201x-201x学年九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教案2 新人教
人教版 九年级数学 上册 第二十一章 21.1一元二次方程解法及其配套练习
一元二次方程解法及其配套练习定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.解法一——直接开方法适用范围:可解部分一元二次方程直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,我们也可以用直接开方法来解方程。
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=即,所以,方程的两根x1,x2例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.例3.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?解: 设x 秒后△PBQ 的面积等于8cm 2 则PB=x ,BQ=2x 依题意,得:x ·2x=8 x 2=8 根据平方根的意义,得x=±即x 1,x 2可以验证,和都是方程x ·2x=8的两根,但是移动时间不能是负值. 所以秒后△PBQ 的面积等于8cm 2.例4.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是(1+x ),三月份的营业额是在二月份的基础上再增长的,应是(1+x )2. 解:设该公司二、三月份营业额平均增长率为x . 那么1+(1+x )+(1+x )2=3.31 把(1+x )当成一个数,配方得:(1+x+)2=2.56,即(x+)2=2.56 x+=±1.6,即x+=1.6,x+=-1.6方程的根为x 1=10%,x 2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.归纳小结:共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”. 由应用直接开平方法解形如x 2=p (p ≥0),那么x=转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=,达到降次转化之目的.若p <0则方程无解配套练习题BCAQP 12121232323232一、选择题1.若x 2-4x+p=(x+q )2,那么p 、q 的值分别是( ).A .p=4,q=2B .p=4,q=-2C .p=-4,q=2D .p=-4,q=-2 2.方程3x 2+9=0的根为( ).A .3B .-3C .±3D .无实数根 3.用配方法解方程x 2-x+1=0正确的解法是( ). A .(x-)2=,x=± B .(x-)2=-,原方程无解C .(x-)2=,x 1=x 2=D .(x-)2=1,x 1=,x 2=-二、填空题1.若8x 2-16=0,则x 的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________. 3.如果a 、b +b 2-12b+36=0,那么ab 的值是_______. 三、综合提高题1.解关于x 的方程(x+m )2=n .2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .(1)鸡场的面积能达到180m 2吗?能达到200m 吗? (2)鸡场的面积能达到210m 2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?解法二——配方法适用范围:可解全部一元二次方程引例:要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽各是多少? 列出方程化简后得:x 2+6x-16=0 x 2+6x-16=0移项→x 2+6x=16两边加(6/2)2使左边配成x 2+2bx+b 2的形式 → x 2+6x+32=16+9左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5 解一次方程→x 1=2,x 2= -8可以验证:x 1=2,x 2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m ,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;2313891331389235923235313(5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根.用配方法解一元二次方程小口诀 二次系数化为一 常数要往右边移一次系数一半方两边加上最相当例1.用配方法解下列关于x 的方程 (1)x 2-8x+1=0 (2)x 2-2x-=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:略例2.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ•的面积为Rt △ACB 面积的一半.分析:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.•根据已知列出等式.解:设x 秒后△PCQ 的面积为Rt △ACB 面积的一半. 根据题意,得:(8-x )(6-x )=××8×6 整理,得:x 2-14x+24=0(x-7)2=25即x 1=12,x 2=2x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去. 所以2秒后△PCQ 的面积为Rt △ACB 面积的一半. 例3.解下列方程(1)2x 2+1=3x (2)3x 2-6x+4=0 (3)(1+x )2+2(1+x )-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x 的完全平方.解:略例4.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y ,那么(6x+7)2=y 2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y 则3x+4=y+,x+1=y- 12C A QP1212121212161612121616依题意,得:y 2(y+)(y-)=6 去分母,得:y 2(y+1)(y-1)=72y 2(y 2-1)=72, y 4-y 2=72(y 2-)2= y 2-=±y 2=9或y 2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=- 当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x 1=-,x 2=-例5. 求证:无论y 取何值时,代数式-3 y 2+8y-6恒小于0.解:略配套练习题一、选择题1.配方法解方程2x 2-x-2=0应把它先变形为( ). A .(x-)2= B .(x-)2=0C .(x-)2=D .(x-)2=2.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(x-a )2=a 3.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-24.将二次三项式x 2-4x+1配方后得( ). A .(x-2)2+3 B .(x-2)2-3 C .(x+2)2+3 D .(x+2)2-3 5.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ). A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-116.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于( ).A .1B .-1C .1或9D .-1或9二、填空题1.方程x 2+4x-5=0的解是________.2.代数式的值为0,则x 的值为________.12121616122894121722353235343138923138913109122221x x x ---3.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,所以求出z 的值即为x+y 的值,所以x+y 的值为______. 4.如果x 2+4x-5=0,则x=_______.5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数. 6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 三、综合提高题1.用配方法解方程.(1)9y 2-18y-4=0 (2)x 22.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长. 3.如果x2-4x+y 2+13=0,求(xy )z 的值.4.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元? 5.已知:x 2+4x+y 2-6y+13=0,求的值.6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.解法三——公式法适用范围:可解全部一元二次方程首先,要通过Δ=b^2-4ac 的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac<0时 x 无实数根(初中)2.当Δ=b^2-4ac=0时 x 有两个相同的实数根 即x1=x23.当Δ=b^2-4ac>0时 x 有两个不相同的实数根 当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac )}/2a 来求得方程的根求根公式的推导用配方法解方程(1) ax 2-7x+3 =0 (2)a x 2+bx+3=0(3)如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=,x 2=222x yx y -+2b a-(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+x=- 配方,得:x 2+x+()2=-+()2即(x+)2= ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时≥0∴(x+)2=()2直接开平方,得:x+=± 即x=∴x 1=,x 2=由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
九年级数学上册第21章21.1一元二次方程
新知 2 一元二次方程定义 一元二次方程普通形式是ax2+bx+c=0(a≠0),
其中ax2是二次项,a是二次项系数,bx是一次项, b是一次项系数,c是常数项.
