七年级上册3.4一元一次方程实际应用汇总

合集下载

人教版七年级上册数学3.4一元一次方程利润问题及答案

人教版七年级上册数学3.4一元一次方程利润问题及答案

一元一次方程的应用题(利润问题)1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.2.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)3.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?4.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?5.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?6.虹远商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提价20%,乙降价30%后,实际以1600元售出,问甲商品的实际售价是多少元?7.某种商品的进价是215元,标价是258元,现要最低获得14%的利润,这种商品应最低打几折销售?8.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?9.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.10.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)11.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?12.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?13.某商店将某种VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,求进价.14.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.15.某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商品的进价是多少元?16.甲商店将某种超级VCD按进价提高35%定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元.(1)求每台VCD的进价;(2)乙商店出售同类产品,按进价提高40%,然后打出“八折酬宾”的广告,若你想买此种产品,将选择哪家商店?17.某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?18.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?19.某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为元;(2)定价的85%出售时销售单价是元,出售8件该产品所能获得的利润是元;(3)按定价每件减价35元出售时销售单价是元,出售12件该产品所获利润是元;(4)现在列方程解应用题.20.某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(1)当一次购买多少个零件时,销售单价恰为51元?(2)当客户一次购买1000个零件时,该厂获得的利润是多少?(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)21.商店里有种皮衣,进价500元/件,现在客户以2800元总价购买了若干件皮衣,而商家仍有12%的利润,问客户买了几件皮衣?22.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出.(1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少钱?一元一次方程应用题(利润问题)参考答案1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.考点:二元一次不定方程的应用;一元一次方程的应用。

人教版七年级上册 3.4 一元一次方程解应用题 专题讲义(无答案)

人教版七年级上册 3.4 一元一次方程解应用题 专题讲义(无答案)

2019年秋四川省泸县五中七年级一元一次方程解应用题专题讲义一.简单应用问题1.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t;如用新工艺,则废水排量比环保限制的最大量少100t.新、阳旧工艺的废水排量之比为2:5,问两种工艺的废水排量各是多少?2.(2017·荆州)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元;若此次小慧同学不买卡直接购书,则她需付款多少元?3.某单位中秋节给员工发苹果,如果每人分2箱,则剩余20箱;如果每人分3箱,则还缺20箱.问苹果共有多少箱?1.配套问题例1:某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个;甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,要在30天内生产出最多的成套产品,问甲、乙、丙三种零件各应生产多少天?跟踪训练1.某种仪器由1个A部件和1个B部件配套构成,每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?2.一个车间有工人70人,每人平均每天加工轴杆15根或轴承12个,问应怎样分配工人,才能使所生产的轴杆和轴承刚好配套?(一个轴杆、两个轴承才可配成一套)3.某车间共有75名工人生产A,B两种工件,已知一名工人每天可生产A种工件15件或B种工件20件,但要安装一台机械时,同时需A种工件1件,B种工件2件,才能配套,设车间如何分配工人生产,才能保证连续安装机械时,两种工件恰好配套?4.前进车间共有技术工人86人,若每名工人平均每天可以加工甲种部件15个,或乙种部件12个,或丙种部件9个,应如何安排加工甲种部件、乙种部件和丙种部件的人数,才能使加工后的3个甲种部件、2个乙种部件和1个丙种部件恰好配套?5.某工厂现有15m'木料,准备制作名种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿. (1)已知一张圆桌由一个桌面和一条桌腿组成,如果1m木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少立方米;(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题:①如果1m木料可制作50个桌面或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3m木料可制作20个桌面或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?工程问题题型一例1:一项工作,甲单独做20h完成,乙单独做12h完成.现在先由甲单独做4h,剰下部分由甲、乙一起做.剰下部分需要几小时完成?跟踪训练1.整理一批图书,由一个人单独做要花60 h,现先由一部分人用1h整理,随后增加15人和他们一起又做了2h,恰好完成了整理工作。

