ST4-20中文资料
ST4ETA102;ST4ETA103;ST4ETA202;ST4ETB102;ST4ETA502;中文规格书,Datasheet资料
SURFACE MOUNT CERMET TRIMMERS (SINGLE TURN)● RoHS compliant● Wide variety (7 types) to choose from ● Automatic mounting is possible (Taping)● Flow/reflow soldering is possible● Sealed construction (Washable: Refer to A-328)● Stopper structure prevents terminal pin from being open.● Cross slot rotor suitable for automatic adjustmentFEATURESPART NUMBER DESIGNATIONPlease refer to the LIST OF PART NUMBERS when placing orders.S T - 4 E T A 2 0 0Ω( 2 0 1 )Series name (minus slot)Form of packagingT Taping (Reel)Blank Bulk in plastic bagTerminal pinE Sn-Cu (Lead-free)Form of packagingT Taping (Reel)Blank Bulk in plastic bagTerminal pinE Sn-Cu (Lead-free)Resistance code Resistance valueProduct shape (Shape of terminal)A, G J-hookB, D, H Gull wingC, F Through hole pinsS T - 4 2 E T A 2 0 0Ω( 2 0 1 )Series name (cross slot)Resistance code Resistance valueProduct shape (Shape of terminal)A, G J-hookB, D, H Gull wingC, F Through hole pinsST-4LIST OF PART NUMBERS Nominal resistance valuesR/R Change in total resistanceS.S. Setting stabilityMAXIMUM INPUT RATINGSRECOMMENDED P.C.B. PAD OUTLINE DIMENSIONS(Unit: mm)● ST-4EA● ST-4EG● ST-4EH● ST-4EB● ST-4EDNote) The zero point is the center of mounting.The products indicated by Amark are manufactured uponreceipt of order basis.OUTLINE DIMENSIONSUnless otherwise specified, tolerance : ±0.3 (Unit: mm)● ST -4EATop adjustment● ST● ST Top adjustmentNote the terminal position.13● ST -4EGSide adjustment● ST -4EFRear adjustment● ST -4EHSide adjustment● ST -4EDRear adjustmentNote the terminal position.Semi-standard productsSemi-standard products● ST -42ECROSS SLOT DIMENSION13OUTLINE DIMENSIONSUnless otherwise specified, tolerance : ±0.3 (Unit: mm)<Bulk pack specifications>● Unit of bulk in a plastic bag is 100 pcs. per pack.● Boxing of bulk in a plastic bag is performed with 500pcs. per box.PACKAGING SPECIFICATIONS<Taping packaging specifications>● Taping version is packaged in 500 pcs. per reel.Orders will be accepted for units of 500 pcs., i.e., 500,1000, 1500 pcs., etc.● ST-4ETA, ETB and ETD versions are boxed with 4 reels (2000 pcs.).ST-4ETG and ETH versions are boxed with one reel (500 pcs.).Maximum number of consecutive missing pieces = 2Leader length and reel dimension are shown in the dia-grams below.● EMBOSSED TAPE DIMENSIONS● REEL DIMENSIONSConforms to JIS C 0806-3In accordance with EIAJ ET-7200A(Unit: mm)● ST -4ETA/ETB/ETD● ST -4ETG/ETHHeadEndDirection of feedInstallation example Direction of feed分销商库存信息:COPAL-ELECTRONICSST4ETA102ST4ETA103ST4ETA202 ST4ETB102ST4ETA502ST4ETB101 ST4ETA203ST4ETA503ST4ETB103 ST4ETB502ST4ETB503ST4ETB202 ST4ETB203ST4ETA501ST4ETB201 ST4ETB104ST4ETA104ST4ETA105 ST4ETA204ST4ETB501ST4ETA101 ST4ETA201ST4ETA500ST4ETA504 ST4ETB204ST4ETB500ST42ETA100 ST42ETA101ST42ETA102ST42ETA103 ST42ETA104ST42ETA105ST42ETA200 ST42ETA201ST42ETA202ST42ETA203 ST42ETA204ST42ETA205ST42ETA500 ST42ETA501ST42ETA502ST42ETA503 ST42ETA504ST42ETB100ST42ETB101 ST42ETB102ST42ETB103ST42ETB104 ST42ETB105ST42ETB200ST42ETB201 ST42ETB202ST42ETB203ST42ETB204 ST42ETB205ST42ETB500ST42ETB501 ST42ETB502ST42ETB503ST42ETB504 ST4ETA205ST4ETB105ST4ETB205 ST4ETB504ST4EC101ST4EC102 ST4EC103ST4EC104ST4EC105 ST4EC201ST4EC202ST4EC203 ST4EC204ST4EC205ST4EC500 ST4EC501ST4EC502ST4EC503 ST4EC504ST4ETA100ST4ETB100 ST4EC100ST4EC200ST42EC100 ST42EC101ST42EC102ST42EC103 ST42EC104ST42EC105ST42EC200 ST42EC201ST42EC202ST42EC203 ST42EC204ST42EC205ST42EC500 ST42EC501ST42EC502ST42EC503 ST42EC504ST4ETG100ST4ETG101 ST4ETG102ST4ETG103ST4ETG104 ST4ETG105ST4ETG200ST4ETG201 ST4ETG202ST4ETG203ST4ETG204 ST4ETG205ST4ETG500ST4ETG501 ST4ETG502ST4ETG503ST4ETG504 ST4ETH100ST4ETH101ST4ETH102 ST4ETH103ST4ETH104ST4ETH105 ST4ETH200ST4ETH201ST4ETH203 ST4ETH205ST4ETH500ST4ETH501 ST4ETH502ST4ETH503ST4ETH504。
8204产品使用说明书(中文)-产品使用说明书
产品使用说明书DVR DVR--8204/ 8204V / 8204SVDVR DVR--8204T/ 8204ST 8204T/ 8204ST中国专利产品:(200730174963.4)号颜色与外观均以实物为准,若有任何设计和技术规格上的变动,恕不另行通知。
目 录录第一章 产品简介产品简介……………………………………………………………………… ……………………………………………………………………… 3 第二章第二章 技术指标和主要功能技术指标和主要功能………………………………………………………… ………………………………………………………… ………………………………………………………… 44 第三章第三章 主机使用说明主机使用说明………………………………………………………………… ………………………………………………………………… 6 3.0 菜单说明 ……………………………………………………………………… 6 3.1 网络配置 ……………………………………………………………………… 9 3.2 硬盘管理……………………………………………………………………… 11 3.3 录像管理……………………………………………………………………… 11 3.4 回放管理……………………………………………………………………… 13 3.5 告警配置……………………………………………………………………… 16 3.6 云台配置……………………………………………………………………… 17 3.7 云台控制……………………………………………………………………… 17 3.8 日志管理……………………………………………………………………… 17 3.9 系统管理……………………………………………………………………… 18 第四章第四章 显示屏操作说明显示屏操作说明显示屏操作说明 ………………………………………………………………………………………………………………………… 1919 第五章第五章 客户端操作说明客户端操作说明客户端操作说明 ………………………………………………………………………………………………………………………… 2 2 2225.1 必要条件................................................................................. 22 5.2 登录系统................................................................................. 23 5.3 网络远程监控台........................................................................ 23 5.4 网络远程回放........................................................................... 25 5.5 远程云台控制........................................................................... 26 5.6 远程云台设置........................................................................... 26 5.7 客户端卸载 ..............................................................................27 第六章第六章 升级操作升级操作................................................................................. ................................................................................. ................................................................................. 272727 附录1 主机背面示意图........................................................................ 32 附录2 报警、继电器、云台接口示意图................................................... 33 附录3 8204码流统计........................................................................... 34 附录4 前面板按键说明........................................................................ 34 附录5 遥控器功能说明........................................................................ 36 DVR 产品常见问题的处理 (38)第一章第一章 产品简介产品简介嵌入式数字硬盘录像机采用嵌入式结构设计,具备高清晰度、系统启动快速、功耗低、性能稳定、操作简单等特点,支持四路音/视频实时监控及录像,广泛运用于超市、停车场、高速公路、小区、城镇街道等公共场所和各种私家住宅,它会成为你买得放心、用得安心的全新高科技安防数码产品。
stm32f103中文资料
数据手册参照2009年4月 STM32F103x8B 数据手册 英文第10版 (本译文仅供参考,如有翻译错误,请以英文原稿为准) 1/62STM32F103x8 STM32F103xB中等容量增强型,32位基于ARM 核心的带64或128K 字节闪存的微控制器USB 、CAN 、7个定时器、2个ADC 、9个通信接口功能■ 内核:ARM 32位的Cortex™-M3 CPU− 最高72MHz 工作频率,在存储器的0等待周期访问时可达1.25DMips/MHz(Dhrystone 2.1)− 单周期乘法和硬件除法 ■ 存储器− 从64K 或128K 字节的闪存程序存储器 − 高达20K 字节的SRAM ■ 时钟、复位和电源管理− 2.0~3.6伏供电和I/O 引脚 − 上电/断电复位(POR/PDR)、可编程电压监测器(PVD)− 4~16MHz 晶体振荡器− 内嵌经出厂调校的8MHz 的RC 振荡器 − 内嵌带校准的40kHz 的RC 振荡器 − 产生CPU 时钟的PLL− 带校准功能的32kHz RTC 振荡器 ■ 低功耗− 睡眠、停机和待机模式− V BAT 为RTC 和后备寄存器供电■ 2个12位模数转换器,1μs 转换时间(多达16个输入通道)− 转换范围:0至3.6V − 双采样和保持功能 − 温度传感器 ■ DMA :− 7通道DMA 控制器− 支持的外设:定时器、ADC 、SPI 、I 2C 和USART ■ 多达80个快速I/O 端口− 26/37/51/80个I/O 口,所有I/O 口可以映像到16个外部中断;几乎所有端口均可容忍5V 信号■ 调试模式− 串行单线调试(SWD)和JTAG 接口■ 多达7个定时器− 3个16位定时器,每个定时器有多达4个用于输入捕获/输出比较/PWM 或脉冲计数的通道和增量编码器输入− 1个16位带死区控制和紧急刹车,用于电机控制的PWM 高级控制定时器− 2个看门狗定时器(独立的和窗口型的) − 系统时间定时器:24位自减型计数器 ■ 多达9个通信接口− 多达2个I 2C 接口(支持SMBus/PMBus) − 多达3个USART 接口(支持ISO7816接口,LIN ,IrDA 接口和调制解调控制) − 多达2个SPI 接口(18M 位/秒) − CAN 接口(2.0B 主动) − USB 2.0全速接口 ■ CRC 计算单元,96位的芯片唯一代码 ■ ECOPACK ®封装 表1 器件列表参 考 基本型号STM32F103x8STM32F103C8、STM32F103R8、STM32F103V8、STM32F103T8 STM32F103xBSTM32F103RB 、STM32F103VB 、STM32F103TB本文档英文原文下载地址: /stonline/products/literature/ds/13587.pdf目录1介绍 (4)2规格说明 (5)2.1器件一览 (5)2.2系列之间的全兼容性 (6)2.3概述 (6)2.3.1ARM®的Cortex™-M3核心并内嵌闪存和SRAM (6)2.3.2内置闪存存储器 (6)2.3.3CRC(循环冗余校验)计算单元 (6)2.3.4内置SRAM (7)2.3.5嵌套的向量式中断控制器(NVIC) (7)2.3.6外部中断/事件控制器(EXTI) (7)2.3.7时钟和启动 (7)2.3.8自举模式 (7)2.3.9供电方案 (7)2.3.10供电监控器 (8)2.3.11电压调压器 (8)2.3.12低功耗模式 (8)2.3.13DMA (8)2.3.14RTC(实时时钟)和后备寄存器 (8)2.3.15定时器和看门狗 (9)2.3.16I2C总线 (10)2.3.17通用同步/异步收发器(USART) (10)2.3.18串行外设接口(SPI) (10)2.3.19控制器区域网络(CAN) (10)2.3.20通用串行总线(USB) (10)2.3.21通用输入输出接口(GPIO) (10)2.3.22ADC(模拟/数字转换器) (10)2.3.23温度传感器 (11)2.3.24串行单线JTAG调试口(SWJ-DP) (11)3引脚定义 (13)4存储器映像 (21)5电气特性 (22)5.1测试条件 (22)5.1.1最小和最大数值 (22)5.1.2典型数值 (22)5.1.3典型曲线 (22)5.1.4负载电容 (22)5.1.5引脚输入电压 (22)5.1.6供电方案 (23)5.1.7电流消耗测量 (23)参照2009年4月 STM32F103x8B数据手册英文第10版(本译文仅供参考,如有翻译错误,请以英文原稿为准) 2/625.2绝对最大额定值 (23)5.3工作条件 (25)5.3.1通用工作条件 (25)5.3.2上电和掉电时的工作条件 (25)5.3.3内嵌复位和电源控制模块特性 (25)5.3.4内置的参照电压 (26)5.3.5供电电流特性 (26)5.3.6外部时钟源特性 (33)5.3.7内部时钟源特性 (37)5.3.8PLL特性 (38)5.3.9存储器特性 (38)5.3.10EMC特性 (38)5.3.11绝对最大值(电气敏感性) (39)5.3.12I/O端口特性 (40)5.3.13NRST引脚特性 (42)5.3.14TIM定时器特性 (43)5.3.15通信接口 (43)5.3.16CAN(控制器局域网络)接口 (47)5.3.1712位ADC特性 (47)5.3.18温度传感器特性 (51)6封装特性 (52)6.1封装机械数据 (52)6.2热特性 (59)6.2.1参考文档 (59)6.2.2选择产品的温度范围 (59)7订货代码 (61)8版本历史 (62)参照2009年4月 STM32F103x8B数据手册英文第10版(本译文仅供参考,如有翻译错误,请以英文原稿为准) 3/621 介绍本文给出了STM32F103x8和STM32F103xB中等容量增强型产品的订购信息和器件的机械特性。
74HC595中文资料_数据手册_参数
onsemicom7功能表手术输入结果函数重启串行输入一个转移时钟闩时钟产量启用转移寄存器内容闩寄存器内容串行产量sqh平行输出大号大号大号将数据移入换档寄存器lh大号dsrsrn锁存寄存器保持不变不变sr移位寄存器内容数据lh逻辑电平低到高取决于复位和移位时钟输入lr保持不变从高到低取决于锁存时钟74hc595输入引脚说明inputsa引脚1474hc595串行数据输入
图 SERIAL数据 INPUT 14 11 10 12 13转移时钟重启 LATCH时钟 OUTPUT ENABLE转 移寄存器 LATCH 15 1 2 3 4五 6 7 9 Q A Q B Q C Q D Q E Q F Q G Q H SQ H一个 V CC = PIN 16 GND = PIN 8平行数据产出 SERIAL数据 OUTPUT引脚分配 13 14 15 16 9 10 11 12五 4 3 2 1 8 7 6锁定时钟输出启用一CK Q E Q D Q C Q B GND Q H Q G Q F订购信息设备包 运输 ? 74HC595DR2G SOIC-16 (无铅) 2500磁带和卷轴 74HC595DTR2G TSSOP-16 * 2500磁带和卷轴 ?有关磁带和 卷轴规格的信息,包括零件方向和磁带尺寸,请参阅我们的74hc595磁带和卷轴包 74hc595装规格手册,BRD8011 / D. *该封装本身具有无铅功能.74HC595中文资料第3 页精选内容: 74HC595 3最大额定值符号参数值单元 V CC 直流电源电压(参考GND) - 0.5至+ 7.0 V V IN直流输入电压(参考GND) - 0.5至 V CC + 0.5 V V OUT直流输出电压(参考GND) - 0.5至V CC + 0.5 V 我 在直流输入 电流,每个引脚 ±20嘛 我 出去了直流输出电流,每个引脚 ±35嘛 我 CC DC电源 电流,V CC 和GND引脚 ±75嘛 P D.静止空气中的功率耗散, SOIC封装? TSSOP封 装? 500 450毫瓦 T STG储存温度 - 65至+ 150 _C T L引线温度,距壳体1毫米,持续10 秒 (SOIC或TSSOP封装) 260 _C74hc595强调超过最大额定值74hc595可能会损坏设 备.最大额定值是压力仅限评级.不建议在推荐操作条件之上进行功能操作.长时间暴 露在高于推荐操作条件的应力下可能会影响设备74hc595可靠性. ?降额 - SOIC封 装: - 从65到125°C时为7 MW / _C TSSOP封装: - 从65_到125_C的6.1 MW / _C有 关高频或高负载考虑事项,请参阅安森美半导体高速CMOS数据手册(DL129 / D) 的第2章.推荐工作条件符号参数敏马克斯单元 V CC直流电源电压(参考GND) 2.0 6 V V IN ,V OUT 直流输入电压,输出电压 (参考GND) 0 V CC V T A.工作温 度,所有封装类型 - 55 + 125 _C T R ,T F输入上升和下降时间 V CC = 2.0 V (图1) V CC = 4.5V V CC = 6.0 V 0 0 0 1000 500 400 NS此设备包含保护防止损坏的电路由于高静态电压或电领域.但是,必 须采取预防措施被采取以避免任何应用程序电压高于最大额定值这个高阻抗电路 的电压 - CUIT. 为了正确的操作,V IN 和 V OUT 应该受到限制 范围GND V(V IN 或V OUT )V V CC .未使用的输入必须始终为绑定到适当的逻辑电压 电平(例 如,GND或V CC ).未使用的输出必须保持打开状态.74HC595中文资料第1页精选 内容:74HC595中文资料第7页精选内容: 74HC595 7功能表 手术输入结果函数重启串行输入一个转移时钟闩时钟产量启用转移寄存器内容闩 寄存器内容串行产量 SQ H平行输出 Q A - Q H复位移位寄存器大号 X X L,H, ↓ 大→号SR大N号+ 1üü大S号R Gü→将S数R 据H 移ü入移换74h档c5寄95存位器寄H存D器↑保持L,不H变,H↓X大L号,DH→,S↓R LA,; SHR,N↓ 大号 ü ü ü ü转移移位寄存器内容锁定寄存器 H X L,H,↓ ↑大号 ü SR N →LR N ü SR N锁存寄存器保持不变不变 X X X L,H,↓大号 * ü * ü启用并行输 出 X X X X大号 * ** *启用强制输出为高阻抗状态 X X X X H * ** * ? SR =移位寄存器 内容 D =数据(L,H)逻辑电平 ↑=低到高 * =取决于复位和移位时钟输入 LR =锁 存寄存器内容 U =保持不变 ↓=从高到低 ** =取决于锁存时钟74hc595输入引脚说明 I1N4)PU7T4ShcA5(95串引行脚数据输入.该引脚上的数据被移入 8位串行移位寄存器.控制输入移 位时钟(引脚11)移位寄存器时钟输入.从低到高的过渡该输74hc595入会导致串行
2N3700HR中文资料(ST)中文数据手册「EasyDatasheet - 矽搜」
包
UB UB UB UB UB LCC-3 LCC-3 LCC-3 TO-18 TO-18 TO-18
辐射水平
100拉德HDR -
100拉德ESCC 100拉德SW -
芯片中文手册,看全文,戳
3
TO-18
1 2
LCC-3
在UB销4被连接到金属盖
1 2 3
3
4 1
2
UB
图 1.内部示意图
2N3700HR
高可靠性80 V,1 NPN晶体管
特征
数据表
- 生产数据
BVCEO
80 V
集成电路(MAX)
1A
HFE在10 V - 150毫安
100
密封包
食管鳞状细胞癌和JANS合格 高达100拉德(Si)低剂量率
[300]
20
0.5 V
IC =150毫安
IB =15毫安
- 1.1 V
IC =0.1毫安 IC =10毫安 IC =150毫安 IC =150毫安 Tamb = 150 °C IC =500毫安
VCE = 10 V 25
- 200
VCE = 10 V 45
-
VCE = 10 V 100
-
300
VCE = 10 V 40
2N3700UB0x SOC3700RHRx SOC3700SW SOC3700HRB 2N3700RHRx
2N3700SW 2N3700HR
资格 系统
JANSR JANS ESCC ESCC ESCC ESCC ESCC ESCC ESCC ESCC ESCC
ST75256中文手册-自己翻译20171019
ST752564 Level Gray Scale Dot Matrix LCD Controller/DriverVersion 0.4目录1 简介 (4)2 产品特点 (4)3 PAD排列 (6)4 PAD中心坐标 (6)5 框图 (6)6 引脚介绍 (7)7 功能描述 (7)7.1 微处理器接口 (7)7.1.1 芯片选择输入 (7)7.1.2 并行/串行接口 (7)7.1.3 并行接口 (8)7.1.4 设置串行接口 (9)7.1.5 4线串行接口 (9)7.1.6 I2C接口 (9)7.2 数据传输 (9)7.3 显示数据存储器(DDRAM,即显存) (11)7.3.1 页地址电路 (13)7.3.2 列地址电路 (13)7.3.3 I/O缓冲电路 (13)7.3.4 显示数据锁存电路 (13)7.3.5 数据方向 (13)7.3.6 DDRAM映射到LCD驱动器输出 (15)7.3.7 局部显示(Partial Display) (17)7.3.8 区域滚动显示(Area Scroll Display) (17)7.4 LCD电源电路 (18)7.4.1 电源的外部组件 (18)7.4.2 调压电路 (19)9 命令 (21)9.1 指令表 (21)9.2 指令介绍 (25)9.2.1 扩展命令(Extension Command) (25)“扩展指令1”(“Extension Command 1”) (26)9.2.2 显示开关 (26)9.2.3 反向显示 (26)9.2.4 所有像素开/关 (26)9.2.5 显示控制 (27)9.2.6 节电 (28)2 54 jackielau手动翻译9.2.7 设置页地址 (28)9.2.8 设置列地址 (29)9.2.9 数据扫描方向 (29)9.2.10 写数据 (31)9.2.11 读数据 (32)9.2.12 局部显示模式进入 (32)9.2.13 局部显示模式退出 (32)9.2.14读取/修改/写入模式进入 (33)9.2.15读取/修改/写入模式退出 (33)9.2.16 滚动区域 (34)9.2.17 滚动起始地址设置 (34)9.2.18 OSC ON (34)9.2.19 OSC OFF (34)9.2.20 电源控制 (34)9.2.21 设置Vop (35)9.2.22 Vop控制 (36)9.2.23 读寄存器模式 (36)9.2.24 NOP (36)9.2.25 读取状态 (37)9.2.26 数据格式选择 (37)9.2.27 显示模式 (38)9.2.8 图标控制 (38)“扩展指令2”(“Extension Command 2”) (38)9.2.29 模拟电路设置 (38)9.2.30 升压倍率 (39)9.2.31 驱动选择 (39)9.2.32 大功率模式(High Power Mode) (40)9.2.33 自动读取控制 (40)9.2.34 OTP读写控制 (40)9.2.35 OTP控制退出 (40)3.2.36 OTP写入 (41)3.2.37 OTP读取 (41)3.2.38 OTP选择控制 (41)9.2.39 OTP编程设置 (41)9.2.40 帧率 (42)9.2.41 温度范围 (42)9.2.42 温度梯度补偿 (43)“扩展指令3”(“Extension Command 3”) (44)9.2.43 设置ID (44)9.2.44 读取ID (44)10 操作流程 (45)10.1 上电 (45)10.2 掉电 (45)3 54 jackielau手动翻译10.3 OTP操作 (45)11 手触 (45)12 极限参数 (45)13 直流特性 (45)14 交流特性 (46)14.1 8080MCU接口的系统总线时序 (46)14.2 6800MCU接口的系统总线时序 (47)14.3 4线SPI MCU接口的系统总线时序 (48)14.4 串行接口(I2C接口) (49)14.5 复位时序 (50)15 应用注释 (51)15.1 应用电路 (51)15.1.1 并行8080接口 (51)15.1.2 并行6800接口 (52)15.1.3 4线SPI接口 (52)15.1.4 I2C接口 (53)16 主/从模式 (53)17 版本历史 (54)1 简介ST75256是一个用于4级灰度图形点阵液晶显示系统的驱动和控制器的大规模集成电路(LSI),包含256段和162个公用段。
常用近500个三极管(MOSFET)中文资料
9011,9012,9013,9014,8050,8550三极管的区别9011 NPN 30V 30mA 400mW 150MHz 放大倍数20-809012 PNP 50V 500mA 600mW 低频管放大倍数30-909013 NPN 20V 625mA 500mW 低频管放大倍数40-1109014 NPN 45V 100mA 450mW 150MHz 放大倍数20-908050 NPN 25V 700mA 200mW 150MHz 放大倍数30-1008550 PNP 40V 1500mA 1000mW 200MHz 放大倍数40-140详情如下:90系列三极管参数90系列三极管大多是以90字为开头的,但也有以ST90、C或A90、S90、SS90、UTC90开头的,它们的特性及管脚排列都是一样的。
9011 结构:NPN集电极-发射极电压30V集电极-基电压50V射极-基极电压5V集电极电流0.03A耗散功率0.4W结温150℃特怔频率平均370MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-1989012 结构:PNP集电极-发射极电压-30V集电极-基电压-40V射极-基极电压-5V集电极电流0.5A耗散功率0.625W结温150℃特怔频率最小150MHZ放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-3009013 结构:NPN集电极-发射极电压25V集电极-基电压45V射极-基极电压5V集电极电流0.5A耗散功率0.625W结温150℃特怔频率最小150MHZ放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-3009014 结构:NPN集电极-发射极电压45V集电极-基电压50V射极-基极电压5V集电极电流0.1A耗散功率0.4W结温150℃特怔频率最小150MHZ放大倍数:A60-150 B100-300 C200-600 D400-10009015 结构:PNP集电极-发射极电压-45V集电极-基电压-50V射极-基极电压-5V集电极电流0.1A耗散功率0.45W结温150℃特怔频率平均300MHZ放大倍数:A60-150 B100-300 C200-600 D400-10009016 结构:NPN集电极-发射极电压20V集电极-基电压30V射极-基极电压5V集电极电流0.025A耗散功率0.4W结温150℃特怔频率平均620MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-1989018 结构:NPN集电极-发射极电压15V集电极-基电压30V射极-基极电压5V集电极电流0.05A耗散功率0.4W结温150℃特怔频率平均620MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-198三极管85508550是一种常用的普通三极管。
MIL-STD-461中文资料
