【附20套中考模拟试题】甘肃省榆中学县2019-2020学年中考数学模拟试卷含解析
甘肃省兰州市2019-2020学年中考数学模拟试题(3)含解析
甘肃省兰州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.42.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A.1个B.2个C.3个D.4个3.14-的绝对值是()A.﹣4 B.14C.4 D.0.44.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°5.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π6.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.7.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)8.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.1399.下列运算正确的是()A.5a+2b=5(a+b)B.a+a2=a3C.2a3•3a2=6a5D.(a3)2=a510.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为()A.1 B.﹣1 C.±1 D.011.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.中位数C.平均数D.方差12.一次函数y=2x+1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=23,则CE的长为_______14.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.15.如图,在圆心角为90°的扇形OAB中,半径OA=1cm,C为»AB的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_____cm1.16.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____17.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.18.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC 交AB延长线于点E,垂足为点F.(1)证明:DE是⊙O的切线;(2)若BE=4,∠E=30°,求由»BD、线段BE 和线段DE 所围成图形(阴影部分)的面积, (3)若⊙O 的半径r=5,sinA=55,求线段EF 的长. 20.(6分)如图,已知一次函数1y k x b =+的图象与反比例函数2k y x =的图象交于点()4,A m -,且与y 轴交于点B ;点C 在反比例函数2k y x=的图象上,以点C 为圆心,半径为2的作圆C 与x 轴,y 轴分别相切于点D 、B .(1)求反比例函数和一次函数的解析式;(2)请连结OA ,并求出AOB ∆的面积;(3)直接写出当0x <时,210k k x b x+->的解集. 21.(6分)如图,已知AC 和BD 相交于点O ,且AB ∥DC ,OA=OB .求证:OC=OD .22.(8分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.23.(8分)已知:如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,DE ⊥AC 于E .(1)求证:DE 为⊙O 的切线;(2)G 是ED 上一点,连接BE 交圆于F ,连接AF 并延长交ED 于G .若GE=2,AF=3,求EF 的长.24.(10分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A 不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.25.(10分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?26.(12分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.27.(12分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.2.B【解析】【分析】【详解】解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选B.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.3.B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-14的相反数为14所以-14的绝对值为14.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.4.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.5.A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S 扇形OCD+S扇形ODG=S半圆,即可求解.【详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则2222106CG CD--=8,又∵EF=8,∴DG=EF,∴¼»DG EF=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π,故选A.【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.6.B【解析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形.故选B.7.C【解析】【分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.8.B【解析】【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.故选B.【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.9.C【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.10.B【解析】【分析】根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【详解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故选:B.【点睛】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.11.B【解析】【分析】【详解】解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B .【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键.12.D【解析】【分析】根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k 、b 的正负.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】分析:由菱形的性质证出△ABD 是等边三角形,得出BD=AB=6,132OB BD ==,由勾股定理得出OC OA ==,即可得出答案. 详解:∵四边形ABCD 是菱形,∴AB=AD=6,AC ⊥BD ,OB=OD ,OA=OC ,∵60BAD ∠=︒,∴△ABD 是等边三角形,∴BD=AB=6, ∴132OB BD ==,∴OC OA ===∴2AC OA ==∵点E 在AC 上,23OE =, ∴当E 在点O 左边时2353CE OC =+=, 当点E 在点O 右边时233CE OC =-=,∴53CE =或3;故答案为53或3.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.14.1【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5, ∴在Rt △OBD 中,OD=22OB BD -=1.故答案为1.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.15.12π+2﹣12 【解析】试题分析:如图,连接OC ,EC ,由题意得△OCD ≌△OCE ,OC ⊥DE ,DE==,所以S 四边形ODCE =×1×=,S △OCD =,又S △ODE =×1×1=,S 扇形OBC ==,所以阴影部分的面积为:S 扇形OBC +S △OCD ﹣S △ODE =+﹣;故答案为.考点:扇形面积的计算.16.8个【解析】【分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.17.14.【解析】【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.【详解】解:∵由图可知,黑色方砖4块,共有16块方砖,∴黑色方砖在整个区域中所占的比值41 164 ==,∴它停在黑色区域的概率是14;故答案为14.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18.43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC中,tan∠ACB=ABBC,∴BC=tan tan60AB xACB=∠,同理:BD=0tan 30x , ∵两次测量的影长相差8米,∴00tan 30tan 60x x -=8, ∴x=43,故答案为43.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析 (2)8833π-(3)83 【解析】分析:(1)连接BD 、OD ,由AB=BC 及∠ADB=90°知AD=CD ,根据AO=OB 知OD 是△ABC 的中位线,据此知OD ∥BC ,结合DE ⊥BC 即可得证;(2)设⊙O 的半径为x ,则OB=OD=x ,在Rt △ODE 中由sinE=12OD OE =求得x 的值,再根据S 阴影=S △ODE -S 扇形ODB 计算可得答案.(3)先证Rt △DFB ∽Rt △DCB 得BF BD BD BC =,据此求得BF 的长,再证△EFB ∽△EDO 得EB BF EO OD =,据此求得EB 的长,继而由勾股定理可得答案.详解:(1)如图,连接BD 、OD ,∵AB 是⊙O 的直径,∴∠BDA=90°,∵BA=BC ,∴AD=CD ,又∵AO=OB ,∴OD ∥BC ,∵DE ⊥BC ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)设⊙O 的半径为x ,则OB=OD=x ,在Rt △ODE 中,OE=4+x ,∠E=30°, ∴142x x =+, 解得:x=4,∴S △ODE =12×4× S 扇形ODB =260?·483603ππ=,则S 阴影=S △ODE -S 扇形ODB -83π;(3)在Rt △ABD 中, ∵DE ⊥BC ,∴Rt △DFB ∽Rt △DCB ,∴BF BDBD BC == ∴BF=2,∵OD ∥BC ,∴△EFB ∽△EDO , ∴EB BF EO OD =,即255EB EB =+, ∴EB=103,∴83. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.20.(1)4y x =,324y x =+;(2)4;(3)40x -<<. 【解析】【分析】(1)连接CB ,CD ,依据四边形BODC 是正方形,即可得到B (1,2),点C (2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;(2)依据OB=2,点A 的横坐标为-4,即可得到△AOB 的面积为:2×4×12=4; (3)依据数形结合思想,可得当x <1时,k 1x+b−2k x>1的解集为:-4<x <1.【详解】解:(1)如图,连接CB ,CD ,∵⊙C 与x 轴,y 轴相切于点D ,B ,且半径为2,90CBO CDO BOD ∴∠=∠=︒=∠,BC CD =,∴四边形BODC 是正方形,2BO OD DC CB ∴====,()0,2B ∴,点()2,2C ,把点()2,2C 代入反比例函数2k y x =中, 解得:24k =, ∴反比例函数解析式为:4y x=, ∵点()4,A m -在反比例函数4y x =上, 把()4,A m -代入4y x=中,可得414m ==--, ()4,1A ∴--,把点()0,2B 和()4,1A --分别代入一次函数1y k x b =+中,得出:1412k b b -+=-⎧⎨=⎩, 解得:1342k b ⎧=⎪⎨⎪=⎩, ∴一次函数的表达式为:324y x =+; (2)如图,连接OA , 2OB Q =,点A 的横坐标为4﹣,AOB ∴∆的面积为:12442⨯⨯=; (3)由()4,1A --,根据图象可知:当0x <时,210k k x b x +->的解集为:40x -<<.【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.21.证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D ∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线的性质22.2.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.23.(1)见解析;(2)∠EAF的度数为30°【解析】【分析】(1)连接OD ,如图,先证明OD ∥AC ,再利用DE ⊥AC 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)利用圆周角定理得到∠AFB=90°,再证明Rt △GEF ∽△Rt △GAE ,利用相似比得到2,32GF GF =+ 于是可求出GF=1,然后在Rt △AEG 中利用正弦定义求出∠EAF 的度数即可.【详解】(1)证明:连接OD ,如图,∵OB=OD ,∴∠OBD=∠ODB ,∵AB=AC ,∴∠ABC=∠C ,∴∠ODB=∠C ,∴OD ∥AC ,∵DE ⊥AC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)解:∵AB 为直径,∴∠AFB=90°,∵∠EGF=∠AGF ,∴Rt △GEF ∽△Rt △GAE ,∴,EG GF GA EG =,即2,32GF GF =+ 整理得GF 2+3GF ﹣4=0,解得GF=1或GF=﹣4(舍去), 在Rt △AEG 中,sin ∠EAG 21,132EG AG ===+ ∴∠EAG=30°,即∠EAF 的度数为30°.【点睛】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.24.(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)2622BQ =-【解析】【分析】(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB ,进而可利用SAS 证明△CQB ≌△CPA ,进而得∠CQB=∠CPA ,再在△PEM 和△CQM 中利用三角形的内角和定理即可求得∠QEP=∠QCP ,从而完成猜想;(2)以∠DAC 是锐角为例,如图2,仿(1)的证明思路利用SAS 证明△ACP ≌△BCQ ,可得∠APC=∠Q ,进一步即可证得结论;(3)仿(2)可证明△ACP ≌△BCQ ,于是AP=BQ ,再求出AP 的长即可,作CH ⊥AD 于H ,如图3,易证∠APC=30°,△ACH 为等腰直角三角形,由AC=4可求得CH 、PH 的长,于是AP 可得,问题即得解决.【详解】解:(1)∠QEP=60°;证明:连接PQ ,如图1,由题意得:PC=CQ ,且∠PCQ=60°,∵△ABC 是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB ,则在△CPA 和△CQB 中,PC QC PCA QCB AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△CQB ≌△CPA(SAS),∴∠CQB=∠CPA ,又因为△PEM 和△CQM 中,∠EMP=∠CMQ ,∴∠QEP=∠QCP=60°.故答案为60;(2)∠QEP=60°.以∠DAC 是锐角为例.证明:如图2,∵△ABC 是等边三角形,∴AC=BC ,∠ACB=60°,∵线段CP 绕点C 顺时针旋转60°得到线段CQ ,∴CP=CQ ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ ,即∠ACP=∠BCQ ,在△ACP 和△BCQ 中,CA CB ACP BCQ CP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BCQ(SAS),∴∠APC=∠Q ,∵∠1=∠2,∴∠QEP=∠PCQ=60°;(3)连结CQ ,作CH ⊥AD 于H ,如图3,与(2)一样可证明△ACP ≌△BCQ ,∴AP=BQ ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH 为等腰直角三角形,∴AH=CH=22AC=22×4=22 在Rt △PHC 中,326∴PA=PH−AH=622∴BQ=262【点睛】本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.25.