°所以△ABM 为等边三角形所以CM=14海里所以灯塔M 在轮船的南偏东60°方向【点睛】本题考查的是等腰三角形判定与性质和等边三角形的判定与性质,能够判断出△BAM 为等腰三角形和△BCM 为等边三角形是解题的关键.23.(1)证明见解析(2)【分析】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,角所对的直角边等于斜边的一半是解题的关键.(1)根据等腰三角形的性质、三角形内角和定理证明;(2)根据直角三角形中,角所对的直角边等于斜边的一半解答.【详解】(1)证明:,,,,,,,,,,.(2),,,,12BC =30︒AB AC = 30C ∠=︒∴30B ∠=︒120BAC ∠=︒ AB AD ⊥90BAD ∠=︒∴30DAC C ∠=∠=︒∴DAC C ∠=∠∴DA DC = DE AC ⊥∴AE EC = 30C ∠=︒DE AC ⊥2DE =∴24DC DE ==,,,.24.(1),,理由见解析(2)见解析【分析】(1)证,得,再证,得,,得,即可得出;(2)过点分别作,,垂足分别为,,证,即可得出.【详解】(1)猜想,,理由如下:在和中,,,,在和中,,,,,,;(2)证明:过点分别作,,垂足分别为,,如图2所示:平分,,在和中,, AB AD ⊥30B ∠=︒∴28BD DC ==∴12BC =BD AC ⊥AO OC =()ADB CDB SSS ≅ ADO ODC ∠=∠()ΔΔAOD COD SAS ≅AOD COD ∠=∠OA OC =90DOC ∠=︒BD AC ⊥D DE AB ⊥DF BC ⊥E F Rt ADE △≌Rt CDF BAD BCD ∠=∠BD AC ⊥AO OC =ADB ∆BCD ∆AB BC AD DC BD BD =⎧⎪=⎨⎪=⎩()ΔΔADB CDB SSS ∴≅ADO ODC ∴∠=∠AOD ∆ODC ∆AD DC ADO ODC OD OD =⎧⎪∠=∠⎨⎪=⎩()ΔΔAOD COD SAS ∴≅AOD COD ∠=∠∴OA OC =90DOC ∴∠=︒BD AC ∴⊥D DE AB ⊥DF BC ⊥E F BD Q ABC ∠DE DF ∴=Rt ADE △Rt CDF DE DF AD CD=⎧⎨=⎩∴Rt ADE △≌Rt CDF.【点睛】本题考查了全等三角形的判定与性质、角平分线的性质等知识,熟练掌握全等三角形的判定方法是解题的关键.25.问题1:;问题2:问题1中结论仍然成立,理由见解析;问题3:结论:.【分析】问题1,先证明,得到,,再证明,得到,即可得到;问题2,延长到点G .使.连接,先判断出,进而判断出,再证明,最后用线段的和差即可得出结论;问题3,在上取一点G .使.连接,然后同问题2的方法即可得出结论.【详解】解:问题1,如图1,延长到点G .使.连接,∵,∴,∴ ,在和中,,∴ ,∴ ,,∴,即,∵ ,BAD BCD ∴∠=∠BE FD EF +=DF EF BE =+CBE CDG ≌△△CE CG =BCE DCG ∠=∠CEF CGF ≌EF GF =EF DG DF BE DF =+=+FD DG BE =CG ABC GDC ∠=∠CBE CDG ≌△△CEF CGF ≌DF DG BE =CG FD DG BE =CG 90ADC B ∠∠==︒18090CDG ADC ∠-∠=︒=︒90CBE CDG ∠∠==︒CBE △CDG ===BE DG CBE CDG BC DC ⎧⎪∠∠⎨⎪⎩()SAS CBE CDG △≌△CE CG =BCE DCG ∠=∠BCE ECD DCG ECD ∠+∠=∠+∠120ECG BCD ∠∠==︒60ECF ∠=︒∵ ,∴,在和中,,+=180ABC ADC ∠∠︒ABC GDC ∠=∠CBE △CDG BE DG CBE CDG BC DC =⎧⎪∠=∠⎨⎪=⎩∵ ,∴,即 在和中,,180ABC ADC ∠+∠=︒ABC ∠ADC CBE ∠=∠CDG ∠CBE △CDG BE DG CBE CDG BC DC =⎧⎪∠=∠⎨⎪=⎩()SAS CBE CDG △≌△∴ ,∴,∴.即.【点睛】本题主要考查全等三角形的性质与判定,解题的关键在于能够正确作出辅助线构造全等三角形.()SAS CEF CGF ≌EF GF =EF GF DF DG DF BE ==-=-DF BE EF =+。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
初二数学上册期中试卷及答案
初二数学上册期中试卷及答案一、选择题(每题4分,共20分)1. 下列数中是无理数的是:A. √2B. √4C. 3D. 0.3答案:A2. 已知等差数列的前5项和为25,公差为2,首项为:A. 1B. 3C. 5D. 7答案:B3. 下列函数中,奇函数是:A. y = x²B. y = x³C. y = |x|D. y = 2x答案:B4. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,那么BD的长度是:A. 5B. 10C. 20D. 12答案:B5. 在三角形ABC中,a=8, b=10, sinA=3/5,那么sinB的值是:A. 4/5B. 3/5C. 2/5D. 1/5答案:A二、填空题(每题4分,共20分)1. 已知等差数列的首项为3,公差为2,第10项为________。
答案:212. 若向量a=(2,3),向量b=(-1,2),那么向量a+b的坐标为________。
答案:(1,5)3. 函数y=2x+3的逆函数为________。
答案:y=1/2x-3/24. 在直角坐标系中,点P(3,-2)关于y轴的对称点坐标为________。
答案:(-3,-2)5. 三角形ABC中,a=8, b=10, sinA=3/5,那么cosB的值是________。
答案:4/5三、解答题(每题10分,共30分)1. 已知等差数列的首项为3,公差为2,求该数列的前10项和。
答案:1002. 解方程组:\[\begin{cases}x+y=6 \\x-y=2\end{cases}\]答案:x=4, y=23. 函数y=2x+3的图象上任意一点P(x,y)满足y-5=3(x-2),求点P的坐标。
答案:P(2,5)四、应用题(每题10分,共20分)1. 小明家距学校8千米,他骑自行车去学校,速度为15米/分钟,求他到学校需要的时间。
答案:53.33分钟2. 某商品原价为1000元,商店举行打折活动,折扣率为8折,求打折后的商品价格。
2024-2025学年沪科版数学八年级上册期中质量检测试题(含答案)
2024-2025学年沪科版数学八年级上册期中质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题:(本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
)1.已知点(―2,―3)在正比例函数y=kx的图象上,则k的值是( )A. 32B. 23C. 6D. ―322.如图,在直线y=kx+b交坐标轴于A(―3.0)、B(0,5)两点,则不等式kx+b<5的解集为( )A. x>―3B. x<―3C. x>0D. x<03.在同一坐标系中,函数y=―ax与y=23x―a的图象大致是( )A. B. C. D.4.下列各曲线中不能表示y是x的函数是( )A. B. C. D.5.函数y 1=k 1x ,y 2=k 2x ,y 3=k 3x 的图象如图所示,对k 1,k 2,k 3之间的大小关系判定正确的是( )A. k 1<k 2<k 3B. k 1=k 2=k 3C. k 1>k 2>k 3D. 无法确定6.若点P(2k-1,1-k )在第四象限,则k的取值范围为( )A .k>1B .k<C .k>D .<k<17.甲以每小时20km 的速度行驶时,他所走的路程s (km )与时间t(ℎ)之间可用公式s =20t 来表示,则下列说法正确的是( )A. 数20和s ,t 都是变量 B. s 是常量,数20和t 是变量C. 数20是常量,s 和t 是变量D. t 是常量,数20和s 是变量8.某品牌的自行车链条每节长为2.5cm ,每两节链条相连部分重叠的圆的直径为0.8cm ,按照这种连接方式,n 节链条总长度为y cm ,则y 与n 的关系式是( )A. y =2.5nB. y =1.7nC. y =1.7n +0.8D. y =2.5n ―0.89.若直线y =―2 x ―4与直线y =4 x + b 的交点在第三象限,则b 的取值范围是( ).A. ―4< b <8 B. ―4< b <0C. b <―4或b >8D. ―4≤ b ≤810.函数y =中自变量x 的取值范围是( )A. x >4B. x ≥4C. x ≤4D. x ≠4二、填空题:(本题共4小题,每小题5分,共20分。
