【数学】2015-2016年湖北省孝感市孝南区七年级下学期数学期末试卷和答案解析PDF

合集下载

孝南区七下期末数学试卷

孝南区七下期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √9B. √16C. √-4D. π2. 已知a > b,下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a - 3 > b - 3D. a + 3 < b + 33. 若m、n是方程x² - 4x + 3 = 0的两根,则m + n的值为()A. 2B. 3C. 4D. 54. 在直角坐标系中,点P(-2,3)关于x轴的对称点坐标是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,3)5. 下列函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 2/xD. y = 3x²6. 在梯形ABCD中,AD ∥ BC,AB = 10cm,CD = 6cm,AD + BC = 18cm,则梯形的高h为()A. 3cmB. 4cmC. 5cmD. 6cm7. 若等差数列{an}的第三项为5,第六项为17,则首项a1为()A. 1B. 3C. 5D. 78. 已知函数y = kx + b(k ≠ 0),若该函数图象经过点(1,2)和(3,-4),则k和b的值分别为()A. k = -1,b = 3B. k = -1,b = -1C. k = 1,b = 3D. k = 1,b = -19. 在三角形ABC中,∠A = 90°,AB = 6cm,AC = 8cm,则BC的长度为()A. 10cmB. 12cmC. 14cmD. 16cm10. 下列各组数据中,成比例的是()A. 2, 4, 6, 8B. 1, 2, 3, 4C. 2, 4, 6, 9D. 3, 6, 9, 12二、填空题(每题5分,共30分)11. 已知x + y = 10,x - y = 2,则x = ______,y = ______。

湖北省孝感市七年级下学期数学期末考试试卷

湖北省孝感市七年级下学期数学期末考试试卷

湖北省孝感市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七下·成安期中) 下列运算中正确的是()A . (a5)2=a7B . (a3)2=a6C . (x2)3=x5D . (x3)2=x92. (2分)下列长度的三条线段能组成钝角三角形的是()A . 3,4,4B . 3,4,5C . 3,4,6D . 3,4,73. (2分) (2019七下·延庆期末) 下列式子从左到右变形是因式分解的是()A . 12xy2=3xy•4yB . (x+1)(x﹣3)=x2﹣2x﹣3C . x2﹣4x+1=x(x﹣4)+1D . x3﹣x=x(x+1)(x﹣1)4. (2分)利用数轴确定不等式组的解集,正确的是()A .B .C .D .5. (2分)若m>n,下列不等式不一定成立的是()A . m+2>n+2B . 2m>2nC .D . m2>n26. (2分)在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能确定△ABC为直角三角形的条件有()A . 2个B . 3个C . 4个D . 5个7. (2分)甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是()A .B .C .D .8. (2分) (2018七下·潮安期末) 如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y,那么下列求出这两个角的度数的方程是()A .B .C .D .9. (2分) (2018八上·江汉期中) 如图,BE、CF是△ABC的角平分线,BE、CF相交于D,∠ABC=50°,∠ACB =70°,则∠CDE的度数是()A . 50°B . 60°C . 70°D . 120°10. (2分)若方程组的解x,y满足0<x+y<1,则k的取值范围是()A . ﹣1<k<0B . ﹣4<k<﹣1C . 0<k<1D . k>﹣4二、填空题 (共8题;共9分)11. (1分) (2020七下·溧水期末) 某粒子的直径为0.000 006米,用科学记数法表示0.000 006是________.12. (1分) (2016八下·鄄城期中) 命题“在角的内部,到角的两边距离相等的点在角的平分线上”的逆命题是:________.13. (1分) (2019七下·兴化月考) 已知5x=3,5y=2,则5x+3y=________.14. (1分) (2019七下·仙桃期末) 方程4x+3y=20的所有非负整数解为________.15. (1分)计算:(﹣2x3y)2•(﹣x2y2)=________.(x+1)(x﹣1)(x2﹣1)=________.16. (2分)(2012·宿迁) 如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 交AF于点G,若∠CEF=70°,则∠GFD′=________°.17. (1分) (2019八下·广东月考) 若,则不等式的解集是________。

孝南七年级下期末数学试卷

孝南七年级下期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,属于无理数的是()A. 0.1010010001…B. 22C. -√3D. 2/32. 下列运算正确的是()A. (-3)² = -9B. (-5)³ = -125C. (-2)⁴ = 16D. (-1)⁵ = -13. 若a、b是方程2x² - 3x + 1 = 0的两根,则a² + b²的值为()A. 5B. 6C. 7D. 84. 下列函数中,y是x的一次函数的是()A. y = x² - 2x + 1B. y = √xC. y = 2x + 3D. y = 5/x5. 若m、n是方程3x² - 4x + 1 = 0的两根,则m + n的值为()B. 1C. 4D. 36. 下列各图中,正确表示函数y = 2x - 1的图象是()A. 图1B. 图2C. 图3D. 图47. 若点P(a,b)在第二象限,则a、b的符号分别是()A. a > 0,b > 0B. a < 0,b > 0C. a > 0,b < 0D. a < 0,b < 08. 若点A(2,3)关于y轴的对称点是B,则点B的坐标是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)9. 下列函数中,图象是一条直线的是()A. y = x²B. y = 2x - 3C. y = √x10. 若a、b是方程x² - 5x + 6 = 0的两根,则a² + b²的值为()A. 11B. 10C. 9D. 8二、填空题(每题2分,共20分)11. √16的值为______。

12. 若m = -3,则m² - 2m + 1的值为______。

13. 若a、b是方程2x² - 5x + 2 = 0的两根,则a + b的值为______。

湖北省孝感市七年级下学期数学期末试卷

湖北省孝感市七年级下学期数学期末试卷

湖北省孝感市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017九上·黑龙江月考) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分)(2019·河北模拟) 一个小数用科学记数法表示为8.12×10-6 ,则原数中所有0的个数是()A . 4B . 5C . 6D . 73. (2分)下列说法不正确的是()A . 选举中,人们通常最关心的数据是众数B . 从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C . 数据3、5、4、1、2的中位数是3D . 某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖4. (2分)(2016·阿坝) 如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A . 2B . 3C . 4D . 55. (2分) (2019八下·硚口月考) 计算(-3 )2的正确结果为()A .B . 6C . 18D .6. (2分)下列判断中错误的是()A . 有两角和一边对应相等的两个三角形全等B . 有两边和一角对应相等的两个三角形全等C . 有两边和其中一边上的中线对应相等的两个三角形全等D . 有一边对应相等的两个等边三角形全等7. (2分) (2019七下·乌鲁木齐期中) 如图,已知AB∥CD,AE平分∠CAB,∠C=110°,则∠EAB为()A . 30°B . 35°C . 40°D . 45°8. (2分)(2017·于洪模拟) 某汽车从A开往360km外的B,全程的前一部分为高速公路,后一部分为普通公路.若汽车在高速公路和普通公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A . 汽车在高速公路上的行驶速度为100km/hB . 普通公路总长为90kmC . 汽车在普通公路上的行驶速度为60km/hD . 汽车出发后4h到B地二、填空题 (共8题;共12分)9. (1分) (2018八上·甘肃期末) “阳光体育”活动在我市各校蓬勃开展,某校在一次大课间活动中抽查了10名学生每分钟跳绳次数,获得如下数据(单位:次):83、89、93、99、117、121、130、146、158、188.其中跳绳次数大于100的频率是________;10. (2分) (2018八上·准格尔旗期中) 如图所示,中,,BD是角平分线,,垂足是E,,,则DE的长为________cm.11. (1分) (2019七下·深圳期末) 如果一盒圆珠笔有12支,售价24元,用y(元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y与x之间的关系应该是________.12. (2分) (2020七下·越秀期末) 如图,,,,则的度数为________.13. (1分) (2017七下·淅川期末) 一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为________cm,________cm.14. (2分) (2017九上·重庆开学考) 如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为________.15. (2分) (2016七下·澧县期末) 下列各组图:① ;② ;③ ;④ 其中,左右两个图形能成轴对称的是________(填序号).16. (1分)(2020·朝阳模拟) 下图中的四边形都是矩形,根据图形,写出一个正确的等式:________.三、解答题 (共8题;共29分)17. (2分) (2020七下·建宁期末) 如图,已知ΔABC.(1)在AC的上方作射线AE,使∠CAE =∠ACB(尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,在射线AE上取一点D,使AD=BC,连接CD,请说明∠ADC =∠B.18. (15分)(2019·禅城模拟) 先化简,再求值:,其中x=﹣5.19. (2分)(2019·松北模拟) 下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2 ,面积为6的等腰三角形.20. (2分) (2019八上·庆元期末) 已知,如图,Rt△ABC中,∠BAC=90°,AB=AC,点D是BC上任意一点,过B作BE⊥AD于点E,过C作CF⊥AD于点F.求证:BE=CF+EF.21. (2分) (2020八下·定兴期末) 某剧院的观众席的座位为扇形,且按下列方式设置:排数()1234……座位数()50535659……(1)按照上表所示的规律,当每增加1时,如何变化?.(2)写出座位数与排数之间的解析式.(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.22. (2分) (2016七上·青山期中) 幻方的历史很悠久,传统幻方最早出现在下雨时代的“洛书”.“洛书”用今天的数学符号翻译出来,就是一个三阶幻方,如图1所示.(1)①请你依据“洛书”把1,2,3,5,8填入如图2剩余的方格中使每横行、每竖列以及两条对角线上的数的和都是15;②把﹣4,﹣3,﹣2,﹣1,0,1,2,3,4填入如图2的方格中,使每横行、每竖列以及两条对角线上的数的和都相等;(2)若把2x﹣4,2x﹣3,2x﹣2,2x﹣1,2x,2x+1,2x+2,2x+3,2x+4填入如图3的方格中,使每横行、每竖列以及两条对角线上的数的和都相等,则每行的和是________(用含x的式子表示)(3)根据上述填数经验,请把32 , 34 , 36 , 38 , 310 , 312 , 314 , 316 , 318填入如图4的方格中,使每横行、每竖列以及两条对角线上的数的积都相等.23. (2分) (2019八下·昭通期末) 如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.24. (2分) (2019七下·胶州期末) 如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为 .小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共12分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共29分)17-1、17-2、18-1、19-1、19-2、19-3、19-4、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、。