七年级上册数学一元一次方程应用题知识点

七年级上册数学一元一次方程应用题知识点

七年级上册数学一元一次方程应用题的知识点主要包括以下几个方面:
1.方程的概念:了解方程的基本定义,即含有未知数的等式。

2.一元一次方程的解法:通过去分母、去括号、移项、合并同类项等步骤,将一元一
次方程化为标准形式,并求解。

3.方程的解与解集:理解方程的解是指使方程成立的未知数的值,而解集则是指所有
满足方程的未知数的值的集合。

4.实际问题的数学模型:能够将实际问题转化为数学问题,通过建立一元一次方程来
求解。

在应用题方面,通常会涉及到以下几种类型:
1.相遇问题:两个物体在某一点相遇,需要求出它们的速度和时间等参数。

2.追及问题:一个物体追赶另一个物体,需要求出追赶的速度和时间等参数。

3.利润与折扣问题:涉及到商品的利润和折扣计算,需要建立一元一次方程来求解。

4.工程的分配问题:需要分配一定量的工程任务给多个工人或机器,需要根据各自的
效率或能力进行分配,需要建立一元一次方程来求解。

总之,七年级上册数学一元一次方程应用题的知识点包括方程的概念、一元一次方程的解法、方程的解与解集以及实际问题的数学模型等。

通过掌握这些知识点,可以更好地解决实际问题。

人教版数学七年级上册3.4实际问题与一元一次方程:行程问题

人教版数学七年级上册3.4实际问题与一元一次方程:行程问题

实际问题与一元一次方程——行程问题一、单选题1.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米2.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为( )A .1800米B .2000米C .2800米D .3200米3.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭4.方方早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x 分钟,那么可列出的方程是( )A .()25015290080x x -=-B .()80152502900x x -+=C .()25015290080x x -=+D .()80250152900x x ++=5.有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第三天走的路程为( )A .96里B .48里C .24里D .12里6.轮船在静水中速度为每小时20km ,水流速度为每小时4km ,从甲码头顺流行驶到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离,设两码头间的距离为xkm ,则列出方程正确的是( ).A .(20+4)x +(20-4)x =5B .20x +4x =5C .x x 5204+=D .x x 520420-4+=+ 7.一辆快车和一慢车同时从A 地出发沿同一公路同方向行驶,快车的行驶速度是120km/h ,慢车的行驶速度是80km/h ,快车比慢车早2h 经过B 地.设A 、B 两地间的路程是xkm ,由题意可得方程( )A .120x ﹣80x =2B .120x ﹣80x =2C .80x ﹣120x =2D .80x ﹣120x =2 8.某铁路桥长1200m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min .整列火车完全在桥上的时间共40s .则火车的长度为( )A .250mB .240mC .200mD .180m9.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在A 处,小强站在B 处,两人同时逆时针方向跑步,小彬每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A .半圆跑道AB 上 B .半圆跑道CD 上C .直跑道AD 上 D .直跑道BC 上 10.已知某桥全长1000米,现有一列火车匀速从桥上通过,测得火车从开始上桥到完全通过共用60秒,整列火车完全在桥上的时间是40秒,设火车的长度为x ,所列方程正确的是( )A .100010004060x x -+= B .100010004060x x +-= C .100010004060x += D .100010004060x += 11.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意可列方程为( )A .75+(120-75)x =270B .75+(120+75)x =270C .120(x -1)+75x =270D .120×+(120+75)x =27012.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了3h .已知水流的速度是3km h ,设船在静水中的平均速度为km h x ,根据题意列方程( ).A .()()2333x x +=-B .()()3323x x +=-C .()()2333x x +=-D .()()3323x x +=-二、填空题13.学校操场的环形跑道长400米,小聪的爸爸陪小聪锻炼,小聪跑步每秒行2.5米,爸爸骑自行车每秒行6.5米,两人从同一地点出发,同向而行,每隔________秒两人相遇一次. 14.甲乙两车分别从AB 、两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了1小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,则,A C 两地相距_________千米.15.如图所示,甲、乙两人沿着边长为10m 的正方形,按A→B→C→D→A ...的方向行走,甲从A 点以5m /分钟的速度,乙从B 点以8m /分钟的速度行走,两人同时出发,当甲、乙第15次相遇时,它们在______边上.16.如图,已知等边三角形ABC 的边长为24厘米,甲、乙两动点同时从顶点A 出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,相遇后甲、乙的速度均增加1厘米/秒且都改变原方向移动.则第二次相遇时乙与最近顶点的距离是__________厘米.17.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地(C 在A 、B 两地之间),共乘船3h ,已知船在静水中的速度是8km/h ,水流速度是2km/h ,若A 、C 两地距离为2km ,则A 、B 两地间的距离是________.18.AB 、两地相距450千米,甲、乙两车分别从A B 、两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,设经过t 小时两车相距50千米,则t 的值是_______________小时.三、解答题19.甲、乙两地相距3千米,小王从甲地出发步行到乙地,小李从乙地出发步行到甲地.两人同时出发,20分钟后两人相遇.已知小王的速度比小李的速度每小时快1千米,求两人的速度.20.从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米.平均车速增加了30千米/时,需要4.5小时即可达到.求长途汽车原来行驶的速度.21.甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地问:(1)甲车速度是________千米/小时,乙车速度是_________千米/小时.A,B距离是_______千米.(2)这一天,若乙车晚1小时出发,则再经过多长时间,两车相距20千米?22.一列火车匀速行驶,经过一条长475m的A隧道用了30s的时间.A隧道的顶上有一盏灯,垂直向下发光,行驶过程中灯光照在火车上的时间是11s.(1)求这列火车的长度;(2)若这列火车经过A隧道后按原速度又经过了一条长775m的B隧道,求这列火车经过B隧道需要的时间.23.甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为60千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,已知丙城在甲、乙两城之间,且与甲城相距260千米.用一元一次方程的知识解答下列问题:(1)已知客车和出租车在甲、乙之间的M处相遇,求M处与丙城的距离;(2)求客车与出租车相距200千米时客车的行驶时间.参考答案1.C解:12秒=1300小时,150米=0.15千米,设火车长x千米,根据题意得:1300×(4.5+120)=x+0.15,解得:x=0.265,0.265千米=265米.答:火车长265米.故选:C.2.C解:设小宇的速度为x米/分,根据题意得:1018010800x=⨯-,解得:10x=,则小宇家离学校的距离为10180102800x+⨯=(米),故选:C.3.C解:设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意得:111 79x⎛⎫+=⎪⎝⎭.故选:C.4.A解:设他推车步行的时间为x分钟,骑自行车上学时间为(15-x)分钟,根据题意得:80x+250(15-x)=2900,变形得:250(15-x)=2900-80x,.故选择:A.5.B解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,12x里,14x里,18x里,依题意,得:4x+2x+x+12x+14x+18x=378,解得:x =48.故选:B .6.D解:顺流的速度为(20+4)km/h ,∴顺流的时间为204x +小时; 同理可得逆流的时间为204x -小时, 可列方程 204x ++204x -=5. 故选:D .7.D解:设A 、B 两地间的路程为x km , 根据题意得:280120x x -=; 故选:D .8.B解:设火车长度是xm , 列式:120012006040x x +-=,解得240x =. 故选:B .9.D解:设小强第一次追上小彬的时间为x 秒,根据题意,得:6x -4x+115=2×115+2×85,解得x=142.5,整个跑道长为2×115+2×85=400(m),小强第一次追上小彬时,小彬跑了4x=570(m),而570-400=170>115,∴他们的位置在直跑道BC 上,故选:D .10.A解:火车从车头上桥到车尾离桥运动的总路程为:(1000)x m +,整列火车完全在桥上运动的总路程为:(1000)x m -火车是匀速运动的,根据题意可列方程为:100010004060x x -+=, 故选:A .11.B解:设再经过x 小时两车相遇,则75+(120+75)x =270,故选:B12.C解:设船在静水中的平均速度为km h x ,已知水流的速度是3km h ,则船顺流而行的速度是(x+3)km /h ,船逆流而行的速度是(x -3)km /h ,根据题意列方程:()()2333x x +=-故选:C .13.100解:设每隔x 秒两人相遇一次,根据题意得:(6.5-2.5)x =400,解得:x =100.答:每隔100秒两人相遇一次.故答案为:100.14.420解:设乙车每小时行驶x 千米,则甲车每小时行驶(x +20)千米,由题意得:3x =2(x +20),解得:x =40,则x +20=60,即乙车每小时行驶40千米,则甲车每小时行驶60千米,∴A ,B 两地的距离为:3×60+3×40=300(千米),设两车相遇后经过y 小时到达C 地,由题意得:60(y -3)=40(y +3),解得:y =15,∴B ,C 两地的距离为:60(15-3)=720(千米),∴A ,C 两地的距离为:720-300=420(千米),故答案为420.15.BC解:设第一次相遇用时1t 分钟,1185103t t -=⨯,解得110t =,设又过了2t 分钟第二次相遇,2285104t t -=⨯,解得2403t =, ∴从第二次相遇开始每隔403分钟甲、乙相遇一次, ∴第15次相遇用时为:4059010(151)33+⨯-=(分钟), ∴乙的路程为:59018403933⨯÷=(圈),故相遇在BC 边. 16.6 解:设出发x 秒后甲乙第一次相遇,根据题意得:x+3x=24×3,解得:x=18,此时甲的路程:18118⨯=,∴相遇地点在线段AC 上,距离点C 的距离为:24186-=厘米;∴第二次相遇的时间为:18+24×3÷(2+4)=30(秒),∴乙第二次运动的时间为:301812-=秒,∴乙第二次的路程为:41248⨯=厘米,∴第二次相遇的地点在线段AB 上,距离点A 的距离为24246486++-=厘米,∴第二次相遇时乙与最近顶点A 的距离是6厘米;故答案为:6.17.12.5km解:设A 、B 两地间的距离是:x km∴A 、C 两地距离为2km∴B 、C 两地距离为()2x -km 根据题意得:238282x x -+=+-,即23106x x -+= ∴()35290x x +-=∴8100x =∴2512.52x==∴A、B两地间的距离是:12.5km故答案为:12.5km.18.2或2.5解:当甲、乙两车相遇前相距50千米时,根据题意得:(120+80)t+50=450,解得:t=2;当甲、乙两车相遇后相距50千米时,根据题意得:(120+80)t=450+50,解得:t=2.5,综上,t的值为2小时或2.5小时.故答案为:2或2.519.小李的速度为每小时4千米,小王的速度为每小时5千米.解:设小李的速度为每小时x千米,则小王的速度为每小时()1x+千米根据题意得:13(x+x+1)=3,解得:x=4,∴小李的速度为每小时4千米,小王的速度为每小时5千米.20.50千米/时解:设长途汽车原来行驶的速度为x千米/时,开通高速公路后,速度为(30)x+千米/时,根据题意,得:840 4.5(30)x x-=⨯+解得:50x=答:长途汽车原来行驶的速度为50千米/时.21.(1)15,45,180;(2)2912小时或3712小时解:(1)设甲的速度为xkm/h,则乙的速度为3903x+=x+30(km/h),根据题意得:3x=x+30,解得:x=15,∴x+30=45,∴AB的距离为:45×4=180km,∴AB的距离为180km;(2)设再经过y小时,两人相距20km,则15(y+1)+45y=180-20或15(y+1)+45y=180+20,解得:y=2912或3712,∴再经过2912小时或3712小时后,两人相距20km.22.(1)275米;(2)42秒解:(1)设这列火车的长度为x米,依题意,得:475 1130x x+=,解得:x=275.答:这列火车的长度为275米.(2)这列火车的速度为275÷11=25(米/秒),这列火车经过B隧道需要的时间为(275+775)÷25=42(秒).答:这列火车经过B隧道需要的时间为42秒.23.(1)60km;(2)4小时或203小时解:(1)设客车和出租车x小时相遇则60x+90x=800∴x=163,此时客车走的路程为320km,距离甲城为320km,∴ 丙城与甲城相距260千米,∴丙城与M处之间的距离为320-260=60(km)(2)设当客车与出租车相距200千米时客车的行驶时间是t小时,∴当客车和出租车没有相遇时60t+90t+200=800解得t=4,∴当客车和出租车相遇后60t+90t-200=800解得:t=203,∴当客车与出租车相距200千米时客车的行驶时间是4小时或203小时.。