第5页
例题精讲
【例2】把以下关于x一元二次方程化为普通形式, 并写出它二次项系数、一次项系数和常数项:
(1)3x2=5x-3;(2)-2x2+2x=x+1. 解析 经过移项、合并同类项,能够把一元二次 方程化为普通形式;指明项系数时一定要带上正负符 号. 解 (1)普通形式:3x2-5x+3=0,a=3,b=-5, c=3; (2)普通形式:2x2-x+1=0,a=2,b=-1,c=1.
元二次方程.
第3页
举一反三 1. 以下方程中,是一元二次方程是( C)
A. x2+2x+y=0
B. x2+ -1=0
C. x2=0
D. ax2+bx+c=0
2. 方程(2a-4)x2 -2bx+a=0, 在什么条件下
为一元二次方程?在什么条件下为一元一次方程?
解:当a≠2时为一元二次方程; 当a=2且b≠0时为一元一次方程.
第6页
举一反三
1. 把x2-5=-4x化成普通形式ax2+bx+c=0(a>0)
后,a,b,c值分别为( C)
A. 0,-4,-5
B. 1,-4,5
C. 1,4,-5
D. 1,-4,-5
2. 关于x一元二次方程(m-1)x2+5x -m+2=0常
数项为0,则m等于( B)
A. 1
B. 2
C. -1
第2页
例题精讲 【例1】判断以下方程是否是一元二次方程:
(1)x2-4x-2=0; (2)
=1;
(3)2x2-xy-1=0; (4)2x(3x-5)=6x2+2;
新人教版九年级数学上册 第21章 《一元二次方程》全章教学设计
第二十一章一元二次方程21.1 一元二次方程【知识与技能】1.使学生理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程化成一般式,正确识别二次项系数、一次项系数和常数项. 2.会判断一个数是否是一元二次方程的根.【过程与方法】经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.【情感态度】进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性. 【教学重点】一元二次方程的概念及其一般表现形式.【教学难点】从实际问题中抽象出一元二次方程的模型;识别方程中的“项”及“系数”.一、情境导入,初步认识(课件展示问题)雷锋纪念馆前的雷锋雕像高为2m,设计者当初设计它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,即下部高度的平方等于上部与全部的积,如果设此雕像的下部高为xm,则其上部高为(2-x)m,由此可得到的等量关系如何?它是关于x的方程吗?如果是,你能看出它和我们以往学过的方程有什么不同吗?二、思考探究,获取新知由上述问题,我们可以得到x2=2(2-x),即x2+2x-4=0.显然这个方程只含有一个未知数,且x的最高次数为2,这类方程在现实生活中有广泛的应用.探究1见教材第2页问题1.(课件展示问题)【教学说明】针对上述问题可给予5~8分钟时间让学生讨论,教师可相应设置如下问题帮助学生分析:如果设四角折起的正方形的边长为xm,则制成的无盖方盒的底面长为多少?宽为多少?由底面积为3600cm2,可得到的方程又是怎样的?【讨论结果】设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,由此可得到方程(100-2x)(50-2x)=3600,整理为:4x2-300x+1400=0,化简,得x2-75x+350=0,由此方程可得出所切去的正方形的大小.探究2见教材2~3页问题2.【教学说明】教学过程中,教师可设置如下问题:(1)这次排球赛共安排场;(2)若设应邀请x个队参赛,则每个队与其它个队各赛一场,这样共应有场比赛;(3)由此可列出的方程为,化简得.教师提出问题,引导学生思考方程的建模过程,同时注重激发学生解决问题的欲望和兴趣.(课件展示)【讨论结果】设应邀请x个队参赛,通过分析可得到12·x·(x-1)=28,化简,得x2-x=56,即x2-x-56=0.观察思考观察前面所构建的三个方程,它们有什么共同点?可让学生先独立思考,然后相互交流,得出这些方程的特征:(1)方程各项都是整式;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.【归纳结论】1.一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程称为一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.想一想1.二次项的系数a为什么不能为0?2.在指出二次项系数、一次项系数和常数项时,a、b、c都一定是正数吗?谈谈你的看法.探究3 从探究2中我们可以看出,由于参赛球队的支数x只能是正整数,因此可列表如下:可以发现,当x=8时,x2-x-56=0,所以x=8是方程x2-x-56=0的解,一元二次方程的解也叫做一元二次方程的根.思考1.一元二次方程的根的定义应怎样描述呢?2.方程x2-x-56=0有一个根为x=8,它还有其它的根吗?【探讨结论】1.一元二次方程根的定义:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的根;2.由于x=-7时,x2-x-56=49-(-7)-56=0,故x=-7也是方程x2-x-56的一个根.事实上,一元二次方程如果有实数根,则必然有两个实数根,通常记为x1=m,x2=n.三、典例精析,掌握新知例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10,移项、合并同类项,得一元二次方程的一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.【教学说明】以上两例均可让学生独立思考,自主完成.教师巡视,了解学生的掌握情况,最后选取几个优秀作业和有代表性问题作业通过幻灯片展示给全班同学学习与思考,加深对本节知识的理解和掌握.四、运用新知,深化理解1.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式,指出其二次项系数、一次项系数及常数项:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的平方,求较短一段的长x.【教学说明】让学生当堂完成上述练习,达到巩固新知目的.最后全班同学核对答案即可.五、师生互动,课堂小结教师提出以下问题,让学生交流,加强反思、提炼及知识归纳.(1)一元二次方程的定义,一般式及二次项系数、一次项系数和常数项;(2)一元二次方程一般形式ax2+bx+c=0(a≠0)中的括号是否可有可无?为什么?(3)通过这节课的学习你还有哪些收获?1.布置作业:教材“习题21.1”第1,2,3题21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法【知识与技能】1.会利用开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.一、情境导入,初步认识问题我们知道,42=16,(-4)2=16,如果有x2=16,你知道x的值是多少吗?说说你的想法.如果3x2=18呢?【教学说明】让学生通过回顾平方根的意义初步感受利用开平方法求简单一元二次方程的思路,引入新课.