湖北省孝感市 七年级(下)期末数学试卷

 湖北省孝感市 七年级(下)期末数学试卷

七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A.B.C.D.2.16的平方根是()A. B. C. 4 D.3.在下列点中,与点A(-2,-4)的连线平行于y轴的是()A. B. C. D.4.在二元一次方程x+3y=1的解中,当x=2时,对应的y的值是()A. B. C. 1 D. 45.下列不等式变形正确的是()A. 由得B. 由得C. 由得D. 由得6.为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是()A. 3500B. 20C. 30D. 6007.如图,直线a、b被直线c所截,下列说法正确的是()A. 当时,一定有B. 当时,一定有C. 当时,一定有D. 当时,一定有8.将某图形的各顶点的横坐标减去3,纵坐标保持不变,可将该图形()A. 横向向右平移3个单位B. 横向向左平移3个单位C. 纵向向上平移3个单位D. 纵向向下平移3个单位9.如果关于x,y的方程组的解是正数,那a的取值范围是()A. B. C. D. 无解10.为推进课改,王老师把班级里60名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18.0分)11.若x2-25=0,则x=______.12.如图,将周长为6的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为______.13.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需______元.14.不等式组的解集是______.15.如图,直线a、b被直线c所截,若满足______,则a、b平行.16.某校在一次期末考试中,随机抽取七年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上.据此估计该校七年级360名学生中期末考试数学成绩达108分以上的学生约有______名.三、计算题(本大题共1小题,共8.0分)17.已知3既是(x-1)的算术平方根,又是(x-2y+1)的立方根,求x2-y2的平方根.四、解答题(本大题共7小题,共64.0分)18.(1)解方程组(2)解不等式,并把它的解集在数轴上表示出来:≥19.如图,在∠AOB的内部有一点P,已知∠AOB=60°.(1)过点P画直线PC∥OA,PD∥OB;(2)求出∠CPD的度数.20.“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.21.如图已知,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上.若∠EFG=55°,求∠1和∠2的度数.22.求不等式(2x-1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<-3.∴不等式的解集为x>或x<-3.请你仿照上述方法解决下列问题:(1)求不等式(2x-3)(x+1)<0的解集.(2)求不等式≥0的解集.23.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a-2|+(b-3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,-x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.24.陈老师为学校购买了运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元”王老师算了一下,说:“你肯定搞错了”.(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已经模糊不清,只能辨认应为小于5的整数,笔记本的单价可能为多少元?答案和解析1.【答案】C【解析】解:如图,∠4=∠3,∵∠2+∠1+∠4=180°,∴∠1+∠2+∠3=180°.故选:C.根据对顶角相等可得∠4=∠3,再根据平角的定义解答.本题考查了对顶角相等的性质,平角的定义,准确识图是解题的关键.2.【答案】A【解析】解:∵(±4)2=16,∴16的平方根是±4.故选:A.依据平方根的定义求解即可.本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.3.【答案】C【解析】解:∵平行于y轴的直线上所有点的横坐标相等,已知点A(-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4).故选:C.平行于y轴的直线上所有点的横坐标相等,根据这一性质进行选择.本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.4.【答案】B【解析】解:把x=2代入程x+3y=1得:2+3y=1,y=-.故选:B.把x=2代入程x+3y=1求出y即可.本题考查了二元一次方程的解的应用,主要考查学生的计算能力.5.【答案】C【解析】解:∵a>b,∴①c>0时,ac>bc;②c=0时,ac=bc;③c<0时,ac<bc,∴选项A不正确;∵a>b,∴-2a<-2b,∴选项B不正确;∵a>b,∴-a<-b,∴选项C正确;∵a>b,∴a-2>b-2,∴选项D不正确.故选:C.A:因为c的正负不确定,所以由a>b得ac>bc不正确,据此判断即可.B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6.【答案】D【解析】解:为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是30×20=600,故选:D.根据样本容量则是指样本中个体的数目,可得答案.本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7.【答案】D【解析】解:A、若∠1=∠2不符合a∥b的条件,故本选项错误;B、若a∥b,则∠1+∠2=180°,∠1不一定等于∠2,故本选项错误;C、若a∥b,则∠1+∠2=180°,故本选项错误;D、如图,由于∠1=∠3,当∠3+∠2=180°时,a∥b,所以当∠1+∠2=180°时,一定有a∥b,故本选项正确.故选:D.根据平行线的判定定理与性质对各选项进行逐一判断即可.本题考查的是平行线的判定与性质,熟知平行线的判定定理与性质是解答此题的关键.8.【答案】B【解析】解:将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形横向向左平移2个单位得到.故选:B.利用平移的规律进行判断.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.9.【答案】A【解析】解:解方程组,得:,∵方程组的解为正数,∴,解得:-4<a<5,故选:A.将a看做已知数求出方程组的解表示出x与y,根据x与y都为正数,取出a 的范围即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.【答案】B【解析】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=60,y=,当x=0,y=6符合题意,当x=1,则y=(不合题意);当x=2,则y=;(不合题意);当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=5当x=7,则y=(不合题意);当x=8,则y=(不合题意);当x=9,则y=(不合题意);当x=10,则y=(不合题意);当x=11,则y=(不合题意);当x=12,则y=0故有3种分组方案.故选:B.根据题意设5人一组的有x个,6人一组的有y个,利用把班级里60名学生分成若干小组,进而得出等式求出即可.此题主要考查了二元一次方程组的应用,根据题意分情况讨论得出是解题关键.11.【答案】±5【解析】解:∵x2-25=0,∴x2=25,解得:x=±5.故答案为:±5.直接利用平方根的定义分析得出答案.此题主要考查了平方根的定义,正确把握定义是解题关键.12.【答案】8【解析】解:∵△ABC的周长为6∴AB+BC+AC=6∵△ABC沿BC方向平移1个单位得到△DEF∴AD=CF=1,AC=DF∴四边形ABFD的周长=AB+BC+CF+DF+AD=8故答案为8由平移可得AD=CF=1,DF=AC,即可求四边形ABFD的周长.本题考查了平移的性质,熟练运用平移的性质解决问题是本题的关键.13.【答案】12【解析】解:因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元.所以买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元,所以买4支圆珠笔、4本日记本需4×3=12元.答:买4支圆珠笔、4本日记本需12元.本题中因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元,所以买4支圆珠笔、4本日记本需4×3=12元.此题可说是一道发散性的题目,既可利用方程组解决问题,也可通过适当的推理来解决问题.14.【答案】-1<x<【解析】解:,∵解不等式①得:x>-1,解不等式②得:x<,∴不等式组的解集是-1<x<,故答案为:-1<x<.根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是能找出不等式组的解集,题目比较典型,难度不大.15.【答案】∠1=∠2或∠2=∠3或∠3+∠4=180°【解析】解:∵∠1=∠2,∴a∥b(同位角相等两直线平行),同理可得:∠2=∠3或∠3+∠4=180°时,a∥b,故答案为:∠1=∠2或∠2=∠3或∠3+∠4=180°.根据同位角或内错角相等以及同旁内角互补,两直线平行可得a∥b.此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行.16.【答案】36【解析】解:∵随机抽取30名学生的数学成绩进行分析,有3名学生的成绩达108分以上,∴七年级360名学生中期末考试数学成绩达108分以上的学生约有360×=36(名);故答案为:36.先求出随机抽取的30名学生中成绩达到108分以上的所占的百分比,再乘以360,即可得出答案.此题考查了用样本估计总体,用样本估计整体让整体×样本的百分比即可.17.【答案】解:3既是(x-1)的算术平方根,又是(x-2y+1)的立方根,x-1=32=9,x-2y+1=33,x=10,y=-8,x2-y2=(x+y)(x-y)=(10-8)×(10+8)=36.∴x2-y2的平方根为±6【解析】根据算术平方根的平方,可得被开方数,根据立方根的立方,可得被开方数,根据平方差公式,可得答案.本题考查了立方根,先求被开方数,再求平方差.18.【答案】解:(1)①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=9,解得:y=3.5,所以原方程组的解为:;(2)≥,3(2+x)≥2(2x-1),6+3x≥4x-2,3x-4x≥-2-6,-x≥-8,x≤8,在数轴上表示为:.【解析】(1)①+②得出4x=8,求出x,把x=2代入①求出y即可;(2)先求出不等式的解集,再在数轴上表示出来即可.本题考查了解二元一次方程组,解一元一次不等式和在数轴上表示不等式组的解集,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.19.【答案】解:(1)如图所示;(2)如图,设PC交OB于M,PD交OA于N.∵PC∥OA,PD∥OB,∴四边形PMON是平行四边形,∴∠O=∠CPD=60°,∴∠CPD′=120°.∴∠CPD的度数为60°或120°.【解析】(1)根据要求画出图形即可;(2)利用平行四边形的性质即可解决问题;本题考查作图-复杂作图,平行四边形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,注意一题多解.20.【答案】解:(1)10÷20%=50,所以抽取了50个学生进行调查;(2)B等级的人数=50-15-10-5=20(人),画折线统计图;(3)图乙中B等级所占圆心角的度数=360°×=144°.【解析】(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,然后画出折线统计图;(3)用360°乘以B等级所占的百分比即可得到B等级所占圆心角的度数.本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化;折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图.21.【答案】解:∵长方形对边AD∥BC,∴∠3=∠EFG=55°,由翻折的性质得,∠3=∠MEF,∴∠1=180°-55°×2=70°,∵AD∥BC,∴∠2=180°-∠1=180°-70°=110°.故答案为:70°;110°.【解析】根据两直线平行,内错角相等可得∠3=∠EFG,再根据翻折的性质和平角的定义列式计算即可求出∠1,然后根据两直线平行,同旁内角互补列式计算即可求出∠2.本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.22.【答案】解:(1)根据“异号两数相乘,积为负”可得①或②,解①得不等式组无解;解②得,-1<x<;(2)根据“同号两数相除,积为正”可得①>,②<,解①得,x≥3,解②得,x<-2,故不等式组的解集为:x≥3或x<-2.【解析】(1)、(2)根据题意得出关于x的不等式组,求出x的取值范围即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.【答案】解:(1)∵|a-2|+(b-3)2+=0,∴a-2=0,b-3=0,c-4=0,∴a=2,b=3,c=4;(2)∵A(0,2),O(0,0),B(3,0),C(3,4);∴四边形AOBC为直角梯形,且OA=2,BC=4,OB=3,∴四边形AOBC的面积=×(OA+BC)×OB=×(2+4)×3=9;(3)设存在点P(x,-x),使△AOP的面积为四边形AOBC的面积的两倍.∵△AOP的面积=×2×|x|=|x|,∴|x|=2×9,∴x=±18∴存在点P(18,-9)或(-18,9),使△AOP的面积为四边形AOBC的面积的两倍.【解析】(1)根据“几个非负数相加和为0,则每一个非负数的值均为0”解出a,b,c的值;(2)由点A、O、B、C的坐标可得四边形AOBC为直角梯形,根据直角梯形的面积公式计算即可;(3)设存在点P(x,-x),使△AOP的面积为四边形AOBC的面积的两倍.根据面积列出方程×2×|x|=|x|=2×9,解方程即可.本题考查了坐标与图形性质,非负数的性质,梯形的面积,三角形的面积,难度适中.根据非负数的性质求出a,b,c的值是解题的关键.24.【答案】解:(1)设王老师购买单价为8元的图书x本,购买单价为12元的图书y 本,根据题意得:,解得:,∵x,y均为正整数,∴陈老师搞错了.(2)设王老师购买单价为8元的图书m本,则购买单价为12元的图书(104-m)本,根据题意得:,解得:<m<.∵m为正整数,∴m=42,∴1500-418-8m-12(104-m)=2.答:笔记本的单价为2元.【解析】(1)设王老师购买单价为8元的图书x本,购买单价为12元的图书y本,根据陈老师花了(1500-418)元购买了两种书共105本,即可得出关于x,y的二元一次方程组,解之可得出x,y的值,由该值不为正整数可得出陈老师搞错了;(2)设王老师购买单价为8元的图书m本,则购买单价为12元的图书(104-m)本,根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中的正整数,将其代入1500-418-8m-12(104-m)中即可求出结论.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