人教版七年级上册数学实际问题与一元一次方程--电费水费应用题训练

人教版七年级上册数学实际问题与一元一次方程--电费水费应用题训练

人教版七年级上册数学3.4实际问题与一元一次方程--电费水费应用题训练一、解答题1.某市对居民用水实行阶梯水费,收费标准如表:(1)甲用户上月用水30吨,其该月水费为元(用含a的代数式表示);(2)若a=1.5,乙用户上月水费为30元,求乙用户该月的用水量.2.在今年我区丁宅乡“首届草莓拼比大赛”活动期间,某草莓采摘基地制定了以下促销方案;若一次性购买超过400元,其中400元按九五折优惠,超过400元的部分按八折优惠.(1)假设一次性购买的草莓原价是a超过400时,实际付款______元;(用含有a的代数式表示,并化简)(2)若小聪家购买时一次性付款460元,则所购草莓的原价是多少元?(3)小敏家在促销期间先后两次购买草莓,两次所购的原价之和为800元(第一次所购草莓原价高于和第二次),两次实际共付款740元,则小敏家两次所购草莓的原价分别是多少元?3.某通讯公司有两种移动电话计费方式,如下表:(1)如果一个月主叫时间为350分钟,则方式一需支付的费用是______元;由此可以判断出一个月主叫时间等于或者大于350分钟时,选择方式______费用较少;(2)如果设一个月主叫时间为x(150x )分钟,则方式一需支付的费用为______(用x表示);(3)有没有可能两种方式一个月支付的费用一样多?如果有,请求出主叫时间;如果不能,请说明理由.试卷第1页,共6页4.“水是生命之源”,某自来水公司为鼓励用户节约用水,按以下规定收取水费:(1)若某用户11月份共用水25吨,他应缴水费多少元?(2)若该用户的水表有故障,每次用水只有60%记入用水量,在这样的情况下12月份共缴水费41.4元,则该用户12月份实际用水多少吨?5.某地中国移动分公司推出两种移动手机卡,计费方式如表:设一个月累计通话t 分钟,则:(1)用全球通收费______元,用神州行收费______元(两空均用含t 的式子表示). (2)如果两种计费方式所付话费一样,则通话时间t 等于多少分钟?(列方程解题).6.“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费: (1)某用户1月份共交水费65元,问1月份用水多少吨? (2)若该用户水表有故障,每次用水只有60%记入用水量, 这样在2月份交水费43.2元,该用户2月份实际应交水费多少元?7.某市对居民生活用电实行“阶梯电价”收费,具体收费标准见下表:今年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=,b=;(2)若该市某居民7月用量250度电,则该居民需交多少电费?(3)若该市某居民8月份交的电费的平均电价为0.9元/度,则该居民8月份用电多少度?8.昭通市某城市出租车的收费标准是:行程小于或等于3千米起步价为5元,行程大于3千米后每千米增收1.5元.某乘客做出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费;(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26元,该乘客坐了多少千米?9.某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?10.某市自来水收费实行阶梯水价,收费标准如下表所示:某用户5月份用水8吨,交水费16元.(1)求a的值;(2)小明家5月份交水费51元,求小明家5月份用水量.试卷第3页,共6页11.某自来水公司按如下规定收取水费:若每月用水不超过10立方米,则按每立方米1.5元收费;若每月用水超过10立方米,超过部分按每立方米2元收费.(1)如果居民甲家去年12月用水量为8立方米,那么需缴纳__________元水费:(2)如果居民乙家去年12月缴纳了22.8元水费,那么乙家去年12月的用水量为__________立方米;(3)如果居民丙家去年12月缴纳了m元水费,那么丙家去年12月的用水量为多少立方米?(用m的式子表示)12.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费:超过10吨的部分按2.5元/吨收费.(1)若王老师家5月份用水8吨,问应交水费多少元?(2)若王老师家6月份交水费25元,问黄老师家6月份用水多少吨?(3)若王者师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)13.为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.下表是小明家1至4月份用水量和缴纳水费情况,根据表格提供的数据,回答问题:(1)该市规定用水量为吨,规定用量内的收费标准是______元/吨,超过部分的收费标准是___元/吨;(2)若小明家五月份用水10吨,则应缴水费______元;(3)若小明家六月份应缴水费49元,则六月份他们家的用水量是多少吨?14.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超18立方米时,按1.9元/立方米计费;月用水量超过18立方米时,其中的18立方米仍按1.9元/立方米收费,超过部分按3.4元/立方米计费.设每户家庭月用水量为x立方米.试卷第5页,共6页(1)若小明家某月用水量为20立方米,则这个月的水费为 .(2)当x 不超过18时,应收水费为 (用含x 的整式表示):当x 超过18时,应收水费为 (用含x 的整式表示);(3)小亮家某月应交水费为68.2元,求小亮家本月用水量.15.某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示:若某用户7月份的电费是139.2元,则该用户7月份用电为多少度?16.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:例如:某户居民1月份用水8立方米,应收水费为()2648620⨯+⨯-=(元). 请根据上表的内容解答下列问题:(1)若某户居民2月份用水5立方米,则应收水费多少元? (2)若某户居民3月份交水费36元,则用水量为多少立方米?(3)若某户居民4月份用水a 立方米(其中610a <<),请用含a 的代数式表示应收水费.(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水x 立方米,请用含x 的代数式表示该户居民5、6两个月共交水费多少元?17.某市近期公布的居民用天然气阶梯价格听证会方案如下:例:若某户2019 年使用天然气400 立方米,按该方案计算,则需缴纳天然气费为:2.53×360+2.78×(400-360) =1022(元)(1)若小明家2019 年使用天然气300 立方米,则需缴纳天然气费为元(直接写出结果);(2)若小红家2019 年使用天然气560 立方米,则小红家2019 年需缴纳的天然气费为多少元?18.据了解,九江市居民阶梯电价分档电量标准以年为周期确定.“一户一表”用户用电收费标准如下表所示,比如度收费.某用户一年内累计用电量在第二档时,其中2160度按0.56元/度收费,超过2160度的部分按0.61元/小王想帮父母计算一下实行阶梯电价后,家里电费的支出情况.(1)如果他家去年全年使用1860度电,那么需要交_________元电费.(2)如果他家去年全年使用3120度电,那么需要交__________元电费.(3)如果他家去年需要交1950元电费,他家去年用了多少度电?参考答案1.(1)(20a +48);(2)乙用户该月的用水量为16.8吨.2.(1)0.8a +60;(2)500元;(3)第一次所购草莓的原价是600元,第二次所购草莓的原价是200元3.(1)108,二;(2)14142x +;(3)270分钟时,支付费用一样多4.(1)60元;(2)30吨5.(1)300.1t +,0.3t ;(2)150t = 6.(1)50吨;(2)82元.7.(1)a= 0.8,b= 1;(2)该居民需交电费220元;(3)该居民8月份用电300度时平均电价为0.9元/度.8.(1)当行程小于或等于3千米,收费为5元;当行程大于3千米,收费为(1.50.5x +)元;(2)乘客坐了8千米,应付费12.5元;(3)该乘客乘坐了17千米 9.小玲每月上网503小时. 10.(1)2;(2)22吨11.(1)12;(2)13.9;(3)①m≤15时,为15m 立方米;②m>15时,为(10+152m -)立方米.12.(1)应交水费16元;(2)黄老师家6月份用水12吨;(3)当a≤10,应交水费2a 元,当a>10,应交水费(2.5a-5)元.13.(1)8;2;3;(2)22;(3)六月份小明家用水量为19吨.14.(1)41元;(2)1.9x 元;(3.4x ﹣27)元;(3)小亮家本月用水量为28立方米. 15.262度16.(1)10;(2)11;(3)(4a-12)元;(4)(-6x+92)元或(-4x+80)元. 17.(1)759;(2)1466.8元18.(1)1041.6;(2)1795.2;(3)3300.。

人教版七年级数学上册3.4实际问题与一元一次方程分段计费、方案选择问题优秀教学案例

人教版七年级数学上册3.4实际问题与一元一次方程分段计费、方案选择问题优秀教学案例
(二)问题导向
在教学过程中,我会提出一系列的问题来引导学生思考和探究。这些问题会帮助学生分析问题,找到关键信息,并运用数学知识来解决问题。
例如,我会问学生:“你能告诉我通话时间和流量是如何影响套餐费用的吗?”“你能列出方程来计算不同套餐的费用吗?”“你认为哪种套餐更划算?”等问题。
(三)小组合作
在教学过程中,我会组织学生进行小组合作,让他们共同解决问题,并分享解题过程和结果。
3.小组合作的学习方式:通过组织学生进行小组合作,让学生共同解决问题,培养了他们的团队合作意识和沟通能力。这种小组合作的学习方式不仅提高了学生的学习效果,也培养了他们的社交技能和团队协作能力。
4.反思与评价的环节:在课堂的最后,引导学生进行反思和评价,使学生能够总结自己的学习过程,发现和改正自己的错误,提高自己的解题能力。这种反思与评价的环节有助于培养学生的批判性思维能力和自我改进的能力。
在这个案例中,我设定了一个假设的电话套餐,其中通话时间和流量分别有不同的价格,而且有不同的套餐选项。学生需要根据自己和家人的通话时间和流量需求,选择最合适的套餐。这个问题既联系了学生的生活实际,又需要他们运用一元一次方程的知识来解决。
在教学过程中,我引导学生通过列出方程来计算不同套餐的费用,并比较哪种套餐更划算。这样不仅能够帮助学生理解和掌握一元一次方程的解法,还能够让他们认识到数学在生活中的实际应用,提高他们的数学素养。
(四)总结归纳
在学生小组讨论后,我会组织学生进行总结归纳。我会邀请每个小组分享他们的解题过程和结果,并引导其他学生对他们的解决方案进行评价和讨论。通过这个过程,学生可以加深对一元一次方程应用的理解,并总结解决问题的方法和技巧。
(五)作业小结
在课堂的最后,我会布置相关的作业,让学生在课后进一步巩固和应用所学的知识。我会设计一些实际问题,让学生运用一元一次方程的知识来解决。同时,我还会要求学生在作业中反思自己的学习过程,总结自己学到了什么,以及如何改进自己的解题方法。

人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)

人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)
五、教学反思
在这次教学活动中,我尝试了多种方法引导学生学习《实际问题与一元一次方程》这一章节。首先,通过生活中的实例导入新课,让学生感受到数学与生活的紧密联系。在讲授过程中,我注重理论与实践相结合,让学生在实际问题中感受一元一次方程的魅力。
在教学中,我发现有些学生在从实际问题抽象出一元一次方程时存在困难。为了帮助他们突破这个难点,我采用了案例分析、分组讨论等形式,让学生在互动中加深理解。同时,我特别强调了解方程的基本步骤,引导学生通过对比错误解法和正确解法,掌握解题方法。
人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)
一、教学内容
人教版七年级上册3.4实际问题与一元一次方程-配套问题,主要包括以下内容:
1.理解一元一次方程在解决实际问题中的应用;
2.学会根据实际问题列出一元一次方程;
3.掌握解一元一次方程的方法,如移项、合并同类项、系数化为1等;
4.解决涉及单价、数量、总价等实际问题,如购物问题、行程问题等;
5.通过解决实际问题,提高学生运用养目标
1.提升学生数学抽象、逻辑推理和数学建模的核心素养,使学生能够从实际问题中抽象出一元一次方程,并用方程解决实际问题;
2.培养学生运用数学知识解决实际问题的能力,提高数学应用意识,增强对数学在实际生活中作用的认知;
3.培养学生合作交流、思考问题的习惯,提高学生分析问题、解决问题的能力,培养批判性思维和创新意识;
-难点一:识别实际问题中的关键信息,如购物问题中的单价、数量和总价,学生可能难以把握这些信息之间的关系,需要通过具体实例和图示帮助学生理解。
-难点二:将实际问题转化为方程时,学生可能会对如何选择变量、如何表达数量关系感到困惑。教学中应通过多个示例,指导学生如何进行变量选择和方程构建。