八年级上学期期中测试(数学)试题含答案
八年级上学期期中测试(数学)(考试总分:150 分)一、 单选题 (本题共计10小题,总分40分)1.(4分)1.下列各式中,是最简二次根式的是( )A .4B .5C .8D .2.(4分)2.下列方程中,是关于x 的一元二次方程的是( ) A .x+21x =0 B . C .ax 2+bx+c =0D .(x ﹣1)(x+2)=1 3.(4分)3.一元二次方程x 2﹣2x+3=0根的情况( )A .没有实数根B .只有一个实数根C .有两个不相等的实数根D .有两个相等的实数根4.(4分)多边形的内角和不可能为( )A. 540B. 680C. 1080D. 19805.(4分)5.设− 1,a 在两个相邻整数之间,则这两个整数是( ) A .0 和 1 B .1 和 2 C .2 和 3 D .3 和 46.(4分)6.下列3个数能成为勾股数的是( )A.6,8,9B.7,15,17C.6,12,13D.7,24,257.(4分)7.对于实数a,b,定义运算“※”如下:a ※b=a 2-ab,例如,5※3=52-5×3=10.若(x+1)※2=3,则x 的值( )A .-1或2B .1或- 2C .-1或1D .-2或28.(4分)8.如图,在四边形ABCD 中,∠DAB =∠BCD = 90°,分别以四边形的四条边317)2)(1(2-=+-x x x为边向外作四个正方形,若S 1 + S 4 = 100,S 3 = 36,则S 2 =( )A .136B .64C .50D .819.(4分)9.2019年第一季度,安徽省某企业生产总值比2018年同期增长14%,2020年第一季度受新冠肺炎疫情影响,生产总值比2019年同期减少了9%,设2019年和2020年第一季度生产总值的平均增长率为x,则可列方程( )A.2x=14%-9%B.(1+x)2 =1+14%-9%C.(1+x)2 =(1+14%)(1-9%)D.1+2x=(1+14%)(1-9%)10.(4分)10.关于x 的方程m(x+h)2 +k=0(m,h,k 均为常数,m ≠0)的解是则方程m(x+h-3)2 +k=0的解是( ) 5,0.21==x x A 1,6.21-=-=x x B5,3.21=-=x x C 2,6.21=-=x x D二、 填空题 (本题共计4小题,总分20分)11.(5分)11.已知1x =为一元二次方程2210x ax -+=的解则a =__________12.(5分)12. 若√2x−4在实数范围内有意义,则x 的取值范围为13.(5分)13.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为(化为一般形式):____________.,2,321=-=x x14.(5分)14.Rt △ABC 中,∠BAC=90°,AB=AC=4,以AC 为一边,在△ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_______.三、 解答题 (本题共计9小题,总分90分)15.(8分)15.计算:32712)1(+-(2)16.(8分)16.解方程:(1)(用配方法)2890x x +-= (2)解方程:17.(8分)17.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最小整数时,求方程的解18.(8分)18.一个多边形,每一个外角都等于30°,这个多边形是几边形,它的内角和是多少?19.(10分)19.某超市销售一种矿泉水,进价为每箱24元,现在的售价为每箱36元,每月可销售60箱。
湖北省湖北省知名教联体2024-2025学年八年级上学期11月期中考试数学试题[含答案]
2024年秋季八年级期中质量检测数学试题(考试时间:120分钟 满分:120分)温馨提醒:1.答卷前,请将自己的姓名、班级、考号等信息准确填写在指定位置。
2.请保持卷面的整洁,书写工整、美观。
3.请认真审题,仔细答题,诚信应考,乐观自信,相信你一定会取得满意的成绩!一、选择题(共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.一个三角形的两边长分别是12和5,第三边的长恰好是7的整数倍,那么第三边的长是( )A .7B .14C .21D .14或213.若点()1,1A m n +-与点()3,2B 关于y 轴对称,则m n +的值是( )A .5-B .3-C .3D .14.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )A .50°B .80°C .65°或50°D .50°或80°5.如图,在ABC V 和DEF V 中,已知AB DE =,A D Ð=Ð,再添加一个条件,如果仍不能证明ABC DEF ≌△△成立,则添加的条件是( )A .AC DF ∥B .BC EF =C .AC DF =D .ACB F Ð=Ð6.如图,小益将平放在桌面上的正五边形磁力片和正六边形磁力片拼在一起(一边重合),则形成的1Ð的度数是( )A .118°B .122°C .128°D .132°7.如图,ABC V 中,AD 为ABC V 的角平分线,BE 为ABC V 的高,70C Ð=°,48ABC Ð=°,那么3Ð是( )A .59°B .60°C .56°D .22°8.如图,ABC DEC ≌△△,AF CD ^.若65BCE Ð=°,CAF Ð的度数为( )A .30°B .25°C .20°D .15°9.如图,ABC DCB △≌△,若96AC BE ==,,则DE 的长为( )A .3B .6C .2D .410.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,AB 的垂直平分线交BC 于点D ,连接AD ,则△ACD 的周长是( )A .7B .8C .9D .10二、填空题(共5小题,每题3分,共15分)11.已知一个n 边形的内角和是900°,则n = .12.如图,,30,80ABE FDC FCD A Ð=°Ð=°△≌△,则ABE Ð的度数是 °.13.在平面直角坐标系中,点()3,4A ,(),B a b 关于x 轴对称,则()2024a b +的值为 .14.在ABC V 中,50B Ð=°,35C Ð=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD Ð的度数为 .15.在ABC V 中,150CA CB ACB =Ð=°,,将一块足够大的直角三角尺()9030PMN M MPN Ð=°Ð=°、按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB a Ð=,斜边PN 交AC 于点D .在点P 的滑动过程中,若PCD △是等腰三角形,则夹角α的大小是 .三、解答题(共9题,共75分,解答应写出文字说明,证明过程或演算步骤)16.已知一个多边形的边数为n .(1)若8n =,求这个多边形的内角和.(2)若这个多边形的每个内角都比与它相邻外角的3倍还多20°,求n 的值.17.如图,已知90A D Ð=Ð=°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC BE CF ==,.求证:B C Ð=Ð.18.如图,在单位长度为1的方格纸中画有一个ABC V .