教学时,教师提出问题后,让学生相互交流,在类比的基础上感受新知.解:如果x2=16,则x=±4;若3x2=18,则x=6.二、思考探究,获取新知探究一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1 设一个盒子的棱长为xdm,则它的外表面面积为,10个这种盒子的外表面面积的和为,由此你可得到方程为,你能求出它的解吗?解:6x2,10×6x2,10×6x2=1500,整理得x2=25,根据平方根的意义,得x=±5,可以验证,5和-5是原方程的两个根,因为棱长不能为负值,所以盒子的棱长为5dm,故x=5dm. 【教学说明】学生通过自主探究,尝试用开平方法解决一元二次方程,体验成功的快乐.教师应关注学生的思考是否正确,是否注意到实际问题的解与对应的一元二次方程的解之间的关系,帮助学生获取新知.【归纳结论】一般地,对于方程x2=p,(Ⅰ)(1)当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根x1p,x2p(2)当p=0时,方程(Ⅰ)有两个相等的实数根x1=x2=0;(3)当p<0时,因为对任意实数x,都有x2≥0,所以方程(Ⅰ)无实数根.思考2对上面题解方程(Ⅰ)的过程,你认为应该怎样解方程(x+3)2=5?学生通过比较它们与方程x2=25异同,从而获得解一元二次方程的思路.在解方程(Ⅰ)时,由方程x2=25得x=±5.由此想到:由方程(x+3)2=5,②得x+3=5,即55.③于是,方程(x+3)2=5的两个根为x1525【教学说明】教学时,就让学生独立尝试给出解答过程,最后教师再给出规范解答,既帮助学生形成用直接开平方法解一元二次方程的方法,同时为以后学配方法作好铺垫,让学生体会到类比、转化、降次的数学思想方法.【归纳结论】上面的解法中,由方程②得到③,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程②转化为我们会解的方程了.【教学说明】上述归纳结论应由师生共同探讨获得,教师要让学生知道解一元二次方程的实质是转化.三、典例精析,掌握新知例解下列方程:(教材第6页练习)(1)2x2-8=0; (2)9x2-5=3;(3)(x+6)2-9=0; (4)3(x-1)2-6=0;(5)x2-4x+4=5; (6)9x2+5=1.解:(1)原方程整理,得2x2=8,即x2=4,根据平方根的意义,得x=±2,即x1=2,x2=-2.(2)原方程可化为9x2=8,即x2=8/9.两边开平方,得x=±223,即x1=223,x2=-223.(3)原方程整理,得(x+6)2=9,根据平方根的意义,得x+6=±3,即x1=-3,x2=-9.(4)原方程可化为(x-1)2=2,两边开平方,得x-1=±2,∴x1=1+2,x2=1-2;(5)原方程可化为(x-2)2=5,两边开平方,得x-2=±5,∴x1=2+5,x2=2-5.(6)原方程可化为9x2=-4,x2=-4/9.由前面结论知,当p<0时,对任意实数x,都有x2≥0,所以这个方程无实根.【教学说明】本例可选派六位同学上黑板演算,其余同学自主探究,独立完成.教师巡视全场,发现问题及时予以纠正,帮助学生深化理解,最后师生共同给出评析,完善认知.特别要强调用直接开平方法开方时什么情况下是无实根的.四、运用新知,深化理解1.若8x2-16=0,则x的值是.2.若方程2(x-3)2=72,那么这个一元二次方程的两根是.3.如果实数a、b满足3a+4+b2-12b+36=0,则ab的值为.4.已知方程(x-2)2=m2-1的一个根是x=4,求m的值和另一个根.【教学说明】让学生独立完成,加深对本节知识的理解和掌握.五、师生互动,课堂小结教师可以向学生这样提问:(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.【教学说明】教师可引导学生提炼本节知识及方法,感受解一元二次方程的降次思想方法.1.布置作业:教材“习题21.2”第1题.21.2.1配方法(第2课时)教学过程教学反思:21.2.2 公式法教学目标1.理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.2.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导. 教学过程一、复习引入(学生活动)用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=52 解: (1)移项,得:6x 2-7x=-1二次项系数化为1,得:x 2-76x=-16配方,得:x 2-76x+(712)2 = -16+(712)2(x-712)2 = 25144x-712= ±512 x 1=512+712=7512+=1 , x 2=-512+712=7512-=16(2)略总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 二、探索新知如果这个一元二次方程是一般形式ax 2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a≠0)且b 2-4ac≥0,试推导它的两个根x 1x 2=2b a--分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-ca配方,得:x 2+b a x+(2b a )2=-c a +(2ba )2即(x+2b a)2=2244b ac a - ∵b 2-4ac≥0且4a 2>0∴2244b aca -≥0直接开平方,得:x+2ba即∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a≠0)的根由方程的系数a 、b 、c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac≥0时,将a 、b 、c 代入式子(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1b 2-4ac=(-4)2-4×2×(-1)=24>0== ∴x 1x 2 (2)将方程化为一般形式3x 2-5x-2=0a=3,b=-5,c=-2 b 2-4ac=(-5)2-4×3×(-2)=49>0576±= x 1=2,x 2=-13(3)将方程化为一般形式3x 2-11x+9=0a=3,b=-11,c=9 b 2-4ac=(-11)2-4×3×9=13>0∴x=(11)11236--±=⨯ ∴x 1=116+x 2=116-(3)a=4,b=-3,c=1b 2-4ac=(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根. 三、巩固练习教材P 12 练习1 第1题21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9 x)=0.∴x =0或10-4.9 x =0,∴x 1=0, x 2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x (x -2)+ x -2=0; (2)5 x 2-2 x -14= x 2-2 x +34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2, x2=-1. (2)原方程整理为4x 2-1=0.因式分解,得(2x +1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12, x 2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B. (x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D. x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.布置作业:教材“习题21.2”第6题.。