人教版七年级上册数学3.4:一元一次方程实际问题——分段计费

人教版七年级上册数学3.4:一元一次方程实际问题——分段计费

一元一次方程实际问题 ——分段计费1、为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道的天然气价格进行调整,实行阶梯式收费,调整后的收费价格如下表示所示:(1)若甲用户3月份的用气量为125m 3,应缴费32.5元,求a 的值;(2)在(1)的条件下,若乙用户2、3月份共用气175m 3(3月份用气量低于2月份用气量),共缴费455元,则乙用户2、3月份的用气量各是多少?2、为了加强公民的节水意识,合理利用水资源。

某市采用价格调控手段达到节水的目的。

该市自来水的收费标准价格见下表。

某用户居民某月份用水8吨,则应收水费:()2068462=-⨯+⨯元。

注:水费按月结算。

(1)若该户居民2月份用水12.5吨,则应收水费 元;(2)若该户居民3、4月份共用水15吨(3月份的用水量少于5吨),共交水费44元,则该户居民3、4月份各用水多少吨?3、在外地打工的赵先生下了火车,为尽快赶回位于市郊的赵庄与家人团聚,他打算乘坐市内出租车,市客运公司规定:起步价为5元(不超过3km 收5元),超过3km ,每千米要加收一定的费用。

赵先生上车时看了一下计费表,车到家门口时又看了一下计费表,已知火车站到赵庄的路程为18km 。

上车时里程表 下车时里程表求行程超过3km 时,每千米收多少元?4、某市公布的居民用电阶梯电价听证方案如下: 例:若某户月用电量为400度,则需交的电费为()()()()23030.052.035040005.052.021035052.0210=+⨯-++⨯-+⨯元。

(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?5、某银行的个人所得税规定个人所得税如下所示:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税多的额;二、个人所得纳税率如下表:(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月工资收入额应为多少元?6、某城市自来水收费实行阶梯水价,收费标准如下表所示:某用户5月份交水费45元,则该用户5月份所用水量为多少立方米?7、根据国家发改委实施“阶梯电价”的相关文件要求,某市结合地方实际,决定实施收费标准如下表所示:例如:小明家用电100千瓦时,交电费60元。

人教版数学七年级上册强化限时练:3.4 《一元一次方程》实际应用题(一)

人教版数学七年级上册强化限时练:3.4 《一元一次方程》实际应用题(一)

七年级上册强化限时练:第3章《一元一次方程》实际应用题(一)满分:100分限时60分钟练习一:每题10分,共50分1.为方便市民出行,减轻城市中心交通压力,青岛市掀起一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁1、2、3、11号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元,且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3、11号线外,青岛市政府规划未来五年,还要再建182千米的地铁线网,据预算,这182千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?2.已知数轴上两点A,B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,则点P对应的数是.(2)数轴上存在点P到点A、点B的距离之和为8,则x=.(3)若将数轴折叠,使﹣1与3表示的点重合,则点P与数表示的点重合(用含x代数式表示);(4)若点P从A点出发沿数轴的正方向移动,速度为每秒2个单位长度,设运动时间为t,在移动过程中,是否存在某一时刻t,使得点P到点A距离等于点P到点B距离的2倍,若存在,请求出t的值;若不存在,请说明理由.3.数轴上A点对应的数为﹣5,B点在A点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;(2)若B点表示的数为15,它们同时出发,请问丙遇到甲后多长时间遇到乙?;(3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t的值;若不存在,说明理由.4.武汉长江大桥被称为“万里长江第一桥”,是武汉著名的旅游景点之一.如图,点O为原点,向右为正方向,1米为一个单位长度画数轴.甲动车位于AB,向右行驶.乙动车位于CD,向左行驶.武汉长江大桥为BC.甲乙动车长度相等,速度均为80米/秒.A、B、C表示的数分别是a、b、c.已知(a+100)2+(b﹣100)2+|c﹣1700|=0.(1)a=,AB=,BC=;(2)从此刻开始算起,在甲动车A处有个在座位上的乘客记为点P,求动车行驶多少秒,点P到点B的距离与点P到点C的距离之和等于1700米;(3)若甲动车A处的乘客记为点P,向右走,速度为2米/秒.乙动车中点在座位上的乘客记为点Q,乘客P从车尾走到车头的过程中是否存在一段时间t,恰好P、Q同时在武汉长江大桥上?若存在,请求出t的值;若不存在,请说明理由.5.如图,数轴上点A表示数a,点B表示数b,数a、b满足|a+2|+(b﹣8)2=0,AB 表示点A、B之间的距离,且AB=|a﹣b|.(1)a=,b=;(2)数轴上P点表示的数为x,当x为何值时,点P到点A的距离等于点P到点B的距离的2倍?(3)若在原点处放一挡板,一小球甲从点A处以3个单位长度/秒的速度向左运动,同时另一小球乙从点B处以4个单位长度/秒的速度也向左运动,乙在碰到挡板后(忽略球的大小,可看为一点)立即以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小球到原点的距离相等时所对应的时间t(写出解答过程).练习二:每题10分,共50分6.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?7.把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.8.某文教店出售甲、乙两种碳素笔,已知每支甲种碳素笔比每支乙种碳素笔多售1元,并且2支甲种碳素笔和3支乙种碳素笔的售价相同.(1)求每支甲种、乙种碳素笔的价格各是多少元?(2)小明要在该文教店买4支甲种碳素笔和3支乙种碳素笔共需多少元?9.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为50km/h.在高速公路上行驶的速度为90km/h,汽车从A 地到B地一共行驶了4h.请根据以上信息,就该汽车行驶“时间”或“路程”提出一个问题,并用一元一次方程解决这个问题.10.如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?参考答案1.解:(1)设2号线每千米的平均造价为x亿元,则3号线每千米的平均造价为(x+0.2)亿元,依题意,得:32x+66(x+0.2)=581.6,解得:x=5.8,∴x+0.2=6.答:2号线每千米的平均造价为5.8亿元,3号线每千米的平均造价为6亿元.(2)6×1.2×182=1310.4(亿元).答:还需投资1310.4亿元.2.解:(1)若点P到点A、点B的距离相等,则P为AB的中点,BP=PA.依题意得3﹣x=x﹣(﹣1),解得x=1.故点P对应的数是1.故答案为:1;(2)由AB=4,若存在点P到点A、点B的距离之和为8,P不可能在线段AB上,只能在A点左侧,或B点右侧.①P在点A左侧,PA=﹣1﹣x,PB=3﹣x,依题意得(﹣1﹣x)+(3﹣x)=8,解得x=﹣3;②P在点B右侧,PA=x﹣(﹣1)=x+1,PB=x﹣3,依题意得(x+1)+(x﹣3)=8,解得x=5.故P点对应的数是﹣3或5.故答案为:﹣3或5;(3)(﹣1+3)÷2=1,若将数轴折叠,使﹣1与3表示的点重合,则点P与数1×2﹣x=2﹣x表示的点重合.故答案为:2﹣x;(4)①P在线段AB上,依题意有PA=2t,PB=4﹣2t,依题意有2t=2(4﹣2t),解得t=;②P在点B右边时,依题意有2t=2(2t﹣4),解得t=4.故t的值为或4.3.解:(1)由题知:C:﹣5+3×5=10 即C点表示的数为10;(2)B到A的距离为|15+5|,点B在点A的右边,故|15+5|=15+5=20,由题得:﹣=1,即丙遇到甲后1s遇到乙;(3)①在电子蚂蚁丙与甲相遇前,2(20﹣3t﹣2t)=20﹣3t﹣t,此时t=(s);②在电子蚂蚁丙与甲相遇后,2×(3t+2t﹣20)=20﹣3t﹣t,此时t=(s);综上所述,当t=s或t=s时,使丙到乙的距离是丙到甲的距离的2倍.4.解:(1)∵(a+100)2+(b﹣100)2+|c﹣1700|=0.∴a+100=0,b﹣100=0,c﹣1700=0,则a=﹣100,b=100,c=1700.∴AB=200,BC=1600故答案是:﹣100;200;1600;(2)设运动时间为t秒,则点P表示﹣100+80t,①﹣100+80t=50,∴.②﹣100+80t=1750,∴.综上所述,动车行驶的时间是s或s;(3)点P表示﹣100+82t,点Q表示1800﹣80t,点P行驶到点A所需时间:点P行驶到点B所需时间:点Q行驶到点B所需时间:点Q行驶到点A所需时间:所以,.5.解:(1)∵|a+2|+(b﹣8)2=0,∴a+2=0,b﹣8=0,∴a=﹣2,b=8.故答案为:﹣2;8.(2)依题意,得:|x﹣(﹣2)|=2|x﹣8|,∴x+2=2(8﹣x)或x+2=2(x﹣8),解得:x=或x=18.答:当x为或18时,点P到点A的距离等于点P到点B的距离的2倍.(2)8÷4=2(秒).当0≤t≤2时,甲球所在位置表示的数为﹣3t﹣2,乙球所在位置表示的数为8﹣4t,∴0﹣(﹣3t﹣2)=8﹣4t,解得:t=;当t>2时,甲球所在位置表示的数为﹣3t﹣2,乙球所在位置表示的数为4t﹣8,∴0﹣(﹣3t﹣2)=4t﹣8,解得:t=10.答:当t为或10时,甲、乙两只小球到原点的距离相等.6.解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.7.解:(1)从表格可看出框的4个数,左右相邻的差1,上下相邻的差7,设最小的数是x,右边的就为x+1,x下面的就为x+7,x+7右边的为x+8,所以这三个数为x+1,x+7,x+8;(2)根据题意得,x+(x+1)+(x+7)+(x+8)=416,4x+16=416,x=100;(3)被框住的4个数之和不可能等于622,依题意得,x+(x+1)+(x+7)+(x+8)=622,4x+16=622,x=151.5,∵x是正整数,不可能是151.5,∴被框住的4个数之和不可能等于622.8.解:(1)设每支乙种碳素笔的价格是x元,则每支甲种碳素笔的价格是每支(x+1)元,根据题意得:2(x+1)=3x,解得:x=2,∴x+1=3.答:每支甲种碳素笔的价格是3元,每支乙种碳素笔的价格是2元.(2)4×3+3×2=18(元).答:小明要在该文教店买4支甲种碳素笔和3支乙种碳素笔共需18元.9.解:问:A、B两地间距离多少千米?设A、B两地间相距x千米.由题意得,,3x+5x=2400,x=300.答:A、B两地相距300km.10.解:(1)设AB的中点M对应的数为x,根据题意得:80﹣x=x﹣(﹣20),解得:x=30.答:AB的中点M对应的数为30.(2)设C点对应的数是y,根据题意得:=,解得:y=20.答:C点对应的数是20.(3)设经过t秒两只电子蚂蚁在数轴上相距25个单位长度,根据题意得:2t+3t=80﹣(﹣20)﹣25或2t+3t=80﹣(﹣20)+25,解得:t=15或t=25.答:经过15秒或25秒两只电子蚂蚁在数轴上相距25个单位长度.。