(1)画出ABC V 关于y 轴对称的A B C ¢¢¢V ;(2)写出点A ¢、B ¢的坐标;(3)求ABC V 的面积.19.如图,DE AB ^于E ,DF AC ^于F ,若BD CD BE CF ==,.(1)求证:AD 平分BAC Ð;(2)已知 10AC =,2BE =,求AB 的长.20.(1)等腰三角形的两边长满足|a -4|+(b -9)2=0,求这个等腰三角形的周长.(2)已知a ,b ,c 是△ABC 的三边,化简:|a +b -c|+|b -a -c|-|c +b -a|.21.如图,在ABC V 中,90B Ð=°,直线CD BC ^于点,C CE 平分ACD Ð交BA 延长线于点,E EF EC ^,交CD 于点F .(1)试判断AB 与CD 的位置关系,并说明理由;(2)若34EFC BAC ÐÐ=,求AEC Ð的度数.22.如图,在ABC V 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D . 连接DE .(1)若ABC V 的周长为19,DEC V 的周长为7,求AB 的长;(2)若30ABC Ð=°,45C Ð=°,求EAC Ð的度数.23.已知,ABC V 中,CA CB =,90ACB Ð=°,一直线过顶点C ,过A ,B 分别作其垂线,垂足分别为E ,F .(1)如图1,求证:EF AE BF =+;(2)如图2,请直接写出EF ,AE ,BF 之间的数量关系 ;(3)在(2)的条件下,若3BF AE =,4EF =,求BFC △的面积.24.如图所示,在平面直角坐标系中,()4,4P ,(1)点A 在x 的正半轴运动,点B 在y 的正半轴上,且PA PB =,①求证:PA PB ^:②求OA OB +的值;(2)点A 在x 的正半轴运动,点B 在y 的负半轴上,且PA PB =,求OA OB -的值.1.A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A .是轴对称图形,故A 符合题意;B .不是轴对称图形,故B 不符合题意;C .不是轴对称图形,故C 不符合题意;D .不是轴对称图形,故D 不符合题意.故选:A .【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】本题考查三角形的三边关系,根据三角形的三边关系确定第三边的取值范围,再根据第三边的长恰好是7的整数倍,进行判断即可.【详解】解:∵三角形的两边长分别是12和5,设第三边长为x ,∴125125x -<<+,即:717x <<,∵第三边的长恰好是7的整数倍,∴第三边的长是14;故选B .3.A【分析】根据关于y 轴对称的点的坐标特点可得1312m n +=-ìí-=î,解方程即可得到答案.【详解】解:∵点()1,1A m n +-与点()3,2B 关于y 轴对称,∴1312m n +=-ìí-=î,∴41m n =-ìí=-î,∴()415m n +=-+-=-,故选A .【点睛】本题主要考查了坐标与图形变化—轴对称,熟知关于y 轴对称的点横坐标互为相反数,纵坐标相同是解题的关键.4.D【分析】本题主要考查了等腰三角形的性质和三角形内角和定理,根据等腰三角形的性质分类讨论是解答本题的关键.根据等腰三角形的性质,分已知角是顶角和底角两种情况分别即可.【详解】解:∵已知三角形是等腰三角形,∴当50°是底角时,顶角()180505080=°-°+°=°;当50°是顶角时,符合题意;综上所述,等腰三角形的顶角度数为50°或80°.故选D .5.B【分析】利用三角形全等的判定定理逐一推理即可.【详解】解:∵AC DF ∥,∴ACB F Ð=Ð,∴ACB F A D AB DE Ð=ÐìïÐ=Ðíï=î,∴ABC DEF ≌△△,故A ,D 都正确,不符合题意;∵AC DF A D AB DE =ìïÐ=Ðíï=î,∴ABC DEF ≌△△,故C 正确,不符合题意;当添加BC EF =时,不符合任何一个判定定理,无法判定ABC DEF ≌△△,故B 符合题意,故选:B .【点睛】本题考查了添加条件判定全等,熟练掌握三角形全等的判定定理是解题的关键.6.D【分析】本题考查正多边形的内角和问题,根据多边形内角和公式及正多边形的性质求出2,3ÐÐ的度数,再根据123360Ð+Ð+Ð=°即可解答.【详解】解:如图,()()62180521802120,310865-´°-´°Ð==°Ð==°Q ,Q 123360Ð+Ð+Ð=°,1132\Ð=°,故选:D .7.A【分析】本题考查了三角形内角和定理,三角形的高,角平分线,对顶角相等,解题的关键是掌握这些知识点.根据三角形内角和定理得62CAB Ð=°,根据角平分线得112312CAB Ð=Ð=Ð=°,根据高得90AEB Ð=°,可得59EFA Ð=°,根据对顶角相等即可得.【详解】解:∵70C Ð=°,48ABC Ð=°,∴180170486802C A B BC CA Ð-Ð=°-°=°Ð=°-°-,∵AD 为ABC V 的角平分线,∴112312CAB Ð=Ð=Ð=°,∵BE 为ABC V 的高,∴90AEB Ð=°,∴1801180319059EFA AEB Ð=°-Ð-Ð=°-°-°=°∴359EFA Ð=Ð=°,故选:A .8.B【分析】本题考查了全等三角形的判定和性质,垂直的定义,直角三角形的性质,由全等三角形的性质可得ACB DCE Ð=Ð,即可得BCE DCA Ð=Ð,得到65ACF Ð=°,再根据直角三角形的的性质即可求解,掌握全等三角形的性质是解题的关键.【详解】解:∵ABC DEC ≌△△,∴ACB DCE Ð=Ð,∴ACB ACE DCE ACE Ð-Ð=Ð-Ð,即BCE DCA Ð=Ð,∵65BCE Ð=°,∴65DCA Ð=°,即65ACF Ð=°,∵AF CD ^,∴90AFC Ð=°,∴906525CAF Ð=°-°=°,故选:B .9.A【分析】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.根据全等三角形的性质及线段的和差求解即可.【详解】解:ABC DCB QV V ≌,9AC =,9BD AC \==,BD BE DE =+Q ,6BE =,3DE \=,故选:A .10.A【分析】先根据线段垂直平分线的性质得出AD=BD ,然后求周长即可.【详解】解:∵AB 的垂直平分线交BC 于D ,∴AD=BD ,∵AC=3,BC=4∴△ACD 的周长为:AC+CD+AD=AC+BC=7.故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.7【分析】本题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键;根据n 边形的内角和为180(2)n °-列出关于n 的方程,解方程即可求出边数n 的值.【详解】解:根据题意,得180(2)900n °-=°,解得7n =,故答案为:7.12.70【分析】本题考查了全等三角形的性质,掌握这性质是关键.根据三角形全等的性质,得出30E FCD Ð=Ð=°,然后求出18070ABE A E Ð=°-Ð-Ð=°即可.【详解】解:∵ABE FDC V V ≌,∴30E FCD Ð=Ð=°,∵80A Ð=°,∴18070ABE A E Ð=°-Ð-Ð=°.故答案为:70.13.1【解析】略14.60°##60度【分析】本题主要考查基本作图,线段垂直平分线的性质是解题的关键.由线段垂直平分线的性质可得AD DC =,根据等边对等角得到35DAC C Ð=Ð=°,根据内角和定理求得18095BAC B C Ð=°-Ð-Ð=°,最后根据角度的和差关系即可得到答案.【详解】解:由作图可知:MN 为线段AC 的垂线平分线,∴AD DC =,∴35DAC C Ð=Ð=°,在ABC V 中,50B Ð=°,35C Ð=°,∴18095BAC B C Ð=°-Ð-Ð=°,∴60BAD BAC DAC Ð=Ð-Ð=°,故答案为:60°.15.30°或75°或120°【分析】本题考查了等腰三角形的性质,三角形的内角和定理,用分类讨论的思想解决问题是解本题的关键.