MIL-STD-461中⽂资料from 4W up to 50W total input power and up to 2A input currentup to 50V permanent input voltage and up to 100V transient input voltage during 50ms4-1 EMI Filter Electrical Schematics in Front of MGDM-04/10/18/20/26 & CGDM SeriesThe GAIA Converter FGDS-2A-50V can be used directly in front of any DC/DC converter and combinationsusing of MGDM-04, MGDM-10, MGDM-18, MGDM-20, MGDM-26 and CGDM series. For better EMI performance and stability purpose, GAIA Converter recommends to use a RC cell (see section 4-4) together with a common mode 4-2 EMI Filter Electrical Schematics in front of MGDM-25, MGDM-35 SeriesThe GAIA Converter FGDS-2A-50V can be used by adding an LC cell in front of any DC/DC converter and combinations of MGDM-25, MGDM-35 series. For better EMI performance and stability purpose, GAIA Converter recommends to use a RC cell (see section 4-4) and a LC cell (L=4.7µH, C=4.7µF) together with a common mode noise capacitance Cc (10nF typical) connected between Gin and Gout pins of each DC/DC converter.4-3 EMI Filter Electrical Schematics in Front of Pre-regulator PGDS Series :The GAIA Converter FGDS-2A-50V can be used directly in front of pre-regulators PGDS series with any DC/DC converter and combinations of MGDM-04, MGDM-10, MGDM-18, MGDM-20, MGDM-26 and CGDM series.For better EMI performance and stability purposes, GAIA Converter recommends to use a RC cell (see section 4-4) together with a common mode noise capacitance Cc (10nF typical) connected between Gin and Gout pins of each converter.4-4 R*C* Network DiscussionT he RC damping network is a network used for stability purposes in negative input impedance systems such as DC/DC converters.R and C is a network whose function is to lower the filter’s output impedance.The value of the capacitor C strongly depends on the application’s conditions (input voltage range and total power drawn from the source) as well as the standards that the equipment has to meet MIL-STD-461C, or D/E, ... this because measurements method (LISN) differs from one standard to another affecting the C value.DC/DC converters are negative input impedance systems whereas a filter composed of passive elements displays a positive output impedance to the converter. To ensure the stability of the whole system “LISN + input Filter + DC/DC converters”, the filter output impedance must be kept below the converter’s input impedance, which is given by the following formula :Vin 2 Vin 2 x hZin = ____ = _________Pin Powhere :Vin is the converter input voltage,Pin is the converter input power, Po is the converter output power h is the efficiency of the converter.As it can be seen from the preceding equation, the worst case for system’s stability is at Vin min , so this is the condition which should be considered for the filter design.As the filter is made of low ESR inductors and ceramic capacitors, it has an important Q which causes a sharp increase of the filter’s output impedance at the resonant frequency and leads to a violation of the stability criteria, causing the system to break into oscillations.Consequently, the values of C and R have to be adjusted to dampen sufficiently the filter’s resonance and make its output impedance lower than the converter’s input impedance (a 10dB margin between both values is recommended).The following formula can be used to determine the capacitor value :( L LISN + 4 .10-6 ) x Po x k C > _________________________________Vin 2 x (R + R L )Where :L LISN is the LISN inductor value Po is the filter output powerR is the capacitor esr (equivalent serial resistor) of CR L is the input bus equivalent resistor. It is the sum of the line + LISN network + input connector resistors k is the stability margin factor.This factor is given by the following formula : Stability margin (dB) = 20 log (k)Vin is the converter input voltage5-2 MIL-STD-461D/E Measurement MethodThe conducted noise emission measurement method is described in the MIL-STD-461D/E stan-dards.The ?DUT? (Device Under Test) is powered thru a 2 meters length parallel wire.One end is terminated with the DUT and the other end is terminated with LISN networks.The measurements are made with a measurement receiver, the unit being dBµV+28V inReturn in5-1 MIL-STD-461C Measurement MethodThe conducted noise emission measurement method of MIL-STD-461C is described in MIL-STD-462C standard.The ?DUT? (Device Under Test) is powered thru a 1 meter lengh parallel wire.One end is terminated with the DUT and the other end is terminated with 10µF capacitors to the ground plane. The measurements are made with a current probe, the unit of measurement beingdBµA.+28V inReturn inMIL-STD-461C : MGDS-O4-H-C with FGDS-2A-50VMIL-STD-461E : MGDS-O4-H-C with FGDS-2A-50VMIL-STD-461C : MGDS-10-J-C with FGDS-2A-50VMIL-STD-461E : MGDS-10-J-C with FGDS-2A-50VMIL-STD-461C : 3 x MGDS-10-J-C with FGDS-2A-50VMIL-STD-461E : 3 x MGDS-10-J-C with FGDS-2A-50VMIL-STD-461C : MGDS-26-H-C with FGDS-2A-50VMIL-STD-461E : MGDS-26-H-C with FGDS-2A-50VMIL-STD-461C : MGDS-35-H-C with FGDS-2A-50VMIL-STD-461E : MGDS-35-H-C with FGDS-2A-50V9- Product MarkingUpper face : Company logo, location of manufacturing.Side face : Module reference, option, date code : year and week of manufacturing.10- ConnectionsDimension are given in mm (inches). Tolerance : +/- 0,2 mm (+/- 0.01 “) unless otherwise indicated.Weight : 10 grams (0.3 Ozs) max.plastic case black solder plated pin10,70(0.42")51423Bottom viewInformation given in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed for the consequence of its use nor for any infringement of patents or other rights of third parties which may result from its use.These products are sold only according to GAIA Converter general conditions of sale, unless otherwise confirmed by writing. Specifications subject to change without notice.d i n F r a n ce b y G A I A C o n v e r t e r G a i a C o n v e r t e r F C 05-050.03/08 R e v i s i o n B . G r a p h i s m e : P h i l i p p e C l i c qRepresented by :For more detailed specifications and applications information, contact :International Headquarters Marketing and Sales departmentGA?A Converter - FranceAddress : B.P. 26 - 33186 LE HAILLAN - FRANCETel. : + (33)-5-57-92-12-80Fax : + (33)-5-57-92-12-89North American Headquarters GA?A Converter Canada, Inc Address : 6611 Thimens ST-LAURENT, QUEBEC - CANADA H4S 1W2Tel. : (514)-333-3169Fax : (514)-333-4519。
SMP100-xxxH225中文资料
®
SMP100-xxx SMP100-xxxH225
TRISIL TM
FEATURES BIDIRECTIONAL CROWBAR PROTECTION VOLTAGE RANGE : FROM 8V to 320V REPETITIVE PEAK PULSE CURRENT: IPP = 100 A (10/1000 µs) HOLDING CURRENT: IH = 150mA or 225mA LOW LEAKAGE CURRENT: IR = 2 µA max DESCRIPTION The SMP100 series are transient surge arrestors used for the protection of sensitive telecom equipment. MAIN APPLICATIONS Any sensitive equipment requiring protection against lightning strikes : ANALOG AND DIGITAL LINE CARDS MAIN DISTRIBUTION FRAMES TERMINALS AND TRANSMISSION EQUIPMENT GAS-TUBE REPLACEMENT BENEFITS NO AGEING AND NO NOISE IF DESTROYED, THE SMP100 FALLS INTO SHORT CIRCUIT,STILLENSURINGPROTECTION BOARD SPACE SAVING COMPLIES WITH THE FOLLOWING STANDARDS: CCITT K20 VDE0433 VDE0878 IEC-1000-4-5 FCC Part 68, lightning surge type A FCC Part 68, lightning surge type B BELLCORE TR-NWT-001089 First level BELLCORE TR-NWT-001089 Second level CNET l31-24
in4148中文资料_数据手册_参数
SEMTECH ELECTRONICS LTD.
Subsidiary of Sino-Tech International (BVI) Limited ®
Dated: 14/01/2013 Rev: 01
1N4148
Admissible power dissipation versus ambient temperature
Max. 0.5 Max. 1.9
Min. 27.5
Max. 0.45 Max. 1.9
Min. 27.5
Black Cathode Band
Black Part No.
Black "ST" Brand
XXX
ST
Max. 3.9
Black Cathode Band
Black Part No.
XXX Max. 2.9
Reverse Recovery Time at IF = 10 mA to IR = 1 mA, Irr = 0.1 x IR, VR = 6 V, RL = 100 Ω
Thermal Resistance Junction to Ambient Air
Vfr
-
trr
-
RthA
-
Rectification Efficiency at f = 100 MHz, VRF = 2 V
ηV
0.45
1) Valid provided that leads at a distance of 8 mm from case are kept at ambient temperature.