【解析版】孝感市孝南区七级下期末数学试卷

【解析版】孝感市孝南区七级下期末数学试卷

2014-2015学年湖北省孝感市孝南区七年级(下)期末数学试卷一、精心选一选,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.下列各数中,是无理数的是()A.B.3.14 C.D.2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为()A.1 B.2 C.3 D.43.点(﹣2015,2015)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣5.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.2x>2y D.﹣6.要反映某种股票的涨跌情况,最好选择()A.条形统计图B.折线统计图C.扇形统计图D.列表7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B. C.D.8.下列命题错误的有()①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°二、耐心填空,准确无误(每小题3分,共计18分)11.已知实数x、y满足+|y+3|=0,则x+y的值为.12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.13.如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y=.14.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.15.若方程组只有四个整数解,则实数a的取值范围.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2015的坐标是.三、用心做一做,显现你的能力.(本大题共8个小题,共72分)17.3××﹣||1)解方程组(2)解不等式组.1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.20.解不等式(2x+1)(3x﹣2)>0时,根据有理数乘法法则“两数相乘,同号得正”有①,或②,解不等式①,得x>;解不等式②,得x<,则不等式(2x+1)(3x﹣2)>0的解集为x>或x<,请参照例题,解不等式<0.21.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.22.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.2014-2015学年湖北省孝感市孝南区七年级(下)期末数学试卷参考答案与试题解析一、精心选一选,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.下列各数中,是无理数的是()A.B.3.14 C.D.考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、=2是有理数,故A错误;B、3.14是有理数,故B错误;C、=2是有理数,故C错误;D、=2是无理数,故D正确;故选:D.点评:本题考查了无理数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为()A.1 B.2 C.3 D.4考点:平行线的性质.分析:先根据平行线的性质得出∠END=∠EMD,再由对顶角相等得出∠END=∠CNF,∠EMB=∠AMN,由此可得出结论.解答:解:∵直线AB∥CD,∴∠END=∠EMD.∵∠END=∠CNF,∠EMB=∠AMN,∴∠END=∠CNF=∠EMB=∠AMN.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.点(﹣2015,2015)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:首先根据2015>0,﹣2015<0,可得点的横坐标小于0,纵坐标大于0,然后根据每个象限的点的横坐标、纵坐标的正负,可得点在第二象限,据此解答即可.解答:解:∵2015>0,﹣2015<0,∴点的横坐标小于0,纵坐标大于0,∴点在第二象限,故选:B.点评:此题主要考查了点的坐标,以及象限的特征和判断,解答此题的关键是要明确:建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限,坐标轴上的点不属于任何一个象限,要明确每个象限的点的横坐标、纵坐标的正负.4.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣考点:二元一次方程的解.专题:计算题.分析:把x与y的值代入方程计算即可求出a的值.解答:解:把代入方程得:8﹣3a=7,解得:a=.故选C.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.2x>2y D.﹣考点:不等式的性质.分析:A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:首先根据不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,判断出﹣x<﹣y;然后根据不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,可得3﹣x<3﹣y,据此判断即可.C:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.解答:解:∵x>y,∴x﹣3>y﹣3,∴选项A正确;∵x>y,∴﹣x<﹣y,∴3﹣x<3﹣y,∴选项B错误;∵x>y,∴2x>2y,∴选项C正确;∵x>y,∴﹣,∴选项D正确.故选:B.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6.要反映某种股票的涨跌情况,最好选择()A.条形统计图B.折线统计图C.扇形统计图D.列表考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:要反映某种股票的涨跌情况,最好选择折线统计图,故选:B.点评:本题考查的是统计图的选择,利用扇形统计图、折线统计图、条形统计图各自的特点来判断是解题关键.7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B. C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题的关键是先解不等式组,然后再在数轴上表示.解答:解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.点评:本题考查一元一次不等式组的解集及在数轴上的表示方法.8.下列命题错误的有()①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个考点:命题与定理.分析:根据数轴上的点与实数的关系对①进行判断;根据无理数的定义对②进行判断;根据点到直线的距离的定义对③进行判断;根据平行线的性质对④进行判断.解答:解:实数与数轴上的点一一对应,所以①为真命题;无限不循环小数是无理数,所以②为假命题;直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以③为假命题;两条平行直线被第三条直线所截,同旁内角互补,所以④为假命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a考点:实数.分析:A、根据平方运算的特点即可判定;B、根据平方根的性质即可判定;C、根据绝对值的性质即可判定;D、根据实数的绝对值的性质进行即可判定.解答:解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.点评:本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°考点:平行线的性质.分析:过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,然后表示出∠C整理即可得解.解答:解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选C.点评:本题考查了平行线的性质,此类题目难点在于过拐点作平行线.二、耐心填空,准确无误(每小题3分,共计18分)11.已知实数x、y满足+|y+3|=0,则x+y的值为﹣2.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成10组.考点:频数(率)分布表.分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.解答:解:143﹣50=93,93÷10=9.3,所以应该分成10组.故答案为:10.点评:本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.13.如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y=125°.考点:平行线的性质.分析:先根据AB∥CD,∠x=80°,∠z=25°得出∠CEF的度数,再由CD∥EF即可得出∠y的度数.解答:解:∵AB∥CD,∠x=80°,∠z=25°,∴∠z+∠CEF=∠x=80°,∴∠CEF=80°﹣25°=55°.∵CD∥EF,∴∠y=180°﹣55°=125°.故答案为:125°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.14.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是20元和2元.考点:二元一次方程组的应用.分析:通过理解图形可知本题存在两个等量关系,即每件T恤价格×2+每瓶矿泉水的价格×2=44,每件T恤价格+每瓶矿泉水的价格×3=26.根据这两个等量关系可列出方程组.解答:解:设每件T恤价格和每瓶矿泉水的价格分别为x元,y元,则,解得.故每件T恤和每瓶矿泉水的价格分别是20元和2元.故答案为:20,2.点评:考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.若方程组只有四个整数解,则实数a的取值范围﹣3<a≤﹣2.考点:一元一次不等式组的整数解.分析:首先解不等式组,根据不等式组只有四个整数解,即可确定a的范围.解答:解:,解①得:x≥a,解②得:x<2.则不等式组的解集是:a≤x<2,则不等式组的整数解是:1,0,﹣1,﹣2.则﹣3<a≤﹣2.故答案是:﹣3<a≤﹣2.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2015的坐标是(504,504).考点:规律型:点的坐标.分析:观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.解答:解:2015÷4=503…3,∴顶点A2015与顶点A3所在的象限相同,其坐标为:横坐标是503+1=504,纵坐标是503+1=504,∴A2015(504,504).故答案为:(504,504).点评:本题主要考查对正方形的性质,坐标与图形性质及点的坐标等知识点的理解和掌握,能根据已知找出规律是解此题的关键.三、用心做一做,显现你的能力.(本大题共8个小题,共72分)17.3××﹣||考点:实数的运算.分析:本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3×(2﹣)×﹣(2﹣)=4﹣2﹣2+=2﹣.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等考点的运算.1)解方程组(2)解不等式组.考点:解二元一次方程组;解一元一次不等式组.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1),①+②得:3x=6,即x=2,把x=2代入①得:y=2,则方程组的解为;(2),由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:假(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.考点:命题与定理;平行线的判定与性质.分析:(1)利用平行线的判定方法进而判断即可;(2)利用平行线的判定方法求出即可.解答:解:(1)若∠1=∠2,则AB∥CD,是假命题;故答案为:假;(2)加条件:BE∥FD,∴∠EBD=∠FDN,又∵∠1=∠2,∴∠ABD=∠CDN,∴AB∥CD.点评:此题主要考查了命题与定理以及平行线的判定,正确把握平行线的判定方法是解题关键.20.解不等式(2x+1)(3x﹣2)>0时,根据有理数乘法法则“两数相乘,同号得正”有①,或②,解不等式①,得x>;解不等式②,得x<,则不等式(2x+1)(3x﹣2)>0的解集为x>或x<,请参照例题,解不等式<0.考点:解一元一次不等式组.专题:阅读型.分析:根据题中的解题方法可把原不等式化为①,或②,然后分别解两个不等式组,再得到原不等式的解集.解答:解:根据题意得①,或②,解不等式①,得﹣<x<;解不等式②无解,所以原不等式的解集为﹣<x<.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.21.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(﹣5,2),C(﹣2,﹣2).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.考点:作图-平移变换.分析:(1)根据直角坐标系的特点写出各点的坐标;(2)根据题意可得,△ABC向左平移3个单位,向下平移1个单位得到△A1B1C1,作出△ABC;(3)用△ABC所在的矩形的面积减去三个小三角形的面积即可.解答:解;(1)由图可得,B(﹣5,2),C(﹣2,﹣2);(2)所作图形如图所示:△ABC向左平移3个单位,向下平移1个单位得到△A1B1C1;(3)S△ABC=5×4﹣×1×2﹣×3×4﹣×3×5=20﹣1﹣6﹣7.5=5.5.故答案为;﹣5,2,﹣2,﹣2.点评:本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有100人,并补全条形统计图;(2)在扇形统计图中,m=30,n=10,表示区域C的圆心角为144度;(3)全校学生中喜欢篮球的人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用B组频数除以其所占的百分比即可求得样本容量;(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;解答:解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100﹣30﹣20﹣10=40人,条形统计图为:(2)∵A组有30人,D组有10人,共有100人,∴A组所占的百分比为:30%,D组所占的百分比为10%,∴m=30,n=10;表示区域C的圆心角为×360°=144°;(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.点评:本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.考点:一元一次不等式组的应用;二元一次方程组的应用.专题:方案型;图表型.分析:(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.解答:解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.点评:解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.考点:坐标与图形性质;解二元一次方程组;平行线的性质;三角形的面积.分析:(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG 进行计算.解答:解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=|t﹣1|•2+|t﹣1|•2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).点评:本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.。

精品解析:湖北省孝昌县2015-2016学年度下学期期末质量检测七年级数学试卷(原卷版)

精品解析:湖北省孝昌县2015-2016学年度下学期期末质量检测七年级数学试卷(原卷版)

湖北省孝昌县(2015—2016)学年度下学期期末质量检测七年级数学试卷一、精心选一选,相信自己的判断!(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图,下列推理错误的是()A. ∵,B. ∵C. D. ∵2. 下列方程是二元一次方程的是()A. B. C. D.3. 下列各数中,属于无理数的是()A. B. C. D. 04. 点向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A. B. C. D.5. 不等式的解集在数轴上表示为()A. B.C. D.6. 某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A. 25人B. 35人C. 40人D. 100人7. 不等式组的解集是()A. B. ≥3 C. 1≤﹤3 D. 1﹤≤38. 已知,则=()A. B. C. 1 D.9. 为了检查一批零件的质量,从中抽取10件,测得它们的长度,下列叙述正确的是()A. 这一批零件的质量全体是总体B. 从中抽取的10件零件是总体的一个样本C. 这一批零件的长度的全体是总体D. 每一个零件的质量为个体10. 已知直线,交于,交于,若的度数比的2倍多,设和的度数分别为、,则下列正确的方程组为()A. B. C. D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)11. 若是的立方根,的平方根是,则_____________.12. 不等式组的整数解是_____________.13. 若实数的两个平方根是方程的一组解,则的值为_____________.14. 已知点和两点,且直线与坐标轴围成的三角形的面积等于10,则点的坐标为_____________.15. 考察50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是1,9,15,5,则第四组的频数是_____________.16. 如图,7个大小、形状完全相同的小长方形组成1个周长为68的大长方形,则大长方形的面积为_____________.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分)17. 解方程组或不等式组.(1)(2)18. 如图,直线,平分,,求的度数.19. 某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?20. 某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?21. 如图,在直角坐标系中,点,,在格点上.(1)请你写出各顶点的坐标;(2)求;(3)若把向上平移2个单位,再向左平移2个单位,得,请你在图中画出并写出各顶点的坐标.22. 某商场花82000元购进了一批衣服,每件零售价为160元时,卖出了250件,但发现销售量不大,营业部决定每件降价20元销售,则商场至少要再出售多少件后才能收回成本?23. 如图,在平面直角坐标系中,已知,,三点,其中满足关系式.(1)求的值;(2)如果在第二象限内有一点,那么请用含的式子表示四边形的面积;(3)在(2)的条件下,是否存在点,使四边形的面积与三角形的面积相等?若存在,求出点的坐标;若不存在,请说明理由.24. 某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300㎏,用去了1520元钱,这两种蔬菜当天全部售完一共赚了多少元钱?(2)第二天,该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少㎏?。

湖北省孝感市孝南区2015-2016学年七年级数学下学期期中调研考试试题

湖北省孝感市孝南区2015-2016学年七年级数学下学期期中调研考试试题

湖北省孝感市孝南区2015-2016学年七年级数学下学期期中调研考试试题七年数学试卷答案一、选择题C 、B 、D 、B 、C C 、C 、D 、D 、C二、填空题11、如果两个角均为同一个角的邻补角,那么两个角相等12、(0,1) 13、30°7 1 15、2或2 16、(2015,2)三、解答题17、(1)解原式=8÷3-32(2)解:∵(x-2)2=9 =38-32∴x-2=±3=2 ∴x=5或-118、解(1)由题意得: 又∵2y+2是a 的立方根(x-6)+(3x+14)=0 ∴2y+2=364 解得:x=-2 ∴y=1∴a=(x-6) 2=64 即x=-2 y=1 a=64(2)由(1)知:x=-2∴1-4x=1-4³(-2)=9∴4x -1=3即:1-4x 的算术平方根为319、解:OA ⊥OB理由:∵OE 、OF 分别平分∠AOC ,∠BOC∴∠EOC=21∠AOC ∠FOC=21∠BOC又∵∠EOF=∠EOC-∠FOC=21∠AOC-21∠BOC =21(∠AOC —∠BOC ) =21∠AOB∴∠AOB=2∠EOF=2³45°=90°即:OA ⊥OB20、解:∵PQ ∥y 轴 ∴点P 与点Q 横坐标相等∴2m+1=2 ∴m=21∴P(2, 23) 又∵Q (2,-3)∴PQ=923-23=-)(21、解BD ∥CF理由:∵∠1=∠2∴∠DA ∥FB ∴∠D=∠DBF又∵∠D=∠3∴∠DBF=∠3∴BD ∥CF22、解:(1)画图略(2)A 1(1,2) B 1(3,6) C 1(7,3)23、解:(1)∵042=-++b a ∴a+2=0 b-4=0∴a=-2 b=4∴A(-2,0) B(4,0) 又∵C(0,3) ∴AB=42-+=6 CO=3∴S △ABC=21AB CO=21³6³3=9(2)设M (x ,0) 则AM=2)2(--x +=x 又∵S △ACM=31S △ABC ∴21AM ²OC=31³9 ∴212+x ³3=2 ∴2+x =2x+2=±2x=0或-4即:M (0,0)或(-4,0)24、解(1)过P 点作,PE ∥AB ,则: ∠A=∠APE∵ AB ∥CD ∴PE ∥CD ∴∠EPC=∠C又∵∠APC=∠APE+∠EPC∴∠APC=∠A+∠C(2)∠C=∠A+∠APC(可仿照(1)证明(3)∠A=∠C+∠APC。