分三种情况考虑:当PC PD PD CD PC CD ===;;,分别求出夹角a 的大小即可.【详解】解:∵PCD △是等腰三角形,15030PCD CPD a Ð=°-Ð=°,,①当PC PD =时,∴18030752PCD PDC °-°Ð=Ð==°,即15075a °-=°, ∴75a =°; ②当PD CD =时,PCD △是等腰三角形,∴30PCD CPD Ð=Ð=°,即15030a °-=°,∴120a =°;③当PC CD =时,PCD △是等腰三角形,∴30CDP CPD Ð=Ð=°,∴180230120PCD Ð=-´=°°°, 即150120a °-=°,∴30a =°, 此时点P 与点B 重合,点D 和A 重合,综合所述:当PCD △是等腰三角形时,a =30°或75°或120°.故答案为:30°或75°或120°.16.(1)1080°(2)9【分析】本题考查多边形的内角和与外角的综合应用:(1)直接根据内角和公式进行计算即可;(2)设每个外角的度数为a ,根据题意,列出方程求出a ,再根据多边形的外角和为360度,求解即可.【详解】(1)解:()821801080-´°=°;(2)设每个外角的度数为a ,则每个内角的度数为320a +°,∴320180a a ++=°,∴40a =°,∴360940n ==.17.见解析【分析】本题主要考查了全等三角形的性质与判定,由BE CF =,得BF CE =,即可用HL 证明Rt Rt ABF DCE ≌△△,即可证明B C Ð=Ð.【详解】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在Rt ABF V 和Rt DCE V 中,AB DC BF CE=ìí=î,∴()Rt Rt HL ABF DCE ≌△△,∴B C Ð=Ð.18.(1)见解析(2)点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-(3)132【分析】(1)找到ABC V 中三个顶点的对称点,连接即可;(2)根据点在直角坐标系中得位置,写出坐标即可;(3)利用添补法用长方形面积减去三个三角形面积即可.【详解】(1)解:如图所示,A B C ¢¢¢V 即为所求.(2)解:由图可知点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-;(3)解:ABC V 的面积为11113352315232222´-´´-´´-´´=.【点睛】本题考查了直角坐标系,相关知识带你有:图形的轴对称、割补法求三角形面积等,熟练运用直角坐标系的知识点是解题关键.19.(1)见解析(2)6【分析】(1)求出90E DFC Ð=Ð=°,根据全等三角形的判定定理得出Rt Rt BED CFD ≌△△,推出DE DF =,根据角平分线性质得出即可.(2)根据全等三角形的性质得出AE AF =,由线段的和差关系求出答案.【详解】(1)证明:DE AB ∵⊥,DF AC ^,90E DFC \Ð=Ð=°,在Rt BDE △与Rt CDF △中,BD CD BE CF =ìí=î,()Rt Rt HL BDE CDF \≌V V ,DE DF \=,又DE AB ∵⊥,DF AC ^,AD \平分BAC Ð.(2)解:Rt Rt BDE CDF ≌Q V V ,2BE =,2CF BE \==,10AC =Q ,1028AF AC CF \=-=-=,在Rt ADE V 与Rt ADF V 中,AD AD DE DF=ìí=î,()Rt Rt HL ADE ADF \≌V V ,8AE AF \==,826AB AE BE \=-=-=.【点睛】本题考查了全等三角形的性质和判定、角平分线的判定,熟练掌握全等三角形的判定及性质和角平分线的判定是解题的关键.20.(1)22;(2)22a c -.【分析】(1)根据非负数的性质求出a 、b ,再根据三角形三边关系分情况讨论求解.(2)三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:(1)∵()240,90a b -³-³,且()2490a b -+-=,∴40,90a b -=-=,解得:4,9a b ==,①4是腰长时,三角形的三边分别是4、4、9,∵449+<,∴不能组成三角形.②4是底边时,三角形的三边分别是4、9、9,能组成三角形,周长99422=++=,综上所述,等腰三角形的周长是22.(2)ABC D Q 的三边长分别是a 、b 、c ,0a b c \+->,()0b a c b a c --=-+<,0c b a +->,原式[()]()a b c b a c c b a =+-+----+-a b c b a c c b a =+--++--+22a c =-.【点睛】此题主要考查了三角形三边关系与绝对值的性质.解此题的关键是根据三角形三边的关系来判定是否能构成三角形或绝对值内式子的正负.21.(1)AB CD ∥,理由见解析(2)36AEC Ð=°【分析】本题主要考查了平行线的性质和判定,角平分线的定义,解题的关键是熟练掌握平行线的判定和性质.(1)根据同旁内角互补两直线平行进行判断即可;(2)设4BAC x Ð=,则3EFC x Ð=,根据平行线的性质得出4ACD BAC x Ð=Ð=,根据角平分线的定义得出2ACE DCE x Ð=Ð=,根据平行线的性质得出2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,即3290x x +=°,求出18x =°,即可得出答案.【详解】(1)解:AB CD ∥,理由如下:∵CD BC ^,90B Ð=°,∴90BCD B Ð=Ð=°,∴180BCD B Ð+Ð=°,∴AB CD ∥.(2)解:设4BAC x Ð=,则3EFC x Ð=.∵AB CD ∥,∴4ACD BAC x Ð=Ð=,∵CE 平分ACD Ð,∴2ACE DCE x Ð=Ð=,∵AB CD ∥,∴2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,∵EF EC ^,∴90CEF Ð=°,∴1809090CFE CEB Ð+Ð=°-°=°,∴3290x x +=°,解得:18x =°,∴21836AEC Ð=´°=°.22.(1)6AB =(2)30°【分析】本题考查的是线段的垂直平分线的性质,等边对等角,三角形的内角和定理的应用,三角形的外角的性质,掌握以上基础知识是解本题的关键.(1)先证明AB BE =,AD DE =,结合ABC V 的周长为19,DEC V 的周长为7,可得19712AB BE +=-=,从而可得答案;(2)先求解1803045105BAC Ð=°-°-°=°,然后利用等边对等角和三角形内角和定理得到()1180752BAE BEA ABC Ð=Ð=°-Ð=°,进而求解即可.【详解】(1)解:∵BD 是线段AE 的垂直平分线,∴AB BE =,AD DE =,∵ABC V 的周长为19,DEC V 的周长为7,∴19AB BE CE CD AD ++++=,7CD EC DE CD CE AD ++=++=,∴19712AB BE +=-=,∴6AB BE ==;(2)解:∵30ABC Ð=°,45C Ð=°,∴1803045105BAC Ð=°-°-°=°,∵AB BE=∴()1180752BAE BEA ABC Ð=Ð=°-Ð=°∴30EAC BAC BAE Ð=Ð-Ð=°.23.(1)见解析(2)EF BF AE =-,理由见解析(3)6【分析】本题考查了全等三角形的判定和性质,三角形的面积,余角的性质.熟练掌握全等三角形的判定和性质定理是解题的关键.(1)根据垂直的定义和余角的性质得到FCB EAC Ð=Ð,根据全等三角形的性质得到AE CF =,CE BF =,等量代换得到结论;(2)根据余角的性质得到CAE BCF Ð=Ð根据全等三角形的性质得到CE BF =,AE CF =,等量代换得到结论;(3)由(2)得EF AE BF =+且3BF AE =,求得3CE AE =,得到24EF AE ==,根据三角形的面积公式即可得到结论.