4
2.5
4 0.35 1)
-
pF V
ns K/mW
STS4DNF60L;中文规格书,Datasheet资料
March 2010Doc ID 6121 Rev 91/12STS4DNF60LN-channel 60 V , 0.045 Ω, 4 A, SO-8STripFET™ Power MOSFETFeatures■Standard outline for easy automated surface mount assembly ■Low threshold driveApplication■Switching applicationsDescriptionThis Power MOSFET is the latest development of STMicroelectronics unique “single feature size” strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.Type V DSS R DS(on)I D STS4DNF60L60V<0.055Ω4ATable 1.Device summaryOrder code Marking Package Packaging STS4DNF60L4DF60LSO-8Tape & reelContents STS4DNF60LContents1Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.1Electrical characteristics (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112/12Doc ID 6121 Rev 9STS4DNF60L Electrical ratingsDoc ID 6121 Rev 93/121 Electrical ratingsTable 2.Absolute maximum ratingsSymbol ParameterValue Unit V DS Drain-source voltage (V GS = 0)60V V GS Gate- source voltage± 15V I D Drain current (continuous) at T C = 25 °C 4A I D Drain current (continuous) at T C = 100 °C 2.5A I DM (1)1.Pulse width limited by safe operating area Drain current (pulsed)16A P TOT (2)2.P TOT =1.6 W for single operation T otal dissipation at T C = 25 °C 2W E AS (3)3.Starting T J = 25 °C, I D = 4 A, V DD = 30 VSingle pulse avalanche energy 80mJ T jT stgOperating junction temperature Storage temperature- 55 to 150°CTable 3.Thermal dataSymbolParameterValue Unit Rthj-pcb Thermal resistance junction-pcb D.O.(1)1.When mounted on inch² FR-4 board, 2 Oz Cu, t < 10sec, dual operation62.5°C/WElectrical characteristics STS4DNF60L4/12Doc ID 6121 Rev 92 Electrical characteristics(T C = 25 °C unless otherwise specified)Table 4.On /off statesSymbol Parameter Test conditionsMin.Typ.Max.Unit V (BR)DSS Drain-sourcebreakdown voltageI D = 250 µA, V GS = 060V I DSS Zero gate voltagedrain current (V GS = 0)V DS = Max rating V DS = Max rating, T C =125 °C 110µA µA I GSS Gate-body leakage current (V DS = 0)V GS = ± 15 V± 100nA V GS(th)Gate threshold voltage V DS = V GS , I D = 250 µA 11.72.5V R DS(on)Static drain-source on resistance V GS = 10 V , I D = 2 A V GS = 4.5 V , I D = 2 A0.0450.0500.0550.065ΩΩTable 5.DynamicSymbol Parameter Test conditionsMin.Typ.Max.Unit g fs Forwardtransconductance V DS =25 V , I D =2 A-25-S C issC oss C rss Input capacitance Output capacitance Reverse transfer capacitance V DS = 25 V , f = 1 MHz, V GS = 0-103014040-pF pF pF Q g Q gs Q gdT otal gate charge Gate-source charge Gate-drain chargeV DD = 48 V , I D = 4 A,V GS = 4.5 V (see Figure 13)-1544-nC nC nCSTS4DNF60L Electrical characteristicsDoc ID 6121 Rev 95/12Table 6.Switching timesSymbol ParameterTest conditions Min.Typ.Max.Unit t d(on)t r Turn-on delay time Rise timeV DD = 30 V , I D = 2.2 A, R G = 4.7 Ω, V GS = 10 V (see Figure 12)-1528-ns ns t d(off)t fTurn-off delay time Fall time-4510-ns nsTable 7.Source drain diodeSymbol ParameterTest conditionsMin.Typ.Max.Unit I SD I SDM (1)1.Pulse width limited by safe operating area Source-drain currentSource-drain current (pulsed)-416A A V SD (2)2.Pulsed: Pulse duration = 300 µs, duty cycle 1.5%Forward on voltage I SD = 4 A, V GS = 0- 1.2V t rr Q rr I RRMReverse recovery time Reverse recovery charge Reverse recovery currentI SD = 4 A, di/dt = 100 A/µs V DD = 20 V (see Figure 17)-85852ns nC AElectrical characteristics STS4DNF60L6/12Doc ID 6121 Rev 92.1 Electrical characteristics (curves)Figure 2.Safe operating area Figure 3.Thermal impedanceFigure 4.Output characteristics Figure 5.Transfer characteristicsFigure 6.Source-drain diode forwardFigure 7.Static drain-source on resistanceSTS4DNF60L Electrical characteristicsDoc ID 6121 Rev 97/12Figure 8.Gate charge vs gate-source voltage Figure 9.Capacitance variationsFigure 10.Normalized gate threshold voltageFigure 11.Normalized on resistance vsTest circuits STS4DNF60L8/12Doc ID 6121 Rev 93 Test circuitsFigure 12.Switching times test circuit forFigure 13.Gate charge test circuitFigure 14.Test circuit for inductive loadFigure 15.Unclamped Inductive load testFigure 16.Unclamped inductive waveformFigure 17.Switching time waveformSTS4DNF60L Package mechanical data 4 Package mechanical dataIn order to meet environmental requirements, ST offers these devices in different grades ofECOPACK® packages, depending on their level of environmental compliance. ECOPACK®specifications, grade definitions and product status are available at: . ECOPACKis an ST trademark.Doc ID 6121 Rev 99/12Package mechanical data STS4DNF60L10/12Doc ID 6121 Rev 9分销商库存信息: STMSTS4DNF60L。
A4988_中文资料
责任声明:1.该文章为在校研究生借助于谷歌翻译等工具自行翻译为中文资料,不代表官方意愿。
2.该文章只能用于学习交流之用,不可用于一切商业用途,否则后果自负,本作者不承担任何责任。
3.由于作者水平有限,难免有错误之处,此文章只做参考,以英文官方文献为准。
由于参考本文内容所造成的损失,后果自行承担。
4.如有侵权,请及时联系我删除。
QQ:7820202555.最后修改时间:2018.08.02A4988一、特色和优点1.低输出阻抗R DS(ON)2.自动检测/选择电流衰减模式3.混合和慢电流衰减模式4.同步整流,实现低功耗5.内部UVLO6.交叉电流保护7. 3.3和5V兼容逻辑电源8.热关断电路9.短路保护10.负载短路保护11.五种可选步进模式:全步,1/2,1/4,1/8和1/16二、封装28触点QFN封装,外部导热垫5mm×5mm×0.90mm(ET封装)。
三、描述A4988是一款完整的微步电机驱动器,内置转换器,操作简便。
它设计用于以全步,半步,四分之一,八分之一和十六分之一步模式操作双极步进电机,输出驱动能力高达35V 和±2A电流。
A4988包括一个固定的关断时间电流调节器,能够在慢速或混合衰减模式下工作。
翻译是轻松实现A4988的关键。
只需在STEP引脚上输入一个脉冲就可以驱动电机一个微步。
不需要相序表,高频控制线或复杂的编程接口。
A4988非常适合复杂微处理器不可用或负担过重的应用。
在步进操作期间,A4988中的斩波控制器自动选择当前衰减模式,慢速或混合。
在混合衰减模式中,设备最初设置为固定关闭时间的一部分的快速衰减,然后设置为关闭时间的剩余部分的缓慢衰减。
混合衰减电流控制可降低可听到的电机噪声,提高步进精度并降低功耗。
四、典型应用图微控制器或控制器逻辑五、说明(续)提供内部同步整流控制电路以改善PWM操作期间的功率耗散。
内部电路保护包括:具有迟滞的热关断,欠压锁定(UVLO)和交叉电流保护。
STPS40120CT;STPS40120CR;中文规格书,Datasheet资料
September 2011Doc ID 11214 Rev 31/9STPS40120CPower Schottky rectifierFeatures■High junction temperature capability ■Avalanche rated ■Low leakage current■Good trade-off between leakage current and forward voltage dropDescriptionDual center tap Schottky rectifier suited for high frequency Switch Mode Power Supply.Packaged in TO-220AB, TO-220AB narrow leads and I 2PAK, this device is intended to be used in notebook and LCD adaptors, desktop SMPS, providing in these applications a margin between the remaining voltages applied on the diode and the voltage capability of the diode.Table 1.Device summaryI F(AV) 2 x 20 A V RRM 120 V T j(max)175 °CV F(typ) 0.57VCharacteristics STPS40120C2/9Doc ID 11214 Rev 31 CharacteristicsWhen the diodes 1 and 2 are used simultaneously:ΔT j (diode 1) = P(diode 1) x R th(j-c)(per diode) + P(diode 2) x R th(c)Table 2.Absolute ratings (limiting values, per diode)Symbol ParameterValue Unit V RRM Repetitive peak reverse voltage 120V I F(RMS)Forward rms current 30A I F(AV)Average forward currentδ = 0.5T c = 145 °CPer diode Per device2040A I FSM Surge non repetitive forward current t p = 10 ms sinusoidal 200A P ARM Repetitive peak avalanche power t p = 1 µs, T j = 25 °C10500W T stg Storage temperature range-65 to + 175°C T jMaximum operating junction temperature (1)1.condition to avoid runaway for a diode on its own heatsink 175°CTable 3.Thermal parametersSymbol ParameterValue Unit R th(j-c)Junction to case Per diode Total 1.60.85 °C/W R th(c)CouplingTotal0.1°C/WTable 4.Static electrical characteristics (per diode)Symbol Test conditions Min.Typ.Max.Unit I R (1)1.Pulse test: t p = 5 ms, δ < 2%Reverse leakage currentT j = 25 °C V R = V RRM25μA T j = 125 °C 412mAV F (2)2.Pulse test: t p = 380 µs, δ < 2%To evaluate the maximum conduction losses use the following equation:P = 0.58 x I F(AV) + 0.0075 I F 2(RMS)Forward voltage dropT j = 25 °C I F = 7.5 A0.73V T j = 125 °C0.570.61T j = 25 °C I F = 20 A0.9T j = 125 °C 0.690.73T j = 25 °C I F = 40 A1T j = 125 °C0.830.88dPtotdTj---------------1Rth j a –()-------------------------<STPS40120CCharacteristicsDoc ID 11214 Rev 33/9Figure 1.Average forward power dissipation versus averageFigure 2.Average forward current versus ambient temperatureFigure 3.Normalized avalanche power derating versus pulse durationFigure 4.Normalized avalanche power derating versus junctionFigure 5.Non repetitive surge peak forward current versus overload duration Figure 6.Relative variation of thermal impedance junction to ambientCharacteristicsSTPS40120C4/9Doc ID 11214 Rev 3Figure 7.Reverse leakage current versus reverse voltage applied (typical Figure 8.Junction capacitance versus reverse voltage applied (typicalSTPS40120C Package informationDoc ID 11214 Rev 35/92 Package information●Epoxy meets UL94, V0●Cooling method: by conduction (C)●Recommended torque value: 0.4 to 0.6 N·mIn order to meet environmental requirements, ST offers these devices in different grades ofECOPACK ® packages, depending on their level of environmental compliance. ECOPACK ® specifications, grade definitions and product status are available at: . ECOPACK ® is an ST trademark.Package information STPS40120C6/9Doc ID 11214 Rev 3STPS40120C Package information Devices in I2PAK with nickel-plated back frame must NOT be mounted by frame solderinglike SMDs. Such devices are intended to be through-hole mounted ONL Y and in nocircumstances shall ST be held liable for any lack of performance or damage arising out ofsoldering of nickel-plated back frames.2Doc ID 11214 Rev 37/9Ordering information STPS40120C8/9Doc ID 11214 Rev 33 Ordering information4 Revision historyTable 7.Ordering informationOrder code Marking Package Weight Base qtyDelivery modeSTPS40120CT STPS40120CT TO-220AB 2.2 g 50T ube STPS40120CR STPS40120CR I 2P AK 1.49 g 50T ube STPS40120CTNPS40120CTNTO-220ABnarrow leads1.9 g50T ubeTable 8.Document revision historyDate RevisionChanges18-Feb-20051First issue1-Dec-20062Reformatted to current standards. Added I 2P AK.15-Sep-20113Added TO-220AB narrow leads package.STPS40120CPlease Read Carefully:Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.All ST products are sold pursuant to ST’s terms and conditions of sale.Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.ST and the ST logo are trademarks or registered trademarks of ST in various countries.Information in this document supersedes and replaces all information previously supplied.The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.© 2011 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of AmericaDoc ID 11214 Rev 39/9分销商库存信息:STMSTPS40120CT STPS40120CR。