湖北省孝感市七年级下学期数学期末试卷

湖北省孝感市七年级下学期数学期末试卷

湖北省孝感市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·道外模拟) 下列运算正确的是()A . a2•a3=a6B . (﹣2ab3)2=﹣4a2b6C . (﹣a2)3=﹣a6D . 2a+3b=5ab2. (2分) (2020七下·吴兴期中) 某种冠状病毒的大小约为0.000125mm,该数用科学记数法表示正确的是()A . 0.125×10﹣3B . 0.125×10﹣4C . 1.25×10﹣3D . 1.25×10﹣43. (2分) (2016七下·毕节期中) 下列关系式中,正确的是()A . (a﹣b)2=a2﹣b2B . (a+b)(a﹣b)=a2+b2C . (a+b)2=a2+b2D . (a+b)2=a2+2ab+b24. (2分)(2017·姜堰模拟) 下列计算正确的是()A . (m﹣n)2=m2﹣n2B . (2ab3)2=2a2b6C . 2xy+3xy=5xyD . =2a5. (2分) (2020七下·抚顺期末) 为直线上一点,,若,则()A . 30°B . 40°C . 50°D . 60°6. (2分) (2019九上·台安月考) 如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A . 35°B . 40°C . 50°D . 65°7. (2分)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A . y=0.05xB . y=5xC . y=100xD . y=0.05x+1008. (2分)图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为()A .B .C . 42D . 44二、填空题 (共8题;共9分)9. (1分)下列各式: ,x+y, , , , , a- b, (x2-2x)中,整式有________;分式有________.10. (1分) (2019七下·许昌期末) 如图,有一条直的宽纸带,按图折叠,则∠α的度数为________.11. (1分) (2018七上·衢州月考) 计算:0.22017×52018=________.12. (1分)一个圆柱体和一个圆锥体的底面积相等,它们的体积比是4:3,它们的高度比是________。

孝感市七年级下学期期末考试数学试题

孝感市七年级下学期期末考试数学试题

孝感市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2014·百色) 化简得()A . 100B . 10C .D . ±102. (2分) (2017七下·东莞期末) 下列命题是真命题的是()A . 邻补角相等B . 对顶角相等C . 内错角相等D . 同位角相等3. (2分) (2017七下·南通期中) 如果点P(a﹣4,a)在y轴上,则点P的坐标是()A . (4,0)B . (0,4)C . (﹣4,0)D . (0,﹣4)4. (2分) (2017七下·南江期末) 已知,则的值是()A . -1B . 1C . -2016D . 20165. (2分)若关于x的不等式(2﹣m)x<1的解为x>,则m的取值范围是()A . m>0B . m<0C . m>2D . m<26. (2分)(2017·江阴模拟) 下列调查中,不适合采用抽样调查的是()A . 了解滨湖区中小学生的睡眠时间B . 了解无锡市初中生的兴趣爱好C . 了解江苏省中学教师的健康状况D . 了解“天宫二号”飞行器各零部件的质量7. (2分) (2019七下·许昌期末) 在下列四个图案中,不能用平移变换来分析其形成过程的是()A .B .C .D .8. (2分) (2018七下·韶关期末) 如图,下列条件中不能判定AB∥CD的是()A . ∠3=∠4B . ∠1=∠5C . ∠4+∠5=180°D . ∠3+∠5=180°9. (2分)(2018·来宾模拟) 下列命题是真命题的是()A . 如果a+b=0,那么a=b=0B . 的平方根是±4C . 有公共顶点的两个角是对顶角D . 等腰三角形两底角相等10. (2分) (2019七下·瑞安期末) 陈老师对56名同学的跳绳成绩进行了统计,跳绳个数140个以上的有28名同学,则跳绳个数140个以上的频率为()A . 0.4B . 0.2C . 0.5D . 2二、填空题 (共6题;共7分)11. (2分)(1)16的算术平方根是________ ;(2)-27的立方根是________ .12. (1分) (2017七下·岳池期末) 《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为________.13. (1分)若x、y的值满足3x﹣y﹣7=0,2x+3y=1,y=kx+9,则k的值等于________ .14. (1分)自编一个解集为x≥2的一元一次不等式组________15. (1分) (2020七下·衢州期中) 如图,AB∥CD,若∠A=20°,∠E=67°,则∠C的度数为________。

2015-2016年湖北省孝感市孝南区七年级(下)期末数学试卷(解析版)

2015-2016年湖北省孝感市孝南区七年级(下)期末数学试卷(解析版)

2015-2016学年湖北省孝感市孝南区七年级(下)期末数学试卷一、选择题(每题3分)1.(3分)如图,∠1与∠2互为邻补角的是()A.B.C.D.2.(3分)下列实数﹣5,2,,﹣,,3.14159,无理数有()A.1个B.2个C.3个D.4个3.(3分)下列调查中,适合普查的是()A.了解全市中学生的上网时间B.检测一批灯管的使用寿命C.了解神舟飞船的设备零件的质量状况D.了解某品牌食品的色素添加情况4.(3分)点M(2016,2016+a2)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)若是二元一次方程3x﹣ay=24的一组解,则a的值是()A.1B.2C.3D.46.(3分)若a>b,则下列式子中错误的是()A.a﹣5>b﹣5B.5﹣a>5﹣b C.5a>5b D.>7.(3分)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.8.(3分)用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图9.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等10.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.4二、填空题(每题3分)11.(3分)把点P(﹣6,7)向左平移5个单位,再向上平移2个单位,所得点P′的坐标是.12.(3分)﹣2的相反数是,绝对值是.13.(3分)已知实数a、b满足+|b﹣2|=0,则ab=.14.(3分)不等式组无解,则a的取值范围是.15.(3分)如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3=.16.(3分)一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.三、解答题17.(4分)计算:+﹣.18.(4分)计算:5(﹣)×﹣|2﹣|19.(4分)解方程组.20.(4分)解不等式组.21.(8分)已知方程组的解为非负数,求整数a的值.22.(8分)已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”(1)如图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知AB CD,EM、FN分别平分和,则(2)试判断这个命题的真假,并说明理由.23.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1、C1的坐标.24.(10分)某市共有45000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m=,n=,x=,y=;(2)在扇形图中,C等级所对应的圆心角是度;(3)如果该校九年级共有500名男生,则其中成绩等级达到优秀和良好的共有多少人?25.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如表所示:(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?26.(12分)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠P AC、∠APB、∠PBD三个角的数量关系是(1)如图(2),当动点P落在第②部分时,直接写出∠P AC、∠APB、∠PBD三个角的数量关系是(3)如图(3),当动点P落在第③部分时,直接写出∠P AC、∠APB、∠PBD三个角的数量关系是(4)选择以上一种结论加以证明.2015-2016学年湖北省孝感市孝南区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分)1.(3分)如图,∠1与∠2互为邻补角的是()A.B.C.D.【解答】解:根据邻补角定义可得D是邻补角,故选:D.2.(3分)下列实数﹣5,2,,﹣,,3.14159,无理数有()A.1个B.2个C.3个D.4个【解答】解:﹣5是有理数;2是有数;=3是有理数,﹣是无理数,是一个分数,是有理数,3.14159是有限小数,是有理数.故选:A.3.(3分)下列调查中,适合普查的是()A.了解全市中学生的上网时间B.检测一批灯管的使用寿命C.了解神舟飞船的设备零件的质量状况D.了解某品牌食品的色素添加情况【解答】解:A、了解全市中学生的上网时间,人数较多,应采用抽样调查,故此选项错误;B、检测一批灯管的使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C、了解神舟飞船的设备零件的质量状况,意义特别重大,应采用普查,故此选项正确;D、了解某品牌食品的色素添加情况,普查具有破坏性,应采用抽样调查,故此选项错误;故选:C.4.(3分)点M(2016,2016+a2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a2≥0,∴2016+a2≥2016,∴点M(2016,2016+a2)在第一象限.故选:A.5.(3分)若是二元一次方程3x﹣ay=24的一组解,则a的值是()A.1B.2C.3D.4【解答】解;∵是二元一次方程3x﹣ay=24的一组解,∴3×3﹣a×(﹣5)=24,解得,a=3,故选:C.6.(3分)若a>b,则下列式子中错误的是()A.a﹣5>b﹣5B.5﹣a>5﹣b C.5a>5b D.>【解答】解:A、已知a>b,由不等式的性质1可知A正确,与要求不符;B、由a>b,可知﹣a<﹣b,则5﹣a<5﹣b,故B错误,与要求相符;C、已知a>b,由不等式的性质2可知C正确,与要求不符;D、已知a>b,由不等式的性质2可知C正确,与要求不符.故选:B.7.(3分)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x ≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,即:.故选:C.8.(3分)用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【解答】解:用统计图来描述某班同学的身高情况,最合适的是频数分布直方图.故选:D.9.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选:A.10.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.4【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.二、填空题(每题3分)11.(3分)把点P(﹣6,7)向左平移5个单位,再向上平移2个单位,所得点P′的坐标是(﹣11,9).【解答】解:由题意可得,平移后点的横坐标为﹣6﹣5=﹣11;纵坐标为7+2=9,所以所得点P′的坐标是(﹣11,9).故答案为(﹣11,9).12.(3分)﹣2的相反数是2﹣,绝对值是2﹣.【解答】解:﹣2的相反数是﹣(﹣2)=2﹣;绝对值是|﹣2|=2﹣.故本题的答案是2﹣,2﹣.13.(3分)已知实数a、b满足+|b﹣2|=0,则ab=8.【解答】解:由题意得,a﹣2b=0,b﹣2=0,解得,a=4,b=2,则ab=8,故答案为:8.14.(3分)不等式组无解,则a的取值范围是a≤2.【解答】解:∵不等式组无解,∴a的取值范围是a≤2;故答案为a≤2.15.(3分)如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3=30°.【解答】解:∵AB∥EF,∴∠1=∠GFE,∵∠1=80°,∴∠GFE=80°,∵CD∥EF,∴∠2+∠DFE=180°,∵∠2=130°,∴∠DFE=50°,∵∠3=∠GFE﹣∠DFE=80°﹣50°=30°;故答案为:30°.16.(3分)一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是(5,0).【解答】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).三、解答题17.(4分)计算:+﹣.【解答】解:原式=8﹣4﹣=.18.(4分)计算:5(﹣)×﹣|2﹣|【解答】解:原式=5(3﹣)×+2﹣=12﹣4+2﹣=14﹣5.19.(4分)解方程组.【解答】解:①×2+②得:5x=30,解得:x=6,把x=6代入①得:12+y=13,解得:y=1,∴方程组的解为.20.(4分)解不等式组.【解答】解:,解①得x<,解②得x≥﹣3.则不等式组的解集是﹣3≤x<.21.(8分)已知方程组的解为非负数,求整数a的值.【解答】解:,①×3+②得:5x=6a+5﹣a,即x=a+1≥0,解得a≥﹣1;②﹣①×2得:5y=5﹣a﹣4a,即y=1﹣a≥0,解得a≤1;则﹣1≤a≤1,即a的整数值为:﹣1,0,1.22.(8分)已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”(1)如图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知AB∥CD,EM、FN分别平分∠GEB和∠EFD,则EM∥FD(2)试判断这个命题的真假,并说明理由.【解答】解:(1)已知AB∥CD,EM、FN分别平分∠GEB和∠EFD,则EM∥FD;故答案为:∥,∠GEB,∠EFD,EM∥FD;(2)此命题为真命题,证明:∵AB∥CD,∴∠GEB=∠EFD,∵EM、FN分别平分∠GEB和∠EFD,∴∠GEM=∠GEB,∠EFN=∠EFD,∴∠GEM=∠EFN,∴EM∥FD.23.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1、C1的坐标.【解答】解:(1)如图所示:;(2)如图所示:A1(4,5),B1(2,1),C1(1,3).24.(10分)某市共有45000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m=20,n=8,x=0.4,y=0.16;(2)在扇形图中,C等级所对应的圆心角是57.6度;(3)如果该校九年级共有500名男生,则其中成绩等级达到优秀和良好的共有多少人?【解答】解:(1)∵良好的人数占40%,∴m=50×40%=20,∴x ==0.4;∴y=1﹣0.38﹣0.4﹣0.06=0.16,n=50×0.16=8;故答案分别为:20,8,0.4,0.16;(2)∵y=0.16,∴C等级所对应的圆心角=360×0.16=57.6°.故答案为:57.6;(3)∵该校九年级共有500名男生,成绩等级达到优秀和良好频率和=0.38+0.4=0.78,∴成绩等级达到优秀和良好的人数=500×0.78=390(人).答:成绩等级达到优秀和良好的共有390人.25.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如表所示:(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【解答】解:(1)设生产A种产品x件,则B种产品(50﹣x)件,则,解得,30≤x≤32,∴生产A种、B种的方案有三种,分别是:方案一:生产A种产品30件,B种产品20件;方案二:生产A种产品31件,B种产品19件;方案三:生产A种产品32件,B种产品18件;(2)方案一获利:30×80+120×20=4800元,方案二获利:31×80+120×19=4760元,方案三获利:32×80+120×18=4720元,即:生产A种产品30件,B种产品20件,获得的利润最大,最大利润为4800元.26.(12分)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠P AC、∠APB、∠PBD三个角的数量关系是∠P AC+∠APB+∠PBD=360°(1)如图(2),当动点P落在第②部分时,直接写出∠P AC、∠APB、∠PBD三个角的数量关系是∠P AC+∠PBD=∠APB(3)如图(3),当动点P落在第③部分时,直接写出∠P AC、∠APB、∠PBD三个角的数量关系是∠P AC=∠APB+∠PBD(4)选择以上一种结论加以证明.【解答】解:(1)如图(1),过点P作PE∥AC,则∠P AC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠P AC+∠APB+∠PBD=360°.故答案为:∠P AC+∠APB+∠PBD=360°;(2)如图(2),过点P作PE∥AC,则∠APE=∠CAP,∵AC∥BD,PE∥AC,∴PE∥BD,∴∠EPB=∠PBD,∴∠P AC+∠PBD=∠APB.故答案为:∠P AC+∠PBD=∠APB;(3)如图(3),延长BA,则∠PBD=∠PBA+∠ABD,∠P AC=∠P AF+∠CAF,∵AB∥CD,∴∠ABD=∠CAF,∴∠P AC﹣∠PBD=∠P AF﹣∠PBA,而∠PBA+∠APB=∠P AF,∴∠APB=∠P AC﹣∠PBD,∴∠P AC=∠APB+∠PBD.故答案为:∠P AC=∠APB+∠PBD;(4)例如(1),过点P作PE∥AC,则∠P AC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠P AC+∠APB+∠PBD=360°.。