人教版七年级上册3.4:一元一次方程应用题分类练习:销售打折与分段计费

人教版七年级上册3.4:一元一次方程应用题分类练习:销售打折与分段计费

一元一次方程应用题分类练习:销售打折与分段计费一:销售打折类1.请用一元一次方程解决下面的问题:一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本30元;如果按标价的8折出售,将盈利60元.(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?2.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?3.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.4.某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?5.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买20盒乒乓球时,去哪家商店购买更合算?为什么?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?(3)什么情况下,去甲店购买更合算?什么情况下,去乙店购买更合算?(请直接写出答案)二:分段计费类6.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.5 15 6 12 10.3 4.7 9 17 16 水费(元) 5 33.4 12 25.6 21.52 9.4 18.4 39.4 36.4 (1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.7.从锦江区社保局获悉,我区范围内已经实现了全员城乡居民新型社会合作医疗保险制度,享受医保的城乡居民可在规定的医院就医并按规定标准报销部分医疗费用,下表是住院费用报销的标准:住院费用x(元)0<x≤5000 5000<x≤20000 x>20000每年报销比例40% 50% 60%(说明:住院费用的报销采取分段计算方式,如:某人一年住院费用共30000元,则5000元按40%报销.15000元按50%报销,余下的10000元按60%报销:实际支付的住院费=住院费用﹣按标准报销的金额)(1)若我区居民张大哥一年住院费用为20000元,则按标准报销的金额为元,张大哥实际支付了元的住院费.(2)若我区居民王大爷一年内本人实际支付的住院费用为21000元,则王大爷当年的住院费用为多少元?8.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?9.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟远途费0.8元千米(超过7千米部分)无起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.10.下表是某网约车公司的专车计价规则:计费项目起租价里程费时长费远途费单价15元 2.5元/公里 1.5元/分1元/公里注:车费由起租价、里程费、时长费、远途费四部分构成,其中起租价15元含10分钟时长费和5公里里程费,远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收1元.(1)若小李乘坐专车,行车里程为20公里,行车时间为30分,则需付车费元;(2)若小李乘坐专车,行车里程为x(7<x≤10)公里,平均时速为40km/h,则小李应付车费多少元?(用含x的代数式表示)(3)小李与小王各自乘坐专车,行车车费之和为76元,里程之和为15公里(其中小王的行车里程不超过5公里).如果行驶时间均为20分钟,那么这两辆专车此次的行驶路程各为多少公里?参考答案1.解:(1)设每件服装标价为x元.0.5x+30=0.8x﹣60,0.3x=90,解得:x=300.故每件服装标价为300元;(2)设能打x折.由(1)可知成本为:0.5×300+30≥180,由题意知:300×≥180,解得:x≥6.故最多能打6折.2.解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而增大,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.3.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)4.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000解得:x=400购进乙型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.5.解:(1)购买20盒乒乓球时,选择甲商店合算,理由:当购买20盒时:甲店需付款100×5+(20﹣5)×25=875(元),乙店需付款(100×5+20×25)×0.9=900(元).因为875<900,所以,购买20盒乒乓球时,选择甲商店合算;(2)设购买x盒乒乓球时,两种优惠办法付款一样,100×5+25(x﹣5)=(100×5+25x)×0.9解得,x=30答:当购买30盒乒乓球时,两种优惠办法付款一样;(3)由(2)可知,当购买30盒乒乓球时,两种优惠办法付款一样,故购买乒乓球少于30盒时,选择甲商店合算;购买乒乓球多于30盒时,选择乙商店合算.6.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.27.解:(1)由题意可得,按标准报销的金额为:5000×40%+(20000﹣5000)×50%=2000+15000×50%=2000+7500=9500(元),张大哥实际支付了:20000﹣9500=10500(元),故答案为:9500,10500;(2)设王大爷当年的住院费用为x元,5000×(1﹣40%)+(20000﹣5000)×(1﹣50%)+(x﹣20000)×(1﹣60%)=21000,解得,x=46250答:王大爷当年的住院费用为46250元.8.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.9.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W2=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W2>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W2<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.10.解:(1)15+2.5×(20﹣5)+1.5×(30﹣10)+1×(20﹣10)=92.5(元),故答案为:92.5;(2)15+2.5×(x﹣5)+1.5×(x÷﹣10)=x﹣12.5;(3)设小王的行驶路程为x公里,则小李的行驶路程为(15﹣x)公里,根据题意得,[15+1.5(20﹣10)]+[15+2.5(15﹣x﹣5)+1.5×(20﹣10)+1×(15﹣x﹣10)]=76,解得,x=4,∴15﹣x=11,答:小王的行驶路程为4公里,则小李的行驶路程为11公里.。

七年级数学上册一元一次方程的应用经典题型整理

七年级数学上册一元一次方程的应用经典题型整理

七年级数学上册一元一次方程的应用经典题型整理题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)

人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)

人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)分段计费问题知识点分段计费问题1.某市按如下规定收取每月煤气费:用户每月用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分每立方米按元收费.已知12月份某用户的煤气费平均每立方米元,那么12月份该用户用煤气立方米.2.平凉市出租车的收费标准是:起步价10元(行驶距离不超过2 km,都需付10元车费),超过2 km时,每增加1 km,加收元.小陈乘出租车到达目的地后共支付车费49元,那么小陈坐车可行驶的路程最远是(不考虑其他收费)()A.15 km B.16 km C.17 km D.18 km3.参加医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表:A.1 000元B.1 250元C.1 500元D.2 000元4.据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:(1)琪琪家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前琪琪家的电费是增多了,还是减少了增多或减少了多少元请说明理由;(2)琪琪家这个月用电95度,经测算比换表前使用95度电节省了元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度5例如:一户居民七月份用电420度,则需缴电费420×=357(元).某户居民五、六月份共用电500度,缴电费元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度方案决策问题知识点方案决策问题1.请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.2(1)设通话时间为x分钟,则方式一每月收费 )元,方式二每月收费元;(2)当本地通话分钟时,两种收费方式一样;(3)当通话时间为250分钟时,选择比较合算;当通话时间为150分钟时,选择比较合算.3.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元,经粗加工后销售,每吨利润可达4 500元,经精加工后销售,每吨利润涨至7 500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制定了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多为什么4.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付 1 118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生(2)团体购票与单独购票相比较,两个班各节约了多少钱5.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物,所有商品价格可获九五折优惠;方案二:若交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,分别用含有x的式子表示出两种购物方案中的支出金额;(2)若某人计划在商都购买价格为5 880元的电视机一台,请分析选择哪种方案更省钱(3)哪种情况下,两种方案下的支出金额相同6.某地上网有两种收费方式,用户可以任选其一:A计时制:1元/小时;B包月制:80元/月.此外,每一种上网方式都加收通信费元/小时.(1)某用户每月上网40小时,选择哪种上网方式比较合算(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算(3)请你为用户设计一个方案,使用户能合理地选择上网方式.。

人教版数学七年级上册3.4实际问题与一元一次方程1(劳动力调配与工程问题 )

人教版数学七年级上册3.4实际问题与一元一次方程1(劳动力调配与工程问题 )

实际问题与一元一次方程1(配套问题与工程问题)一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典型例题例1:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?针对训练1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。