常用4000系列标准数字电路的中文名称
常用4000系列标准数字电路的中文名称资料74系列芯片功能大全〔点击型号查货〕常用74系列标准数字电路的中文名称资料器件代号器件名称74 74LS 74HCCD4000 双3输入端或非门+单非门TI 7400 TTL 2输入端四与非门00 四2输入端与非门√√√CD4001 四2输入端或非门HIT/NSC/TI/GOL 7401 TTL 集电极开路2输入端四与非门01 四2输入端与非门(OC) √√CD4002 双4输入端或非门NSC 7402 TTL 2输入端四或非门02 四2输入端或非门√√√CD4006 18位串入/串出移位存放器NSC 7403 TTL 集电极开路2输入端四与非门03 四2输入端与非门(OC) √√CD4007 双互补对加反相器NSC 7404 TTL 六反相器04 六反相器√√√CD4008 4位超前进位全加器NSC 7405 TTL 集电极开路六反相器05 六反相器(OC) √√CD4009 六反相缓冲/变换器NSC 7406 TTL 集电极开路六反相高压驱动器06 六高压输出反相器(OC,30V) √√CD4010 六同相缓冲/变换器NSC 7407 TTL 集电极开路六正相高压驱动器07 六高压输出缓冲,驱动器(OC,30V) √√√CD4011 四2输入端与非门HIT/TI 7408 TTL 2输入端四与门08 四2输入端与门√√√CD4012 双4输入端与非门NSC 7409 TTL 集电极开路2输入端四与门09 四2输入端与门(OC) √√√CD4013 双主-从D型触发器FSC/NSC/TOS 7410 TTL 3输入端3与非门10 三3输入端与非门√√√CD4014 8位串入/并入-串出移位存放器NSC7411 TTL 3输入端3与门11 三3输入端与门√√CD4015 双4位串入/并出移位存放器TI 7412 TTL 开路输出3输入端三与非门12 三3输入端与非门(OC) √√√CD4016 四传输门FSC/TI 7413 TTL 4输入端双与非施密特触发器13 双4输入端与非门√√√CD4017 十进制计数/分配器FSC/TI/MOT 7414 TTL 六反相施密特触发器14 六反相器√√√CD4018 可预制1/N计数器NSC/MOT 7415 TTL 开路输出3输入端三与门15 三3输入端与门(OC) √√CD4019 四与或选择器PHI 7416 TTL 开路输出六反相缓冲/驱动器16 六高压输出反相器(OC,15V) √CD4020 14级串行二进制计数/分频器FSC 7417 TTL 开路输出六同相缓冲/驱动器17 六高压输出缓冲,驱动器(OC,15V) √CD4021 08位串入/并入-串出移位7420 TTL 4输入端双与非20 双4输入端与非门√√√存放器PHI/NSC 门CD4022 八进制计数/分配器NSC/MOT7421 TTL 4输入端双与门21 双4输入端与门√√√CD4023 三3输入端与非门NSC/MOT/TI 7422 TTL 开路输出4输入端双与非门22 双4输入端与非门(OC) √√CD4024 7级二进制串行计数/分频器NSC/MOT/TI 7427 TTL 3输入端三或非门25 双4输入端或非门(有选通端) √√√CD4025 三3输入端或非门NSC/MOT/TI 7428 TTL 2输入端四或非门缓冲器26 四2输入端高压输出与非缓冲器√√√CD4026 十进制计数/7段译码器NSC/MOT/TI7430 TTL 8输入端与非门27 三3输入端或非门√√√CD4027 双J-K触发器NSC/MOT/TI7432 TTL 2输入端四或门28 四2输入端或非缓冲器√√√CD4028 BCD码十进制译码器NSC/MOT/TI 7433 TTL 开路输出2输入端四或非缓冲器30 8输入端与非门√√√CD4029 可预置可逆计数器NSC/MOT/TI 7437 TTL 开路输出2输入端四与非缓冲器32 四2输入端或门√√√CD4030 四异或门NSC/MOT/TI/GOL 7438 TTL 开路输出2输入端四与非缓冲器33 四2输入端或非缓冲器(OC) √√CD4031 64位串入/串出移位存储器NSC/MOT/TI 7439 TTL 开路输出2输入端四与非缓冲器37 四2输入端与非缓冲器√√CD4032 三串行加法器NSC/TI 7440 TTL 4输入端双与非缓冲器38 四2输入端与非缓冲器(OC) √√CD4033 十进制计数/7段译码器NSC/TI 7442 TTL BCD—十进制代码转换器40 双4输入端与非缓冲器√√√CD4034 8位通用总线存放器NSC/MOT/TI 7445 TTL BCD—十进制代码转换/驱动器42 4线-10线译码器(BCD输入) √√CD4035 4位并入/串入-并出/串出移位存放NSC/MOT/TI 7446 TTL BCD—7段低有效译码/驱动器43 4线-10线译码器(余3码输入) √CD4038 三串行加法器NSC/TI 7447 TTL BCD—7段高有效译码/驱动器44 4线-10线译码器(余3葛莱码输入) √CD4040 12级二进制串行计数/分频器NSC/MOT/TI 7448 TTL BCD—7段译码器/内部上拉输出驱动48 4线-7段译码器√CD4041 四同相/反相缓冲器NSC/MOT/TI 7450 TTL 2-3/2-2输入端双与或非门49 4线-7段译码器√CD4042 四锁存D型触发器NSC/MOT/TI 7451 TTL 2-3/2-2输入端双与或非门50 双2路2-2输入与或非门√√√CD4043 4三态R-S锁存触发器("1"7454 TTL 四路输入与或51 2路3-3输入,2路2-2输入与或非门√触发) NSC/MOT/TI 非门√√CD4044 四三态R-S锁存触发器("0"触发) NSC/MOT/TI 7455 TTL 4输入端二路输入与或非门52 4路2-3-2-2输入与或门√CD4046 锁相环NSC/MOT/TI/PHI 7473 TTL 带去除负触发双J-K触发器53 4路2-2-2-2输入与或非门√CD4047 无稳态/单稳态多谐振荡器NSC/MOT/TI 7474 TTL 带置位复位正触发双D触发器54 4路2-3-3-2输入与或非门√√CD4048 4输入端可扩展多功能门NSC/HIT/TI 7476 TTL 带预置去除双J-K触发器55 2路4-4输入与或非门√CD4049 六反相缓冲/变换器NSC/HIT/TI 7483 TTL 四位二进制快速进位全加器60 双4输入与扩展器√√CD4050 六同相缓冲/变换器NSC/MOT/TI 7485 TTL 四位数字比拟器61 三3输入与扩展器√CD4051 八选一模拟开关NSC/MOT/TI 7486 TTL 2输入端四异或门62 4路2-3-3-2输入与或扩展器√CD4052 双4选1模拟开关NSC/MOT/TI 7490 TTL 可二/五分频十进制计数器64 4路4-2-3-2输入与或非门√CD4053 三组二路模拟开关NSC/MOT/TI 7493 TTL 可二/八分频二进制计数器65 4路4-2-3-2输入与或非门(OC) √CD4054 液晶显示驱动器NSC/HIT/TI 7495 TTL 四位并行输入\输出移位存放器70 与门输入J-K触发器√CD4055 BCD-7段译码/液晶驱动器NSC/HIT/TI 7497 TTL 6位同步二进制乘法器71 与或门输入J-K触发器√CD4056 液晶显示驱动器NSC/HIT/TI 74107 TTL 带去除主从双J-K触发器72 与门输入J-K触发器√CD4059 “N〞分频计数器NSC/TI 74109 TTL 带预置去除正触发双J-K触发器74 双上升沿D型触发器√√CD4060 14级二进制串行计数/分频器NSC/TI/MOT 74112 TTL 带预置去除负触发双J-K触发器78 双D型触发器√√CD4063 四位数字比拟器NSC/HIT/TI 74121 TTL 单稳态多谐振荡器85 四位数值比拟器√CD4066 四传输门NSC/TI/MOT 74122 TTL 可再触发单稳态多谐振荡器86 四2输入端异或门√√√CD4067 16选1模拟开关NSC/TI 74123 TTL 双可再触发单稳态多谐振荡器87 4位二进制原码/反码√CD4068 八输入端与非门/与门NSC/HIT/TI 74125 TTL 三态输出高有效四总线缓冲门95 4位移位存放器√CD4069 六反相器NSC/HIT/TI 74126 TTL 三态输出低有101 与或门输入J-K触发器√效四总线缓冲门CD4070 四异或门NSC/HIT/TI 74132 TTL 2输入端四与非施密特触发器102 与门输入J-K触发器√CD4071 四2输入端或门NSC/TI 74133 TTL 13输入端与非门107 双主-从J-K触发器√CD4072 双4输入端或门NSC/TI 74136 TTL 四异或门108 双主-从J-K触发器√CD4073 三3输入端与门NSC/TI 74138 TTL 3-8线译码器/复工器109 双主-从J-K触发器√CD4075 三3输入端或门NSC/TI 74139 TTL 双2-4线译码器/复工器110 与门输入J-K触发器√CD4076 四D存放器74145 TTL BCD—十进制译码/驱动器111 双主-从J-K触发器√√CD4077 四2输入端异或非门HIT 74150 TTL 16选1数据选择/多路开关112 双下降沿J-K触发器√CD4078 8输入端或非门/或门74151 TTL 8选1数据选择器113 双下降沿J-K触发器√CD4081 四2输入端与门NSC/HIT/TI 74153 TTL 双4选1数据选择器114 双下降沿J-K触发器√CD4082 双4输入端与门NSC/HIT/TI 74154 TTL 4线—16线译码器116 双4位锁存器√CD4085 双2路2输入端与或非门74155 TTL 图腾柱输出译码器/分配器120 双脉冲同步驱动器√CD4086 四2输入端可扩展与或非门74156 TTL 开路输出译码器/分配器121 单稳态触发器√√√CD4089 二进制比例乘法器74157 TTL 同相输出四2选1数据选择器122 可重触发单稳态触发器√√√CD4093 四2输入端施密特触发器NSC/MOT/ST 74158 TTL 反相输出四2选1数据选择器123 可重触发双稳态触发器√√√CD4094 8位移位存储总线存放器NSC/TI/PHI 74160 TTL 可预置BCD异步去除计数器125 四总线缓冲器√√√CD4095 3输入端J-K触发器74161 TTL 可予制四位二进制异步去除计数器126 四总线缓冲器√√√CD4096 3输入端J-K触发器74162 TTL 可预置BCD同步去除计数器128 四2输入端或非线驱动器√√√CD4097 双路八选一模拟开关74163 TTL 可予制四位二进制同步去除计数器132 四2输入端与非门√√√CD4098 双单稳态触发器NSC/MOT/TI 74164 TTL 八位串行入/并行输出移位存放器CD4099 8位可寻址锁存器NSC/MOT/ST 74165 TTL 八位并行入/串行输出移位存放器CD40100 32位左/右移位存放器74166 TTL 八位并入/串出移位存放器74169 TTL 二进制四位加/减同步计数器CD40101 9位奇偶较验器74170 TTL 开路输出4×4存放器堆CD40102 8位可预置同步BCD减法计数器74173 TTL 三态输出四位D型存放器CD40103 8位可预置同步二进制减法计数器74174 TTL 带公共时钟和复位六D触发器CD40104 4位双向移位存放器74175 TTL 带公共时钟和复位四D触发器CD40105 先入先出FI-FD存放器74180 TTL 9位奇数/偶数发生器/校验器CD40106 六施密特触发器NSC\TI 74181 TTL 算术逻辑单元/函数发生器CD40107 双2输入端与非缓冲/驱动器HAR\TI 74185 TTL 二进制—BCD 代码转换器CD40108 4字×4位多通道存放器74190 TTL BCD同步加/减计数器CD40109 四低-高电平位移器74191 TTL 二进制同步可逆计数器CD40110 十进制加/减,计数,锁存,译码驱动ST 74192 TTL 可预置BCD 双时钟可逆计数器CD40147 10-4线编码器NSC\MOT 74193 TTL 可预置四位二进制双时钟可逆计数器CD40160 可预置BCD加计数器NSC\MOT 74194 TTL 四位双向通用移位存放器CD40161 可预置4位二进制加计数器NSC\MOT 74195 TTL 四位并行通道移位存放器CD40162 BCD加法计数器NSC\MOT 74196 TTL 十进制/二-十进制可预置计数锁存器CD40163 4位二进制同步计数器NSC\MOT 74197 TTL 二进制可预置锁存器/计数器CD40174 六锁存D型触发器NSC\TI\MOT 74221 TTL 双/单稳态多谐振荡器CD40175 四D型触发器NSC\TI\MOT 74240 TTL 八反相三态缓冲器/线驱动器CD40181 4位算术逻辑单元/函数发生器74241 TTL 八同相三态缓冲器/线驱动器CD40182 超前位发生器74243 TTL 四同相三态总线收发器CD40192 可预置BCD加/减计数器(双时钟) NSC\TI 74244 TTL 八同相三态缓冲器/线驱动器CD40193 可预置4位二进制加/减计数器NSC\TI 74245 TTL 八同相三态总线收发器CD40194 4位并入/串入-并出/串出移位存放NSC\MOT 74247 TTL BCD—7段15V 输出译码/驱动器CD40195 4位并入/串入-并出/串出移位存放NSC\MOT 74248 TTL BCD—7段译码/升压输出驱动器CD40208 4×4多端口存放器74249 TTL BCD—7段译码/开路输出驱动器74251 TTL 三态输出8选1数据选择器/复工器CD4501 4输入端双与门及2输入端或非门74253 TTL 三态输出双4选1数据选择器/复工器CD4502 可选通三态输出六反相/缓冲器74256 TTL 双四位可寻址锁存器CD4503 六同相三态缓冲器74257 TTL 三态原码四2选1数据选择器/复工器CD4504 六电压转换器74258 TTL 三态反码四2选1数据选择器/复工器CD4506 双二组2输入可扩展或非门74259 TTL 八位可寻址锁存器/3-8线译码器CD4508 双4位锁存D型触发器74260 TTL 5输入端双或非门CD4510 可预置BCD码加/减计数器74266 TTL 2输入端四异或非门CD4511 BCD锁存,7段译码,驱动器74273 TTL 带公共时钟复位八D触发器CD4512 八路数据选择器74279 TTL 四图腾柱输出S-R锁存器CD4513 BCD锁存,7段译码,驱动器(消隐) 74283 TTL 4位二进制全加器CD4514 4位锁存,4线-16线译码器74290 TTL 二/五分频十进制计数器CD4515 4位锁存,4线-16线译码器74293 TTL 二/八分频四位二进制计数器CD4516 可预置4位二进制加/减计数器74295 TTL 四位双向通用移位存放器CD4517 双64位静态移位存放器74298 TTL 四2输入多路带存贮开关CD4518 双BCD同步加计数器74299 TTL 三态输出八位通用移位存放器CD4519 四位与或选择器74322 TTL 带符号扩展端八位移位存放器CD4520 双4位二进制同步加计数器74323 TTL 三态输出八位双向移位/存贮存放器CD4521 24级分频器74347 TTL BCD—7段译码器/驱动器CD4522 可预置BCD同步1/N计数器74352 TTL 双4选1数据选择器/复工器CD4526 可预置4位二进制同步1/N 计数器74353 TTL 三态输出双4选1数据选择器/复工器CD4527 BCD比例乘法器74365 TTL 门使能输入三态输出六同相线驱动器CD4528 双单稳态触发器74366 TTL 门使能输入三态输出六反相线驱动器CD4529 双四路/单八路模拟开关74367 TTL 4/2线使能输入三态六同相线驱动器CD4530 双5输入端优势逻辑门74368 TTL 4/2线使能输入三态六反相线驱动器CD4531 12位奇偶校验器74373 TTL 三态同相八D 锁存器CD4532 8位优先编码器74374 TTL 三态反相八D 锁存器CD4536 可编程定时器74375 TTL 4位双稳态锁存器CD4538 精密双单稳74377 TTL 单边输出公共使能八D锁存器CD4539 双四路数据选择器74378 TTL 单边输出公共使能六D锁存器CD4541 可编程序振荡/计时器74379 TTL 双边输出公共使能四D锁存器CD4543 BCD七段锁存译码,驱动器74380 TTL 多功能八进制存放器CD4544 BCD七段锁存译码,驱动器74390 TTL 双十进制计数器CD4547 BCD七段译码/大电流驱动器74393 TTL 双四位二进制计数器CD4549 函数近似存放器74447 TTL BCD—7段译码器/驱动器CD4551 四2通道模拟开关74450 TTL 16:1多路转接复用器多工器CD4553 三位BCD计数器74451 TTL 双8:1多路转接复用器多工器CD4555 双二进制四选一译码器/别离器74453 TTL 四4:1多路转接复用器多工器CD4556 双二进制四选一译码器/别离器74460 TTL 十位比拟器CD4558 BCD八段译码器74461 TTL 八进制计数器CD4560 "N"BCD加法器74465 TTL 三态同相2与使能端八总线缓冲器CD4561 "9"求补器74466 TTL 三态反相2与使能八总线缓冲器CD4573 四可编程运算放大器74467 TTL 三态同相2使能端八总线缓冲器CD4574 四可编程电压比拟器74468 TTL 三态反相2使能端八总线缓冲器CD4575 双可编程运放/比拟器74469 TTL 八位双向计数器CD4583 双施密特触发器74490 TTL 双十进制计数器74491CD4584 六施密特触发器74498 TTL 八进制移位存放器CD4585 4位数值比拟器74502 TTL 八位逐次逼近存放器CD4599 8位可寻址锁存器74503 TTL 八位逐次逼近存放器74533 TTL 三态反相八D锁存器74534 TTL 三态反相八D 锁存器74540 TTL 八位三态反相输出总线缓冲器74563 TTL 八位三态反相输出触发器74564 TTL 八位三态反相输出D触发器74573 TTL 八位三态输出触发器74574 TTL 八位三态输出D触发器74645 TTL 三态输出八同相总线传送接收器74670 TTL 三态输出4×4存放器堆。
ST550P中文技术手册_R04
Flex InstrumentST550P 称重显示控制器用户手册Rev0.42011/11目录1概述 (4)2键盘菜单 (5)2.1键盘操作说明 (5)2.2菜单说明 (6)2.2.1 [tArgEt] (6)2.2.2 [1 ]校秤功能块 (7)2.2.2[2 ]秤应用功能块 (8)2.2.3 [3 ]串口通讯接口功能块 (8)2.2.4 [4 ]模拟量选件板功能块 (9)2.2.6 [6 ]预置点功能块 (10)2.2.11[11 ]维护功能块 (11)3 串口通讯格式 (12)3.1MODBUS-RTU (12)3.2连续输出格式 (15)3.3命令输入/输出格式 (16)3.4打印输出格式 (17)3.4.1单行打印显示重量输出格式 (17)3.4.2单行打印毛、皮、净重量输出格式 (17)3.4.3 多行打印毛、皮、净重量输出格式 (17)4 4-20MA模拟量选件应用 (19)4.14-20M A模拟量输出 (19)4.2辅助继电器输出 (19)5 接线定义 (20)5.1电源接口 (20)5.2通讯接口 (20)5.3传感器接口 (21)5.4输入/输出选件接口 (21)5.4.1 输入功能定义 (21)5.4.2 输出功能定义 (22)5.4.3 输入/输出接线示图 (22)5.54-20M A选件接口 (23)6 安装尺寸 (23)7 附一 (24)版本记录1概述性能指标●24VDC电源输入,整机最大功耗不大于3W●1路传感器接口➢支持多达10个传感器➢100,000显示分度➢200Hz 重量更新速度●通讯接口➢1路RS232/485串口通讯口◆连续输出, 20~100Hz 重量连续输出◆命令输入/输出◆MODBUS-RTU通讯协议, 50Hz访问速度●预置点应用➢简单比较预置点➢顺序控制预置点➢分选功能(Under/Over/OK)●选件➢4~20mA模拟量选件(带两路及电器输出)➢4输入/6输出I/O选件●IP65面板式安装●温度和湿度➢使用温度为:-100C~400C,湿度为10%~95%,不冷凝。