2018-201X学年九年级数学上册第二十一章一元二次方程21.1一元二次方程教案1 新人教版
第二十一章一元二次方程21.1 一元二次方程※教学目标※【知识与技能】1.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式.2.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根.【过程与方法】1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其他三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】一元二次方程的概念,一般形式和一元二次方程的根的概念.【教学难点】通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.※教学过程※一、情境导入(课件展示问题)雷锋纪念馆前的雷锋雕像高为2m,设计者当初设计它的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,即下部高度的平方等于上部与全部的积,如果设此雕像的下部高为x m,则其上部高为(2-x)m,由此可得到的等量关系如何?它是关于x的方程吗?如果是,你能看出它和我们以往学过的方程有什么不同吗?二、探索新知由上述问题,我们可以得到222x x,即2240x x.显然这个方程只含有一个未知数,且x的最高次数为2,这类方程在现实生活中有广泛的应用.探究问题1 如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四角突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?x教师设置如下问题学生讨论:如果设四角折起的正方形的边长为x cm,则制成的无盖方盒的底面长为多少?宽为多少?由底面积为3600m2可得到的方程又是怎样的?讨论结果:设切去的正方形的边长为x cm,则盒底的长为(100-2x)cm ,宽为(50-2x )cm.根据方盒的底面积为3600m 2,得(100-2x )(50-2x )=3600.整理,得2430014000x x .化简得2753500x x .由次方程可以得出所切正方形的具体尺寸.探究问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?教师提出以下问题,引导学生思考方程的建模过程:(1)这次比赛共安排多少场?(2)若设应邀请x 个队参赛,则每个队与其他几个队各赛一场?这样共应有多少场比赛?(3)由此可列出的方程是什么?化简后的方程是什么?讨论结果:全部比赛的场数为4728.设应邀请x 个队参赛,每个队要与其他(x -1)个队各赛一场,因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共112x x 场.列方程11282x x .整理,得2112822x x .化简,得256x x ,即2560x x .观察思考,口答下面的问题:(1)上面的方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x ;(2)它们的最高次数都是2次的;(3)都有等号,是方程.归纳总结像这样,等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式200ax bx c a .这种形式叫做一元二次方程的一般形式.其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.想一想二次项系数a 为什么不能为0?在指出二次项系数、一次项系数和常数项时,a 、b 、c 一定是正数吗?探究问题3 探究问题2中可以看出,由于参赛球队的支数x 只能是正整数,由此可列由上表可得,当x =8时,2560x x ,所以x =8是方程2560x x 的解,一元二次方程的解也叫做一元二次方程的根.学生思考方程2560x x 有一个根为x=8,它还有其他的根吗?当x =-7时,256x x 497560,故x=-7也是方程2560x x 的一个根.归纳总结使方程左右两边相等的未知数的值就是这个一元二次方程的根.一个一元二次方程如果有实数根,则必然有两个实数根,通常记为x a,2x b.1三、掌握新知例1 求证:关于x 的方程22817210m m x mx ,不论m 取何值,该方程都是一元二次方程.分析:要证明不论m 取何值,该方程都是一元二次方程,只要证明28170m m 即可.证明:2281741m m m ∵240m , ∴2410m ,即2410m .∴不论m 取何值,该方程都是一元二次方程.例2 将方程3152x x x 化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.分析:一元二次方程的一般形式是200ax bx c a.因此,方程3152x x x 必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得233510x x x .移项,合并同类项,得一元二次方程的一般形式238100x x .其中二次项系数为3,一次项系数为-8,常数项为-10.四、巩固练习1.在下列方程中,一元二次方程的个数是( )①2370x ,②20?ax bx c ,③2251?x x x ,④2530x x .A.1个B.2个C.3个D.4个2.已知方程2560x mx 的一个根是3x ,则m 的值为________.3.关于x 的方程2130a x x 是一元二次方程,则a 的取值范围是_________.4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式,指出其二次项系数、一次项系数和常数项.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x .答案:1.A 2.-13 3.a ≠1 4.(1)24250x ,其中二次项系数为4,一次项系数为0,常数项为-25;(2)221000x x ,其中二次项系数为1,一次项系数为12,常数项为-100.五、归纳小结1.本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式200ax bx c a和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.2.通过这节课的学习,你还有那些收获?※布置作业※从教材习题21.1中选取.※教学反思※1.注重知识的前后练习,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.2.教师创设情境,给出实例,学生积极主动探索,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.3.增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.4.对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.感谢您的支持,我们会努力把内容做得更好!。