(1)详见解析;(2)4分.【解析】【分析】(1)根据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【详解】(1)列表如下:由列表可得:P (数字之和为5)=14, (2)因为P (甲胜)=14,P (乙胜)=34,∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷3=4分. 【点睛】 本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可. 26. (1)、y=-122x +x+4;(2)、不存在,理由见解析. 【解析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C 和点A 意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F 的坐标求出FH 和FG 的长度,然后得出面积与t 的函数关系式,根据方程无解得出结论.试题解析:(1)、∵抛物线y=a 2x +bx+c(a≠0)过点C(0,4) ∴C=4① ∵-2b a=1 ∴b=-2a ② ∵抛物线过点A(-2,0) ∴4a -2b+c="0" ③ 由①②③解得:a=-12,b=1,c=4 ∴抛物线的解析式为:y=-122x +x+4 (2)、不存在 假设存在满足条件的点F ,如图所示,连结BF 、CF 、OF ,过点F 作FH ⊥x 轴于点H ,FG ⊥y 轴于点G . 设点F 的坐标为(t ,212t -+t+4),其中0<t <4 则FH=212t -+t+4 FG=t ∴△OBF 的面积=12OB·FH=12×4×(212t -+t+4)=-2t +2t+8 △OFC 的面积=12OC·FG=2t ∴四边形ABFC 的面积=△AOC 的面积+△OBF 的面积+△OFC 的面积=-2t +4t+12令-2t+4t+12=17 即-2t+4t-5=0 △=16-20=-4<0 ∴方程无解∴不存在满足条件的点F考点:二次函数的应用27.李强以122米/分钟的速度攀登才能和庞亮同时到达山顶A【解析】过点A作AD⊥BC于点D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米) 在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分钟)答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A。
甘肃省兰州市2019-2020学年中考数学模拟试题(1)含解析
甘肃省兰州市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+ B .3(2)29x x +=-C .9232x x -+= D .9232x x +-=2.对于函数y=21x,下列说法正确的是( )A .y 是x 的反比例函数B .它的图象过原点C .它的图象不经过第三象限D .y 随x 的增大而减小3.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( ) 百合花 玫瑰花 小华 6支 5支 小红8支3支A .2支百合花比2支玫瑰花多8元B .2支百合花比2支玫瑰花少8元C .14支百合花比8支玫瑰花多8元D .14支百合花比8支玫瑰花少8元4.如图,在正方形OABC 中,点A 的坐标是(﹣3,1),点B 的纵坐标是4,则B ,C 两点的坐标分别是( )A .(﹣2,4),(1,3)B .(﹣2,4),(2,3)C .(﹣3,4),(1,4)D .(﹣3,4),(1,3)5.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .126.如图,在平行四边形ABCD 中,∠ABC 的平分线BF 交AD 于点F ,FE ∥AB .若AB=5,AD=7,BF=6,则四边形ABEF 的面积为( )A .48B .35C .30D .247.计算-5+1的结果为( ) A .-6B .-4C .4D .68.若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则11x+21x 的值是( ) A .1 B . 2 C .﹣34 D .﹣439.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=1.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .10.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定11.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75°12.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( ) A .①B .②C .①③D .②③二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.14.分解因式:34x x =______.15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.16.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.17.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.18.若关于x 的一元二次方程x 2﹣2x+m=0有实数根,则m 的取值范围是 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(6分)已知关于x 的一元二次方程x 2﹣6x+(2m+1)=0有实数根.求m 的取值范围;如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.21.(6分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x . (1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作C △CAE ,△BAF 的周长记作C △BAF ,设CAEBAFC C ∆∆=y ,求y 关于x 的函数关系式,并写出它的定义域; (3)当∠ABE 的正切值是35时,求AB 的长.22.(8分)如图,在△ABC 中,AD 、AE 分别为△ABC 的中线和角平分线.过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,求证:DH =12BF .23.(8分)如图,一次函数y =kx +b 的图象与反比例函数y =(x >0)的图象交于点P(n ,2),与x 轴交于点A(-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,点A 与点B 关于y 轴对称. (1)求一次函数,反比例函数的表达式; (2)求证:点C 为线段AP 的中点;(3)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,说明理由并求出点D 的坐标;如果不存在,说明理由.24.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.25.(10分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.26.(12分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?27.(12分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求ADDO的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:PD AD PB AO=.(问题解决)(3)如图2,若AO=BO,AO⊥BO,14ADAO=,求tan∠BPC的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A 【解析】 【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可. 【详解】设有x 辆车,则可列方程: 3(x-2)=2x+1. 故选:A . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键. 2.C 【解析】 【分析】直接利用反比例函数的性质结合图象分布得出答案. 【详解】 对于函数y=21x,y 是x 2的反比例函数,故选项A 错误; 它的图象不经过原点,故选项B 错误;它的图象分布在第一、二象限,不经过第三象限,故选项C 正确; 第一象限,y 随x 的增大而减小,第二象限,y 随x 的增大而增大, 故选C . 【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键. 3.A 【解析】 【分析】设每支百合花x 元,每支玫瑰花y 元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x 、y 的二元一次方程,整理后即可得出结论. 【详解】设每支百合花x 元,每支玫瑰花y 元,根据题意得: 8x+3y ﹣(6x+5y )=8,整理得:2x ﹣2y =8, ∴2支百合花比2支玫瑰花多8元. 故选:A .考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.4.A【解析】【分析】作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【详解】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵AEO ODCOAE CODOA CO∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故选A.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.5.A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,考点:多边形内角与外角. 6.D 【解析】分析:首先证明四边形ABEF 为菱形,根据勾股定理求出对角线AE 的长度,从而得出四边形的面积. 详解:∵AB ∥EF ,AF ∥BE , ∴四边形ABEF 为平行四边形, ∵BF 平分∠ABC , ∴四边形ABEF 为菱形, 连接AE 交BF 于点O , ∵BF=6,BE=5,∴BO=3,EO=4, ∴AE=8,则四边形ABEF 的面积=6×8÷2=24,故选D .点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形. 7.B 【解析】 【分析】根据有理数的加法法则计算即可. 【详解】解:-5+1=-(5-1)=-1. 故选B . 【点睛】本题考查了有理数的加法. 8.C 【解析】试题分析:找出一元二次方程的系数a ,b 及c 的值,利用根与系数的关系求出两根之和12bx x a+=-与两根之积12c x x a⋅=,然后利用异分母分式的变形,将求出的两根之和x 1+x 2=3与两根之积x 1•x 2=﹣4代入,即可求出12121211x x x x x x ++=⋅=3344=--. 故选C .考点:根与系数的关系 9.D 【解析】解:当点Q 在AC 上时,∵∠A=30°,AP=x ,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x 2;当点Q 在BC 上时,如下图所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴=AP•PQ==,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.10.C【解析】【分析】因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.【详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.11.C【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.12.B【解析】【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.故选:B .【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】试题分析:∵正方形ADEF 的面积为4,∴正方形ADEF 的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=1.设B 点坐标为(t ,1),则E 点坐标(t-2,2),∵点B 、E 在反比例函数y=的图象上,∴k=1t=2(t-2),解得t=-1,k=-1.考点:反比例函数系数k 的几何意义.14.x (x+2)(x ﹣2).【解析】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.15.108°【解析】【分析】如图,易得△OCD 为等腰三角形,根据正五边形内角度数可求出∠OCD ,然后求出顶角∠COD ,再用360°减去∠AOC 、∠BOD 、∠COD 即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD 是等腰三角形,然后求出顶角是关键.16.(673,0)【解析】【分析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0,据此可解. 【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0, ∵2019÷3=673,∴P 2019 (673,0)则点P 2019的坐标是 (673,0).故答案为 (673,0).【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 17.11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.18.m≤1.【解析】试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.考点:根的判别式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.规定日期是6天.【解析】【分析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭ 解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.20.(1)m≤1;(2)3≤m≤1.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x 1+x 2=6,x 1x 2=2m+1,再利用2x 1x 2+x 1+x 2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m 的取值范围.试题解析:(1)根据题意得△=(-6)2-1(2m +1)≥0,解得m≤1;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20, 解得m≥3,而m≤1,所以m 的范围为3≤m≤1.21.(1)CF=)244x +;(2)y=2x +(0<x <2);(3)AB=2.5. 【解析】【详解】试题分析:(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF ∽△CAE ,然后根据相似三角形的性质和勾股定理可求解;(2)根据相似三角形的判定与性质,由三角形的周长比可求解;(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解. 试题解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴CE CF CA CE=,在Rt△CDE中,根据勾股定理得,,∵CA==,∴CF=24)4x+;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴CAEBFAC AEyC AF====VV0<x<2),(3)由(2)知,△CEA∽△BFA,∴AE AFAC AB=,24)xAB+=,∴AB=x+2,∵∠ABE的正切值是35,∴tan∠ABE=2325AE xAB x-==+,∴x=12,∴AB=x+2=52.22.见解析.【解析】【分析】先证明△AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.【详解】∵AE为△ABC的角平分线,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD为△ABC的中线,∴DH是△BCF的中位线,∴DH=12 BF.【点睛】本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DH=12BF,一般三角形中出现这种2倍或12关系时,常用中位线的性质解决.23.(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.试题解析:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1.