孝感市七年级下册末数学试卷及答案

孝感市七年级下册末数学试卷及答案

一、解答题1.如图1,已知,点A (1,a ),AH ⊥x 轴,垂足为H ,将线段AO 平移至线段BC ,点B (b ,0),其中点A 与点B 对应,点O 与点C 对应,a 、b 满足24(3)0a b -+-=.(1)填空:①直接写出A 、B 、C 三点的坐标A (________)、B (________)、C (________); ②直接写出三角形AOH 的面积________.(2)如图1,若点D (m ,n )在线段OA 上,证明:4m =n .(3)如图2,连OC ,动点P 从点B 开始在x 轴上以每秒2个单位的速度向左运动,同时点Q 从点O 开始在y 轴上以每秒1个单位的速度向下运动.若经过t 秒,三角形AOP 与三角形COQ 的面积相等,试求t 的值及点P 的坐标.解析:(1)①1,4;3,0;2,﹣4;②2;(2)见解析;(3)t =1.2时,P (0.6,0),t =2时,P (﹣1,0).【分析】(1)①利用非负数的性质求出a ,b 的值,可得结论.②利用三角形面积公式求解即可.(2)连接DH ,根据△ODH 的面积+△ADH 的面积=△OAH 的面积,构建关系式,可得结论.(3)分两种情形:①当点P 在线段OB 上,②当点P 在BO 的延长线上时,分别利用面积关系,构建方程,可得结论.【详解】(1)解:①∵24(3)0a b --=, 又∵4a -,(b ﹣3)2≥0,∴a =4,b =3,∴A (1,4),B (3,0),∵B 是由A 平移得到的,∴A 向右平移2个单位,向下平移4个单位得到B ,∴点C 是由点O 向右平移2个单位,向下平移4个单位得到的,∴C (2,﹣4),故答案为:1,4;3,0;2,﹣4.②△AOH的面积=12×1×4=2,故答案为:2.(2)证明:如图,连接DH.∵△ODH的面积+△ADH的面积=△OAH的面积,∴12×1×n+12×4×(1﹣m)=2,∴4m=n.(3)解:①当点P在线段OB上,由三角形AOP与三角形COQ的面积相等得:1 2OP·y A=12OQ·x C,∴12×(3﹣2t)×4=12×2t,解得t=1.2.此时P(0.6,0).②当点P在BO的延长线上时,由三角形AOP与三角形COQ的面积相等得:1 2OP·y A=12OQ·x C,1 2×(2t﹣3) ×4=12×2×t,解得t=2,此时P(﹣1,0),综上所述,t=1.2时,P(0.6,0),t=2时,P(﹣1,0).【点睛】本题考查坐标与图形变化-平移,非负数的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题.2.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB ⊥DG (EF );当n =90°时,∠C =∠CBF =90°,∴BC ⊥DG (EF ),AC ⊥DE (GF );当n =120°时,∴AB ⊥DE (GF ).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.3.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.∠GEH=12【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA )﹣∠ABF=180°﹣120°+∠GCA ﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.5.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠,BF 平分ABC ∠,DF 平分ADC ∠, 1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.6.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD .(1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGHBGD GF MGNC∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.7.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12∠HAP;理由见解析.【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC =∠ABM +∠CBM =100°;(2)过B 作BP //HD //GE ,过F 作FQ //HD //GE ,如图2,∴∠ABP =∠HAB ,∠CBP =∠BCG ,∠AFQ =∠HAF ,∠CFQ =∠FCG ,∴∠ABC =∠HAB +∠BCG ,∠AFC =∠HAF +∠FCG ,∵∠DAB =120°,∴∠HAB =180°﹣∠DAB =60°,∵AF 平分∠HAB ,BC 平分∠FCG ,∠BCG =20°,∴∠HAF =30°,∠FCG =40°,∴∠ABC =60°+20°=80°,∠AFC =30°+40°=70°,∴∠ABC >∠AFC ;(3)过P 作PK //HD //GE ,如图3,∴∠APK =∠HAP ,∠CPK =∠PCG ,∴∠APC =∠HAP +∠PCG ,∵PN 平分∠APC ,∴∠NPC =12∠HAP +12∠PCG ,∵∠PCE =180°﹣∠PCG ,CN 平分∠PCE ,∴∠PCN =90°﹣12∠PCG ,∵∠N +∠NPC +∠PCN =180°,∴∠N =180°﹣12∠HAP ﹣12∠PCG ﹣90°+12∠PCG =90°﹣12∠HAP ,即:∠N =90°﹣12∠HAP .【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.8.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()0,C a ,(),D b a ,其中a 、b 满足关系式:24(1)0a b a ++--=.()1a =______,b =______,BCD 的面积为______;()2如图2,石AC BC ⊥于点C ,点P 是线段OC 上一点,连接BP ,延长BP 交AC 于点.Q 当CPQ CQP ∠=∠时,求证:BP 平分ABC ∠;(提示:三角形三个内角和等于180) ()3如图3,若AC BC ⊥,点E 是点A 与点B 之间上一点连接CE ,且CB 平分.ECF ∠问BEC ∠与BCO ∠有什么数量关系?请写出它们之间的数量关系并请说明理由.解析:(1)4-;3-;6;(2)证明见解析;(3)2BEC BCO ∠=∠ ,理由见解析.【详解】分析:(1)求出CD 的长度,再根据三角形的面积公式列式计算即可得解; (2)根据等角的余角相等解答即可;(3)首先证明∠ACD=∠ACE ,推出∠DCE=2∠ACD ,再证明∠ACD=∠BCO ,∠BEC=∠DCE=2∠ACD 即可解决问题;【解答】(1)解:如图1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵点C (0,-4),D (-3,-4),∴CD=3,且CD ∥x 轴,∴△BCD 的面积=12×4×3=6;故答案为-4,-3,6.(2)如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如图3中,结论:∠BEC=2∠BCO.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-4),D(-3,-4),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,点睛:本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键.MN GH,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若9.如图,//116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒; (2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.10.在如图所示的平面直角坐标系中,A (1,3),B (3,1),将线段A 平移至CD ,C (m ,-1),D (1,n )(1)m=_____,n=______(2)点P 的坐标是(c ,0)①设∠ABP=α,请写出∠BPD和∠PDC之间的数量关系(用含α的式子表示,若有多种数量关系,选择一种加以说明)②当三角形PAB的面积不小于3且不大于10,求点p的横坐标C的取值范围(直接写出答案即可)解析:(1)-1,-3.(2)①当点P在直线AB,CD之间时,∠BPD-∠PDC=α.当点P在直线CD的下方时,∠BPD+∠PDC=α.当点P在直线AB的上方时,∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由题意,线段AB向左平移2个单位,向下平移4个单位得到线段CD,利用平移规律求解即可.(2)①分三种情形求解,如图1中,当点P在直线AB,CD之间时,∠BPD-∠PDC=α.如图2中,当点P在直线CD的下方时,∠BPD+∠PDC=α.如图3中,当点P在直线AB的上方时,同法可证∠BPD+∠PDC=α.分别利用平行线的性质求解即可.②求出点P在直线AB两侧,△PAB的面积分别为3和10时,m的值,即可判断.【详解】解:(1)由题意,线段AB向左平移2个单位,向下平移4个单位得到线段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案为:-1,-3.(2)如图1中,当点P在直线AB,CD之间时,∠BPD-∠PDC=α.理由:过点P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如图2中,当点P在直线CD的下方时,∠BPD+∠PDC=α.理由:过点P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如图3中,当点P在直线AB的上方时,同法可证∠BPD+∠PDC=α.(3)如图4中,过点B作BH⊥x轴于H,过点A作AT⊥BH交BH于点T,延长AB交x轴于E.当点P在直线AB的下方时,S△PAB=S梯形ATHP-S△ABT-S△PBH=12(2+3-m)•3-12×2×2-12•(3-m)•1=-m+4,当△PAB的面积=3时,-m+4=3,解得m=1,当△PAB的面积=3时,-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根据对称性可知,当点P在直线AB的右侧时,当△PAB的面积=3时,m=7,当△PAB的面积=3时,m=14,观察图象可知,-6<m≤1或7≤m<14.【点睛】本题属于三角形综合题,考查了三角形的面积,平行线的判定和性质等知识,解题的关键是学会利用分割法求三角形面积,学会寻找特殊位置解决问题,属于中考常考题型.11.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 = 销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解析:(1)A、B两种型号电风扇的销售单价分别为250元、210元;(2)超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)超市不能实现利润1400元的目标;【分析】(1)根据第一周和第二周的销售量和销售收入,可列写2个等式方程,再求解二元一次方程组即可;(2)利用不多于5400元这个量,列写不等式,得到A型电风扇a台的一个取值范围,从而得出a的最大值;(3)将B型电风扇用(30-a)表示出来,列写A、B两型电风扇利润为1400的等式方程,可求得a的值,最后在判断求解的值是否满足(2)中a的取值范围即可【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:3518004103100x yx y+=⎧⎨+=⎩,解得:250210xy=⎧⎨=⎩,答:A、B两种型号电风扇的销售单价分别为250元、210元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台.依题意得:200a+170(30-a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.【点睛】本题是二元一次方程和一元一次不等式应用题的综合考查,解题关键是依据题意,找出等量关系式(不等关系式),然后按照题目要求相应求解12.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.解析:(1)长为35,宽为252)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.【详解】解:(1)设长为3x,宽为2x,则:3x•2x=30,∴x5∴3x=35,2x=25答:这个长方形纸片的长为3525(2)正确.理由如下:根据题意得:()()250 4230a b ab a b⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩,解得:105ab=⎧⎨=⎩,∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.13.五一节前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?解析:(1)A、B两种品牌电风扇每台的进价分别是100元、150元;(2)为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风扇2台.【分析】(1)设A种品牌电风扇每台进价x元,B种品牌电风扇每台进价y元,根据题意即可列出关于x 、y 的二元一次方程组,解出x 、y 即可.(2)设购进A 品牌电风扇a 台,B 品牌电风扇b 台,根据题意可列等式1001501000a b +=,由a 和b 都为整数即可求出a 和b 的值的几种可能,然后分别算出每一种情况的利润进行比较即可.