【详解】(1)证明:90ACB Ð=°Q ,90ECA FCB \Ð+Ð=°,又AE EF ^Q ,BF EF ^,90AEF BFC \Ð=Ð=°,90ECA EAC \Ð+Ð=°,FCB EAC \Ð=Ð,在ACE △和CBF V 中,AEC BFC EAC FCB AC BC Ð=ÐìïÐ=Ðíï=î,(AAS)ACE CBF \△≌△,AE CF ∴=,CE BF =,EF EC CF =+Q ,EF AE BF \=+;(2)解:EF BF AE =-,理由如下:90AEC CFB Ð=Ð=°Q ,90ACB Ð=°,90ACE CAE ACE BCF \Ð+Ð=Ð+Ð=°,CAE BCF\Ð=Ð又AC BC =Q ,(AAS)CAE BCF \V V ≌,CE BF \=,AE CF =,EF CE CF BF AE \=-=-,即EF BF AE =-;(3)解:由(2)得EF BF AE =-且3BF AE =,3CE AE \=,CF AE =Q ,24EF AE \==,2AE CF \==,6BF =,BFC \△的面积1126622CF BF =×=´´=.24.(1)①见解析;②8OA OB +=(2)8OA OB -=【分析】本题是三角形综合题,考查了全等三角形的判定与性质、坐标与图形性质,本题综合性强,熟练掌握全等三角形的判定与性质,正确作出辅助线,构造全等三角形是解题的关键,属于中考常考题型.(1)①过点P 作PE x ^轴于E ,作PF y ^轴于F ,根据点P 的坐标可得4PE PF ==,然后利用“HL”证明Rt APE V 和Rt BPF V 全等,根据全等三角形对应角相等可得APE BPF Ð=Ð,然后求出90APB EPF Ð=Ð=°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解;(2)根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解.【详解】(1)①证明:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,∴PE PF ^,∵()4,4P ,∴4PE PF ==,在Rt APE V 和Rt BPF V ,PA PB PE PF=ìí=î,∴()Rt Rt HL APE BPF V V ≌,∴APE BPF Ð=Ð,∴90APB APE BPE BPF BPE EPF Ð=Ð+Ð=Ð+Ð=Ð=°,∴PA PB ^;②解:∵()Rt Rt HL APE BPF V V ≌,∴BF AE =,∵,OA OE AE OB OF BF =+=-,∴448OA OB OE AE OF BF OE OF +=++-=+=+=;(2)解:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,同理得()Rt Rt HL APE BPF V V ≌,∴AE BF =,∵4,4AE OA OE OA BF OB OF OB =-=-=+=+,∴44OA OB -=+,∴8OA OB -=.。
数学八年级上册期中试卷及答案【含答案】
数学八年级上册期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?A. 21B. 29C. 35D. 392. 二次方程 x^2 5x + 6 = 0 的解是?A. x = 2, x = 3B. x = 1, x = 6C. x = -2, x = -3D. x = 4, x = 13. 下列哪个角是锐角?A. 120°B. 135°C. 150°D. 160°4. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 菱形D. 正方形5. 下列哪个数是无理数?A. √9B. √16C. √25D. √2二、判断题1. 任何两个奇数相加都是偶数。
()2. 二次方程的解可以是复数。
()3. 平行四边形的对角线互相平分。
()4. 任何两个负数相乘都是正数。
()5. 三角形的内角和等于180°。
()三、填空题1. 2的平方根是______。
2. 二次方程 ax^2 + bx + c = 0 的判别式是______。
3. 两条平行线的距离是______。
4. 三角形的面积可以用公式______计算。
5. 两个事件A和B相互独立,P(A) = 0.2,P(B) = 0.3,那么P(A∩B) = ______。
四、简答题1. 解释什么是因式分解,并给出一个例子。
2. 解释什么是相似三角形,并给出一个例子。
3. 解释什么是概率,并给出一个例子。
4. 解释什么是函数,并给出一个例子。
5. 解释什么是等差数列,并给出一个例子。
五、应用题1. 解方程:2x + 3 = 15。
2. 计算三角形的面积,已知底边长为10,高为5。
3. 计算下列数的平方根:9,16,25。
4. 计算下列数的立方根:8,27,64。
5. 解不等式:3x 7 > 2。
六、分析题1. 分析二次方程的解的情况,并给出一个例子。
2. 分析平行四边形的性质,并给出一个例子。
湖南省永州市蓝山县2023-2024学年八年级上学期期中数学试卷(含答案)
蓝山县2023年上期期中质量检测试卷八年级数学满分:120分时量:120分钟一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确选项,请将正确选项填在对应表格内)题号12345678910答案1.下列式子中是分式的是()A.B.C.D.2.下列给出的线段中能组成三角形的是()A.5cm,6cm,1cm B.3cm,4cm,5cm C.7cm,3cm,3cm D.35cm,17cm,15cm 3.下列分式的变形正确的是()A.B.C.D.4.若有意义,则a的取值范围是()A.B.C.D.5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为()A.30°B.60°C.90°D.120°或60°6.如图(一),已知,下列添加的条件不能使的是()A.B.C.D.7.如图(二),小明不慎将一块三角形形的玻璃碎成的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第一块去()A.1B.2C.3D.48.如图(三),在中,若,BD是AC边上的高,则的度数为()A.16°B.18°C.20°D.22°9.如图(四),在等边三角形中,点E是AC边的中点,点P是的中线AD 上的动点,且,则的最小值是()A.4B.6C.8D.1010.如图(五),AD是的角平分线,,垂足为E,交ED的延长线于点F,若BC恰好平分,,给出下列四个结论,①;②;③;④,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共18分)11.把与通分,其最简公分母______.12.计算:______.13.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列方程为______.14.如图(六),,的周长为12,且,则的周长为______.15.如图(七),在中,CD是它的角平分线,于点E.若,,则的面积为.16.如图(八),为等边三角形,点D与点C关于直线AB对称,E,F分别是边BC 和AC上的点.,AE与BF交于点G.DG交AB于点H.下列四个结论中:①;②;③;④为等边三角形.所有正确的结论的序号是______.三、解答题(本大题9个小题,共72分)17.(6分)化简:.18.(6分)解分式方程:.19.(6分)先化简,再求值:,然后m从1、2、3、个数中选取一个你喜欢的数代入求值.20.(8分)关于x的方程会产生增根,求m的值.21.(8分)完成下面的推理说明:已知:如图,,BE、CF分别平分和.求证:.证明:∵BE、CF分别,平分和(已知),∴______,______.(角平分线的定义).∵(已知),∴(______).∴(等量代换).∴(等式的性质).∴(______).22.(9分)如图点C、E、F、B在同一直线上,点A、D在BC异侧,,,.(1)求证:;(2)若,,求的度.23.