(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D (8,1), BP ⊥CD∴PE =BE =1,∴CE =DE =4,∴PB 与CD 互相垂直平分,∴四边形BCPD 为菱形.∴点D (8,1)即为所求.24.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0),∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94. 25.(1)详见解析;(2)OF =254. 【解析】【分析】(1)连接OC ,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论; (2)根据勾股定理计算出AC=8,再证明△ABC ∽△ABD ,利用相似比得到AD=252,然后证明OF 为△ABD 的中位线,从而根据三角形中位线性质求出OF 的长.【详解】(1)证明:连接OC ,如图,∵CF 为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC=8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴AB ACAD AB=,即10810AD=,∴AD=25 2,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=12AD=254.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.26.(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x 天 根据题意,得1010511.5x x ++= 解得x =20 经检验,x =20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天) (6500+3500)×12=120000(元) 答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.27.(1)12;(2) 见解析;(3) 12【解析】【分析】 (1)过点C 作CE ∥OA 交BD 于点E ,即可得△BCE ∽△BOD ,根据相似三角形的性质可得CE BC OD BO=,再证明△ECP ≌△DAP ,由此即可求得AD DO的值;(2)过点D 作DF ∥BO 交AC 于点F ,即可得PD DF PB BC =,AD DF AO OC =,由点C 为OB 的中点可得BC=OC ,即可证得PD AD PB AO =;(3)由(2)可知PD AD PB AO ==14,设AD=t ,则BO=AO=4t ,OD=3t ,根据勾股定理求得BD=5t ,即可得PD=t ,PB=4t ,所以PD=AD ,从而得∠A=∠APD=∠BPC ,所以tan ∠BPC=tan ∠A=12OC OA =. 【详解】(1)如图1,过点C 作CE ∥OA 交BD 于点E ,∴△BCE ∽△BOD ,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如图2,过点D作DF∥BO交AC于点F,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.。
甘肃省兰州市2019-2020学年中考数学考前模拟卷(4)含解析
甘肃省兰州市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.16B.13C.12D.232.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和293.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°4.如图,反比例函数kyx(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.45.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.56.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差7.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x =+B .1101002x x =+ C .1101002x x =- D .1101002x x =-8.边长相等的正三角形和正六边形的面积之比为( )A .1∶3B .2∶3C .1∶6D .1∶69.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,BD 平分∠ABC ,∠A =130°,则∠BDC 的度数为()A .100°B .105°C .110°D .115°10.下列各数中,为无理数的是( )A .38B .4C .13 D .211.二次函数2y ax bx c =++(a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax +c 的图象不经第四象限C .m (am+b )+b <a (m 是任意实数)D .3b+2c >012.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB=AC ,AD ∥BC ,若∠BAC=80°,则∠DAC=__________.14.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .15.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .16.如图,Rt △ABC 中,若∠C=90°,BC=4,tanA=43,则AB=___.17.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________. 18.如果将抛物线22y x =平移,使平移后的抛物线顶点坐标为(1,2),那么所得新抛物线的表达式是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?20.(6分)(1)如图1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角顶点在BC 边上,BP=1.①特殊情形:若MP过点A,NP过点D,则PAPD=.②类比探究:如图2,将∠MPN绕点P按逆时针方向旋转,使PM交AB边于点E,PN交AD边于点F,当点E与点B重合时,停止旋转.在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半径为1,点E是⊙A上一动点,CF⊥CE交AD于点F.请直接写出当△AEB为直角三角形时ECFC的值.21.(6分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.请你根据图中信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.22.(8分)计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)0+36.23.(8分)实践体验:(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使△BCP为等腰三角形;(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;问题解决:(3)如图3,四边形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P 是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.24.(10分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.25.(10分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.26.(12分)2019年1月,温州轨道交通1S线正式运营,1S线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图). 27.(12分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.(2)求至少有一辆汽车向左转的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.∴得到的两位数是3的倍数的概率为:26=13.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可. 2.D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.3.C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.故选C.考点:1.面动旋转问题;2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.4.C【解析】【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.由题意得:E 、M 、D 位于反比例函数图象上,则OCE OAD kkS S 22∆∆==,,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k|.又∵M 为矩形ABCO 对角线的交点,∴S 矩形ABCO =4S □ONMG =4|k|,∵函数图象在第一象限,k >0, ∴k k 94k 22++=. 解得:k=1.故选C .【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.5.B【解析】【分析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1, 则针孔扎到小正方形(阴影部分)的概率是10.254=; 故选:B .【点睛】本题考查了概率公式:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A的概率()mP An=.6.B【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.7.A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.8.C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•32=3a,∴S△ABC=12BC•AD=12×1a×3a=3a1.连接OA、OB,过O作OD⊥AB.∵∠AOB=3606︒=20°,∴∠AOD=30°,∴33,∴S△ABO=12BA•OD=12×1a×331,∴正六边形的面积为:3a1,∴边长相等的正三角形和正3a1:31=1:2.故选C.点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.9.B【解析】【分析】根据圆内接四边形的性质得出∠C 的度数,进而利用平行线的性质得出∠ABC 的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD 内接于⊙O ,∠A=130°,∴∠C=180°-130°=50°,∵AD ∥BC ,∴∠ABC=180°-∠A=50°,∵BD 平分∠ABC ,∴∠DBC=25°,∴∠BDC=180°-25°-50°=105°,故选:B .【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C 的度数.10.D【解析】A =2,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D.11.D【解析】解:A .由二次函数的图象开口向上可得a >0,由抛物线与y 轴交于x 轴下方可得c <0,由x=﹣1,得出2b a=﹣1,故b >0,b=2a ,则b >a >c ,故此选项错误; B .∵a >0,c <0,∴一次函数y=ax+c 的图象经一、三、四象限,故此选项错误;C .当x=﹣1时,y 最小,即a ﹣b ﹣c 最小,故a ﹣b ﹣c <am 2+bm+c ,即m (am+b )+b >a ,故此选项错误;D .由图象可知x=1,a+b+c >0①,∵对称轴x=﹣1,当x=1,y >0,∴当x=﹣3时,y >0,即9a ﹣3b+c >0②①+②得10a ﹣2b+2c >0,∵b=2a ,∴得出3b+2c >0,故选项正确;故选D .点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c ,然后根据图象判断其值.12.B【解析】【分析】【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50°【解析】【分析】根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.【详解】解:∵AB=AC ,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD ∥BC ,∴∠DAC=∠C=50°,故答案为50°.【点睛】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.14.10.5【解析】【分析】先证△AEB ∽△ABC ,再利用相似的性质即可求出答案.【详解】解:由题可知,BE ⊥AC ,DC ⊥AC∵BE//DC ,∴△AEB ∽△ADC , ∴BE AB CD AC=,即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.15.200【解析】【分析】先求出OA 的长,再由垂径定理求出AC 的长,根据勾股定理求出OC 的长,进而可得出结论.【详解】解:∵⊙O 的直径为1000mm ,∴OA=OA=500mm .∵OD ⊥AB ,AB=800mm ,∴AC=400mm ,∴=300mm ,∴CD=OD-OC=500-300=200(mm ).答:水的最大深度为200mm .故答案为:200【点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC 的长是解答此题的关键.16.1.【解析】【分析】在Rt △ABC 中,已知tanA ,BC 的值,根据tanA=BC AC ,可将AC 的值求出,再由勾股定理可将斜边AB 的长求出.【详解】解:Rt △ABC 中,∵BC=4,tanA=4,3BC AC = ∴3tan BC AC A ==,则 5.AB =故答案为1.【点睛】考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.17.【解析】【分析】设降价的百分率为x ,则第一次降价后的单价是原来的(1−x ),第二次降价后的单价是原来的(1−x )2,根据题意列方程解答即可.【详解】解:设降价的百分率为x ,根据题意列方程得:100×(1−x )2=81解得x 1=0.1,x 2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.18.22(1)2y x =-+.【解析】【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【详解】∵原抛物线解析式为y=1x 1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x ﹣1)1+1.故答案为:y=1(x ﹣1)1+1.【点睛】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.【解析】【分析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a 个小球,根据第三次变化方法列出方程并解答.【详解】解:(1)依题意得:(3+2)÷(3﹣2)=5 故答案是:5;(2)依题意得:a+2+1=a+3;故答案是:(a+3)(3)设原来每个捅中各有a 个小球,第三次从中间桶拿出x 个球,依题意得:a ﹣1+x =2ax =a+1所以 a+3﹣x =a+3﹣(a+1)=2答:第三次变化后中间小桶中有2个小球.【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.20. (1) ①特殊情形:12;②类比探究: 12PE PF = 是定值,理由见解析;(2) EC 4FC =或1 【解析】【分析】(1)证明Rt ABP Rt CDP V V ∽,即可求解;(2)点E 与点B 重合时,四边形EBFA 为矩形,即可求解;(3)分AEB 90∠︒=时、EAB 90∠︒=时,两种情况分别求解即可.【详解】解:(1)APB DPC 90DPC PDC 90Q =,=∠∠∠∠+︒+︒,APB PDC ∠∠∴=,Rt ABP Rt CDP ∴V V ∽, 21512PA AB PD CP ∴===-, 故答案为12; (2)点E 与点B 重合时,四边形EBFA 为矩形, 则PE 1PF 2=为定值; (3)①当AEB 90∠︒=时,如图3,过点E 、F 分别作直线BC 的垂线交于点G ,H ,由(1)知:ECB CFH α==∠∠,AB 2AE 1ABE 30∠︒=,=,则=, EB ABcos303︒则==,3cos 602GB EB ︒==,同理32EG =, 322cos cos 2GC EC FH AB αα+==== . 