【详解】(1)设A 、B 两种品牌电风扇每台的进价分别是x 元、y 元,由题意得:322400x y x y =⎧⎨+=⎩, 解得:100150x y =⎧⎨=⎩, 答:A 、B 两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A 种品牌的电风扇a 台,购进B 种品牌的电风扇b 台,由题意得:100a +150b =1000,其正整数解为:16a b =⎧⎨=⎩或44a b =⎧⎨=⎩或72a b =⎧⎨=⎩, 当a =1,b =6时,利润=80×1+100×6=680(元),当a =4,b =4时,利润=80×4+100×4=720(元),当a =7,b =2时,利润=80×7+100×2=760(元),∵680<720<760,∴当a =7,b =2时,利润最大,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A 种品牌的电风扇7台,购进B 种品牌的电风扇2台.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出等量关系列出等式是解答本题的关键.14.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=,……①,237x y +=,……②,求4x y -和75x y +的值. 本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组322233x y x y -=-⎧⎨-=-⎩,则x y -=______,x y +=______; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,那么11*=______.解析:(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出x y -的值,①-②,得x y +的值;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用x 元、y 元、z 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元”列出方程组,再根据方程组的特征求出6x y z ++=,进一步可求出()530x y z ++=; (3)根据新定义,将数值代入新定义里,列方程组求解即可得出答案.【详解】(1)解:322233x y x y -=-⎧⎨-=-⎩①②①+②,得555x y -=-1x y ∴-=-;①-②,得1x y +=;故答案为:-1,1;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用x 元、y 元、z 元,根据题意,得:203232395358x y z x y z ++=⎧⎨++=⎩①② ①×②-②得6x y z ++=∴()530x y z ++=(元)答:5本日记本共需30元.(3)353515474728a b c a b c ⨯=++=⎧⎨⨯=++=⎩①② ①3⨯-②2⨯得11a b c ++=-∴1111a b c ⨯=++=-.【点睛】本题考查了三元一次方程组的应用,熟练读懂题干中的“整体思想”是解题的关键. 15.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM ∶AN =8∶9,问通道的宽是多少?解析:1【分析】利用AM:AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9ym ,进而利用AD 为18m ,AB 为13m ,得出等式求出即可.【详解】设通道的宽是xm ,AM =8ym.因为AM ∶AN =8∶9,所以AN =9ym.所以22418,1813.x y x y +=⎧⎨+=⎩解得1,2.3x y =⎧⎪⎨=⎪⎩答:通道的宽是1m.故答案为1.【点睛】本题考查了二元一次方程组的应用.16.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?解析:(1)见解析;(2)6元【分析】(1)设单价为20元的书买了x 本,单价为24元的书买了y 本,根据总价=单价×数量,结合购买两种书30本共花费(700−38)元,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,结合x ,y 的值为整数,即可得出小明搞错了;(2)设单价为20元的书买了a 本,则单价为24元的书买了(30−a )本,笔记本的单价为b 元,根据总价=单价×数量,即可得出关于a ,b 的二元一次方程,化简后可得出a =14+24b +,结合0<b <10,且a ,b 均为整数,可得出b =2或6,将b 值代入a =14+24b +中可求出a 值,再结合单价为20元的书多于24元的书,即可确定b 值. 【详解】解:(1)设20元的书买了x 本,24元的书买了y 本,由题意,得30202470038x y x y +=⎧⎨+=-⎩,解得14.515.5x y =⎧⎨=⎩, ∵x ,y 的值为整数,故x ,y 的值不符合题意(只需求出一个即可)∴小明搞错了;(2)设20元的书买了a 本,则24元的书买了()30a -本,笔记本的单价为b 元,由题意,得:()20243780003a a b +=-+-, 化简得:5821444b b a ++==+ ∵110b ≤<,∴2b =或6.当2b =,15a =,即20元的书买了15本,24元的书买了15本,不合题意舍去 当6b =,16a =,即20元的书买了16本,则24元的书买了14本∴6b =.答:笔记本的价格为6元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程. 17.对于三个数a ,b ,c ,{},,M a b c 表示a ,b ,c 这三个数的平均数,{}min ,,a b c 表示a ,b ,c 这三个数中最小的数,如:{}12341,2,333M -++-==,{}min 1,2,31-=-; {}1211,2,33a a M a -+++-==,{}()()1min 1,2,11a a a a ⎧≤-⎪-=⎨->-⎪⎩. 解决下列问题:(1)填空:{}220min 2,2,2013--=______;(2)若{}min 2,22,422x x +-=,求x 的取值范围;(3)①若{}{}2,1,2min 2,1,2M x x x x +=+,那么x =______;②根据①,你发现结论“若{}{},,min ,,M a b c a b c =,那么______”(填a ,b ,c 大小关系);③运用②解决问题:若{}{}22,2,2min 22,2,2M x y x y x y x y x y x y +++-=+++-,求x y +的值.解析:(1)4-;(2)01x ≤≤;(3)①1,②a b c ==,③4-【分析】(1)先求出2202,2,2013--这些数的值,再根据运算规则即可得出答案;(2)先根据运算规则列出不等式组,再进行求解即可得出答案;(3)根据题中规定的{},,M a b c 表示a ,b ,c 这三个数的平均数,{}min ,,a b c 表示a ,b ,c 这三个数中最小的数,列出方程组即可求解.【详解】(1)220124,2,201314--=-==, {}220min 2,2,20134-∴-=-,故答案为:-4;(2)由题意得: 222422x x +≥⎧⎨-≥⎩, 解得:01x ≤≤,则x 的取值范围是:01x ≤≤;(3)①{}{}2122,1,21min 2,1,23x x M x x x x x ++++==+=+, 1212x x x +≤⎧∴⎨+≤⎩, 11x x ≤⎧∴⎨≥⎩, 1x ∴=;②若{}{},,min ,,M a b c a b c =,则a b c ==;③根据②得:2222x y x y x y ++=+=-,解得:3,1x y =-=-,则4x y +=-,故答案为:1,a b c ==.【点睛】本题考查了一元一次不等式组的应用,解题关键是读懂题意,根据题意结合方程和不等式去求解,考查综合应用能力.18.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x ﹣3=1与不等式x +3>0,当x =2时,2x ﹣3=2×2﹣3=1,x +3=2+3=5>0同时成立,则称x =2是方程2x ﹣3=1与不等式x +3>0的“理想解”.(1)已知①1322x ->,②2(x +3)<4,③12x -<3,试判断方程2x +3=1的解是否是它们中某个不等式的“理想解”,写出过程;(2)若00x x y y =⎧⎨=⎩是方程x ﹣2y =4与不等式31x y >⎧⎨<⎩的“理想解”,求x 0+2y 0的取值范围. 解析:(1)2x +3=1的解是不等式12x -<3的理想解,过程见解析;(2)2<x 0+2y 0<8 【分析】(1)解方程2x +3=1的解为x =﹣1,分别代入三个不等式检验即可得到答案; (2)由方程x ﹣2y =4得x 0=2y 0+4,代入不等式解得﹣12<y 0<1,再结合x 0=2y 0+4,通过计算即可得到答案.【详解】(1)∵2x +3=1∴x =﹣1,∵x ﹣12=﹣1﹣12=﹣32<32∴方程2x +3=1的解不是不等式1322x ->的理想解; ∵2(x +3)=2(﹣1+3)=4,∴2x +3=1的解不是不等式2(x +3)<4的理想解; ∵12x -=112--=﹣1<3, ∴2x +3=1的解是不等式12x -<3的理想解; (2)由方程x ﹣2y =4得x 0=2y 0+4,代入不等式组31x y >⎧⎨<⎩,得002431y y +>⎧⎨<⎩; ∴﹣12<y 0<1,∴﹣2<4y 0<4,∵00000422244x y y y y =+=+++∴2<x 0+2y 0<8.【点睛】本题考查了一元一次不等式、一元一次方程、代数式、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式、代数式的性质,从而完成求解.19.阅读下列材料:问题:已知x ﹣y =2,且x >1,y <0解:∵x ﹣y =2.∴x =y +2,又∵x >1∴y +2>1∴y >﹣1又∵y <0∴﹣1<y <0①∴﹣1+2<y +2<0+2即1<x <2②①+②得﹣1+1<x +y <0+2∴x +y 的取值范围是0<x +y <2请按照上述方法,完成下列问题:(1)已知x ﹣y =3,且x >﹣1,y <0,则x 的取值范围是 ;x +y 的取值范围是 ; (2)已知x ﹣y =a ,且x <﹣b ,y >2b ,根据上述做法得到-2<3x -y <10,求a 、b 的值. 解析:(1)-1<x <3,-5<x +y <3;(2)a =3,b =-2.【分析】(1)仿照阅读材料即可先求出-1<x <3,然后即可求出x + y 的取值范围;(2)先仿照阅读材料求出3x -y 的取值范围,然后根据已知条件可列出关于a 、b 的方程组,解出即可求解.【详解】解:(1)∵x -y =3,∴x =y +3.∵x >-1,∴y +3>-1,即y >-4.又∵y <0,∴-4<y <0①,∴-4+3<y +3<0+3,即-1<x <3②,由①+②得:-1-4<x +y <0+3,∴x +y 的取值范围是-5<x +y <3;(2)∵x -y =a ,∴x =y +a ,∵x <-b ,∴y +a <-b ,∴y <-a -b .∵y >2b ,∴2b <y <-a -b ,∴a +b <-y <-2b ①,2b +a <y +a <-b ,即2b +a <x <-b ,∴6b +3a <3x <-3b ②由①+②得:7b +4a <3x -y <-5b ,∵-2<3x -y <10,∴742510b a b ⎧+=-⎨-=⎩ , 解得:32a b ⎧=⎨=-⎩即a =3,b =-2.【点睛】本题主要考查了不等式的性质,解一元一次不等式和解二元一次方程组,理解阅读材料,列出不等式和方程组是解题的关键.20.对x ,y 定义一种新的运算P ,规定:,()(,),()mx ny x y P x y nx my x y +≥⎧=⎨+<⎩(其中0mn ≠).已知(2,1)7P =,(1,1)1P -=-.(1)求m 、n 的值;(2)若0a >,解不等式组(2,1)4111,523P a a P a a -<⎧⎪⎨⎛⎫---≤- ⎪⎪⎝⎭⎩.。

湖北省孝感市七年级下学期期末考试数学试题

湖北省孝感市七年级下学期期末考试数学试题
25. (13分) (2018七下·江都期中) 综合题
(1) 填空:21﹣20=2(________),22﹣21=2(________),23﹣22=2(________)…
(2) 探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;
(3) 运用上述规律计算:20﹣21﹣22﹣…﹣22017+22018。
4. (2分) 下列句子:①延长线段 到点 ;②两点之间线段最短;③ 与 不相等;④ 月份有 个星期日;⑤用量角器画 ;⑥任何数的平方都不小于 吗?其中是命题的有( )个.
A . 2
B . 3
C . 4
D . 5
5. (2分) 如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是( )
A . ∠1=∠2
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列问题:
(1) 该同学第二步到第三步运用了因式分解的_______.
A . 提取公因式
B . 平方差公式
C . 两数和的完全平方公式
D . 两数差的完全平方公式
(2) 该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)
(3) 如图三,当 点在线段 上运动(点 不与点 重合), 点在线段 上运动(点 不与点 重合)时,连接 、 作∠OAD、∠DEB的平分线交于 点,请你探索∠AFE与∠ADE之间的关系,并说明理由.
参考答案
一、 选择题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、 填空题 (共10题;共10分)