初中数学九年级上册第二十一章 一元二次方程第二十一章一元二次方程
第二十一章一元二次方程21.1一元二次方程1.理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程化成一般式,正确识别二次项系数、一次项系数和常数项.2.会判断一个数是否是一元二次方程的根.3.经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.▲重点理解一元二次方程的概念,认识一元二次方程的一般形式.▲难点1.在一元二次方程化成一般形式后,如何确定一次项和常数项.2.从实际问题中抽象出一元二次方程.◆活动1新课导入1.你能举例说出一元一次方程的概念吗?解:如2 019+18x=2 020这样只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.2.下列是一元一次方程的是:__①④__.(填序号)①x-1=2x+1;②x-3;③4x+3y=1;④x2-x(x+1)=0.◆活动2探究新知1.教材P2问题1.提出问题:(1)本问题中的等量关系是什么?应该设哪个量为未知数?(2)若设切去的正方形的边长为x cm,则盒底的长为__(100-2x)__cm,宽为__(50-2x)__cm;(3)请根据题意列出方程,你能化简该方程吗?学生完成并交流展示.2.教材P2问题2.提出问题:(1)说说“每两个队之间比赛一场”的含义,甲队对乙队和乙队对甲队的比赛是同一场比赛吗?(2)问题中比赛总场次是多少?等量关系是什么?(3)请设出未知数,列出方程式,并将所列方程化简.学生完成并交流展示.3.小明用30 cm的铁丝围成一斜边长等于13 cm的直角三角形,求该直角三角形的两直角边长.提出问题:本题必须设两个未知数吗?如果只设一个未知数,那么方程应该怎样列?◆活动3知识归纳提出问题:(1)请谈谈上述方程有什么共同特点;(2)归纳一元二次方程的概念.1.等号两边都是__整式__,只含有一个未知数,并且未知数的最高次数是__2__的方程,叫做一元二次方程.2.一元二次方程的一般形式是__ax2+bx+c=0(a≠0)__,其中__ax2__是二次项,__a__是二次项系数;__bx__是一次项,__b__是一次项系数;__c__是常数项.提出问题:(1)二次项系数a为什么不能为0?(2)一元二次方程ax2+bx+c=0,a,b,c可以是些什么样的数?3.方程-x2+3x=0中二次项系数是__-1__,一次项系数是__3__,常数项是__0__.4.使一元二次方程的左右两边相等的未知数的值就是这个一元二次方程的__解__,也叫做一元二次方程的__根__.◆活动4例题与练习例1判断下列各方程是不是一元二次方程.①x2-3xy+4y2=0;②y2=3y+2;③x+1x2-3=0.解:②是,①③不是.例2将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.例3已知a是方程2x2+x-2=0的根,求代数式4a2+2a的值.解:由已知得2a2+a-2=0,∴2a2+a=2,∴4a2+2a=4.练习1.教材P4练习第1,2题.2.(教材P4T3变式)下列数:6,-6,8,-8,12,-12,2,-2,是方程x2-2x-48=0的根有(B)A.1个B.2个C.3个D.4个3.若关于x的方程(m-1)xm2+1-3x+2=0是一元二次方程,则此一元二次方程为__-2x2-3x+2=0__.◆活动5课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你会解一元二次方程吗?1.作业布置(1)教材P4习题21.1第1,2,3题;(2)练习册.2.教学反思。
2021版九年级数学上册第二十一章一元二次方程21.1一元二次方程1教案 (全国通用版)
用版)元二次方程1教案(全国通用版)单元要点分析教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程用版)也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.教学关键1.分析实际问题如何建立一元二次方程的数学模型.2.用配方法解一元二次方程的步骤.3.解一元二次方程公式法的推导.课时划分本单元教学时间约需16课时,具体分配如下:21.1 一元二次方程2课时21.2 降次──解一元二次方程7课时21.3 实际问题与一元二次方程4课时教学活动、习题课、小结3课时21.1 一元二次方程第一课时教学内容一元二次方程概念及一元二次方程一般式及有关概念.用版)教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.态度、情感、价值观4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,•两隅相去适一丈,问户高、广各几何?”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,•那么门的高和宽各是多少?如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.用版)问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0用版)其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材练习1、2四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材习题22.1 1、2.2.选用作业设计.用版)作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)3(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?用版)3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,•是这样做的:设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:x1234x2-3x-1-3-3所以,________<x<__________第二步:x 3.1 3.2 3.3 3.4x2-3x-1-0.96-0.36所以,________<x<__________(1)请你帮小明填完空格,完成他未完成的部分;(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.答案:一、1.A 2.B 3.C二、1.3,-2,-42.ax+bx+c=0(a≠0)3.a≠1三、1.化为:ax2+(3)x+1=0,所以,当a≠0时是一元二次方程.用版)2.可能,因为当21220m m m +=⎧⎨+≠⎩,∴当m=1时,该方程是一元二次方程.3.(1)-1,3,3,4,-0.01,0.36,3.3,3.4 (2)3,3【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。