ZSSC3122AA2R中文资料(ZMDI)中文数据手册「EasyDatasheet - 矽搜」
描述 ZSSC3122 cLite™ die — Temperature range: -40°C to +125°C ZSSC3122 cLite™ die — Temperature range: -40°C to +125°C ZSSC3122 cLite™ TSSOP14 — Temperature range: -40°C to +125°C – Lead-free package
ASCO电磁阀中文资料
F
!"# DIN
SF
F
!" #$%&
SP
F
!"# $%&'
SS
H
!"# $%&'
ST
H
!" #$%&
SU
H
!" DIN
SV
H
!"# DIN
SW
H
! "#$%&'
L
72
!"#
X
!"#
®
JOUCOMATIC
1
®
!"#
3:
!"#$%
//
E
F
J
!
G
N
U
Q
!"
R
T
V
!
!"# !"# !"#
ASCO
!"#$%&'()*+,
!"#$%"&
!"#$%&'()*+,-./$01234./567
!"#
!"#$
!
!
!
E
N
! "#
!"
T
V
3/8-3/4 3/8-11/2 3/4-21/2
8030,8040 8210 8210
1-10,13
1,2,5,6,7,8,9, 11,12,16,18,23, 24,25,26,28,29,
!"#$%&'()*
!"# $%&
TPS40211中文资料
FEATURESCONTENTSDESCRIPTIONAPPLICATIONSV UDG-07110TPS40210,TPS40211SLUS772–MARCH 20084.5-V TO 52-V INPUT CURRENT MODE BOOST CONTROLLER•Suitable for Boost,Flyback,SEPIC,and LED Device Ratings2Driver Topologies•Wide Input Operating Voltage:4.5V to 52V Electrical Characteristics 3•Adjustable Oscillator FrequencyTypical Characteristics 5•Fixed Frequency Current Mode Control Terminal Information 10•Internal Slope Compensation Application Information 12•Integrated Low-Side DriverAdditional References 24•Programmable Closed Loop Soft Start Design Examples25•Overcurrent Protection•700-mV Reference (TPS40210)•263-mV Reference (TPS40211)The TPS40210and TPS40211are wide-input voltage •Low Current Disable Function(4.5V to 52V),non-synchronous boost controllers.They are suitable for topologies which require a grounded source N-channel FET including boost,•LED Lightingflyback,SEPIC and various LED Driver applications.•Industrial Control Systems The device features include programmable soft start,overcurrent protection with automatic retry and •Battery Powered Systemsprogrammable oscillator frequency.Current mode control provides improved transient response and simplified loop compensation.The main difference between the two parts is the reference voltage to which the error amplifier regulates the FB pin.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright ©2008,Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.DEVICE RATINGSABSOLUTE MAXIMUM RATINGSRECOMMENDED OPERATING CONDITIONSPACKAGE DISSIPATION RATINGSELECTROSTATIC DISCHARGE (ESD)PROTECTIONTPS40210,TPS40211SLUS772–MARCH 2008These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.ORDERING INFORMATIONPACKAGE TAPE AND REEL T JPACKAGEPACKAGE LEADPART NUMBER AVAILABILITY QUANTITY2500TPS40210DGQR 10-Pin MSOP PowerPADDGQAvailable80TPS40210DGQ -40°C to 125°C3000TPS40210DRCR 10-Pin SON DRC Preview 250TPS40210DRCT 2500TPS40211DGQR 10-Pin MSOP PowerPADDGQAvailable80TPS40211DGQ -40°C to 125°C3000TPS40211DRCR 10-Pin SONDRCPreview250TPS40211DRCTover operating free-air temperature range unless otherwise noted (1)TPS40210UNITTPS40211VDD–0.3to 52Input voltage range RC,SS,FB,DIS/EN –0.3to 10V ISNS–0.3to 8Output voltage rangeCOMP,BP,GDRV–0.3to 9T J Operating junction temperature range–40to 150°C T stg Storage temperature–55to 150(1)Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.MINNOMMAX UNIT V VDD Input voltage4.552V T JOperating Junction temperature-40125°CR θJA High-K Board (1)Power Rating (W)Power Rating (W)PACKAGEAIRFLOW (LFM)(°C/W)T A =25°CT A =85°C10-Pin MSOP PowerPAD0(Natural Convection)57.7 1.730.693(DGQ)10-Pin SON (DRC)0(Natural Convection)47.92.080.835(1)Ratings based on JEDEC High Thermal Conductivity (High K)Board.For more information on the test method,see TI Technical Brief SZZA017.MINTYP MAXUNIT Human Body Model (HBM)1500VCharged Device Model (CDM)15002Submit Documentation FeedbackCopyright ©2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS40210TPS40211ELECTRICAL CHARACTERISTICS TPS40210,TPS40211SLUS772–MARCH2008T J=–40°C to125°C,V VDD=12V dc,all parameters at zero power dissipation(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITVOLTAGE REFERENCETPS40210COMP=FB,4.5≤V VDD≤52V,T J=25°C693700707 Feedback voltage rangeTPS40211COMP=FB,4.5≤V VDD≤52V,T J=25°C254260266COMP=FB,4.5≤V VDD≤52V,-40°C≤T J≤V FB mVTPS40210686700714125°CCOMP=FB,4.5≤V VDD≤52V,-40°C≤T J≤TPS40211250260270125°CINPUT SUPPLYV VDD Input voltage range 4.552V4.5≤V VDD≤52V,no switching,V DIS<0.8 1.5 2.5mAI VDD Operating current 2.5≤V DIS≤7V1020µAV VDD<V UVLO(on),V DIS<0.8530µAUNDERVOLTAGE LOCKOUTV UVLO(on)Turn on threshold voltage 4.00 4.25 4.50VV UVLO(hyst)UVLO hysteresis140195240mVOSCILLATOROscillator frequency range(1)351000f OSC kHzOscillator frequency R RC=182kΩ,C RC=330pF260300340Frequency line regulation 4.5≤V DD≤52V-20%7%V SLP Slope compensation ramp520620720mVPWMV VDD=12V(1)275400t ON(min)Minimum pulse widthV VDD=30V90200nst OFF(min)Minimum off time170200V VLY Valley voltage 1.2VSOFT-STARTOffset voltage from SS pin to errorV SS(ofst)700mV amplifier inputR SS(chg)Soft-start charge resistance320430600kΩR SS(dchg)Soft-start discharge resistance84012001600ERROR AMPLIFIERGBWP Unity gain bandwidth product(1) 1.5 3.0MHzA OL Open loop gain(1)6080dBInput bias current(current out of FBI IB(FB)100300nApin)I COMP(src)Output source current V FB=0.6V,V COMP=1V100250µAI COMP(snk)Output sink current V FB=1.2V,V COMP=1V 1.2 2.5mAOVERCURRENT PROTECTIONOvercurrent detection threshold(atV ISNS(oc) 4.5≤V DD<52V,-40°C≤T J≤125°C120150180mV ISNS pin)D OC Overcurrent duty cycle(1)2%Overcurrent reset threshold voltage(atV SS(rst)100150350mV SS pin)T BLNK Leading edge blanking(1)75ns (1)Ensured by design.Not production tested.Copyright©2008,Texas Instruments Incorporated Submit Documentation Feedback3Product Folder Link(s):TPS40210TPS40211TPS40210,TPS40211SLUS772–MARCH 2008ELECTRICAL CHARACTERISTICS (continued)T J =–40°C to 125°C,V VDD =12V dc ,all parameters at zero power dissipation (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYPMAXUNITCURRENT SENSE AMPLIFIER A CS Current sense amplifier gain 4..25.67.2V/V I B(ISNS)Input bias current13µADRIVER I GDRV(src)Gate driver source current V GDRV =4V,T J =25°C 375400mAI GDRV(snk)Gate driver sink current V GDRV =4V,T J =25°C 330400LINEAR REGULATORV BP Bypass voltage output 0mA <I BP <15mA789V DISABLE/ENABLEV DIS(en)Turn on voltage 0.7 1.3V V DIS(hys)Hysteresis voltage25130220mV R DISDIS pin pulldown resistance0.71.1 1.5M Ω4Submit Documentation FeedbackCopyright ©2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS40210TPS40211TYPICAL CHARACTERISTICS04008001200100200600100f S W -F r e q u e n c y -k H zR T -Timing Resistance -k W30020040060050080010009007000400800120002006001000f S W -F r e q u e n c y -k H zD -Duty Cycle 0.20.40.8 1.20.6 1.000.41.4-400.21.2I V D D –Q u i e s c e n t C u r r e n t –m AT J –Juncton Temperature –°C-10-2555020801259565351100.80.61.06-4015I V D D –S h u t d o w n C u r r e n t –m AT J –Juncton Temperature –°C-10-255502080125956535110324TPS40210,TPS40211SLUS772–MARCH 2008FREQUENCYSWITCHING FREQUENCYvsvsTIMING RESISTANCEDUTY CYCLEFigure 1.Figure 2.QUIESCENT CURRENTSHUTDOWN CURRENTvsvsJUNCTION TEMPERATUREJUNCTION TEMPERATUREFigure 3.Figure 4.Copyright ©2008,Texas Instruments Incorporated Submit Documentation Feedback5Product Folder Link(s):TPS40210TPS40211-0.8-0.40.4-40-0.60.2V F B –R e f e r e n c e V o l t a g e C h a n g e –%T J –Juncton Temperature –°C-10-2555020801259565351100.0-0.2-0.5-0.30.50-0.40.4V F B –R e f e r e n c e V o l t a g e C h a n g e –%V VDD –Input Voltage –V1030206050400.10.00.2-0.1-0.20.34.004.30-404.054.25V U V L O –U n d e r v o l t a g e L o c k o u t T h r e s h o l d –VT J –Juncton Temperature –°C-10-2555020801259565351104.154.104.20147150155-40148154V I S N S (O C )–O v e r c u r r e n t T h r e s h o l d –m VT J –Juncton Temperature –°C-10-255502080125956535110152151153149TPS40210,TPS40211SLUS772–MARCH 2008TYPICAL CHARACTERISTICS (continued)REFERENCE VOLTAGE CHANGEREFERENCE VOLTAGE CHANGEvsvsJUNCTION TEMPERATUREINPUT VOLTAGEFigure 5.Figure 6.UNDERVOLTAGE LOCKOUT THRESHOLDOVERCURRENT THRESHOLDvsvsJUNCTION TEMPERATUREJUNCTION TEMPERATUREFigure 7.Figure 8.6Submit Documentation FeedbackCopyright ©2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS40210TPS40211V I S N S (O C )–O v e r c u r r e n t T h r e s h o l d –m VV VDD –Input Voltage –V51510452520145148155146153151149152154150147353040-5-25-40-43f O S C –S w i t c h i n g F r e q u e n c y C h a n g e –%T J –Junction Temperature –°C-10-2555020801259565351101-1240-31529-401727S l o p e C o m p e n s a t i o n R a t i o (V V D D /V S L P )T J –Junction Temperature –°C-10-255502080125956535110231925214001400-402001200R S S –S o f t S t a r t C h a r g e /D i s c h a r g e R e s i s t an c e -k WT J –Junction Temperature –°C-10-2555020801259565351101000800600TPS40210,TPS40211SLUS772–MARCH 2008TYPICAL CHARACTERISTICS (continued)OVERCURRENT THRESHOLDSWITCHING FREQUENCY CHANGEvsvsINPUT VOLTAGEJUNCTION TEMPERATUREFigure 9.Figure 10.OSCILLATOR AMPLITUDESOFT-START CHARGE/DISCHARGE RESISTANCEvsvsJUNCTION TEMPERATUREJUNCTION TEMPERATUREFigure 11.Figure 12.Copyright ©2008,Texas Instruments Incorporated