则FH 2cos cos FC αα==, 则314EC FC =+ ; ②当EAB 90∠︒=时,如图4,GB EA 1EG FH AB 2==,===,则BE 5GC 3=,=,22EG G 13EC C =+=,EG 2tan tan GC 3EGC α∠===,则cos 13α= FH 13cos FC α==,则4EC FC = , 故EC 4FC =或314+ . 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏. 21.(1)126;(2)作图见解析(3)768【解析】试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360°即可;(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人 ;(3)用部分估计整体.试题解析:(1)126°(2)40÷40%-2-16-18-32=32人 (3)1200×=768人 考点:统计图22.17.2【解析】分析:按照实数的运算顺序进行运算即可.详解:原式11416,22=⨯+-+ 1216,2=+-+ 17.2= 点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.23.(1)见解析;(2)PQ min =7,PQ max =13;(3) S min =35425,S max =18. 【解析】【分析】(1)根据全等三角形判定定理求解即可.(2)以E 为圆心,以5为半径画圆,①当E 、P 、Q 三点共线时最PQ 最小,②当P 点在2P 位置时PQ 最大,分类讨论即可求解.(3)以E 为圆心,以2为半径画圆,分类讨论出P 点在12P P ,位置时,四边形PADC 面积的最值即可.【详解】(1)当P 为AD 中点时,APDP AB CD A DQ ==∠=∠⎧⎪⎨⎪⎩,)ABP DCP SAS ∴∆≅∆(BE CE ∴=∴△BCP 为等腰三角形.(2)以E 为圆心,以5为半径画圆① 当E 、P 、Q 三点共线时最PQ 最小,PQ 的最小值是12-5=7.② 当P 点在2P 位置时PQ 最大,PQ的最大值是225+12=13(3)以E 为圆心,以2为半径画圆.当点p 为1P 位置时,四边形PADC 面积最大()3+64==182⨯. 当点p 为1P 位置时,四边形PADC 最小=四边形2P ADF +三角形2P CF =2414435452525+=. 【点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.24.证明见解析【解析】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似. 试题解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠=o90DAE BAE ∴∠+∠=o ,BF AE ⊥Q 于点F ,90ABF BAE ∴∠+∠=o ,DAE BAF ∴∠=∠,.ABF EAD ∴V V ∽点睛:两组角对应相等,两三角形相似.25.(1)68 ;(2)4倍;(3)4x ,猜想正确,见解析;(4)M 的值不能等于1,见解析.【解析】【分析】(1)直接相加即得到答案;(2)根据(1)猜想a+b+c+d=4x ;(3)用x 表示a 、b 、c 、d ,相加后即等于4x ;(4)得到方程5x=1,求出的x 不符合数表里数的特征,故不能等于1.【详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x ,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x ,∴猜想正确;(4)M=a+b+c+d+x=4x+x=5x ,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,∴M 的值不能等于1.【点睛】本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.26.(1)600人(2)1 3【解析】【分析】(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.【详解】(1)120200600(36090110)⨯=--(人),∴最喜欢方式A的有600人(2)列表法:A B CA A,A A,B A,CB B,A B,B B,CC C,A C,B C,C 树状法:∴P(同一种购票方式)1 3 =【点睛】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.27.(1)49;(2)59.【解析】【分析】(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为49;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=59.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.。
(4份试卷汇总)2019-2020学年甘肃省兰州市中考数学模拟试题
2019-2020学年数学中考模拟试卷一、选择题1.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m , 求道路的宽.如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )=540B .(20-x )(32-x )=100C .(20+x )(32+x )=540D .(20+x )(32-x )=540 2.下列运算正确的是( )A.236a a a ⋅=B.336a a a +=C.22a a -=-D.326()a a -= 3.如图,点A 所表示的数的绝对值是( )A.3B.﹣3C.13D.13- 4.关于抛物线,下列说法错误..的是( ). A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,随的增大而增大5.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A.183π-B.1839πC.9932π-D.33π6.若圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .230cm πB .260cm πC .248cm πD .280cm π 7.下列运算正确的是( ) A .3262a 3a 6a ⋅=B .3412(x )x -=C .333(a b)a b +=+D .3n 2n n (x)(x)x -÷-=-8.如图,在Rt △ABC 中,∠C=90°,以A 为圆心,以任意长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ,作射线AP 交BC 于点D ,若AC=4,BC=3,则CD 的长为( )A.32B.43C.34D.539.某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是( )A .甲运动员得分的平均数小于乙运动员得分的平均数B .甲运动员得分的中位数小于乙运动员得分的中位数C .甲运动员得分的最小值大于乙运动员得分的最小值D .甲运动员得分的方差大于乙运动员得分的方差10.下列图形中,不是轴对称图形的为( )A .B .C .D .11.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( )A .48210⨯B .58210⨯C .58.210⨯D .68.210⨯12.给出下列函数:①y =2x ﹣3;②y =1x;③y =2x 2;④y =﹣3x+1.上述函数中符合条件“当x >0时,函数值y 随自变量x 增大而减小”的是( ) A .①③B .③④C .②④D .②③ 二、填空题13.如图,矩形ABCD 的边长AD =6,AB =4,E 为AB 的中点,F 在边BC 上,且BF =2FC ,AF 分别与DE 、DB 相交于点M 、N ,则MN 的长为_____.14.对于每个正整数n ,设()2g n 表示2462n ++++L 的个位数字。
甘肃省兰州市榆中县多校联考2024届九年级下学期中考二模数学试卷(含解析)
2024年九年级模拟考试数学注意事项:1.全卷共120分,考试时间120分钟.2.考生必须将姓名、准考证号、考场号、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.一、选择题:本大题12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”、如:粮库把运进30吨粮食记为“”,则“”表示()A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食答案:A解析:解:粮库把运进30吨粮食记为“”,则“”表示运出30吨粮食.故选:A2. 杆秤是中国最古老也是现今人们仍然使用的衡量工具,由秤杆、秤砣、秤盘三个部分组成.秤砣、秤杆分别叫做“权”和“衡”,指的是做任何事都要权衡轻重.如图是常见的一种秤砣,则它的主视图是()A. B. C. D.答案:A解析:解:这个常见的一种秤砣的主视图是故选A.3. 下列式子运算正确的是( )A. x5÷x5=0B. x2•x3=x6C. (2x)2=4x2D. (x3)4=x7答案:C解析:解:A、x5÷x5=1,故此选项不符合题意;B、x2•x3=x5,故此选项不符合题意;C、(2x)2=4x2,故此选项符合题意;D、(x3)4=x12,故此选项不符合题意;故选:C.4. 某市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中,都与地面l平行,,.当为()度时,与平行.A. 16B. 60C. 66D. 114答案:C解析:解:∵,都与地面l平行,∴,∴,∴,∵,,∴,∴当时,.故选:C.5. 一次函数的函数值y随x的增大而减小,则k的取值范围()A. B. C. D.答案:D解析:解:∵一次函数的函数值y随x的增大而减小,∴,解得.故选:D6. 若,是方程两个根,则()A. B. C. D.答案:B解析:解:∵是方程两个根,∴.故选:B7. 如图,线段上的点满足关系式:,且,则的长为()A. 或B.C.D.答案:C解析:解:设,则,∵,∴,整理得,,解得,或(不符合题意,舍去)∴,故选:C.8. 如图,是一个底部呈球形的蒸馏瓶,球的半径为,瓶内液体的最大深度,则截面圆中弦的长为()A. B. C. D.答案:C解析:解:由题意得:,∴,,∵,∴,在中,由勾股定理得:,∴.∴截面圆中弦AB的长为.故选:C.9. 2024年国家统计局公布《中华人民共和国2023年国民经济和社会发展统计公报》.下图为国家统计局发布的全国2019-2023年快递业务量及其增长速度的统计图.根据统计图提供的信息,下列结论错误的是()A. 与2021年相比,2022年的快递业务量的年增长率虽然下降,但快递业务量仍然上升B. 从2019年至2023年快递业务量持续上升C. 从2020年至2023年快递业务量的年增长率持续下降D. 2023年的快递业务量比2022年增加了亿件答案:C解析:解:由统计图可知:与2021年相比,2022年的快递业务量的年增长率虽然下降,但快递业务量仍然上升,故选项A说法正确,不符合题意;从2019年至2023年快递业务量持续上升,故选项B说法正确,不符合题意;从2020年至2022年快递业务量的年增长率持续下降,从2022年至2023年快递业务量的年增长率有所上升,故选项C说法错误,符合题意;(亿件),即2023年的快递业务量比2022年增加了214.9亿件,故选项D说法正确,不符合题意.故选:C10. 《四元玉鉴》是一部成就辉煌的数学名著,在中国古代数学史上有着重要地位.其中有一个“酒分醇醨”问题:务中听得语吟吟,亩道醇醨酒二盆.醇酒一升醉三客,醨酒三升醉一人.共通饮了一斗七,一十九客醉醺醺.欲问高明能算士,几何醨酒几多醇?其大意为:有好酒和薄酒分别装在瓶中,好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,试问好酒、薄酒各有多少升?若设好酒有升,薄酒有升,根据题意列方程组为()A. B. C. D.答案:A解析:解:根据好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,列出方程组得:故选:A.11. 如图,把含30°的直角三角板PMN放置在正方形ABCD中,,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则的度数为()A. 60°B. 65°C. 75°D. 80°答案:C解析:解:∵四边形ABCD是正方形中,∴∠MBO=∠NDO=45°,∵点O为MN的中点∴OM=ON,∵∠MPN=90°,∴OM=OP,∴∠PMN=∠MPO=30°,∴∠MOB=∠MPO+∠PMN =60°,∴∠BMO=180°-60°-45°=75°,,故选:C.12. 如图,等边的边长为,点从点出发,以的速度沿向点运动,到达点停止;同时点从点出发,以的速度沿向点运动,到达点停止,设的面积为,运动时间为,则下列最能反映与之间函数关系的图象是()A. B.C. D.答案:D解析:解:由题得,点Q移动的路程为,点P移动的路程为x,,①如图,当点Q在上运动时,过点Q作于D,则,∴的面积,即当时,函数图象为开口向上的抛物线的一部分,故A、B排除;②如图,当点Q在上运动时,过点Q作于E,则,∴的面积,即当时,函数图象为开口向下的抛物线的一部分,故C排除,而D正确;故选:D.二、填空题:本大题4小题,每小题3分,共12分.13. 今年春季以来,甘肃天水麻辣烫成为美食界和旅游圈的“顶流”,持续火爆“出圈”,不仅吸引了无数游客和美食博主前往打卡,也带动了当地的消费.各大短视频平台上,“甘肃麻辣烫”相关话题累计播放量已超过3260000000次,数据3260000000用科学记数法可表示为________.答案:解析:解:,故答案为:.14. 因式分解:a2﹣16b2=__.答案:(a+4b)(a-4b)解析:解:原式=(a+4b)(a-4b).故答案为:(a+4b)(a-4b).15. 为了培养同学们的创新精神和实践能力,某校组织学生开展了为期一周的社会实践活动.学校开设了A.“皮影戏”,B.“香包绣制”,C.“甘肃勇纸”,D.“洮砚制作技艺”四门实践课程供学生选择,且每人只能参加一门实践课程.甲、乙两位同学各自从这四门实践课程中随机选一门,他们选择的实践课程相同的概率为________.答案:解析:解:列表如下:由表格可知,一共有16种等可能性的结果数,其中他们选择的实践课程相同的结果数有4种,∴他们选择的实践课程相同的概率为,故答案为:.16. 在平面直角坐标系中,矩形的边BC在x轴上,O为线段的中点,矩形的顶点,连接,按照下列方法作图:(1)以点C为圆心,适当的长度为半径画弧分别交于点E、F;(2)分别以点E,F为圆心,大于的长为半径画弧交于点;(3)作射线交于H,则线段的长为_______.答案:##1.5解析:解:如图,过点H作于点M,由作法可知,为的平分线,∵四边形为矩形,∴,∴,∵,∴,,由勾股定理得,,∵,∴,即,解得,故答案为:.三、解答题(共72分)17. 解不等式:.答案:解析:解:,去分母,得,移项,得,合并同类项,得,不等式的两边都除以,得.18. 计算:.答案:解析:解:323.19. 化简:.答案:解析:20. 作图题:(1)画图并思考:(不写作法,说明知识原理)如图,某村庄计划把河中的水引到水池中,怎样开渠线路最短,画出图形;其数学原理是_______________________________.(2)尺规作图:(不写作法,保留作图痕迹)已知:和如下图所示,画出.答案:(1)垂线段最短;(2)见解析.解析:解:(1)直线外一点与直线上各点连接的所有线段中,垂线段最短或“垂线段最短”.∴如图,即为所求的最短线路.(2)如图所示:∠AOB即为所求..21. 一次函数y=kx+b的图象与反比例函数y=的图象交于点A(2,1),B(﹣1,n)两点.(1)求反比例函数的解析式及一次函数的解析式;(2)求△AOB的面积.答案:(1)y=;y=x﹣1;(2)△AOB的面积为.解析:解:(1)将点(2,1)代入,得:,解得:m=2,则反比例函数解析式为:;将点B(﹣1,n)代入,得:n=﹣2,将点A、B的坐标代入一次函数解析式,得:,解得:,故一次函数解析式为:.(2)一次函数解析式为:,令y=0,则x=1,∴点C的坐标为(1,0),∴OC=1,∴.22. “逐梦寰宇问苍穹——中国载人航天工程三十年成就展”的成功举办,标志着我国载人航天工程正式进入空间站应用与发展阶段.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取m名学生进行测试,并对成绩(满分:100分)进行整理、描述和分析,将成绩划分为A(90≤x≤100),B(80≤x<90),C(70≤x<80),D(60≤x<70)四个等级,并绘制出下列不完整的统计图.其中B等级的成绩数据(单位∶分)∶80,86,80,82,85,88,86,89,81,86.根据以上信息,回答下列问题.(1)抽取的总人数m= ,并补全条形统计图.(2)在所抽取的m名学生的测试成绩中,中位数是分,B等级的众数是分.(3)若该中学共有3000名学生,且全部参加这次测试,请估计学生的测试成绩不低于80分的总人数.答案:(1),(2),(3)名小问1解析:解:人,等级的人数:(人),补全条形统计图如图:故答案为: ,;小问2解析:把B等级数据按从小到大排列为,中间两个数是、,∴中位数是;在这组数据里分的最多,∴众数为,故答案为:,;小问3解析:解:名,答:估计学生的测试成绩不低于80分的总人数为名.23. 如图,在菱形ABCD中,O为AC,BD的交点,P,M,N分别为CD,OD,OC的中点.(1)求证:四边形OMPN是矩形;(2)连接AP,若,,求AP的长.答案:(1)见解析(2)小问1解析:∵P,M,N分别为CD,OD,OC的中点.∴,.∴四边形OMPN是平行四边形.∵在菱形ABCD中,AC,BD相交于点O,∴.