九年级上册数学第二十一章-一元二次方程教案
第二十一章 一元二次方程21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点]通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程你能举一个方程的例子吗2.下列哪些方程是一元一次方程并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x +1=0 (4)x 2=1·3.下列哪个实数是方程2x -1=3的解并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1. 提出问题:(1)正方形的大小由什么量决定本题应该设哪个量为未知数(2)本题中有什么数量关系能利用这个数量关系列方程吗怎么列方程^(3)这个方程能整理为比较简单的形式吗请说出整理之后的方程. 2.教材第2页 问题2. 提出问题:(1)本题中有哪些量由这些量可以得到什么(2)比赛队伍的数量与比赛的场次有什么关系如果有5个队参赛,每个队比赛几场一共有20场比赛吗如果不是20场比赛,那么究竟比赛多少场(3)如果有x 个队参赛,一共比赛多少场呢3.一个数比另一个数大3,且两个数之积为0,求这两个数. 提出问题: <本题需要设两个未知数吗如果可以设一个未知数,那么方程应该怎么列 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点(2)类比一元一次方程,我们可以给这一类方程取一个什么名字 (3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程. 】2.一元二次方程的一般形式是ax 2+bx +c =0(a≠0),其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.提出问题:(1)一元二次方程的一般形式有什么特点等号的左、右分别是什么 (2)为什么要限制a≠0,b ,c 可以为0吗(3)2x 2-x +1=0的一次项系数是1吗为什么3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4 例题与练习例1 在下列方程中,属于一元二次方程的是________. ,(1)4x 2=81;(2)2x 2-1=3y ;(3)1x 2+1x =2;(4)2x 2-2x(x +7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页 例题.例3 以-2为根的一元二次方程是( ) A .x 2+2x -1=0 B .x 2-x -2=0 C .x 2+x +2=0 D .x 2+x -2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等. ;练习:1.若(a -1)x 2+3ax -1=0是关于x 的一元二次方程,那么a 的取值范围是________. 2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x 2=81;(2)(3x -2)(x +1)=8x -3. 3.教材第4页 练习第2题.4.若-4是关于x 的一元二次方程2x 2+7x -k =0的一个根,则k 的值为________. 答案:≠1;2.略;3.略;=4. 活动5 课堂小结与作业布置 >课堂小结我们学习了一元二次方程的哪些知识一元二次方程的一般形式是什么一般形式中有什么限制你能解一元二次方程吗作业布置教材第4页 习题第1~7题. 解一元二次方程21. 配方法(3课时) 第1课时 直接开平方法:理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.。
21.1 一元二次方程(教学设计)九年级数学上册同步备课系列(人教版)
21.1 一元二次方程教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十一章“一元二次方程”21.1一元二次方程,内容包括:一元二次方程的概念及其一般式。
2.内容解析一元二次方程的概念,与得出一元一次方程的概念过程类似,教材先给出计算满足条件的正方形面积、计算满足条件的参赛队数等实际问题,用方程的思想建立数学模型,通过观察方程的特点,归纳、总结得到一元二次方程的概念。
根据一元二次方程的概念,教材给出其一般形式为:ax2+bx+c=0(a≠0),其中二次项系数、一次项系数、常数项分别为:a、b、c,需注意二次项系数不能为0的原因及系数前的符号问题。
基于以上分析,确定本节课的教学重点为:通过一元一次方程的概念,类比得出一元二次方程的概念。
二、目标和目标解析1.目标1)通过一元一次方程的概念,探索归纳一元二次方程的概念,提高学生类比、归纳、总结的能力;2)掌握一元二次方程的一般形式,正确识别一般形式中的二次项及其系数、一次项及其系数、常数项。
2.目标解析通过7年级上册的学习,我们已经掌握了一元一次方程的概念,一元一次方程的特点为:只含有一个未知数(元),未知数的次数都是1(次),且方程两边都是等式。
本节课我们根据实际问题列方程,用方程的思想建立数学模型,观察化简后的方程与一元一次方程的结构有相似的地方,它们都只含有一个未知数(元),且方程两边都是等式,但未知数的次数是2(次)。
由此学生通过观察,根据一元一次方程的概念尝试类比,归纳总结得出一元二次方程的概念。
在探索的过程中,提高学生类比、归纳、总结的能力。
一元二次方程的一般形式有两个易错点:1)忽略二次项系数≠02)判断二次项系数、一次项系数、常数项需考虑符号问题。
当二次项系数a≠0时,方程为ax2+bx+c=0(一元二次方程)。
当二次项系数 a=0时,方程为bx+c=0(一元一次方程)。
达成目标(1)的标志是:能正确判断一元二次方程。
九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教学课件 (新版)新人教版.pptx
一次项系数
7
二、新课讲解
例1 将方程3x( x-1)=5( x +2)化成一元
二次方程的一般形式,并写出其中的二次 项系数、一次项系数和常数项.
解:去括号,得
3x2 3x 5x 10
移项,合并同类项,得一元二次方程的一般形式
3x2 8x 10 0
其中二次项系数是3,一次项系数是-8, 常数项是-10.
8
二、新课讲解
例2 下列哪些数是方程 x 2- x -6=0的根?
从中你能体会根的作用吗? -4,-3,-2,-1,0,1,2,3,4
解:将 x =-4带入方程的左边得14;同理可 得:x =-3时,左边得6;x=-2时,左边得0;x =-1时,左边得-4;x=0时,左边得-6;x =1 时,左边得-6;x =2时,左边得-4;x =3时, 左边得0;x =4时,左边得6.所以该方程的
6
二、新课讲解
一般地,任何一个关于x 的一元二次方程
都可以化为 ax2 bx c 0 的形式,我们把
ax2 bx c 0 (a,b,c为常数,a≠0)称为一
元二次方程的一般形式.