(9分)疫情期间,某校根据政府防控要求用4000元购买了一批口罩,两天后勤人员发现口罩数量不多了,学校决定再次用5000元购买一批口罩作为备用,后勤人员发现这时每只口罩价格涨了1元,结果两次购买口罩的数量相同.(1)学校两次购买口罩的单价分别是多少元?(2)学校两次共购买口罩多少只?24.(10分)如图,在四边形ABCD中,,E是AB的中点,连结DE并延长交CB的延长线于点F,点G在边BC上,且.(1)说明的理由;(2)连接EG,那么EG与DF的位置关系是______.请说明理由.25.(10分)在中,.,直线MN经过点C,且于D,于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①;②(2)当直线MN绕点C旋转到图(2)的位置时.求证:;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.蓝山县2023年上期期中质量检测试卷八年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确选项,请将正确选项填涂到答题卡的空格上)题号12345678910答案D B C D D D D B C A 二、填空题(每题3分,共18分)题号111213141516答案156①②④三、解答题(本大题9个小题,共72分)17.(6分)化简:.解:原式=====118.(6分)解分式方程:.解:方程两边同时乘x-2,得1-x+2(x-2)=-1化简,得x-2=0解得:x=2经检验,x=2是原分式方程的增根所以原分式方程无解19.(6分)先化简,再求值:,然后m从1、2、3三个数中选取一个你喜欢的数代入求值.解:原式====∵m≠2,3∴m=1即:原式=20.(8分)关于x的方程会产生增根,求m的值.解:方程两边都乘(x+2)(x-1),得(m+2)(x-1)+m(x+2)=1-m.整理,得:(2m+2)x=3-2m.从最简公分母(x+2)(x-1)来看,原方程的增根只可能是x=-2或x=1.若增根是x=-2,解得m=-;若增根是x=1,解得m=故当m=-或m=时,方程有增根.21.(8分)完成下面的推理说明:已知:如图,BE∥CF,BE、CF分别平分∠ABC和∠BCD.求证:AB∥CD.证明:∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=∠ ABC ,∠2=∠ BCD ( 角平分线的定义 ).∵BE∥CF( 已知 ),∴∠1=∠2( 两直线平行,内错角相等 ).∴∠ABC=∠BCD( 等量代换 ).∴∠ABC=∠BCD(等式的性质).∴AB∥CD( 内错角相等,两直线平行 ).22.(9分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2).若AB=CF,∠B=45°,求∠D的度.证:(1)∵AB//CD∴∠B=∠C∵在△ABE和△DCF中:,∴△ABE≌△DCF(AAS)∴AB=CD(2)∵△ABE≌△DCF∴BE=CF∵AB=CF∴AB=BE∴∠A=∠BEA∴∠A=x(180°-∠B)=x(180°-)=∵△ABE≌△DCF∴∠D=∠A==23.(9分)疫情期间,某校根据政府防控要求用4000元购买了一批口罩,两天后,学校后勤人员发现口罩数量不多了,学校决定再次用5000元购买一批口罩作为备用,后勤人员发现这时每只口罩价格涨了1元,结果两次购买口罩的数量相同.(1)、学校两次购买口罩的单价分别是多少元?(2)、学校两次共购买口罩多少只?解:(1)、设学校第一次购买口罩的单价为x元,则第二次购买口罩的单价为(x+1)元,由题意得:=解得:x=4经检验,x=4是原分式方程的解,且符合题意.则:x+1=4+1=5答:学校第一次购买口罩的单价为4元,第二次购买口罩的单价为5元.(2)、两次购买口罩为×2=2000(只)答:学校两次共购买口罩2000只.24.(10分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠1=∠2.(1).说明△ADE≌△BFE的理由;(2).连接EG,那么EG与DF的位置关系是 EG⊥DF ,请说明理由.解:(1)∵AD//BC∴∠1=∠F.∵E是AB的中点∴AE=BE.∵在△ADE和△BFE中,∴△ADE≌△BFE(AAS).(2)EG⊥DF.理由如下:连接GE,如图,由(1)得:∠1=∠F,又∵∠1=∠2,∴∠2=∠F,∴DG=FG.由(1)知,△ADE≌ΔBFE∴DE=EF∴△GDE≌ΔGFE(SAS)∴∠GED=∠GEF.∵∠GED+∠GEF=180°∴∠GED=∠GEF=90°∴EG⊥DF.25.(10分)在△ABC中,∠ACB=90o,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.⑴当直线MN绕点C旋转到图⑴的位置时,求证:①△ACD≌△CEB;②DE=AD+BE⑵当直线MN绕点C旋转到图⑵的位置时,求证:DE=AD-BE;⑶当直线MN绕点C旋转到图⑶的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.证明:(1)∵∠ACB=90°∴∠ACD+∠BCE=90°∵AD⊥MN于D,BE⊥MN于E∴∠ADC-∠CEB=90°,∠BCE+∠CBE=90°∴∠ACD=∠CBE.∵在△ADC和△CEB中∴△ADC≌△CEB(AAS)∴AD=CE,DC=BE,∴.DE=DC+CE=BE+AD;(2)∵在△ADC和△CEB中∴△ADC≌△CEB(AAS)∴AD=CE,DC=BE ∴.DE=CE-CD=AD-BE;(3)DE=BE-AD.易证得:△ADC≌△CEB ∴AD=CE,DC=BE∴DE=CD-CE=BE-AD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上期数学期中质量检测试题A卷一、选择题:1.若a>b,则下列不等式一定成立的是().A.ba<1 B.ab>1 C.-a>-b D.a-b>02.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是(). A.a<0 B.a<-1 C.a>1 D.a>-13.下列命题中正确的是().A.对角线相等的四边形是矩形; B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形;D.对角线互相垂直且相等的四边形是正方形4.如图所示的图形中,既是轴对称图形,又是中心对称图形的是().5.不等式-3x<2的最小整数解为().A.-1 B.0 C.1 D.26.经过平移或旋转不可能将甲图案变成乙图案的是().7.在等腰梯形ABCD中,AD∥BC,AD=3,BC=7,AB=CD,E为CD的中点,四边形ABED 的周长与△BCE的周长之差为2,则AB的长为().A.8 B.3 C.6 D.78.如图所示,△ABC是一个中心对称图形的一部分,O点是对称中心,点A和点B•是一对对应点,∠C=90°,那么将这个图形补成一个完整的图形是().A.矩形 B.菱形 C.正方形 D.梯形(第8题) (第10题) (第11题)9.平行四边形的周长是25cm,对边的距离分别是2cm,3cm,•则这个平行四边形的面积为().A.15cm2 B.25c m2 C.30cm2 D.50c m210.如图所示, ABCD中,E,F分别是AD,BC中点,则图中平行四边形的个数是().A.4个 B.6个 C.7个 D.8个11.某校计划修建一座既是中心对称图形,又是轴对称图形的花坛,•从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是().A.正三角形 B.正五边形 C.等腰梯形 D.菱形12.能够找到一点,使点到各边距离都相等的图形是().①平行四边形,②菱形,③矩形,④正方形.A.①和② B.②和③ C.②和④ D.③和④13.如图所示,正五边形ABCDE绕CD的中点F旋转180°,得到五边形HGDCL,则下列说法中错误的是().A.旋转中心为点F,旋转角为180°; B.线段AE与对应线段HL平行且相等C.