Submit Documentation Feedback7Product Folder Link(s):TPS40210TPS4021140180-4020160I I B (F B )–F e e d b a c k B i a s C u r r e n t –n AT J –Junction Temperature –°C-10-25550208012595653511010080120601400100300-4050250I C O M P (S R C )–C o m p e n s a t i o n S o u r c e C u r r e n t –m AT J –Junction Temperature –°C-10-255502080125956535110200150-40I C O M P (S N K )–C o m p e n s a t i o n S i n k C u r r e n t –m AT J –Juncton Temperature –°C -10-255502080125956535110010030050250200150-40V V L Y –V a l l e y V o l t a g e C h a n g e –%T J –Juncton Temperature –°C-10-255502080125956535110-5-25-431-1240-3TPS40210,TPS40211SLUS772–MARCH 2008TYPICAL CHARACTERISTICS (continued)FB BIAS CURRENTCOMPENSATION SOURCE CURRENTvsvsJUNCTION TEMPERATUREJUNCTION TEMPERATUREFigure 13.Figure 14.COMPENSATION SINK CURRENTVALLEY VOLTAGE CHANGEvsvsJUNCTION TEMPERATUREJUNCTION TEMPERATUREFigure 15.Figure 16.8Submit Documentation FeedbackCopyright ©2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS40210TPS402117.47.88.8-407.68.6V B P –R e g u l a t o r V o l t a g e –VT J –Juncton Temperature –°C-10-2555020801259565351108.48.28.01.001.021.10-401.011.09V D I S(E N )–D I S /E N T u r n -O n T h r e s h o l d –m VT J –Juncton Temperature –°C-10-2555020801259565351101.061.051.071.031.081.06AC S –C u r r e n t S e n s e A m p l i f i e r G a i n –V /V2743561-40T J –Juncton Temperature –°C-10-255502080125956535110TPS40210,TPS40211SLUS772–MARCH 2008TYPICAL CHARACTERISTICS (continued)REGULATOR VOLTAGEDIS/EN TURN-ON THRESHOLDvsvsJUNCTION TEMPERATUREJUNCTION TEMPERATUREFigure 17.Figure 18.CURRENT SENSE AMPLIFIER GAINvsJUNCTION TEMPERATUREFigure 19.Copyright ©2008,Texas Instruments Incorporated Submit Documentation Feedback9Product Folder Link(s):TPS40210TPS40211DEVICE INFORMATION16510237489FBRC COMPDIS/EN SS GNDVDD ISNS GDRV BP DGQ PowerPAD PACKAGE(Top View)FBRC COMPDIS/EN SS 543211678910GNDVDD ISNS GDRV BP DRC SURFACE MOUNT PACKAGE(Top View)TPS40210,TPS40211SLUS772–MARCH 2008TERMINAL FUNCTIONSTERMINAL I/O DESCRIPTIONNAME P 4O Error amplifier output.Connect control loop compensation network between COMP pin and FB pin.Disable pin.Pulling this pin high,places the part into a shutdown mode.Shutdown mode is characterized by a very low quiescent current.While in shutdown mode,the functionality of all blocks is disabled and the BP DIS/EN3Iregulator is shut down.This pin has an internal 1-M Ωpull-down resistor to GND.Leaving this pin unconnected enables the device.Error amplifier inverting input.Connect a voltage divider from the output to this pin to set output voltage.FB 5I Compensation network is connected between this pin and COMP.GDRV 8O Connect the gate of the power N channel MOSFET to this pin.GND 6-Device ground.Current sense pin.Connect an external current sensing resistor between this pin and GND.The voltage on this pin is used to provide current feedback in the control loop and detect an overcurrent condition.AnISNS7Iovercurrent condition is declared when ISNS pin voltage exceeds the overcurrent threshold voltage,150mV typical.Switching frequency setting pin.Connect capacitor from RC pin to GND.Connect a resistor from RC pin RC 1I toVDD of the IC power supply and a capacitor from RC to GND.Soft-start time programming pin.Connect capacitor from SS pin to GND to program converter soft-start time.SS 2I This pin also functions as a timeout timer when the power supply is in an overcurrent condition.BP 9O Regulator output pin.Connect a 1.0-µF bypass capacitor from this pin to GND.System input voltage.Connect a local bypass capacitor from this pin to GND.Depending on the amount of VDD10Irequired slope compensation,this pin can be connected to the converter output.See Application Information section for additional details.DGQ PowerPAD PACKAGEDRC PACKAGE (TOP VIEW)(TOP VIEW)10Submit Documentation FeedbackCopyright ©2008,Texas Instruments IncorporatedProduct Folder Link(s):TPS40210TPS40211FBCOMPDIS/EN SSRC BPVDDGDRV GND ISNSUDG-07107FUNCTIONAL BLOCK DIAGRAMAPPLICATION INFORMATIONMinimum On-Time and Off Time ConsiderationsOUT D IN V V 1V 1D+=-(1)IN OUT D V D 1V V æöæö=-ç÷ç÷ç÷+èøèø(2)()()f OUT D OUT SW2IN 2V V I L D V ´+´´´=(3)()()()f 2OUT D IN IN OUT(crit)2OUT D SW V V V V I 2V V L+-´=´+´´(4)The TPS40210has a minimum off time of approximately 200ns and a minimum on time of 300ns.These two constraints place limitations on the operating frequency that can be used for a given input to output conversion ratio.See Figure 2for the maximum frequency that can be used for a given duty cycle.The duty cycle at which the converter operates is dependent on the mode in which the converter is running.If the converter is running in discontinuous conduction mode,the duty cycle varies with changes to the load much more than it does when running in continuous conduction mode.In continuous conduction mode,the duty cycle is related primarily to the input and output voltages.In discontinuous mode the duty cycle is a function of the load,input and output voltages,inductance and switching frequency.All converters using a diode as the freewheeling or catch component have a load current level at which they transition from discontinuous conduction to continuous conduction.This is the point where the inductor current just falls to zero.At higher load currents,the inductor current does not fall to zero but remains flowing in a positive direction and assumes a trapezoidal wave shape as opposed to a triangular wave shape.This load boundary between discontinuous conduction and continuous conduction can be found for a set of converter parameters as follows.For loads higher than the result of Equation 4,the duty cycle is given by Equation 2and for loads less that the results of Equation 4,the duty cycle is given Equation 3.For Equations 1the variable definitions are as •V OUT is the output voltage of the converter in V•V D is the forward conduction voltage drop across the rectifier or catch diode in V •V IN is the input voltage to the converter in V •I OUT is the output current of the converter in A •L is the inductor value in H•f SW is the switching frequency in HzSetting the Oscillator FrequencyT 810274692SW T SW SW T T 1R 5.810f C 810f 1.410f 1.510 1.710C 410C ------=´´´+´´+´´-´+´´-´´(5)Current Sense and OvercurrentUDG-07119UDG-07120ISNS L V R =(6)The oscillator frequency is determined by a resistor and capacitor connected to the RC pin of the TPS40210.The capacitor is charged to a level of approximately V VDD /20by current flowing through the resistor and is then discharged by a transistor internal to the TPS40210.The required resistor for a given oscillator frequency is found from either Figure 1or Equation 5.where•R T is the timing resistance in k Ω•f SW is the switching frequency in kHz •C T is the timing capacitance in pFFor most applications a capacitor in the range of 68pF to 120pF gives the best results.Resistor values should be limited to between 100k Ωand 1M Ωas well.If the resistor value falls below 100k Ω,decrease the capacitor size and recalculate the resistor value for the desired frequency.As the capacitor size decreases below 47pF,the accuracy of Equation 5degrades and empirical means may be needed to fine tune the timing component values to switching frequency.The tps40210and TPS40211are current mode controllers and use a resistor in series with the source terminal power FET to sense current for both the current mode control and overcurrent protection.The device enters a current limit state if the voltage on the ISNS pin exceeds the current limit threshold voltage V ISNS(oc)from the electrical specifications table.When this happens the controller discharges the SS capacitor through a relatively high impedance and then attempt to restart.The amount of output current that causes this to happen is dependent on several variables in the converter.Figure 20.Oscillator Components Figure 21.Current Sense ComponentsThe load current overcurrent threshold is set by proper choice of R ISNS .If the converter is operating in discontinuous mode the current sense resistor is found in Equation 6.If the converter is operating in continuous conduction mode R ISNS can be found in Equation 7.()f ISNS ISNSISNS OUT RIPPLE OUT IN SW V V R I I I D V 1D 21D 2L ==æöæöæöæö´++ç÷ç÷ç÷ç÷ç÷-èø-´´èøèøèø(7)Current Sense and Sub-Harmonic Instabilityf VDD e SW V s 20æö=´ç÷èø(8)()CS ISNS OUT D IN A R V V V m2L´´+-=(9)where•R ISNS is the value of the current sense resistor in Ω.