想一想
为什么要限制a≠0,b,c可以为零吗?
a x 2 + b x + c = 0 (a ≠ 0)
二次项系数
根为-2和3. 根的作用:可以使等号成立.
9
二、新课讲解
例3 你能根据所学过的知识解出下列方程的 解吗?
(1)x2-36=0 ; (2)4 x2-9=0.
解:(1)移项得:x2=36, 所以 x =6或-6.
(2)移项得:4 x 2=9, 两边同时除以4得:x2=9/4, 所以 x= 2 或- 2 .
特点: (1)等号两边都是整式; (2)整式的最高次数是2次 .
人教版九年级数学上册第二十一章《一元二次方程》课件
练一练:下面哪些数是方程 x2 – x – 6 = 0 的解? -4 ,-3 , -2 ,-1 ,0 ,1,2,3 ,4
解: 3和-2.
你注意到了吗?一元 二次方程可能不止一 个根.
例4:已知a是方程 x2+2x-2=0 的一个实数根, 求
2a2+4a+2018的值.
解:由题意得 a2 2a 2 0 即a2 2a 2
2a2 4a 2018 2(a2 2a) 2018 2 2 2018 2022
方法点拨:求代数式的值,先把已知解代入,再注意 观察,有时需运用到整体思想,求解时,将所求代数 式的一部分看作一个整体,再用整体思想代入求值.
当堂练习
1. 下列哪些是一元二次方程?
3x+2=5x-2
×
x2=0
5.已知关于x的一元二次方程x2+ax+a=0的一个根 是3,求a的值. 解:由题意把x=3代入方程x2+ax+a=0,得
32+3a+a=0 9+4a=0 4a=-9
a 9 4
6.若关于x的一元二次方程(m+2)x2+5x+m2-4=0
有一个根为0,求m的值.
解:将x=0代入方程m2-4=0,
解:由题意得 a b c 0 即a 12 b 1 c 0 ∴方程ax2+bx+c=0 (a≠0)的一个根是1.
2. 若 a-b +c=0,4a+2b +c=0 ,你能通过观察,求出方 程ax2+bx+c=0 (a≠0)的一个根吗? x=2
课堂小结
概念
一 元 二 一般形
次方程
式
根
第21章 一元二次方程知识点总结 2023—2024学年人教版数学九年级上册
第二十一章一元二次方程21.1 一元二次方程知识点一 一元二次方程的定义1. 定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程2. 一元二次方程必须同时满足以下三个条件:①是整式方程 ; ②只含有一个未知数 ; ③未知数的最高次数是2. 注意:分母位置不能有未知数 例:判断下了哪些是一元二次方程051)1(2=-+xx 073)2(2=+-xy x 41)3(2=-+x x 032)4(3=+-m m 0522)5(2=-x 4)6(2=-bx ax 知识点二 一元二次方程的一般形式一元二次方程的一般形式是 )0(02≠=++a c bx ax .其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项知识点三 一元二次方程的解(根)使一元二次方程左右两边相等的未知数的值,就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
例如=x -3和x=2都是一元二次方程0652=+-x x 的解(根). 温馨提示:(1)一元二次方程可以无解,但是有解就一定有两个;(2)在一元二次方程)0(02≠=++a c bx ax 中,若0=++c b a ,则1=x 是一元二次方程)0(02≠=++a c bx ax 的一个根;若0=+-c b a ,则1-=x 是一元二次方程)0(02≠=++a c bx ax 的一个根注意:判断一个数值是不是一元二次方程解的方法:将此数值代入一元二次方程,若能使等式成立,则这个数值是一元二次方程的解;反之,它就不是一元二次方程的解.21.2 解一元二次方程21.1.2 配方法知识点一 直接开平方法解一元二次方程利用平方根的定义直接开平方来求一元二次方程的解的方法就做直接开平方法 一般地,对于方程为常数)p p x (2=为常数)p p x (2=根据平方根的意义,方程根的情况当时0>p 两个不相等的实数根p x p x =-=21,当时0=p 两个相等的实数根 021==x x 当时0<p方程无实数根可以利用直接开平方法解一元二次方程的类型 (1))0(2≥=p p x p x p x =-=21,(2))0(2≥=p p ax 先系数化为1 ,ap x a p x -==21, (3)())0(2≥=+p p a x 整体开平方后将a 移项,a p x a p x --=-=21,(4)())0(2≥=+p p b ax 整体开平方,再将b 移项,最后系数化为 1abp x a b p x --=-=21, 温馨提示:(1)采用直接开平方法解一元二次方程的理论依据是平方根的定义,直接开平方法只适用于部分一元二次方程,它适用的方程是能转化为以上类型的方程,(2)利用直接开平方法解一元二次方程时,只有当0≥p 时,方程才有解,并且要注意开方的结果取“正、负”两种情况。
九年级数学上册目录文件.doc
新人教版九年级上册数学目录第二十一章一元二次方程
21.1 一元二次方程
21.2 解一元二次方程
21.2.1 配方法
21.2.2 公式法
21.2.3 因式分解法
21.2.4 一元二次方程的根与系数的关系
21.3 实际问题与一元二次方程
第二十二章二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
22.1.2 二次函数
22.1.3 二次函数+k 的图象和性质
22.1.4 二次函数+bx+c 的图象和性质
22.2 二次函数与一元二次方程
22.3 实际问题与二次函数
第二十三章旋转
23.1 图形的旋转
23.2 中心对称
23.2.1 中心对称
23.2.2 中心对称图形
23.2.3 关于原点对称的点的坐标
第二十四章圆
24.1 圆的有关性质
24.1.1 圆
24.1.2 垂直于弦的直径
24.1.3 弧、弦、圆心角
24.1.4 圆周角
24.2 点和圆、直线和圆的位置关系
24.2.1 点和圆的位置关系
24.2.2 直线和圆的位置关系24.3 正多边形和圆
24.4 弧长和扇形面积
第二十五章概率初步
25.1 随机事件与概率
25.1.1 随机事件
25.1.2 概率
25.2 用列举法求概率
25.3 用频率估计概率。
九年级数学上册第二十一章一元二次方程21.1一元二次方程_2
化简,得 x2 x56
练
由方程可以得出参赛队数.