孝感市孝南区-七年级下期末数学试卷含答案解析.doc

孝感市孝南区-七年级下期末数学试卷含答案解析.doc

2016-2017学年湖北省孝感市孝南区七年级(下)期末数学试卷一、精心选择,一锤定音!(本题共10个小题,每小题3分,共30分) 1.下列实数中,是无理数的是( )A .B .3.14C .6.D .2.要反映自贡市一周内每天的最高气温的变化情况,宜采用( ) A .条形统计图 B .折线统计图 C .扇形统计图 D .频数分布直方图3.点P (m +3,m +1)在x 轴上,则点P 的坐标为( ) A .(2,0)B .(0,﹣2)C .(4,0)D .(0,﹣4)4.若m <n ,则下列不等式中,正确的是( )A .m ﹣4>n ﹣4B .>C .2m +1<2n +1D .﹣3m <﹣3n5.下列结论正确的是( ) A .不相交的两条直线叫做平行线B .两条直线被第三条直线所截,同位角相等C .垂直于同一直线的两条直线互相平行D .平行于同一直线的两条直线互相平行6.把不等式组的解集表示在数轴上,下列选项正确的是( )A .B .C .D .7.下列方程中是二元一次方程的是( ) A . +y=4 B .xy=3 C .y=x 2+1 D .2y +z=48.的算术平方根是( ) A .4B .﹣4C .2D .±29.如果不等式3x ﹣m ≤0的正整数解为1,2,3,则m 的取值范围为( ) A .m ≤9B .m <12C .m ≥9D .9≤m <1210.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD ③∠POE=∠BOF④∠POB=2∠DOF其中正确的结论的个数为()A.4 B.3 C.2 D.1二、耐心填空,准确无误(本大题共6小题,每小题3分,共18分)11.如图,计算把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.若x、y为实数,且|x+3|+=0,则()2017的值为.13.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.16.请你观察、思考下列计算过程:因为112=121,所以=11;因为1112=12321,所以;11112=1234321,所以…,由此猜想=.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.计算(1)已知(x﹣1)2=4,求x的值;(2)|1﹣|+﹣.18.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.19.(1)解不等式≥,并把它的解集表示在数轴上;(2)解不等式组,并指出它的所有整数解.20.如图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由.(2)若∠C=65°,求∠DEC的度数.21.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如表所示.△ABC A(a,0)B(4,0)C(5,5)△A′B′C′A′(4,2)B′(8,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=,b=,c=;(2)在如图所示直角坐标系中画出△ABC和△A′B′C′;(3)连CC′、BB′,直接写出CC′与BB′的数量关系和位置关系:.22.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计表.频数频率组别成绩分组(单位:分)A50≤x<60400.08B60≤x<70700.14C70≤x<8090cD80≤x<90a0.40E90≤x≤1001000.20合计b1根据以上信息解答下列问题:(1)统计表中a=,b,c=;(2)扇形统计图中,m的值为,“E”所对应的圆心角的度数是(度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?23.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?24.如图,在平面直角坐标系中,点O为坐标原点,点A(3a,2a)在第一象限,=12,点M从O出发,沿过点A向x轴作垂线,垂足为点B,连接OA,S△AOBy轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.(1)求a的值;(2)当0<t<2时,①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;②试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当OM=ON时,请求出t的值.2016-2017学年湖北省孝感市孝南区七年级(下)期末数学试卷参考答案与试题解析一、精心选择,一锤定音!(本题共10个小题,每小题3分,共30分)1.下列实数中,是无理数的是()A.B.3.14 C.6.D.【考点】26:无理数.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,3.14,6.是有理数,是无理数,故选:D.2.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图【考点】VE:统计图的选择;VD:折线统计图.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【解答】解:∵折线统计图表示的是事物的变化情况,∴要反映自贡市一周内每天的最高气温的变化情况,宜采用折线统计图.故选(B)3.点P(m+3,m+1)在x轴上,则点P的坐标为()A.(2,0)B.(0,﹣2) C.(4,0)D.(0,﹣4)【考点】D1:点的坐标.【分析】根据x轴上点的纵坐标为0列出方程求解得到m的值,然后解答即可.【解答】解:∵点P(m+3,m+1)在x轴上,∴m+1=0,∴m=﹣1,∴点P(m+3,m+1)的坐标为(2,0).故选:A.4.若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.2m+1<2n+1 D.﹣3m<﹣3n【考点】C2:不等式的性质.【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减4,不等号的方向不变,故A不符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边都乘以2,不等号的方向不变,两边都加1,不等号的方向不变,故C 符合题意;D、两边都乘以﹣3,不等号的方向改变,故D不符合题意;故选:C.5.下列结论正确的是()A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一直线的两条直线互相平行D.平行于同一直线的两条直线互相平行【考点】J8:平行公理及推论;J7:平行线.【分析】根据平行公理及推论,可得答案.【解答】解:A、在同一平面内,不相交的两条直线叫做平行线,故A不符合题意;B、两直线平行,同位角相等,故B不符合题意;C、在同一平面内,垂直于同一条直线的两条直线互相平行,故C不符合题意;D、平行于同一直线的两条直线互相平行,故D符合题意;故选:D.6.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【解答】解:解不等式2x+1>﹣1,得:x>﹣1,解不等式x+2≤3,得:x≤1,∴不等式组的解集为:﹣1<x≤1,故选:B.7.下列方程中是二元一次方程的是()A. +y=4 B.xy=3 C.y=x2+1 D.2y+z=4【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,即只含有2个未知数,且含有未知数的项的最高次数是1的整式方程作答.【解答】解:A. +y=4不是整式方程,故不合题意;B.xy=3是二元二次方程,故不合题意;C.y=x2+1是二元二次方程,故不合题意;D.2y+z=4是二元一次方程,符合题意;故选:D.8.的算术平方根是()A.4 B.﹣4 C.2 D.±2【考点】22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故选C.9.如果不等式3x﹣m≤0的正整数解为1,2,3,则m的取值范围为()A.m≤9 B.m<12 C.m≥9 D.9≤m<12【考点】C7:一元一次不等式的整数解.【分析】解不等式得出x≤,由不等式的正整数解为1、2、3知3≤<4,解之可得答案.【解答】解:解不等式3x﹣m≤0,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD ③∠POE=∠BOF④∠POB=2∠DOF其中正确的结论的个数为()A.4 B.3 C.2 D.1【考点】JA:平行线的性质;J3:垂线.【分析】由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=20°,则∠BOF=∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=20°,则∠POE=∠BOF;根据∠POB=70°﹣∠POE=50°,∠DOF=20°,可知④不正确.【解答】解:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°﹣40°=140°,∵OE平分∠BOC,∴∠BOE=×140°=70°,所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣70°=20°,∴∠BOF=∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=20°,∴∠POE=∠BOF,所以③正确;∴∠POB=70°﹣∠POE=50°,而∠DOF=20°,所以④错误.综上所述,正确的结论为①②③.故选:B.二、耐心填空,准确无误(本大题共6小题,每小题3分,共18分)11.如图,计算把水从河中引到水池A中,先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短.【考点】J4:垂线段最短.【分析】根据垂线段的性质,可得答案.【解答】解:先过点A作AB⊥CD,垂足为点B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短;故答案为:垂线段最短.12.若x、y为实数,且|x+3|+=0,则()2017的值为﹣1.【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y﹣3=0,解得x=﹣3,y=3.则原式=(﹣1)2017=﹣1.故答案是:﹣1.13.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为,.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:,故答案为:,14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为0.4.【考点】V8:频数(率)分布直方图.【分析】根据频率的计算公式:频率=即可求解.【解答】解:学生仰卧起坐次数在25~30之间的频率是:=0.4.故答案是:0.4.15.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为540m2.【考点】Q1:生活中的平移现象.【分析】把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFCG是矩形,根据矩形的面积公式即可求出结果.【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.16.请你观察、思考下列计算过程:因为112=121,所以=11;因为1112=12321,所以;11112=1234321,所以…,由此猜想=111 111 111.【考点】22:算术平方根.【分析】被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.【解答】解:∵,…,∴=111 111 111.故答案为:111 111 111.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.计算(1)已知(x﹣1)2=4,求x的值;(2)|1﹣|+﹣.【考点】2C:实数的运算;21:平方根.【分析】(1)根据平方根的含义和求法,求出x的值是多少即可.(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)∵(x﹣1)2=4,∴x﹣1=±2,∴x=3或﹣1.(2)|1﹣|+﹣=﹣1+2﹣(﹣2)=+318.已知关于x,y的二元一次方程组.(1)解该方程组;(2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值.【考点】97:二元一次方程组的解.【分析】(1)方程组利用加减消元法求出解即可;(2)把x与y的值代入方程计算得到2a﹣3b的值,原式变形后代入计算即可求出值.【解答】解:(1),②﹣①得:y=3,把y=3代入①得:x=﹣2,则方程组的解为;(2)把代入方程得:﹣2a+3b=2,即2a﹣3b=﹣2,则原式=﹣2(2a﹣3b)=4.19.(1)解不等式≥,并把它的解集表示在数轴上;(2)解不等式组,并指出它的所有整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组.【分析】(1)去分母、去括号、移项、合并同类项、系数化成1,最后在数轴上把不等式的解集在数轴上表示出来即可.(2)分别求出不等式组中两不等式的解集,找出解集的公共部分,即可求得它的所有整数解.【解答】解:(1)去分母得:3(x﹣2)≥2(7﹣x),去括号得:3x﹣6≥14﹣2x移项、合并同类项得:5x≥20,系数化成1得:x>4,在数轴上表示不等式的解集为:.(2),由①得:x<2;由②得:x≥﹣1,∴不等式组的解集为﹣1≤x<3,它的所有整数解:﹣1,0,1,2.20.如图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由.(2)若∠C=65°,求∠DEC的度数.【考点】JB:平行线的判定与性质.【分析】(1)根据平行线的判定得出AB∥EF,根据平行线的性质得出∠ADE=∠3,求出∠ADE=∠B,根据平行线的判定得出即可;(2)根据平行线的性质得出∠C+∠DEC=180°,即可求出答案.【解答】解:(1)DE∥BC,理由是:∵∠1+∠2=180°,∴AB∥EF,∴∠ADE=∠3,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC;(2)∵DE∥BC,∴∠C+∠DEC=180°,∵∠C=65°,∴∠DEC=115°.21.已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如表所示.△ABC A(a,0)B(4,0)C(5,5)△A′B′C′A′(4,2)B′(8,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=0,b=2,c=9;(2)在如图所示直角坐标系中画出△ABC和△A′B′C′;(3)连CC′、BB′,直接写出CC′与BB′的数量关系和位置关系:平行且相等.【考点】Q4:作图﹣平移变换.【分析】(1)根据A、B、C三点横纵坐标的变化即可得出结论;(2)在坐标系内描出各点,再顺次连接即可;(3)根据图形平移的性质即可得出结论.【解答】解:(1)∵A(a,0),A′(4,2);B(4,0),B′(8,b),∴△A′B′C′由△ABC先向上平移2个单位,再向右平移4个单位得到,∴a=0,b=2,c=9.故答案为:0,2,9;(2)如图,△ABC与△A′B′C′即为所求;(3)∵△A′B′C′由△ABC平移而成,∴CC′与BB′的数量关系和位置关系是平行且相等.故答案为:平行且相等.22.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计表. 组别 成绩分组(单位:分)频数 频率 A50≤x <60 40 0.08 B60≤x <70 70 0.14 C70≤x <80 90 cD80≤x <90 a 0.40 E90≤x ≤100 100 0.20 合计 b 1根据以上信息解答下列问题:(1)统计表中a= 200 ,b 500 ,c= 0.18 ;(2)扇形统计图中,m 的值为 14 ,“E”所对应的圆心角的度数是 72 (度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在90分及以上的学生大约有多少人?【考点】VB :扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)由A 组频数及其频率可得样本容量b ,根据“频率=频数÷总数”可分别求得a 、c 的值;(2)根据B 组的频率可得m 的值,用360度乘以E 组的百分比可得; (3)用样本中E 组的百分比乘以总人数即可得出答案.