现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。

该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

七年级数学上册3-4 实际问题与一元一次方程同步习题精讲精练【含答案】

七年级数学上册3-4 实际问题与一元一次方程同步习题精讲精练【含答案】

3.4 实际问题与一元一次方程同步习题精讲精练【高频考点精讲】1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用题类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题:①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量;(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).【热点题型精练】一、选择题1.把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了( )cm2.A.2x B.2x+8C.3x D.3x+122.一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程( )A.=B.=C.﹣8=+3D.4x+8=5x﹣33.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( )A.不盈不亏B.盈利20元C.盈利10元D.亏损20元4.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )A.10x+5(x﹣1)=70B.10x+5(x+1)=70C.10(x﹣1)+5x=70D.10(x+1)+5x=705.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A.2B.3C.4D.56.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x,则可列方程为( )A.10(x﹣1)=8x﹣6B.10(x﹣1)=8x+6C.10(x+1)=8x﹣6D.10(x+1)=8x+67.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省( )A.18元B.16元C.18或46.8元D.46.8元8.如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是( )A.64B.72C.98D.1189.我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马先行六日,问良马几何追及之.翻译为:跑的快的马每天走240里,跑的慢的马每天走150里,慢马先走6天,快马追上慢马的时间为( )A.10天B.15天C.20天D.25天10.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是( )A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=11.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为( )A.1B.3C.4D.612.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为( )A.+15+6B.C.D.二、填空题13.课外活动中一些学生分组参加活动,原来每组都为6人,后来重新编组,每组都为8人,这样就比原来减少2组,则这些学生共有 人.14.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 .15.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为 .16.甲、乙两人分别从A、B两地出发,相向而行,甲比乙早出发15分钟,甲的速度是每小时6公里,乙速度是甲速度的,乙出发1小时后两人相距11公里,A、B两地的距离为 公里.17.一批课外读物分给学生,若每人分3本,则多20本;若每人分4本,则少30本,问课外读物共有多少本?若设共有x本课外读物,则可列方程为 .18.某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的,已知7月份团体票每张20元,共售出团体票数的,零售票每张24元,共售出零售票数的;如果在8月份,团体票按每张25元售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张 元.三、解答题19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.20.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a= ,b= ,c= ;(2)求对G、K两个医药集团的疫苗都能接受的人数.21.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.22.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品A B标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为 元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.3.4 实际问题与一元一次方程同步习题精讲精练【高频考点精讲】1.由实际问题抽象出一元一次方程审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.(1)“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在这一类问题中,表示出各部分的量和总量,然后利用它们之间的等量关系列方程.(2)“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.通过对同一个量从不同的角度用不同的式子表示,进而列出方程.2.一元一次方程的应用题类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题:①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量;(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).【热点题型精练】一、选择题1.把一个长为4cm、宽为3cm的长方形的长增加xcm,则该长方形的面积增加了( )cm2.A.2x B.2x+8C.3x D.3x+12解:3(4+x)﹣3×4=3x.答案:C.2.一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有x人,可列得方程( )A.=B.=C.﹣8=+3D.4x+8=5x﹣3解:设这队同学共有x人,可列得方程:=.答案:B.3.已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( )A.不盈不亏B.盈利20元C.盈利10元D.亏损20元解:设盈利的运动衫的进价为x元,亏损的运动衫的进价为y元,依题意得:160﹣x=60%x,160﹣y=﹣20%y,解得:x=100,y=200,∴(160﹣100)+(160﹣200)=60﹣40=20(元),∴在这次买卖中这家商店盈利20元.答案:B.4.端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )A.10x+5(x﹣1)=70B.10x+5(x+1)=70C.10(x﹣1)+5x=70D.10(x+1)+5x=70解:设每个肉粽x元,则每个素粽(x﹣1)元,依题意得:10x+5(x﹣1)=70.答案:A.5.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是( )A.2B.3C.4D.5解:设该队获胜x场,则负了(6﹣x)场,依题意得:3x+(6﹣x)=14,解得:x=4.答案:C.6.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x,则可列方程为( )A.10(x﹣1)=8x﹣6B.10(x﹣1)=8x+6C.10(x+1)=8x﹣6D.10(x+1)=8x+6解:设该校准备的桌子数为x,依题意得:10(x﹣1)=8x+6.7.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省( )A.18元B.16元C.18或46.8元D.46.8元解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有超过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元).答案:C.8.如图,在2021年4月份日历中按如图所示的方式任意找7个日期“H”,那么这7个数的和可能是( )A.64B.72C.98D.118解:设7个日期的中间数为x,则另外6个数分别为(x﹣8),(x﹣6),(x﹣1),(x+1),(x+6),(x+8),∴7个数之和为7x.当7x=64时,x=,不合题意;当7x=72时,x=,不合题意;当7x=98时,x=14,符合题意;当7x=118时,x=,不合题意.9.我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马先行六日,问良马几何追及之.翻译为:跑的快的马每天走240里,跑的慢的马每天走150里,慢马先走6天,快马追上慢马的时间为( )A.10天B.15天C.20天D.25天解:设快马追上慢马的时间为x天,则此时慢马走了(x+6)天,依题意得:240x=150(x+6),解得:x=10.答案:A.10.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是( )A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=解:设物价是y钱,根据题意可得:=.答案:D.11.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为( )A.1B.3C.4D.6解:由题意,可得8+x=2+7,解得x=1.答案:A.12.小亮原计划骑车以10千米/时的速度从A地去B地,在规定时间就能到达B地,但他因事比原计划晚出发15分钟,只好以15千米/时的速度前进,结果比规定时间早到6分钟,若设A,B两地间的距离为x千米,则根据题意列出的方程正确的为( )A.+15+6B.C.D.解:设A、B两地间距离为x千米,由题意得:.答案:B.二、填空题13.课外活动中一些学生分组参加活动,原来每组都为6人,后来重新编组,每组都为8人,这样就比原来减少2组,则这些学生共有 48 人.解:设这些学生共有x人,根据题意得:﹣2=,解得x=48,答案:48.14.我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 6x+14=8x .解:设有牧童x人,依题意得:6x+14=8x.答案:6x+14=8x.15.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为 ﹣2 .解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.答案:﹣2.16.甲、乙两人分别从A、B两地出发,相向而行,甲比乙早出发15分钟,甲的速度是每小时6公里,乙速度是甲速度的,乙出发1小时后两人相距11公里,A、B两地的距离为 23 公里.解:∵甲的速度是每小时6公里,乙速度是甲速度的,∴乙速度是6×=4.5公里/小时,设A、B两地的距离为x公里,依题意,得:x﹣(1+)×6﹣4.5×1=11或(1+)×6+4.5×1﹣x=11,解得:x=23或x=1(不合题意),答案:2317.一批课外读物分给学生,若每人分3本,则多20本;若每人分4本,则少30本,问课外读物共有多少本?若设共有x本课外读物,则可列方程为 = .解:设共有x本课外读物,根据题意得:=,答案:=.18.某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的,已知7月份团体票每张20元,共售出团体票数的,零售票每张24元,共售出零售票数的;如果在8月份,团体票按每张25元售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张 32 元.解:设总票数为a张,8月份零售票按每张x元定价,由题意得:20××a×+24×(a﹣a)=25×(1﹣)×a+(a﹣a)x,∴8a+4a=a+ax,∴x=.∴x=32.即:零售票应按每张32元定价,才能使这两个月的票款总收入相等.答案:32.三、解答题19.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.解:(1)250﹣75÷15×10=250﹣50=200(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)设小华从输液开始到结束所需的时间为t分钟,依题意有(t﹣20)=160,解得t=60.故小华从输液开始到结束所需的时间为60分钟.20.为了有效控制新型冠状病毒(世界卫生组织正式将其命名为2019﹣nCoV)的传播,某市在推广疫苗之前,利用网络调查的方式,对不同的医药集团生产的G、K两种生物新冠灭活疫苗进行了接受程度的匿名调查.在收集上来的有效调查的m人的数据中,能接受G的市民占调查人数的60%,其余不接受G;且接受K的比接受G的多30人,其余不接受K.另外G、K都不接受的市民比对G、K都能接受的市民的还多10人.下面的表格是对m人调查的部分数据:疫苗种类都能接受不接受G集团a bK集团330人c(1)请你写出表中a、b、c的人数:a= 300 ,b= 200 ,c= 170 ;(2)求对G、K两个医药集团的疫苗都能接受的人数.解:(1)因为“接受K的比接受G的多30人”,所以a=330﹣30=300(人).因为“能接受G的市民占调查人数的60%”,所以m==500(人).因为“能接受G的市民占调查人数的60%,其余不接受G”,所以b=500﹣300=200(人).因为“接受K的比接受G的多30人,其余不接受K”,所以c=500﹣330=170(人).答案:300;200;170;(2)设对G、K两个医药集团的疫苗都能接受的人数为x人,根据题意,得,解得x=210.答:对G、K两个医药集团的疫苗都能接受的人数为210人.21.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,动点P从A点出发,以每秒3个单位长度的速度沿数轴向左匀速运动.设运动时间为t秒.(1)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于8个单位长度,求t的值;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当P、Q之间的距离小于8个单位长度,求t的取值范围.解:(1)∵数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=28,∴点B表示的数为﹣20,由题意可得:|8﹣3t﹣(﹣20+2t)|=8,解得:t=4或,∴t的值为4或;(2)由题意可得:|8﹣3t﹣(﹣20﹣2t)|<8,解得:20<t<36,∴t的取值范围为20<t<36.22.某商店对A,B两种商品在进价的基础上提高50%作为标价出售.春节期间,该商店对A,B两种商品开展促销活动,活动方案如下:商品A B标价(元/件)150225春节期间每件商品出售的价格按标价降价10%按标价降价a%(1)商品B降价后的售价为 225(1﹣a%) 元(用含a的代数式表示);(2)不考虑其他成本,在春节期间商店卖出A种商品20件,B种商品10件,获得总利润1000元,试求a的值.解:(1)B商品标价是225元,出售价格按标价降低a%,那么降价后的标价是225(1﹣a%)元,答案:225(1﹣a%);(2)设A商品进价为m元,则m(1+50%)=150.解得m=100.设B商品的进价为n元,则n(1+50%)=225.解得n=150.由题意得:[150(1﹣10%)﹣100]×20+[225(1﹣a%)﹣150]×10=1000.解得:a=20,∴a的值是20.。