第三页,共十六页。
方程① ② 有什么(shén me)特点?
x275x3500
x2 x56
(1)这些方程(fāngchéng)的两边都是整式.
(2)方程中只含有(hán yǒu)一个未知数,未知数的最高次数是
2.
倍 速
像这样的等号两边都是整式,只含有一个未知数(一元),
解:原方程可化为 2a 4 x2 2 2b x a 0 ,
当 2a 4 0时,此方程为一元二次方程;
倍 速
当
2a 4 2 2b
0 0
即
a b
2 1
,此方程为一元一次方程.
课
时
学
练
第十四页,共十六页。
谈谈本节课你有什么收获(shōuhuò)?还有那些疑问?
倍 速 课 时 学 练
课时并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
学
练
第四页,共十六页。
21.1 一元二次方程
2021/12/11
第五页,共十六页。
练习:判断(pànduàn)下列方程是否是一元二次方程
(1)2x - 5 = 9
(2) 5x2 + 6 = 31
(3) 2x - 3y = 7
(4)3x2 -2x =6
式:
二次项系数(xìshù)为4,一次项系数为8,常数项为-25.
倍 速
4 3 x 2 x 1 8 x 3
课
时 学
一般(yībān) 3x27x10.
式:
练
二次项系数为3,一次项系数为-7,常数项为1.
第十页,共十六页。
2.根据(gēnjù)下列问题,列出关于x的方程,并将其化成一元二次方程 的一般形式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.1 一元二次方程
01 教学目标
1.理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项.
2.理解一元二次方程的根的意义,能够运用代入法检验根的正确性.
02 预习反馈
1.等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.如:下列方程:①1-x 2=0;②2(x 2-1)=3y ;③2x 2-3x -1=0;④1x 2-2x
=0中,是一元二次方程的是①③. 2.一元二次方程的一般形式是ax 2+bx +c =0(a≠0),其中,ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.
3.使方程左右两边相等的未知数的值,就是这个一元二次方程的解,也叫做一元二次方程的根.求方程的解的过程,叫做解方程.
如:下面哪些数是方程x 2-x -6=0的根?-2,3.
-4,-3,-2,-1,0,1,2,3,4.
03 新课讲授
类型1 一元二次方程的一般形式
例1 (教材P3例)将方程3x (x -1)=5(x +2)化为一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
【解答】 去括号,得3x 2-3x =5x +10.
移项,合并同类项,得一元二次方程的一般形式
3x 2-8x -10=0.
其中二次项系数为3,一次项系数为-8,常数项为-10.
【方法归纳】 1.把一元二次方程化为一般形式,就是把一元二次方程化为ax 2+bx +c =0(a ≠0)的形式.其中,二次项系数、一次项系数、常数项均包括数字前的符号.
2.将一元二次方程化为一般形式时,通常要将首项化负为正,化分为整.
【跟踪训练1】方程x2-2(3x-2)+(x+1)=0的一般形式是(A)
A.x2-5x+5=0 B.x2+5x+5=0
C.x2+5x-5=0 D.x2+5=0
【跟踪训练2】(21.1习题)一个关于x的一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,则这个一元二次方程是2x2+3x-5=0.
类型2 一元二次方程的解的意义
例2(教材补充例题)关于x的一元二次方程(a+1)x2-ax+||a-1=0的一个根为0,则a=1.
【思路点拨】将x=0代入一元二次方程,得到关于a的方程,解方程即可.注意二次项系数a+1≠0.
【跟踪训练3】已知关于x的方程x2+bx+a=0的一个根是x=-a(a≠0),则a-b的值为(A)
A.-1 B.0 C.1 D.2
04 巩固训练
1.若(p-2)x2-3x+p2-p=0是关于x的一元二次方程,则(D)
A.p=2 B.p≠0C.p>2 D.p≠2 2.把方程(x-2)(x+2)+(2x-1)2=0化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别是(D)
A.5、-4、6 B.1、-5、0 C.5、-2、1 D.5、-4、-3
3.若x=3是关于x的方程2x2+ax-6=0的一个根,则a的值是-4.
4.根据题意,列出方程(不必解答):
(1)两个连续整数的积是210,求这两个数;
(2)在一块长250 m、宽150 m的草地四周修一条路,路修好后草地的面积减少1 191 m2,求这条路的宽度.
解:(1)设其中一个整数为x,则另一个整数为(x+1),依题意,得x(x+1)=210.
(2)设这条路的宽为x m,则(250-2x)(150-2x)=250×150-1 191.
05 课堂小结
如有侵权请联系告知删除,感谢你们的配合!。