∴四边形ONPN是矩形.小问2解析:∵四边形OMPN是矩形,∴.∵四边形ABCD是菱形,∴,,AC平分∠BAD.∵,,∴△ABD 是等边三角形.∴BD =4.∴,由勾股定理得:.∴,.∴.∴在中,由勾股定理得:.24. 古树名木是中华民族悠久历史与文化的象征.据悉,在兰州树龄1000年以上古树仅有4棵,分别为七里河区工人文化宫两棵唐槐(树龄约1320年),红古区张家寺村寺庙旁文成槐(树龄约1300年),榆中县定远镇矿湾村龙泉寺旁圆柏(树龄约1000年).某数学兴趣小组开展测量工人文化宫其中一棵唐槐高度的“数学综合与实践”活动,测量实践报告如下表:活动课题测量唐槐()高度(唐槐有围栏保护,测量小组无法到达其底部)活动目的运用三角函数知识解决实际问题测量工具自制测倾器、皮尺等测量步骤方案示意图(1)利用测倾器站在F 处,测得唐槐最高点A 的仰角为;(2)前进6米到达D 处,测得A 点的仰角为.说明、为测倾器的支杆,在测量过程中、、唐槐均与水平面垂直,且D 、F 、B 共线.测量数据,,米,米参考数据,,根据以上表中的测量方案及其数据,计算唐槐的高度(结果保留整数).答案:唐槐的高度约为.解析:解:由题意得,,,,,设,在中,,,,在中,,解得,经检验,是原方程的解且符合题意,.唐槐的高度约为.25. 掷实心球是中考体育考试项目之一,明明发现实心球从出手到落地的过程中,实心球竖直高度与水平距离一直在相应的发生变化.明明利用先进的鹰眼系统记录了实心球在空中运动时的水平距离x(单位:米)与竖直高度y(单位:米)的数据如表:水平距024568离x/m竖直高2 3.236 3.5 3.22度y/m根据表中的数据建立如图所示的平面直角坐标系,根据图中点的分布情况,明明发现其图象是二次函数的一部分.(1)求满足条件的抛物线的解析式;(2)根据中考体育考试评分标准(男生版),在投掷过程中,实心球从起点到落地点的水平距离大于或等于9.7米时,即可得满分10分,明明在此次考试中是否得到满分,请说明理由.答案:(1)(2)明明在此次考试中能得到满分,理由见解析小问1解析:由题意,根据表格的数据可得对称轴是直线,∴顶点为.故可设抛物线的解析式为,把代入,得,∴.∴抛物线的解析式为.小问2解析:明明在此次考试中能得到满分,理由如下:把代入,得,解得或(不符合题意,舍去),∵,∴明明在此次考试中能得到满分.26. 如图,是的直径,垂直与过点C的切线,交与于D,连接.(1)求证:平分;(2)若的半径为2,,求劣弧的长度.答案:(1)详见解析(2)小问1解析:证明:连接,∵与相切于点C,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴平分;小问2解析:连接,∵是的直径,∴,∴,∵,∴,∴,∴,∴或(舍去),在中,,∴,∴,∵,∴等边三角形,∴,∴劣弧的长度π,∴劣弧的长度为.27. 综合探究综合与实践课上,智慧星小组三位同学对含角的菱形进行了探究.背景在菱形中,,作,,分别交边,于点P,Q.(1)感知如图1,若点P是边的中点,小智经过探索发现了线段与之间的数量关系,请你直接写出这个关系为________.(2)探究如图2,当点P为上任意一点时,请说明(1)中结论是否仍然成立,并写出理由.(3)应用若菱形纸片中,,,在边上取一点P,连接,在菱形内部作,交于点Q,当时,请直接写出线段的长.答案:(1)(2)成立;理由见解析(3)线段的长为或小问1解析:解:线段与之间的数量关系:.理由:如图,连接,四边形是菱形,且,,,和都等边三角形,,,点是边的中点,,,,,,,,,在和中,,,故答案为:.小问2解析:证明:成立.理由:如图,连接,四边形是菱形,且,,,和都是等边三角形,,,,,,,,在和中,,,.小问3解析:解:如图,过点作于,连接,四边形是菱形,且,,,是等边三角形,,,,,当点在点的左侧时,,当点在点的右侧(图中处)时,,或,由(2)知:,,或.线段的长为或.28. 对于平面直角坐标系中的点P和(半径为r),给出如下定义:若点P关于点M的对称点为Q,且,则称点P为的称心点.(1)当⊙O的半径为2时,①如图1,在点中,的称心点是 ;②如图2,点D在直线上,若点D是的称心点,求点的横坐标m的取值范围;(2)的圆心为,半径为2,直线与x轴,y轴分别交于点E,F.若线段上的所有点都是的称心点,直接写出t的取值范围.答案:(1)①点A,B;②点D的横坐标m的取值范围是或(2)或小问1解析:解:①∵,∴点A关于点O的对称点为,∴,∵的半径为2,∴点A是的称心点,∵,∴点B关于点O的对称点为,∴,∵的半径为2,∴,∴点B是的称心点,∵,∴点C关于点O的对称点为,∴,∴点C不是的称心点,故答案为:点A,B;②∵点D在直线上,且点D的横坐标为m,∴D的坐标为,∴点D关于点O的对称点的坐标为,∴,∵点D是的称心点,且的半径为2,∴,∴或,∴点D的横坐标m的取值范围是或;小问2解析:如图,对于直线,令,∴,∴,∴,令,∴,∴,∴,在中,,∴,过y轴上一点H作直线的垂线交线段于G,∵线段上的所有点都是的称心点,且的半径为2,∴,在中,,∴,∴,当点T从H向下移动时,越来越长,直到点G和E重合,取最大值,∵线段上的所有点都是的称心点,∴,∴,∴,∴,∴,当点T从点H向上移动时,点T在上时,T到的距离小于2,此种情况不符合题意,当点T从点F向上移动时,,即:,∵线段上的所有点都是的称心点,∴,∴,∴,且t的取值范围是或.。
甘肃省兰州市2019-2020学年中考数学考前模拟卷(1)含解析
甘肃省兰州市2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.3B.5C.23D.252.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=03.下面的图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.4.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°5.计算3–(–9)的结果是()A.12 B.–12 C.6 D.–66.二元一次方程组632x yx y+=⎧⎨-=-⎩的解是()A.51xy=⎧⎨=⎩B.42xy=⎧⎨=⎩C.51xy=-⎧⎨=-⎩D.42xy=-⎧⎨=-⎩7.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A .80°B .50°C .30°D .20°8.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是( )A .B .C .D .9.如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB=8,CD=2,则cos ∠ECB 为( )A .35B .313C .23D .2131310.如图是某个几何体的三视图,该几何体是( )A .圆锥B .四棱锥C .圆柱D .四棱柱 11.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( )A .31DE BC =B .DE 1BC 4= C .31AE AC =D .AE 1AC 4= 12.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.14.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.15.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.16.如图,正比例函数y=kx与反比例函数y=6x的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .17.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.18.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.请你根据图中信息,回答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?20.(6分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.(1)求证:23 ECDF;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.①如图2,若∠AFE=45°,求ECDF的值;②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.21.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.22.(8分)抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C .(1)如图1,若A (-1,0),B (3,0),① 求抛物线2y x bx c =-++的解析式;② P 为抛物线上一点,连接AC ,PC ,若∠PCO=3∠ACO ,求点P 的横坐标;(2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若∠BDA+2∠BAD=90°,求点D 的纵坐标.23.(8分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)24.(10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE 是⊙O 的切线;当BC=4时,求劣弧AC 的长.25.(10分)已知如图,直线y=3 3与x 轴相交于点A ,与直线y=3相交于点P . (1)求点P 的坐标;(2)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.直接写出:S与a之间的函数关系式(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1:3若存在直接写出Q点坐标。
甘肃省兰州市2019-2020学年中考数学考前模拟卷(3)含解析
甘肃省兰州市2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人.数据“5657万”用科学记数法表示为()A .4565710⨯B .656.5710⨯C .75.65710⨯D .85.65710⨯2.如图,在矩形ABCD 中,AB=2,AD=2,以点A 为圆心,AD 的长为半径的圆交BC 边于点E ,则图中阴影部分的面积为( )A .2213π-- B .2212π-- C .2222π-- D .2214π--3.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x ,则下列方程正确的是( )A .1.2(1+x )=2.5B .1.2(1+2x )=2.5C .1.2(1+x )2=2.5D .1.2(1+x )+1.2(1+x )2=2.54.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .3135.下列实数中,最小的数是( )A 3B .π-C .0D .2-6.如图,△OAB ∽△OCD ,OA :OC =3:2,∠A =α,∠C =β,△OAB 与△OCD 的面积分别是S 1和S 2,△OAB 与△OCD 的周长分别是C 1和C 2,则下列等式一定成立的是( )A.32OB CD = B .32αβ= C .1232S S = D .1232C C =7.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .2 cmB .32cmC .42cmD .4cm8.两个一次函数1y ax b =+,2y bx a =+,它们在同一直角坐标系中的图象大致是( )A .B .C .D .9.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( ) A .B .C .D .10.已知x=1是方程x 2+mx+n=0的一个根,则代数式m 2+2mn+n 2的值为( )A .–1B .2C .1D .–211.不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是( ) A . B . C . D .12.在平面直角坐标系内,点P (a ,a+3)的位置一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________14.在我国著名的数学书《九章算术》中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.15.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____16.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.17.点A(-2,1)在第_______象限.18.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF 翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?20.(6分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.21.(6分)解不等式组:2(2)3 {3122x xx+>-≥-,并将它的解集在数轴上表示出来.22.(8分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.23.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.24.(10分)解方程组:222232()x yx y x y⎧-=⎨-=+⎩.25.(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.26.(12分)如图,在△ABC 中,AB =AC ,∠BAC =90°,M 是BC 的中点,延长AM 到点D ,AE =AD ,∠EAD =90°,CE 交AB 于点F ,CD =DF .(1)∠CAD =______度;(2)求∠CDF 的度数;(3)用等式表示线段CD 和CE 之间的数量关系,并证明.27.(12分)如图,已知ABC DCB ∠=∠,ACB DBC ∠=∠.求证AB DC =.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:5657万用科学记数法表示为75.65710⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.B【解析】【分析】先利用三角函数求出∠BAE=45°,则,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 进行计算即可.【详解】解:∵AE=AD=2,而,∴cos ∠BAE=AB AE =2,∴∠BAE=45°,∴,∠BEA=45°.∵AD ∥BC ,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 12﹣2452360π⋅⋅1﹣2π. 故选B .【点睛】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.3.C【解析】试题解析:设2015年与2016年这两年的平均增长率为x ,由题意得:1.2(1+x )2=2.5,故选C .4.B【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B .5.B【解析】【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【详解】∵π-3∴最小的数是-π,故选B.【点睛】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.6.D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβ=,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.7.C【解析】【分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),=cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.8.B【解析】【分析】根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a、b异号,所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,B选项符合,D选项,a、b都经过第二、四象限,所以,两直线都与y轴负半轴相交,不符合.故选:B.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.9.C【解析】【分析】求得不等式组的解集为x<﹣1,所以C是正确的.【详解】解:不等式组的解集为x<﹣1.故选C.【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.C把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可. 【详解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根. 11.C【解析】【详解】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.12.D【解析】【分析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.