人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(提高)知识讲解及解答

人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(提高)知识讲解及解答

实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x 公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x 名学生,根据题意得:3x+24=4x -26解得:x =50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(千米)(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20 解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x -65x =3×902707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满. 【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1.举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为x 亩,由题意得:21331144142x x x =++⨯ 解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x 人挖土,则运土的有(120-x )人,依题意得:5x =3(120-x ),解得x =45.120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 388410 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.。

七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程第二课时用一元一次方程解决销售问题与储蓄

七年级数学上册第三章一元一次方程3.4实际问题与一元一次方程第二课时用一元一次方程解决销售问题与储蓄
【解析】设每件羊绒衫的标价为 x 元,则售价为 60%x 元或 80%x 元, 从而得出进价为(60%x+110)题与一元一次方程
解:设每件羊绒衫的标价为 x 元,则根据进价不变可列方程: 60%x+110=80%x-70,解得 x=900. 60%x+110=650. 答:每件羊绒衫的标价是 900 元,进价是 650 元.
第12页
第3页
第2课时 销售问题、增加率问题与一元一次方程
目标突破
目标一 会用一元一次方程处理销售问题
例 1 教材“探究 1”针对训练 某商场因换季准备处理一批 羊绒衫,若每件羊绒衫按标价的六折出售,则每件将亏 110 元,而 按标价的八折出售,每件将赚 70 元,则每件羊绒衫的标价是多少 元,进价是多少元?
第三章 一元一次方程
基本性质
第1页
第三章 一元一次方程
第2课时 销售问题、增加率问题与一元
一次方程
知识目标
目标突破
总结反思
第2页
第2课时 销售问题、增加率问题与一元一次方程
知识目标
1.经过对销售问题分析、建模,会用一元一次方程处理销售问 题.
2.经过学习例题和对应习题训练,会用一元一次方程处理增加 率问题.
的解题过程.
第11页
第2课时 销售问题、增加率问题与一元一次方程
解:不正确,解答中把进价与标价弄混了,销售价=进价+利 润,销售价=标价×折扣,利润=进价×利润率.
正解:设这种商品的进货价是 x 元, 依题意,得 1540×0.9-x=10%x,解得 x=1260.
答:这种商品的进货价是 1260 元.
[点析] 此题若设进价为 y 元,则可列方程y-601%10=y8+0%70,解 得 y=650.

2024年秋新湘教版七年级上册数学课件 3.4 一元一次方程的应用

2024年秋新湘教版七年级上册数学课件 3.4 一元一次方程的应用

A. 33
B. 32
C. 30
D. 29
感悟新知
知1-练
例3 甲、乙、丙三位爱心人士向贫困山区的希望小学捐赠 图书,已知这三位爱心人士捐赠图书的册数之比是 5∶ 8∶ 9,如果他们共捐赠 748 册图书,那么这三位 爱心人士各捐赠多少册图书?
感悟新知
知1-练
解题秘方:若未知量以比例的形式出现,则解决 问题的关键是求出单位量,通过设单 位量表示总量列方程 .
感悟新知
知1-讲
2. 常见的两种基本等量关系: (1) 总量与分量关系问题: 总量 = 各分量的和; (2) 余缺问题: 表示同一个量的两个不同的式子相等 .
感悟新知
特别提醒
知1-讲
列一元一次方程解决实际问题时需要注意:
1. 恰当地设未知数可以简化运算,且单位要统一;
2. 题中的相等关系不一定只有一个,要根据具体情
知1-练
感悟新知
1-1. [期末·永州]某校花费 700 元购买 A,B 两种笔记本知,1-练 其中 A种笔记本每本 5 元, B种笔记本每本 3 元, 购买的 A 种笔记本比 B 种笔记本的 2 倍多 10 本, 问购买 A, B 两种笔记本各多少本? 解:设购买B种笔记本x本,则购买A种笔记本(2x+10)本, 根据题意,得5(2x+10)+3x=700,解得x=50. 则2x+10=110. 答:购买A,B两种笔记本分别是110本、50本.
知1-练
解题秘方:根据分量的和等于总量,即到甲纪念 馆参观的学生人数 + 到乙纪念馆参观 的学生人数 = 参观学生总数,列出方 程,解决问题 .
感悟新知
解:设到乙纪念馆参观的学生有 x 名, 则到甲纪念馆参观的学生有(2x-10)名 . 根据题意,得 2x-10+x=200. 移项,得 2x+x=200+10. 合并同类项,得 3x=210. 两边都除以 3,得 x=70. 答:到乙纪念馆参观的学生有 70 名 .

初中数学 人教版七年级上册3.4 一元一次方程应用-分段问题专题(含答案)

初中数学 人教版七年级上册3.4 一元一次方程应用-分段问题专题(含答案)

人教版七年级上册3.4 一元一次方程应用-分段问题专题(含答案)一、解答题1.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分0.65超过300千瓦时的部分0.9(1)上表中,a=________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?2.某省公布的居民电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电210度以下,每度价格0.52元月用电210度至350度,每度比第一档提价005元月用电350度以上,每度比第一档提价0.30元例:若某户用电量400度,则需交电费为:210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230元如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份用电量.3.(12分)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,应交电费元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?4.某地为鼓励节约用水,水价实行阶梯计费制,其收费标准如下:(1)若某用户上月用水22m3,则应缴水费_____元(用含a的代数式表示).(2)若某用户上月用水36m3,缴水费131元,求a;(3)在(2)的条件下,设每月用水量xm3,请直接用x的代数式表示每月支出的水费.5.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨元收费如果超过20吨,未超过的部分按每吨元收费,超过的部分按每吨元收费设某户每月用水量为x吨,应收水费为y元.设某户居民每月用水量为m吨,则应收水费为______元用含m的代数式表示;设某户居民每月用水量为m吨,则应收水费为______元用含m的代数式表示;若该城市某户5月份水费平均为每吨元,求该户5月份用水多少吨?6.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/度)不超过150度 a超过150度的部分 b2017年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=_____,b=_____;(2)试行“阶梯电价”收费以后,该市一户居民2017年8月份平均电价每度为0.9元,求该用户8月用电多少度?7.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由. 8.重百江津商场元月一日搞促销活动,活动方案如下表:一次性购物优惠方案不超过200元不给于优惠超过200元,而不足500元优惠10%超过500元,而不足1000元其中500元按9折优惠,超过部分按8折优惠超过1000元其中1000元按8.5折优惠,超过部分按7折优惠某人两次购物分别用了134元和913元.(1)此人两次购物其物品如果不打折,值多少钱?(2)在此活动中,他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品是更节省还是亏损?说明你的理由.9.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超过200元的部分按9折收费;在乙商场累计购物超过100元后,超过100元的部分按9.5折收费,顾客到哪家商场购物花费少?10.10.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折,乙超市购物①不超过200元,不给予优惠;②超过200元而不超过500元,打9折;③超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少?(2)当标价总额是多少元时,甲乙超市实付款一样?11.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?12.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等.经洽谈,甲商场的优惠方案是:每购买10套队服,送1个足球;乙商场的优惠方案是:若购买队服超过80套,则购买足球打八折.(1)每套队服和每个足球的价格分别是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所需的费用.(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?13.春节期间,七年级(1)班的明明、丽丽等同学随家长一同到某公园游玩,如图是购买门票时,明明与他爸爸的对话,试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人?几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?(3)购完票后,明明发现七年级(2)班的张小涛等8个学生和他们的12个家长共20人也来购票,请你为他们设计出最省钱的购票方案,并求出此时的购票费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 一元一次方程实际应用行程问题一元一次方程实际应用----行程行程问题时间=路程÷速度速度=路程÷时间行程问题:路程=速度×时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度(1)常规问题1、从甲地到乙地,公共汽车原需行驶7 个小时,开通高速公路后,车速平均每小时增加了20 千米,只需5 个小时即可到达,求甲、乙两地的路程?2、甲、乙两地相距40 千米,摩托车的速度是32 千米/时,摩托车与汽车都从甲地出发并同时到达乙地,已知摩托车比汽车早出发15 分钟,求汽车的速度是多少?3、甲、乙二人从相距91 千米的A、B 两地相向而行,甲先出发1 小时,二人在乙出发4 小时后相遇,而甲每小时比乙快2 千米,求甲、乙二人的速度?4、某人骑车以每小时10 千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8 千米,虽然速度增加到了每小时12 千米,但比去时还多用了10 分钟,求甲、乙两地的距离?5、汽车从甲地开往乙地,每小时行32 千米,4 小时后,剩下的路比全程的一半少8 千米,如果改用每小时56 千米的速度行驶,再行几小时到乙地?学校6、一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18 米/分的速度从队头至队尾又返回,已知队伍的行进速度为14 米/分。