沿直线CD向下翻折180°得到的; D.点A的对应点为L14.如图所示,甲、乙是两张画有图形的透明胶片,•把其中一张向右平移到另一张上,形成的图形是().15.四边形的边长顺次为a,b,c,d,且满足a2+b2+c2+d2=2(ac+bd),则此四边形一定是().A.正方形 B.等腰梯形 C.平行四边形 D.矩形16.将一圆形纸片对折后再对折,得到图中所示图形,然后沿着图(1)的虚线剪开,得到两部分,其中一部分展开后的平面图形是( ).二、填空题:1.如果不等式ax+4<0的解集在数轴上的表示如图所示,那么a 的值为______.(第1题) (第2题) (第3题) 2.不等式36x <23x+5的解集是_____. 3.等腰梯形的一个锐角为60°,•一腰长为24cm ,•一底长为39cm ,•则另一底长为_______.4.如图所示,把甲图案“扶直”属于______变换.甲图案与乙图案形状、大小完全相同,若让甲图案与乙图案重合,还需______变换.5.如图所示,菱形可以看成△ADB 绕O 点按逆时针(顺时针)旋转______而成. 6.如图所示,正方形ABCD 中,对角线AC ,BD 相交于O 点,•那么图中的等腰直角三角形的个数是________.(第6题) (第9题) (第12题) (第14题) 7.正方形ACEF 的边AC 是正方形ABCD 的对角线,则正方形ACEF 与正方形ABCD•的面积之比为_________.8.如果关于x的不等式(a-1)x<a+5和2x<4的解集相同,则a的值为______.9.如图所示,已知直角梯形ABCD中,AD∥BC,∠B=90°,AC=5,AD=2,AB=3,DE•⊥AC于E点,则DE的长为______.10.等腰梯形的对角线互相垂直,若高为8,则梯形的面积是_______.11.平行四边形的面积为144,相邻两边上的高分别是8,9,•则这个平行四边形的周长是______.12.如图所示, ABCD的面积为10c m2,点E,F•分别是边AB,•CD•的中点,•则四边形DEBF的面积是________.13.有_______的平行四边形是菱形,对角线_________的四边形是菱形.14.如图所示,在矩形ABCD中,DE⊥AC于点E,∠ADE:∠EDC=3:2,则∠BDE=____.Array 15.如图所示,矩形内有两个相邻的正方形,面积分别为9和4,则阴影部分的面积为________.三、解答题.1.如图所示,已知 ABCD中,E,F分别是AB,CD上的点,AE=CF,M,N分别是DE,BF•的中点,试问四边形ENFM是平行四边形吗,请说明理由.2.如图,已知梯形ABCD中,AD∥BC,AC与BD交于点O,且AC⊥BD,AC=4,BD=3.4.(1)求梯形ABCD的面积.(2)若四边形ABCD为任意四边形,其他条件不变,求这个四边形的面积.3.如图所示,已知六边形ABCDEF的六个内角均为120°,CD=2cm,BC=•8cm,• AB=8cm,AF=5cm,试求此六边形的周长.4.如图所示,正方形ABCD中,F是CD的中点,E是BC边上一点,且AE=CD+CE,•求AF是否平分∠DAE,说说你的理由.B卷1.(学科内综合题)如图,四边形EFGH是一个矩形的球桌面,有黑白两球分别位于A,B两点,试说明怎样撞击,才能使白球先撞击台球桌面的边EF,反弹后又能击中黑球A,并加以证明.2.(探究题)如图所示,在梯形ABCD中,AD∥BC,AD=24cm,AB=8cm,BC=26cm,动点P从A点开始沿AD边向D点以1cm/s的速度运动,运点Q从C点开始沿CB边向B•点以3cm/s的速度运动,设P,Q分别从A,C同时出发,当其中一点到端点时,•另一点也随之停止运动.设运动时间为ts,t分别为何值时,四边形PQCD 是平行四边形?等腰梯形?3.(探究题)观察图和所给表格中的各数后再回答问题:当梯形个数为n时,这个图形的周长是多少?4.(探究题)如图所示,在梯形ABCD中,CD=DA=AB=12BC,请你把它分成四个形状和大小完全一样的四边形.5.(学科内综合题)如图(1)所示,已知矩形ABCD中,AD>AB,O•为对角线的交点,过O作一直线分别交BC,AD于M,N.(1)求证:梯形ABMN的面积等于梯形CDMN的面积.(2)如图(2)所示,当MN满足什么条件时,将矩形ABCD以MN为折痕翻折后,使C点恰好与A点重合(只写出满足的条件,不要求证明)?(3)在(2)问中的条件下,若翻折后不重叠部分的面积是重叠部分面积的12,• 求BM:MC的值.6.(阅读理解题)小王家里装修,他去商店买灯,商店里现有功率为100W的白炽灯和40W的节能灯,它们的单价分别为2元和32元.经了解得知,•这两种灯的照明效果和使用寿命都一样,已知小王家所在地的电价为每千瓦时0.5元,•请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算[用电量(千瓦时)=功率(千瓦)•×时间(时)].-3DA答案: A 卷一、1.D 解析:当b=-3,a=-1时,虽然满足a>b ,但31b a -=-=3>1, 所以选项A 不成立;当a=0,b=-3时,虽然满足a>b ,但ab=0<1,所以选项B 不成立; 无论a ,b 取何值,当a>b 时,应有-a<-b ,所以C 不成立.2.B 解析:因为关于x 的不等式(a+1)x>a+1,不等式两边只有除以a+1,才能得到x<1,而从结果x<1可知不等号方向变化了, 所以可得a+1<0,即a<-1,故选B .3.B 解析:根据几种特殊平行四边形的判定可知:•对角线相等的平行四边形是矩形, 对角线互相垂直的平行四边形是菱形,对角线互相垂直平分且相等的四边形是正方形. 4.D 解析:选项A 是轴对称图形,但不是中心对称图形; 选项B 是中心对称图形,但不是轴对称图形; 选项C 是中心对称图形,但不是轴对称图形. 所以A ,B ,C 均不正确,选项D 正确. 5.B 解析:如图所示,-3x<2,x>-23,所以其最小整数解是0. 6.C7.C 解析:如图所示,四边形ABCD 的周长=AB+BE+DE+AD , △BCE 的周长=BC+EC+BE ,两者之差为2,即AB+BE+DE+AD-(BC+EC+BE )=AB+AD-BC=AB+3-7=2,所以AB=6. 8.A9.A 解析:如答图中-3所示,设AE=2,AF=3,由题意知BC .AE=AF .DC , ∵2BC=3CD .BEDC ABE DCA ∵AB+BC+CD+AD=2BC+2CD=25cm , ∴CD=5cm ,∴ABCD S =CD ×AF=3×5=15(cm 2). 10.D 解析:平行四边形有ABCD , AFCE , EBFD , AGHE , EGHD , GBFH ,GFCH , GFHE .11.D12.C 解析:菱形与正方形的对角线交点到各边距离都相等. 13.D 14.A15.C 解析:∵a 2+b 2+c 2+d 2=2(ac+bd ), ∴a 2+c 2-2ab+b 2+d 2-2bd=0, ∴(a-c )2+(b-d )2=0, ∴a-c=0,b-d=0, ∴a=c ,b=d .∴四边形ABCD 一定是平行四边形(两组对边分别相等的四边形是平行四边形).• 16.C二、1.解析:由不等式得ax<-4,由数轴所表示的解集可知x>1,由于44--=1,所以a=-•4. 答案:-42.解析:不等式两边除以或乘以负数时,不等号方向改变. 答案:x>-113.如图所示,过D 点作DE ∥AB 交BC 于点E . ∵AD ∥BC ,∴四边形ABED 是平行四边形, ∴∠DEC=∠B , ∴AB=ED ,AD=BE .∵∠B=∠C=60°,AB=DC=24cm , ∴△ECD 是等边三角形, ∴CD=ED=EC=24cm . 若AD=39cm ,则BC=BE+EC=AD+EC=63cm ; 若BC=39cm ,B21EDA F则AD=BE=BC-EC=15cm,且均符合三边关系定理,∴另一底长应为63cm或15cm.答案:63cm或15cm4.解析:把甲图案“扶直”,需绕点A逆时针旋转一定的角度,所以属于旋转变换.甲图案与乙图案形状、大小完全相同,旋转之后方向相同,所以采用平移变换可以得到两图案重合的结果,注意与轴对称的区别.