【详解】如图,分别连接OA、OB、OD;∵OA=OB=,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可证:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°−60°=30°,∴旋转角的正切值是,故答案为:.【点睛】此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.14.x45x3 57 --=【解析】【分析】设羊价为x钱,根据题意可得合伙的人数为455x-或37x-,由合伙人数不变可得方程.【详解】设羊价为x钱,根据题意可得方程:453 57x x--=,故答案为:453 57x x--=.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.15.8个【解析】【分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.16.250【解析】【分析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.【详解】该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:立体图形的体积为250π立方单位.故答案为250π.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.17.二【解析】【分析】根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).18.15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.【解析】分析:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.详解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得:63600500.8400.755200x y x y +⎧⎨⨯+⨯⎩==, 解得:40120x y ⎧⎨⎩==. 答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.20.(1)m≤1;(2)3≤m≤1.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x 1+x 2=6,x 1x 2=2m+1,再利用2x 1x 2+x 1+x 2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m 的取值范围.试题解析:(1)根据题意得△=(-6)2-1(2m +1)≥0,解得m≤1;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20, 解得m≥3,而m≤1,所以m 的范围为3≤m≤1.21.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:22.(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.考点:作图—应用与设计作图.23.(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A 2B 2C 2的面积.试题解析:(1)如图所示:C 1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C 2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A 2B 2C 2是等腰直角三角形,∴△A 2B 2C 2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理24.111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩,解方程组(Ⅱ)得43341,1,21;5.2xxyy⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩,∴原方程组的解是21123,1,21;3.2xxyy⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩331,25.2xy⎧=-⎪⎪⎨⎪=-⎪⎩.点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.25.(1)证明见解析(2)【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD 的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:,即,解得:t=, 即运动时间为秒时,四边形PBQD 是菱形.考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.26.(1)45;(2)90°;(3)见解析. 【解析】【分析】(1)根据等腰三角形三线合一可得结论;(2)连接DB ,先证明△BAD ≌△CAD ,得BD =CD =DF ,则∠DBA =∠DFB =∠DCA ,根据四边形内角和与平角的定义可得∠BAC+∠CDF =180°,所以∠CDF =90°;(3)证明△EAF ≌△DAF ,得DF =EF ,由②可知,2CF CD =可得结论. 【详解】(1)解:∵AB =AC ,M 是BC 的中点,∴AM ⊥BC ,∠BAD =∠CAD ,∵∠BAC =90°,∴∠CAD =45°,故答案为:45(2)解:如图,连接DB .∵AB =AC ,∠BAC =90°,M 是BC 的中点,∴∠BAD =∠CAD =45°.∴△BAD ≌△CAD .∴∠DBA =∠DCA ,BD =CD .∵CD =DF ,∴BD =DF .∴∠DBA =∠DFB =∠DCA .∵∠DFB +∠DFA =180°,∴∠DCA +∠DFA =180°.∴∠BAC +∠CDF =180°.∴∠CDF =90°.(3))21CE CD =.证明:∵∠EAD =90°,∴∠EAF =∠DAF =45°.∵AD =AE ,∴△EAF ≌△DAF .∴DF =EF . 由②可知,2CFCD=.∴()21CE EF CF DF CF CD CF CD =+=+=+=+.【点睛】此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.27.见解析【解析】【分析】根据∠ABD=∠DCA ,∠ACB=∠DBC ,求证∠ABC=∠DCB ,然后利用AAS 可证明△ABC ≌△DCB ,即可证明结论.【详解】证明:∵∠ABD=∠DCA ,∠DBC=∠ACB∴∠ABD+∠DBC=∠DCA+∠ACB即∠ABC=∠DCB在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA )∴AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC≌△DCB.难度不大,属于基础题.。
甘肃省兰州市2019-2020学年中考数学模拟试题(5)含解析
甘肃省兰州市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若代数式22xx-有意义,则实数x的取值范围是()A.x=0 B.x=2 C.x≠0D.x≠22.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.723.下列实数中,最小的数是()A.3B.π-C.0 D.2-4.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x5.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,»BD的长为43π,则图中阴影部分的面积为()A.4633π-B.8933πC3323π-D.8633π6.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是()A.(3,﹣2)B.(3,2)C.(2,3)D.(2,﹣3)7.数据”1,2,1,3,1”的众数是( )A.1 B.1.5 C.1.6 D.38.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是()A.∠BAC=αB.∠DAE=αC.∠CFD=αD.∠FDC=α9.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y+=的解,则k的值为()A.34-B.34C.43D.43-10.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°11.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<012.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A的坐标为(3,7),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为_____.14.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_____本.15.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是6πcm,那么围成的圆锥的高度是cm.16.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.172xx的取值范围是__________.18.计算:(2+1)(2﹣1)=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m<70 38 0.3870≤m<80 a 0.3280≤m<90 b c90≤m≤10010 0.1合计 1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.20.(6分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.21.(6分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。
2020年甘肃省中考数学模拟试题
2020年甘肃省中考数学模拟试题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2020年甘肃省中考数学模拟试题含答案(考试时间120分钟,总分150分)一、选择题(本大题共10小题,每小题3分,共30分;只有一个答案是正确的)1. 若a 与1互为相反数,则|a+1|等于( )A . ﹣1B . 0C . 1D . 22. 某种细胞的直径是厘米,将用科学记数法表示为( )A . ×10﹣5B . ×10﹣6C . ×10﹣5D . ×10﹣63.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是( )A .B .C .D . 4. 函数53-+=x x y 中自变量X 的取值范围是: ≥-3 ≠5 ≥-3或x ≠5 ≥-3且x ≠5 5. 一元二次方程022=-x x 的解是:( ) 和-2 和2 6. 下列说法中,正确的有( )①等腰三角形两边长为2和5,则它的周长是9或12. ②无理数﹣在﹣2和﹣1之间. ③六边形的内角和是外角和的2倍. ④若a >b ,则a ﹣b >0.它的逆命题是假命题.⑤北偏东30°与南偏东50°的两条射线组成的角为80°.A .1个B .2个C .3个D .4个7.在白银市汉字听写大赛中,10名学生得分情况如下表人数 3 4 2 1 分数 80 85 90 95那么这10名学生所得分数的中位数和众数分别是( )A .85和B .和85C .85和85D .和80 8. 正比例函数y 1=k 1x 的图象与反比例函数y 2=的图象相交8题图1于A ,B 两点,其中点B 的横坐标为﹣2,当y 1<y 2时,x 的取值范围是( ) A .x <﹣2或x >2 B .x <﹣2或0<x <2 C .﹣2<x <0或0<x <2 D .﹣2<x <0或x >29. 已知关于x 的分式方程﹣1=的解是正数,则m 的取值范围是( ) A .m <4且m ≠3B .m <4C .m ≤4且m ≠3D .m >5且m ≠610. 如图如图是用棋子摆成的“H”字,摆成第一个“H”字需要7枚棋子;摆第x 个“H”字需要的棋子数可用含x 的代数式表示为( ); A . 5 x B. 5 x-1 C. 5 x +2 x+5二、填空题(本大题共8小题,每小题4分,共32分,只要求填写最简结果。
2019-2020学年甘肃省兰州市中考数学检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( ) A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤72.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .3.12233499100++++++++的整数部分是( )A .3B .5C .9D .64.如图,边长为2a 的等边△ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12a B .a C .32a D 3a5.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元B .720元C .1080元D .2160元6.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( ) A .﹣3B .0C .6D .97.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟9.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .10.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°二、填空题(本题包括8个小题) 11.比较大小:417(填入“>”或“<”号)12.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______. 13.实数16,﹣3,117,35,0中的无理数是_____. 14.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”). 15.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n 个图形中有_____个三角形(用含字母n 的代数式表示).16.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.17.如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 .18.已知方程组2425x y x y +=⎧⎨+=⎩,则x+y 的值为_______.三、解答题(本题包括8个小题)19.(6分)如图,在五边形ABCDE 中,∠C =100°,∠D =75°,∠E =135°,AP 平分∠EAB ,BP 平分∠ABC ,求∠P 的度数.20.(6分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动: A 超市:所有商品均打九折(按标价的90%)销售; B 超市:买一副羽毛球拍送2个羽毛球.设在A 超市购买羽毛球拍和羽毛球的费用为y A (元),在B 超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:分别写出y A 、y B 与x 之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.21.(6分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(8分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.23.(8分)计算:2sin60°+|33(π﹣2)0﹣(12)﹣124.(10分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?25.(10分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?26.(12分)如图,点B在线段AD上,BC DE,AB ED=,BC DB=.求证:A E∠=∠.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【分析】先解出不等式,然后根据最小整数解为2得出关于m 的不等式组,解之即可求得m 的取值范围. 【详解】解:解不等式3x ﹣m+1>0,得:x >13m -, ∵不等式有最小整数解2, ∴1≤13m -<2, 解得:4≤m <7, 故选A . 【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键. 2.A 【解析】 【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AB 的交点即为所求作的点. 【详解】如图,点E 即为所求作的点.故选:A .【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.3.C【解析】解:∵21+=2﹣1,23+=3﹣2…99100+=﹣99+100,∴原式=2﹣1+3﹣2+…﹣99+100=﹣1+10=1.