问:若已知队长320 米,则通讯员几分钟返回?若已知通讯员用了25 分钟,则队长为多少米?(1)顺风逆风、顺水逆水问题7、若一艘轮船在静水中的速度是7 千米/时,水流速度是2 千米/时,那么这艘船逆流而上的速度是______千米/时,顺流而下的速度是______千米/时.8、一艘船在两个码头之间航行,水流速度是3Km/h,顺水航行需要2h,逆水航行需要3h,则两个码头之间的距离为_______。

9、一轮船航行于两个码头之间,逆水需10 小时,顺水需6 小时。

已知该船在静水中每小时航行12 千米,求水流速度和两码头间的距离。

10、一架飞机往返于甲、乙两城市之间,顺风飞行需3 小时,逆风飞行需3 小时20 分;若风速是每小时30 千米,求甲、乙两城之间的距离。

11、一艘轮船从甲地顺流而行9 小时到达乙地,原路返回需要11 小时才能到达甲地,已知水流速度为2 千米/时,求轮船在静水中的速度。

12、某船从A 地顺流而下到达B 地,然后逆流返回,到达A、B 两地之间的C 地,一共航行了7 小时,已知此船在静水中的速度为8 千米/时,水流速度为 2 千米/时。

A、C 两地之间的路程为10 千米,求A、B 两地之间的路程13、一轮船在甲、乙两码头之间航行,顺水航行需要4 小时,逆水航行需要5 小时,水流的速度为2 千米/时,求甲、乙两码头之间的距离。

14、一架飞机在两城之间飞行,风速为24 千米/小时,顺风飞行需2 小时50 分,逆风飞行需要3 小时。

(1)求无风时飞机的飞行速度(2)求两城之间的距离15、甲、乙两个码头相距336 千米。

一艘船从乙码头逆水而上,行了14 小时到达甲码头。

已知船速是水速的13 倍,这艘船从甲码头返回乙码头需要多少小时?(2)相遇问题16、甲、乙骑自行车同时从相距65 千米的两地相向而行,2 小时相遇.甲比乙每小时多骑2.5 千米,求乙的时速各是多少?17、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米。

两车在距中点32 千米处相遇。

东西两地相距多少千米?18、小玲每分钟行100 米,小平每分钟行80 米,两人同时从学校和少年宫相向而行,并在离中点120 米处相遇,学校到少年宫有多少米?19、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40 千米,摩托车每小时行65 千米。

当摩托车行到两地中点处,与汽车相距75 千米。

甲乙两地相距多少千米?20、一列客车长200 米,一列货车长280 米,在平行的轨道上相向行驶,从相遇到车尾离开经过18 秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?21、甲乙二人同时从A 地到B 地,甲每分钟走250 米,乙每分钟走90 米。

甲到达B 地后立即返回A 地,在离B 地3.2 千米处相遇。

A、B 两地之间相距多少千米?22、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20 米。

30 分钟后小平到家,到家后立即沿原路返回,在离家350 米处遇到小红。

小红每分钟走多少米?23、甲乙二人上午7 时同时从A 地去B 地,甲每小时比乙快8 千米。

上午11 时到达B 地后立即返回,在距离B 地24 千米处相遇。

求A、B 两地相距多少千米?24、一条环行跑道长400 米,甲每分钟行550 米,乙每分钟行250 米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇25、甲乙两队学生从相距18 千米的两地同时出发,相向而行。

一个同学骑自行车以每小时14 千米的速度,在两队之间不停地往返联络。

甲队每小时行5 千米,乙队每小时行4 千米。

两队相遇时,骑自行车的同学共行多少千米?26、甲乙两人在同一道路上从相距5 千米的A、B 两地同向而行,甲的速度为5 千米/小时,乙的速度为 3 千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15 千米/小时,求此过程中,狗跑的总路程是多少?27、A、B 两地相距360 千米,甲车从A 地出发开往B 地,每小时行驶72 千米,甲车出发25 分钟后,乙车从 B 地出发开往 A 地,每小时行驶48 千米,两车相遇后,各自按原来的速度继续行驶,那么相遇后两车相距120 千米时,甲车从出发一共用了多少时间?28、甲乙两人从A、B 同时出发,甲骑自行车,乙骑摩托车,沿同一条路线同时相向而行,出发后3 小时相遇,已知相遇时乙比甲多走90 千米,相遇后经过1 小时乙到达A 地,问甲乙的速度分别是多少?29、马路上有一辆车身为15 米的公共汽车,由东向西行驶,车速为每小时18 千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6 秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2 秒钟,汽车离开了乙.问再过多少秒后,甲、乙两人相遇(3)追及问题30、甲、乙两站相距36 千米,一列漫车从甲站出发,每小时行52 千米,一列快车从乙站出发,每小时行70 千米,两车同时出发,同向而行,快车在后,几个小时追上慢车?31、自行车与摩托车相距80 千米,自行车每小时行20 千米,摩托车每小时行60 千米,摩托车在自行车后面,两车同时同向而行,问经过多少小时摩托车可以追赶上自行车?32、甲乙两人去同一地点办事,甲每小时走5 千米,乙每小时走6 千米,甲有急事先出发1 小时后,乙才出发,经过几小时后能追上甲?33、某班学生以每小时4 千米的速度从学校步行到校办农场参加劳动,走了1.5 小时后,小王奉命回校取一件东西,他以每小时 6 千米的速度回校取了东西后,立即又以同样的速度追赶队伍,结果在距农场 2 千米处追上了队伍,求学校到农场的距离?34、星期一小明从家里出发到学校去读书,当他走了1 小时后,妈妈发现小明将数学书忘在家里,便立刻带上数学书以每小时 6 千米的速度去追,如果小明每小时行 2 千米,他们从家里到学校需要1 小时45 分钟,问妈妈能在小明到学校之前追上小明吗?35、甲、乙两人在400 米环形跑道上练习长跑,两人速度分别为200 米/分和160 米/分。

两人同时从起点同向出发。

当两人起跑后第一次并肩时经过了多少时间?这时他们各跑了多少圈?36、甲从学校出发到相距14 千米的A 地。

当到达距学校2 千米的B 地时发现遗忘某物品。

打电话给乙,乙随即出发在C 地追上甲后立即返回。

当乙回到学校时甲距 A 地还有3 千米。

求学校到C 地的距离。

37、一队学生去校外进行军事训练,他们以每小时5 千米的速度行进,走了18 分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14 千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?(4)过桥隧道问题38、一列火车长200 米,它以每秒10 米的速度穿过200 米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?39、一列火车长150 米,每秒钟行19 米。

全车通过长800 米的大桥,需要多少时间?40、一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。

求这列火车的速度是每秒多少米?车长多少米?41、一列货车要通过一条1800 米长的大桥。

已知从货车车头上桥到车尾离开桥共用120 秒,货车完全在桥上的时间为80 秒,这列货车长多少米?42、一列火车通过440 米的桥需要40 秒,以同样的速度穿过310 米的隧道需要30 秒.这列火车的速度和车身长各是多少?43、一座铁路桥全长1200 米,一列火车开过大桥需花费75 秒;火车开过路旁电杆,只要花费15 秒,那么火车全长是多少米?44、一桥长1000 米,一列火车从车头上桥到车尾离桥用了一分钟时间,整列火车完全在桥上的时间为40 秒。

求火车的长度及行驶速度。

45、一列匀速行驶的火车用26 秒种通过了一个长256 米的隧道(即从车头进入入口到车尾离开出口)这列火车又以16 秒的时间通过了一个长96 米的隧道,,求这列火车的长度?46、有一火车以每分钟600 米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5 秒,又知第二铁桥的长度比第一铁桥长度的 2 倍短50 米,试求各铁桥的长.(5)超车、错车问题47、一列火车长119 米,它以每秒15 米的速度行驶,小华以每秒2 米的速度从对面走来,经过几秒钟后火车从小华身边通过?48、两列火车,一列长120 米,每秒行20 米;另一列长160 米,每秒行15 米,两车相向而行,从车头相遇到车尾离开需要几秒钟?49、一列客车车身上190 米,每秒运行24 米;在这列客车前面有一列长230 米的货车,每秒运行18 米,两列车在并行的两条轨道上运行。

客车从后面追上并完全超过货车要用多少秒?50、甲、乙两列火车,长为144 米和180 米,甲车比乙车每秒钟多行4 米,两列火车相向而行,从相遇到错开需要9 秒钟,问两车的速度各是多少?51、一列快车长200 米,速度为50 千米/小时,一列慢车长250 米,速度为30 千米/小时,两车从相遇到分开共需几秒?52、一列客车长200 米,一列货车长280 米,在平行的轨道上相向行驶,从相遇到车尾离开经过18 秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?53、已知快车长182 米,每秒行20 米,慢车长1034 米,每秒行18 米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒?54、一列客车车身上190 米,每秒运行24 米;在这列客车前面有一列长230 米的货车,每秒运行18 米,两列车在并行的两条轨道上运行。

相关文档
最新文档