【解答】解:(1)由频数分布表可知,b=40÷0.08=500,∴a=500×0.4=200,c=90÷500=0.18,故答案为:200,500,0.18;(2)∵B组的频率为0.14,∴m=14,“E”所对应的圆心角的度数是360°×20%=72°,故答案为:14,72;(3)∵4000×0.20=800,∴估计成绩在90分及以上的学生大约有800人.23.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设一个足球、一个篮球分别为x、y元,根据:①1个足球费用+2个篮球费用=210元,②2个足球费用+6个篮球费用=580元,据此列方程组求解即可;(2)设可买训练用足球m个,则比赛用足球(96﹣m)个,根据购买训练用足球和比赛用足球的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设一个训练用足球x元、一个比赛用足球为y元,根据题意得,解得:,答:一个训练用足球60元、一个比赛用足球为160元;(2)设可买训练用足球m个,则比赛用足球(96﹣m)个,根据题意得:60m+160(96﹣m)≤6000,解得:m≥93.6,∵m为整数,∴m最大取94.则96﹣m=2.答:这所中学最多可以购买2个比赛用足球.24.如图,在平面直角坐标系中,点O为坐标原点,点A(3a,2a)在第一象限,=12,点M从O出发,沿过点A向x轴作垂线,垂足为点B,连接OA,S△AOBy轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.(1)求a的值;(2)当0<t<2时,①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;②试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由.(3)当OM=ON时,请求出t的值.【考点】KY:三角形综合题.【分析】(1)根据△AOB的面积列出方程即可解决问题;(2)当0<t<2时①∠ANM=∠OMN+∠BAN.如图2中,过N点作NH∥AB,=S四绞刑ABOM﹣S△ABN,计算即可;利用平行的性质证明即可.②根据S四边形AMON(3)分两种情形列出方程即可解决问题;【解答】解:(1)如图1中,=12,A(3a,2a),∵S△AOB∴×3a×2a=12,∴a2=4,又∵a>0,∴a=2.(2)当0<t<2时①∠ANM=∠OMN+∠BAN,原因如下:如图2中,过N点作NH∥AB,∵AB⊥X轴∴AB∥OM∴AB∥NH∥OM∴∠OMN=∠MNH∠BAN=∠ANH∴∠ANM=∠MNH+∠ANH=∠OMN+∠BAN.=12,理由如下:②S四边形AMON∵a=2∴A(6,4)∴OB=6,AB=4,OM=2t BN=3tON=6﹣3t=S四绞刑ABOM﹣S△ABN,∴S四边形AMON=(AB+OM)×OB﹣×BN×AB =(4+2t)×6﹣×3t×4=12+6t﹣6t=12∴四边形AMON的面积不变(3)∵OM=ON∴2t=6﹣3t或2t=3t﹣6∴t=或6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年湖北省孝感市孝南区七年级(下)期末数学试卷一、选择题(每题3分)1.(3分)如图,∠1与∠2互为邻补角的是()A. B.C.D.2.(3分)下列实数﹣5,2,,﹣,,3.14159,无理数有()A.1个 B.2个 C.3个 D.4个3.(3分)下列调查中,适合普查的是()A.了解全市中学生的上网时间B.检测一批灯管的使用寿命C.了解神舟飞船的设备零件的质量状况D.了解某品牌食品的色素添加情况4.(3分)点M(2016,2016+a2)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)若是二元一次方程3x﹣ay=24的一组解,则a的值是()A.1 B.2 C.3 D.46.(3分)若a>b,则下列式子中错误的是()A.a﹣5>b﹣5 B.5﹣a>5﹣b C.5a>5b D.>7.(3分)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.8.(3分)用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图9.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等10.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每题3分)11.(3分)把点P(﹣6,7)向左平移5个单位,再向上平移2个单位,所得点P′的坐标是.12.(3分)﹣2的相反数是,绝对值是.13.(3分)已知实数a、b满足+|b﹣2|=0,则ab=.14.(3分)不等式组无解,则a的取值范围是.15.(3分)如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3=.16.(3分)一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.三、解答题17.(4分)计算:+﹣.18.(4分)计算:5(﹣)×﹣|2﹣|19.(4分)解方程组.20.(4分)解不等式组.21.(8分)已知方程组的解为非负数,求整数a的值.22.(8分)已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”(1)如图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知AB CD,EM、FN分别平分和,则(2)试判断这个命题的真假,并说明理由.23.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1、C1的坐标.24.(10分)某市共有45000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:等级成绩(分)频数(人数)频率A90~100190.38B75~89mxC60~74n yD60以下30.06合计50 1.00请你根据以上图表提供的信息,解答下列问题:(1)m=,n=,x=,y=;(2)在扇形图中,C等级所对应的圆心角是度;(3)如果该校九年级共有500名男生,则其中成绩等级达到优秀和良好的共有多少人?25.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如表所示:原料型号甲种原料(千克)乙种原料(千克)A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?26.(12分)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(1)如图(2),当动点P落在第②部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(3)如图(3),当动点P落在第③部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(4)选择以上一种结论加以证明.2015-2016学年湖北省孝感市孝南区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分)1.(3分)如图,∠1与∠2互为邻补角的是()A. B.C.D.【解答】解:根据邻补角定义可得D是邻补角,故选:D.2.(3分)下列实数﹣5,2,,﹣,,3.14159,无理数有()A.1个 B.2个 C.3个 D.4个【解答】解:﹣5是有理数;2是有数;=3是有理数,﹣是无理数,是一个分数,是有理数,3.14159是有限小数,是有理数.故选:A.3.(3分)下列调查中,适合普查的是()A.了解全市中学生的上网时间B.检测一批灯管的使用寿命C.了解神舟飞船的设备零件的质量状况D.了解某品牌食品的色素添加情况【解答】解:A、了解全市中学生的上网时间,人数较多,应采用抽样调查,故此选项错误;B、检测一批灯管的使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C、了解神舟飞船的设备零件的质量状况,意义特别重大,应采用普查,故此选项正确;D、了解某品牌食品的色素添加情况,普查具有破坏性,应采用抽样调查,故此选项错误;故选:C.4.(3分)点M(2016,2016+a2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a2≥0,∴2016+a2≥2016,∴点M(2016,2016+a2)在第一象限.故选A.5.(3分)若是二元一次方程3x﹣ay=24的一组解,则a的值是()A.1 B.2 C.3 D.4【解答】解;∵是二元一次方程3x﹣ay=24的一组解,∴3×3﹣a×(﹣5)=24,解得,a=3,故选C.6.(3分)若a>b,则下列式子中错误的是()A.a﹣5>b﹣5 B.5﹣a>5﹣b C.5a>5b D.>【解答】解:A、已知a>b,由不等式的性质1可知A正确,与要求不符;B、由a>b,可知﹣a<﹣b,则5﹣a<5﹣b,故B错误,与要求相符;C、已知a>b,由不等式的性质2可知C正确,与要求不符;D、已知a>b,由不等式的性质2可知C正确,与要求不符.故选:B.7.(3分)一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,即:.故选:C.8.(3分)用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【解答】解:用统计图来描述某班同学的身高情况,最合适的是频数分布直方图.故选D.9.(3分)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.10.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.二、填空题(每题3分)11.(3分)把点P(﹣6,7)向左平移5个单位,再向上平移2个单位,所得点P′的坐标是(﹣11,9).【解答】解:由题意可得,平移后点的横坐标为﹣6﹣5=﹣11;纵坐标为7+2=9,所以所得点P′的坐标是(﹣11,9).故答案为(﹣11,9).12.(3分)﹣2的相反数是2﹣,绝对值是2﹣.【解答】解:﹣2的相反数是﹣(﹣2)=2﹣;绝对值是|﹣2|=2﹣.故本题的答案是2﹣,2﹣.13.(3分)已知实数a、b满足+|b﹣2|=0,则ab=8.【解答】解:由题意得,a﹣2b=0,b﹣2=0,解得,a=4,b=2,则ab=8,故答案为:8.14.(3分)不等式组无解,则a的取值范围是a≤2.【解答】解:∵不等式组无解,∴a的取值范围是a≤2;故答案为a≤2.15.(3分)如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3=30°.【解答】解:∵AB∥EF,∴∠1=∠GFE,∵∠1=80°,∴∠GFE=80°,∵CD∥EF,∴∠2+∠DFE=180°,∵∠2=130°,∴∠DFE=50°,∵∠3=∠GFE﹣∠DFE=80°﹣50°=30°;故答案为:30°.16.(3分)一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是(5,0).【解答】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).三、解答题17.(4分)计算:+﹣.【解答】解:原式=8﹣4﹣=.18.(4分)计算:5(﹣)×﹣|2﹣|【解答】解:原式=5(3﹣)×+2﹣=12﹣4+2﹣=14﹣5.19.(4分)解方程组.【解答】解:①×2+②得:5x=30,解得:x=6,把x=6代入①得:12+y=13,解得:y=1,∴方程组的解为.20.(4分)解不等式组.【解答】解:,解①得x<,解②得x≥﹣3.则不等式组的解集是﹣3≤x<.21.(8分)已知方程组的解为非负数,求整数a的值.【解答】解:,①×3+②得:5x=6a+5﹣a,即x=a+1≥0,解得a≥﹣1;②﹣①×2得:5y=5﹣a﹣4a,即y=1﹣a≥0,解得a≤1;则﹣1≤a≤1,即a的整数值为:﹣1,0,1.22.(8分)已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”(1)如图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知AB∥CD,EM、FN分别平分∠GEB和∠EFD,则EM∥FD(2)试判断这个命题的真假,并说明理由.【解答】解:(1)已知AB∥CD,EM、FN分别平分∠GEB和∠EFD,则EM∥FD;故答案为:∥,∠GEB,∠EFD,EM∥FD;(2)此命题为真命题,证明:∵AB∥CD,∴∠GEB=∠EFD,∵EM、FN分别平分∠GEB和∠EFD,∴∠GEM=∠GEB,∠EFN=∠EFD,∴∠GEM=∠EFN,∴EM∥FD.23.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1、C1的坐标.【解答】解:(1)如图所示:;(2)如图所示:A1(4,5),B1(2,1),C1(1,3).24.(10分)某市共有45000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:等级成绩(分)频数(人数)频率A90~100190.38B75~89m xC60~74n yD60以下30.06合计50 1.00请你根据以上图表提供的信息,解答下列问题:(1)m=20,n=8,x=0.4,y=0.16;(2)在扇形图中,C等级所对应的圆心角是57.6度;(3)如果该校九年级共有500名男生,则其中成绩等级达到优秀和良好的共有多少人?【解答】解:(1)∵良好的人数占40%,∴m=50×40%=20,∴x==0.4;∴y=1﹣0.38﹣0.4﹣0.06=0.16,n=50×0.16=8;故答案分别为:20,8,0.4,0.16;(2)∵y=0.16,∴C等级所对应的圆心角=360×0.16=57.6°.故答案为:57.6;(3)∵该校九年级共有500名男生,成绩等级达到优秀和良好频率和=0.38+0.4=0.78,∴成绩等级达到优秀和良好的人数=500×0.78=390(人).答:成绩等级达到优秀和良好的共有390人.25.(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如表所示:甲种原料(千克)乙种原料(千克)原料型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【解答】解:(1)设生产A种产品x件,则B种产品(50﹣x)件,则,解得,30≤x≤32,∴生产A种、B种的方案有三种,分别是:方案一:生产A种产品30件,B种产品20件;方案二:生产A种产品31件,B种产品19件;方案三:生产A种产品32件,B种产品18件;(2)方案一获利:30×80+120×20=4800元,方案二获利:31×80+120×19=4760元,方案三获利:32×80+120×18=4720元,即:生产A种产品30件,B种产品20件,获得的利润最大,最大利润为4800元.26.(12分)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC+∠APB+∠PBD=360°(1)如图(2),当动点P落在第②部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC+∠PBD=∠APB(3)如图(3),当动点P落在第③部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC=∠APB+∠PBD(4)选择以上一种结论加以证明.【解答】解:(1)如图(1),过点P作PE∥AC,则∠PAC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠PAC+∠APB+∠PBD=360°.故答案为:∠PAC+∠APB+∠PBD=360°;(2)如图(2),过点P作PE∥AC,则∠APE=∠CAP,∵AC∥BD,PE∥AC,∴PE∥BD,∴∠EPB=∠PBD,∴∠PAC+∠PBD=∠APB.故答案为:∠PAC+∠PBD=∠APB;(3)如图(3),延长BA,则∠PBD=∠PBA+∠ABD,∠PAC=∠PAF+∠CAF,∵AB∥CD,∴∠ABD=∠CAF,∴∠PAC﹣∠PBD=∠PAF﹣∠PBA,而∠PBA+∠APB=∠PAF,∴∠APB=∠PAC﹣∠PBD,∴∠PAC=∠APB+∠PBD.故答案为:∠PAC=∠APB+∠PBD;(4)例如(1),过点P作PE∥AC,则∠PAC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠PAC+∠APB+∠PBD=360°.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。

相关文档
最新文档