故选C.4.A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=12 AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===, ∴△MBG ≌△NBH (SAS ), ∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a ,∴HN=2a ,故选A . 【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点. 5.C 【解析】 【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可. 【详解】 3m×2m=6m 2,∴长方形广告牌的成本是120÷6=20元/m 2, 将此广告牌的四边都扩大为原来的3倍, 则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C . 【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键. 6.A 【解析】 【详解】 解:∵x ﹣2y=3,∴3﹣2x+4y=3﹣2(x ﹣2y )=3﹣2×3=﹣3;故选A.7.A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.8.C【解析】【分析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键. 9.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既是中心对称图形,又是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误. 故选C . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 10.B 【解析】 【分析】根据题意连接AD ,再根据同弧的圆周角相等,即可计算的ABD ∠的大小. 【详解】 解:连接AD ,∵AB 为O 的直径,∴90ADB ∠=︒. ∵40BCD ∠=︒, ∴40A BCD ∠=∠=︒, ∴904050ABD ∠=︒-︒=︒. 故选:B . 【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握. 二、填空题(本题包括8个小题) 11.> 【解析】 【分析】 试题解析:∵1617∴417考点:实数的大小比较. 【详解】请在此输入详解!12.4.4×1【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×1,故答案为4.4×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13【解析】【分析】无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【详解】4,是有理数,﹣3、117、0都是有理数,.【点睛】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.14.>【解析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y 随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣22=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题. 15.4n ﹣1 【解析】 【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为943 3.=⨯-按照这个规律即可求出第n 各图形中有多少三角形. 【详解】分别数出图①、图②、图③中的三角形的个数, 图①中三角形的个数为1413=⨯-; 图②中三角形的个数为5423=⨯-; 图③中三角形的个数为9433=⨯-;可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n 3-. 故答案为4n 3-. 【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题. 16.4cm 【解析】 【分析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论. 【详解】解:∵CD 是ABC ∆的高线, ∴90BDC ∠=︒, ∵30B ∠=︒,2CD =, ∴24BC CD cm ==. 故答案为:4cm. 【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键. 17.7 【解析】试题分析:∵△ABC 是等边三角形,∴∠B=∠C=60°,AB=BC . ∴CD=BC -BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC . 又∵∠B=∠C=60°,∴△ABD ∽△DCE . ∴AB DC BD CE =,即96CE 23CE=⇒=. ∴AE AC CE 927=-=-=. 18.1 【解析】 【分析】方程组两方程相加即可求出x+y 的值. 【详解】2425x y x y =①=②+⎧⎨+⎩, ①+②得:1(x+y )=9, 则x+y=1. 故答案为:1. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 三、解答题(本题包括8个小题) 19.65° 【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°, ∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°. ∵AP 平分∠EAB , ∴∠PAB=12∠EAB. 同理可得,∠ABP=12∠ABC. ∵∠P+∠PAB+∠PBA=180°, ∴∠P=180°-∠PAB-∠PBA=180°-12∠EAB-12∠ABC=180°-12(∠EAB+∠ABC )=180°-12×230°=65°.20.解:(1)y A=27x+270,y B=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【解析】【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【详解】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.21.(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,222222S7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S初中队<2S高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.22.(1)证明见解析;(2)6105【解析】【分析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB为⊙O的直径,∴BD⊥AC,∵D是AC的中点,∴BC=AB,∴∠C=∠A =45°, ∴∠ABC=90°, ∴BC 是⊙O 的切线;(2)连接OD ,由(1)可得∠AOD=90°, ∵⊙O 的半径为2, F 为OA 的中点, ∴OF=1, BF=3,AD ==∴DF ==, ∵BD BD =, ∴∠E=∠A , ∵∠AFD=∠EFB , ∴△AFD ∽△EFB ,∴DF BF AD BE =3BE =,∴BE =【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线. 23.1 【解析】 【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可. 【详解】原式﹣﹣1=1. 【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 24.(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励. 【解析】 【分析】(1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.25.客房8间,房客63人【解析】【分析】设该店有x间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x间客房,则7799+=-x xx=解得87778763x+=⨯+=答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.26.证明见解析【解析】【分析】若要证明∠A=∠E,只需证明△ABC≌△EDB,题中已给了两边对应相等,只需看它们的夹角是否相等,已知给了DE//BC,可得∠ABC=∠BDE,因此利用SAS问题得解.【详解】∵DE//BC∴∠ABC=∠BDE在△ABC 与△EDB 中AB DE ABC BDE BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△EDB (SAS) ∴∠A=∠E2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-3.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°4.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB 绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.3π2B.πC.2πD.3π5.在半径等于5 cm的圆内有长为53cm的弦,则此弦所对的圆周角为A.60°B.120°C.60°或120°D.30°或120°6.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,12C.1,13D.1,237.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.58.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.9.把不等式组2010xx-⎧⎨+<⎩的解集表示在数轴上,正确的是()A.B.C.D.10.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-1二、填空题(本题包括8个小题)11.高速公路某收费站出城方向有编号为,,,,A B C D E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号,A B,B C,C D,D E,E A通过小客车数量(辆)260 330 300 360 240 在,,,,A B C D E五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________. 12.若圆锥的母线长为4cm,其侧面积212cmπ,则圆锥底面半径为cm.13.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为_____.14.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____.15.因式分解:9a2﹣12a+4=______.16.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.17.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .三、解答题(本题包括8个小题)19.(6分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.20.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.21.(6分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?22.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x <60) b 0.20(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.(8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .求证:△AFE ≌△CDF ;若AB=4,BC=8,求图中阴影部分的面积.24.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.25.(10分)计算:025(3)tan 45π︒+--.化简:2(2)(1)x x x ---.26.(12分)如图,在△ABC 中,点D 是AB 边的中点,点E 是CD 边的中点,过点C 作CF ∥AB 交AE 的延长线于点F,连接BF.求证:DB=CF ;(2)如果AC=BC,试判断四边形BDCF 的形状,并证明你的结论.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x﹣450x=23.故选D.3.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.∵51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°. 故选C .考点:勾股定理. 4.A 【解析】 【分析】根据旋转的性质和弧长公式解答即可. 【详解】解:∵将△AOB 绕点O 逆时针旋转90°后得到对应的△COD , ∴∠AOC =90°, ∵OC =3,∴点A 经过的路径弧AC 的长=903180π⨯= 3π2, 故选:A . 【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答. 5.C 【解析】 【分析】根据题意画出相应的图形,由OD ⊥AB ,利用垂径定理得到D 为AB 的中点,由AB 的长求出AD 与BD 的长,且得出OD 为角平分线,在Rt △AOD 中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB 所对圆周角的度数. 【详解】 如图所示,∵OD ⊥AB ,∴D 为AB 的中点,即532在Rt △AOD 中,OA=5,532∴sin∠AOD=2=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.6.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B、∵12+12)2,是等腰直角三角形,故选项错误;C=12,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D.7.D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故选D.8.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.9.B【解析】【分析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【详解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式组无解,故选B.【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.10.A【解析】【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.二、填空题(本题包括8个小题)11.B【解析】【分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A 、E 两个安全出口,与同时开放D 、E 两个安全出口,20分钟的通过数量发现得到D 疏散乘客比A 快;同理同时开放BC 与 CD 进行对比,可知B 疏散乘客比D 快; 同理同时开放BC 与 AB 进行对比,可知C 疏散乘客比A 快; 同理同时开放DE 与 CD 进行对比,可知E 疏散乘客比C 快; 同理同时开放AB 与 AE 进行对比,可知B 疏散乘客比E 快; 所以B 口的速度最快 故答案为B . 【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题. 12.3 【解析】∵圆锥的母线长是5cm ,侧面积是15πcm 2, ∴圆锥的侧面展开扇形的弧长为:l=2305s r π==6π, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=622l πππ==3cm , 13.1 【解析】在△AGF 和△ACF 中,{GAF CAF AF AF AFG AFC∠=∠=∠=∠, ∴△AGF ≌△ACF , ∴AG=AC=4,GF=CF , 则BG=AB−AG=6−4=2. 又∵BE=CE ,∴EF 是△BCG 的中位线, ∴EF=12BG=1. 故答案是:1. 14.﹣2 【解析】。
2019-2020学年兰州市中考数学检测试题
【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
7.A
【解析】
过C作CE⊥AB,
Rt△ACE中,
∵∠CAD=60°,AC=15m,
∴∠ACE=30°,AE= AC= ×15=7.5m,CE=AC•ห้องสมุดไป่ตู้os30°=15× = ,
∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
故选C.