•V ISNS(oc)is the overcurrent threshold voltage at the ISNS pin (from electrical specifications)•D is the duty cycle (from Equation 2)•f SW is the switching frequency in Hz•V IN is the input voltage to the power stage in V (see text)•L is the value of the inductor in H•I OUT (oc)is the desired overcurrent trip point in A •V D is the drop across the diode in Figure 21The TPS40210/11has a fixed undervoltage lockout (UVLO)that allows the controller to start at a typical input voltage of 4.25V.If the input voltage is slowly rising,the converter might have less than its designed nominal input voltage available when it has reached regulation.As a result,this may decreases the apparent current limit load current value and must be taken into consideration when selecting R ISNS .The value of V IN used to calculate R ISNS must be the value at which the converter finishes startup.The total converter output current at startup is the sum of the external load current and the current required to charge the output capacitor(s).See the Soft Start section of this datasheet for information on calculating the required output capacitor charging current.The topology of the standard boost converter has no method to limit current from the input to the output in the event of a short circuit fault on the output of the converter.If protection from this type of event is desired,it is necessary to use some secondary protection scheme such a fuse or rely on the current limit of the upstream power source.A characteristic of peak current mode control results in a condition where the current control loop can exhibit instability.This results in alternating long and short pulses from the pulse width modulator.The voltage loop maintains regulation and dioes not oscillate,but the output ripple voltage increases.The condition occurs only when the converter is operating in continuous conduction mode and the duty cycle is 50%or greater.The cause of this condition is described in Texas Instruments literature number SLUA101,available at .The remedy for this condition is to apply a compensating ramp from the oscillator to the signal going to the pulse width modulator.In the TPS40210/11the oscillator ramp is applied in a fixed amount to the pulse width modulator.The slope of the ramp is given in Equation 8.To ensure that the converter does not enter into sub-harmonic instability,the slope of the compensating ramp signal must be at least half of the down slope of the current ramp signal.Since the compensating ramp is fixed in the TPS40210/11,this places a constraint on the selection of the current sense resistor.The down slope of the current sense wave form at the pulse width modulator is described in Equation 9.Since the slope compensation ramp must be at least half,and preferably equal to the down slope of the current sense waveform seen at the pulse width modulator,a maximum value is placed on the current sense resistor when operating in continuous mode at 50%duty cycle or greater.For design purposes,some margin should be applied to the actual value of the current sense resistor.As a starting point,the actual resistor chosen should be 80%or less that the value calculated in Equation 10.This equation calculates the resistor value that makes the slope compensation ramp equal to one ramp downslope.Values no more than 80%of this result would be acceptable.()f VDD SWISNS(max)OUT D IN V L R 60V V V ´´=´+-(10)Current Sense Filteringf ON SWD t =(11)IFLT IFLT ONR C 0.1t ´=´(12)Soft Startwhere•S e is the slope of the voltage compensating ramp applied to the pulse width modulator in V/s •f SW is the switching frequency in Hz •V VDD is the voltage at the VDD pin in V•m2is the down slope of the current sense waveform seen at the pulse width modulator in V/s •R ISNS is the value of the current sense resistor in Ω•V OUT is the converter output voltage V IN is the converter power stage input voltage •V D is the drop across the diode in Figure 21It is possible to increase the voltage compensation ramp slope by connecting the VDD pin to the output voltage of the converter instead of the input voltage as shown in Figure 21.This can help in situations where the converter design calls for a large ripple current value in output current limit setting.NOTE:Connecting the VDD pin to the output voltage of the converter affects the startup voltage of the converter since the controller undervoltage lockout (UVLO)circuit monitors the VDD pin and senses the input voltage less the diode drop before startup.The effect is to increase the startup voltage by the value of the diode voltage drop.If an acceptable R ISNS value is not available,the next higher value can be used and the signal from the resistor divided down to an acceptable level by placing another resistor in parallel with C ISNS .In most cases,a small filter placed on the ISNS pin improves performance of the converter.These are the components R IFLT and C IFLT in Figure 21.The time constant of this filter should be approximately 10%of the nominal pulse width of the width can be found using Equation 11.The suggested time constant is thenThe range of R IFLT should be from about 1k Ωto 5k Ωfor best results.Higher values can be used but this raises the impedance of the ISNS pin connection more than necessary and can lead to noise pickup issues in some layouts.C ISNS should be located as close as possible to the ISNS pin as well to provide noise immunity.The soft-start feature of the TPS40200is a closed loop soft start,meaning that the output voltage follows a linear ramp that is proportional to the ramp generated at the SS pin.This ramp is generated by an internal resistor connected from the BP pin to the SS pin and an external capacitor connected from the SS pin to GND.The SS pin voltage (V SS )is level shifted down by approximately V SS(ofst)(approximately 700mV)and sent to one of the “+”(the “+”input with the lowest voltage dominates)inputs of the error amplifier.When this level shifted voltage (V SSE )starts to rise at time t 1(see Figure 22),the output voltage the controller expects,rises as well.Since V SSE starts at near 0V,the controller regulate the output voltage from a starting point of zero volts.It cannot do this due to the converter architecture.The output voltage starts from the input voltage less the drop across the diode (V IN -V D )and rise from there.The point at which the output voltage starts to rise (t 2)is the point where the V SSE ramp passes the point where it is commanding more output voltage than (V IN -V D ).This voltage level is labeled V SSE(1).The time required for the output voltage to ramp from a theoretical zero to the final regulated value (from t 1to t 3)is determined by the time it takes for the capacitor connected to the SS pin (C SS )to rise through a 700mV range,beginning at V SS(ofst)above GND.UDG-07121()SSSS BP SS(ofst)SS BPSS(ofst)FB t C V V R ln V VV =æö-ç÷´ç÷-+èø(13)Figure 22.SS Pin Voltage adn Output Voltage Figure 23.SS Pin Functional CircuitThe required capacitance for a given soft start time t 3–t 1in Figure 22is calculated in Equation 13.where•t SS is the soft-start time•R SS(chg)is the SS charging resistance in Ω,typically 500k Ω•C SS is the value of the capacitor on the SS pin,in F •V BP is the value of the voltage on the BP pin in V•V SS(ofst)is the approximate level shift from the SS pin to the error amplifier (~700mV)•V FB is the error amplifier reference voltage,700m V typicalNote that t SS is the time it takes for the output voltage to rise from 0V to the final output voltage.Also note the tolerance on R SS(chg)given in the electrical specifications table.This contributes to some variability in the output voltage rise time and margin must be applied to account for it in design.Also take note of V BP .Its value varies depending on input conditions.For example,a converter operating from a slowly rising input initializes V BP at a fairly low value and increases during the entire startup sequence.If the controller has a voltage above 8V at the input and the DIS pin is used to stop and then restart the converter,V BP is approximately 8V for the entire startup sequence.The higher the voltage on BP,the shorter the startup time is and conversely,the lower the voltage on BP,the longer the startup time is.。
ST伺服电机产品资料(中文)
AC电机与伺服驱动器● AC电机与伺服驱动器适配表ST系列电机主要参数EP2伺服驱动器配置电机型号额定转矩额定转速额定功率MSC MSC+0.4Kw G3L08F80ST-M01330 1.3Nm3000rpm0.75Kw G3L08F3000rpm80ST-M02430 2.4Nm3000rpm1.0Kw G3L08F80ST-M03330 3.3Nm110ST-M02030 2 Nm 3000 rpm 0.6 Kw G3L08F G3L12F110ST-M04030 4 Nm 3000 rpm 1.2 Kw G3L08F G3L12F110ST-M05030 5 Nm 3000 rpm 1.5 Kw G3L12F G3L16F110ST-M06020 6 Nm 2000 rpm 1.2 Kw G3L12F G3L16F110ST-M06030 6 Nm 3000 rpm 1.6 Kw G3L12F G3L16F130ST-M04025 4 Nm 2500 rpm 1.0 Kw G3L08F G3L12F130ST-M05025 5 Nm 2500 rpm 1.3 Kw G3L12F G3L16F130ST-M06025 6 Nm 2500 rpm 1.5 Kw G3L12F G3L16F130ST-M07720 7.7 Nm 2000 rpm 1.6 Kw G3L12F G3L16F130ST-M07730 7.7 Nm 3000 rpm 2.4 Kw G3L16F G3L26F130ST-M10015 10 Nm 1500 rpm 1.5 Kw G3L12F G3L16F130ST-M10025 10 Nm 2500 rpm 2.6 Kw G3L16F G3L26F130ST-M15015 15 Nm 1500 rpm 2.3 Kw G3L16F G3L26F130ST-M15025 15 Nm 2500 rpm 3.8 Kw G3L26F G3L36F150ST-M15025 15 Nm 2500 rpm 3.8 Kw G3L26F G3L36F150ST-M18020 18 Nm 2000 rpm 3.6 Kw G3L26F G3L36F150ST-M23020 23 Nm 2000 rpm 4.7 Kw G3L36F150ST-M27020 27 Nm 2000 rpm 5.5 Kw G3L36F配置说明:MSC配置适用于过载倍数要求不高、单位时间内电机起停次数不多、高速轻载的场合;MSC+配置适用于过载倍数要求高、单位时间内电机起停次数频繁、高速重载的场合。
ST8024中文资料
6
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SO-28
TSSOP28
■ Non-inverted control of RST via pin RSTIN
■ ISO 7816, GSM11.11 and EMV (payment systems) compatibility
■ Supply supervisor for spike-killing during power-on and power-off and power-on reset (threshold fixed internally or externally by a resistor bridge)
directional buffered I/O lines to card contacts C4, C7 and C8
■ DC/DC converter for VCC generation separately powered from a 5 V ± 20% supply (VDDP AND PGND)
■ Enhanced ESD protection on card side (>6 kV)
■ 26MHz integrated crystal oscillator
■ Clock generation for cards up to 20MHz (divided by 1, 2, 4 or 8 through CLKDIV1 and CLKDIV2 signals) with synchronous frequency changes