答案:旋转平移5.180°6.解析:三角形有8个,分别为△ABC,△BCD,△CDA,△DAB,△ABO,△BOC,△COD,•△AOD.答案:8个7.解析:如图所示,由题意得∠1=∠2=45°,D点为正方形ACEF的中心.∵正方形的两条对角线可以将正方形分成4•个大小相等的等腰直角三角形,•△ADC即为这样得到的三角形.∵S△ACD= S△ABC = 14S正方形ACEF,∴S正方形ABCD=2 S△ABC = 12S正方形ACEF,∴S正方形ACEF:S正方形ABCD=2:1.答案:2:18.解析:∵2x<4,∴x<2.∵(a-1)x<a+5与2x<4的解集相同,∴a-1= 12(a+5),∴a=7.答案:79.解析:∵直角梯形ABCD,AD∥BC,∠B=90°,∴S梯形=12(AD+BC)AB,S△ABC =12AB×BC,BEDCAF ∴S △ACD =S 梯形- S △ABC =12AD ×AB . ∵ED ⊥AC 于E 点, ∴12AC ×ED=12AD ×AB ,= S △ACD , ∵AD=2,AB=3,AC=5, ∴ED=AD ABAC=1.2. 答案:1.2 10.解析:如图所示,过点D 分别作DF ⊥BC 于F 点,DE ∥AC 交BC•延长线于点E . ∵梯形ABCD ,AD ∥BC , ∴四边形ACED 是平行四边形, ∴DE=AC ,AD=CE . ∵AB=CD ,∴AC=BD (等腰梯形对角线相等), ∴BD=DE .∵BD ⊥AC ,∴BD ⊥DE , ∴∠DBF=∠DEF=45°, ∴DF=BF=FE . ∴S 梯形ABCD =12(AD+BC )DF =12BE ×DF =12(2DF )×DF=DF 2. ∵DF=8,∴S 梯形ABCD =64.答案:6411.解析:如答图中-7所示,设AE=8,AF=9. ∵AE ×BC=CD ×AF=144, ∴BC=18,CD=16,∴ABCD L =2BC+2CD=18×2+16×2=68. 答案:68H12.解析:如答图中-8所示,过D 点作DH ⊥AB 于H . ∵四边形ABCD 是平行四边形, ∴AB //DC .∵点E ,F 分别是边AB ,CD 的中点, ∴DF=EB=12AB=12DC , ∴四边形DEBF 是平行四边形, ∴DEBF S =DF ×DH . ∵ABCD S =DC ·DH=10cm 2, ∴DEBF S =12ABCD S =5cm 2. 答案:5c m 213.一组邻边相等 互相平分且互相垂直 14.解析:∵矩形ABCD , ∴OA=OD ,∠ADC=90°, ∴∠OAD=∠ODA . ∵∠ADE :∠EDC=3:2, ∴∠ADE=54°. ∵DE ⊥AC 于点E , ∴∠OAD=∠ODA=36°,∴∠BDE=∠ADE=∠ODA=54°-36°=18°. 答案:18° 15.解析:如图所示.∵四边形EFGH ,MCDN 是正方形,且面积分别为4,9, ∴BN=2, MC=MN=3. ∵矩形ABCD , ∴S 矩形=AB ×BC=MN ×(BM+MC )=3×(2+3)=15,∴S 阴影=S 矩形-4-9=2.答案:2三、1.解析:四边形ENFM 是平行四边形. 证明:∵四边形ABCD 是平行四边形,BNE D CAF M∴AB //DC (平行四边形对边平行且相等). ∵AE=CF ,∴DF //EB ,∴四边形DEBF 是平行四边形(一组对边平行且相等的四边形是平行四边形), ∴DE //FB .∵M ,N 分别是DE ,BF 中点, ∴EM //FN ,∴四边形ENFM 是平行四边形. 2.解析:(1)∵梯形ABCD 中,AC ⊥BD ,∴S 梯形ABCD =S △ABC + S △ACD =2AC OB + 2AC OD = 2AC·(OB+OD ) =2AC·BD . ∵AC=4,DB=3.4, ∴S 梯形ABCD =4 3.42=6.8. (2)证明同上,S 四边形ABCD =12AC ·BD . 即对角线互相垂直的四边形的面积等于两条对角线乘积的一半. 3.解析:如图所示,延长ED ,BC 交于点N ,延长EF ,BA 交于点M . ∵六边形ABCDEF 的六个内角均为120°, ∴∠EDC=∠BCD=120°, ∴∠NDC=∠NCD=60°, ∴∠N=60°,DC=DN=CN , 同理∠M=60°,AF=FM=AM . 在四边形EMBN 中,∠E=120°,∠N=60°,∠M=60°,∠B=120°,∴四边形EMBN 是平行四边形, ∴BN=EM ,BM=EN .∵CD=2cm ,BC=8cm ,AB=8cm ,AF=5cm , ∴CN=2cm ,AM=5cm ,21BDCA FGDA P ∴BN=10cm ,BM=13cm , ∴EMBN 的周长为46cm ,六边形ABCDEF 的周长 =EF+FA+AB+BC+CD+ED =EMBN L -FM-DN=46-2-5=39(cm ). 4.解析:AF 平分∠DAE .证明:如图所示,延长AF 至G ,使AF=FG ,连结CG . ∵F 是CD 的中点,∴△ADF 绕点F 旋转180°得到△GCF , ∴∠D=∠DCG=90°,AD=CG . ∵正方形ABCD ,∴AD=DC ,∠D=∠DCB=90°,AD ∥BC , ∴E ,C ,G 三点共线,DC=GC . ∵AE=CD+CE ,∴AE=EG ,∴∠G=∠2. ∵∠1=∠G (两直线平行,内错角相等), ∴∠1=∠2. B 卷1.解析:如图所示.(1)先作出点A 关于台球桌面的边EF 的对称点A ′;(2)连结BA ′交EF 于点O ,将球杆沿BA ′O 的方向撞击B 球,可以使白球先撞击台球桌面的边EF ,然后反弹后又能击中黑球A . 证明:∵点A 与点A ′关于EF 成轴对称, ∴∠1=∠2.∵A ′B 与EF 交于O 点,∴∠2=∠3,∴∠1=∠3,∴符合条件.2.解析:∵AD ∥BC ,∴只要QC=PD ,四边形PQCD 就是平行四边形,此时应有3t=24-t ,解得t=6s .故当t=6s 时,四边形PQCD 是平行四边形.同理,只要PQ=CD ,PD ≠QC ,四边形PQCD 是等腰梯形.过P ,D 分别作BC 的垂线,分别交BC 于E ,F , 如图所示,•由等腰梯形的特征可知BNDCAOMEF=PD ,QE=FC=BC-AD=26-24=2, 即FC=(QC-PD )÷2, 所以2=3(24)2t t --,解得t=7s .所以当t=7s 时,四边形PQCD 是等腰梯形.3.解析:当梯形个数为n 时,图形周长=5+(n-1)×3. 4.解析:如图所示.作法:(1)分别取AB 和DC 的中点E ,F ,并连结EF ; (2)取BC 的四等分点G ,H ,I ; (3)取EF 的三等分点M ,N ; (4)连结AM ,MG ,DN ,NI ,则梯形ABGM ,GMNI ,INDC ,AMND 形状相同、面积相等.5.解析:(1)如图所示,连结BN ,DM .∵矩形ABCD 是中心对称图形,对角线的交点O 是对称中心, ∴OM=ON ,OB=OD ,∴四边形NBMD 是平行四边形(两条对角线互相平分的四边形是平行四边形), ∴ND=BM . ∵矩形ABCD ,∴AD=BC ,AB=DC ,∠A=∠ABC=∠C=∠CDN=90°, ∴AN=MC ,∴S 梯形ABMN =12(AN+BM )AB=12(ND+MC )CD=S 梯形NMCD . (2)MN ⊥AC .提示:可将梯形AMND ′与梯形CDNM 看成关于MN 所在直线成轴对称,点A 与点C 是对称点.(3)由(2)可知:△AMN 与△MCN 可以完全重合,△AND ′与△CND 可以完全重合.∵翻折后不重叠部分的面积是重叠部分的面积的12, ∴(S △ABM + S △AD`N ):S △AMN =(S △ABM + S △NDC ):S △AMN =(2AB BM + 2ND DC ):2A N A B=2AB ·(2BM ):2AB·AN=2BM:MC=1:2,∴BM:MC=1:4.6.解析:设当这两种灯的使用寿命超过xh时,小王选择节能灯合算.根据题意得2+ 1001000x×0.5>32+401000x×0.5,解这个不等式得x>1000.故当这两种灯的使用寿命超过1000h时,小王选择节能灯合算.。