考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.
9.C
【解析】
【分析】
连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
∵∠BAC=30°,∠ACE=30°,
∴∠BCE=60°,
∴BE=CE•tan60°= × =22.5m,
∴AB=BE﹣AE=22.5﹣7.5=15m,
故选A.
【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.
8.C
【解析】
试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
二、填空题(本题包括8个小题)
11.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点 至多拐一次弯 的路径长称为P,Q的“实际距离” 如图,若 , ,则P,Q的“实际距离”为5,即 或 环保低碳的共享单车,正式成为市民出行喜欢的交通工具 设A,B两个小区的坐标分别为 , ,若点 表示单车停放点,且满足M到A,B的“实际距离”相等,则 ______.
甘肃2020年中考数学模拟试卷 四(含答案)
)
A.500
B.650
C.1150
D.250
7.用配方法解一元二次方程 x2﹣4x=5 时,此方程可变形为( )
A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9
8.如图四边形 ABCD 内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()
A.35°
B.70° C.110° D.140°
,其部分图象如图所示,下列结论:
①4ac<b2;
②方程 ax2+bx+c=0 的两个根是 x1=-1,x2=3; ③3a+c>0;
④当 y>0 时,x 的取值范围是-1≤x<3;
⑤当 x<0 时,y 随 x 的增大而增大.
其中结论正确的个数是(
)
A.4 个
B.3 个
C.2 个
二、填空题
11.分解因式:a2﹣6a+9﹣b2=
+2sin30°.
=
.
四、作图题 19.请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图①,四边形 ABCD 中,AB=AD,∠B=∠D,画出四边形 ABCD 的对称轴 m; (2)如图②,四边形 ABCD 中,AD∥BC,∠A=∠D,画出 BC 边的垂直平分线 n.
五、解答题 20.在元旦前夕,某超市购进甲、乙两种玩具后,按进价提高 50%标价(就是价格牌上标出的价 格),两种玩具标价之和为 450 元,某超市搞促销,甲、乙两种玩具分别按标价的 8 折和 8.5 折出售,某顾客购买甲、乙两种玩具共付款 375 元,问这两种玩具的进价各是多少元?
.
12.不等式 3(x+1)≥5x﹣9 的正整数解是 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省榆中学县2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差2.已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( ) A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm3.甲、乙、丙三家超市为了促销同一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A .甲B .乙C .丙D .都一样4.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB 的度数是( )A .90°B .60°C .45°D .30°5.将抛物线y =2x 2向左平移3个单位得到的抛物线的解析式是( ) A .y =2x 2+3 B .y =2x 2﹣3 C .y =2(x+3)2D .y =2(x ﹣3)26.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A ,(2,)B b ,则正方形ABCD 的面积是( )A .13B .20C .25D .347.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于()A.8 B.4 C.12 D.168.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC 的度数是()A.85°B.105°C.125°D.160°9.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.10.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.11611.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1 12.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.55B.255C.12D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C 的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.14.关于x的一元二次方程ax2﹣x﹣14=0有实数根,则a的取值范围为________.15.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.16.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.17.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.18.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?20.(6分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?21.(6分)先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.22.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.23.(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.(10分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.25.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?26.(12分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?27.(12分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种. 3.B【解析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.4.B【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.5.C【解析】【分析】按照“左加右减,上加下减”的规律,从而选出答案.y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.6.D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,2222∴=+=+=,AD AO OD3534=,故选D.∴正方形ABCD的面积是3434347.A【解析】【详解】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.8.C【解析】【分析】首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.9.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上, 则P 点横纵坐标的和为0,即2a+b+1=0, ∴2a+b=﹣1.故选B . 12.A 【解析】 【详解】解:在直角△ABD 中,BD=2,AD=4,则AB=22222425BD AD +=+=, 则cosB=525BD AB ==. 故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:210+,32-210-,32-)【解析】 【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标; (2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标. 【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩,解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =, ∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF=12OC=32, ∴点P 的纵坐标是32-, ∴23232x x --=-,解得:x=2102±, ∴当EF 最短时,点P 的坐标是:(2102+,32-)或(210-,32-). 14.a≥﹣1且a≠1【解析】【分析】利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣14)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得a≠1且△=(﹣1)2﹣4a•(﹣14)≥1,解得:a≥﹣1且a≠1. 故答案为a≥﹣1且a≠1.【点睛】 本题考查了根的判别式:一元二次方程ax 2+bx+c=1(a≠1)的根与△=b 2﹣4ac 有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.15.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.16.±1.【解析】【分析】根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.【详解】解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常数a与b互为倒数,∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案为±1.【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.17.1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.18【解析】分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.详解:如图1,连接AO,∵AB=AC ,点O 是BC 的中点,∴AO ⊥BC ,又∵90BAC ∠=︒,∴45ABO ACO ∠=∠=︒, ∴22()AB OB m ==,∴弧BC 的长为:90π4222π180=⨯⨯=(m), ∴将剪下的扇形围成的圆锥的半径是:22π2π2÷=, 22(42)(2)30().m -= 30点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)20;15%;35%;(2)见解析;(3)126°.【解析】【分析】(1)根据被调查学生总人数,用B 的人数除以被调查的学生总人数计算即可求出m ,再根据各部分的百分比的和等于1计算即可求出n ;(2)求出D 的学生人数,然后补全统计图即可;(3)用D 的百分比乘360°计算即可得解.【详解】解:(1)非常了解的人数为20,60÷400×100%=15%,1﹣5%﹣15%﹣45%=35%,故答案为20;15%;35%;(2)∵D 等级的人数为:400×35%=140, ∴补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:360°×35%=126°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20.(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】【分析】(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得AP =60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PE⊥MN,垂足为E,由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP=22PE EB+=302≈42海里,故AP=60海里,BP=42(海里);(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得604224 1.260x x-=,解得x=20,经检验,x =20是原方程的解,甲船的速度为1.2x =1.2×20=24(海里/时)., 答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.21.1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a a a a -++⨯+-=2(2)(2)11(2)a a a a a -+-+⨯+-=22a a +--; 当a=0时,原式=1.考点:分式的化简求值.22.详见解析.【解析】试题分析:利用SSS 证明△ABC ≌△DEF ,根据全等三角形的性质可得∠B=∠DEF ,再由平行线的判定即可得AB ∥DE .试题解析:证明:由BE =CF 可得BC =EF ,又AB =DE ,AC =DF ,故△ABC ≌△DEF (SSS ),则∠B=∠DEF ,∴AB ∥DE .考点:全等三角形的判定与性质.23.(1)一个A 品牌的足球需90元,则一个B 品牌的足球需100元;(2)1.【解析】【分析】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,根据“购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元”列出方程组并解答; (2)把(1)中的数据代入求值即可.【详解】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,依题意得:23380{42360x y x y +=+=,解得:40{100x y ==.答:一个A品牌的足球需40元,则一个B品牌的足球需100元;(2)依题意得:20×40+2×100=1(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元.考点:二元一次方程组的应用.24.(1)详见解析;(2)tan∠ADP=.【解析】【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【详解】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.25.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.26.(1)购买A型学习用品400件,B型学习用品600件.(2)最多购买B型学习用品1件【解析】【分析】(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.【详解】解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得x y 100020x 30y 26000+=⎧⎨+=⎩,解得:x 400y 600=⎧⎨=⎩. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤210,解得:a≤1.答:最多购买B 型学习用品1件27. (1)证明见解析;(2)1.【解析】(1)欲证明△ADF ∽△ACG ,由可知,只要证明∠ADF=∠C 即可. (2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B ,∠DAE=∠DAE ,∴∠ADF=∠C , ∵,∴△ADF ∽△ACG .(2)解:∵△ADF ∽△ACG ,∴, 又∵,∴, ∴1.中考模拟数学试卷一、选择题:1.﹣8的相反数是()A.﹣8B.8C.D.2.如图,AB∥CD,CD⊥EF,若∠1=125°,则∠2=()A.25°B.35°C.55°D.65°3.下列各式计算正确的是()A.(a﹣b)2=a2﹣b2B.(﹣a4)3=a7C.2a•(﹣3b)=6abD.a5÷a4=a(a≠0)4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B. C.D.6.一种微粒的半径是0.米,0.这个数用科学记数法表示为()A.41×10﹣6 B.4.1×10﹣5 C.0.41×10﹣4 D.4.1×10﹣47.10名学生的身高如下(单位:cm)159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm的概率是()A.0.5B.0.4C.0.2D.0.18.能判定四边形是平行四边形的条件是( )A.一组对边平行,另一组对边相等;B.一组对边相等,一组邻角相等;C.一组对边平行,一组邻角相等;D.一组对边平行,一组对角相等。