2014年全国高考试卷极坐标与参数方程部分汇编练习-1
高考理科数学试题分类汇编参数方程与极坐标含答案
坐标系中取相同的长度单位。已知直线
x t 1,
l 的参数方程是
( t 为参数 ) ,圆 C 的极坐
yt3
标方程是
4 cos , 则直线 l 被圆 C 截得的弦长为
( A) 14
(B) 2 14
( C) 2
D
( D)2 2
3(2014 江西 ) (2).(坐标系与参数方程选做题) 若以直角坐标系的 Nhomakorabea点为极点,
5sin 5
4
6
,其中 为锐角.且 tan
.
3
当 sin
1时, | PA |取得最大值,最大值为 22 5 ; 5
汇编资料
欢迎下载
当 sin
1时, | PA | 取得最小值,最小值为
25
.
5
………… 10 分
2. (2014 新课标 II)(本小题满分 10)选修 4-4:坐标系与参数方程 在直角坐标系 xoy 中,以坐标原点为极点, x 轴为极轴建立极坐标系,半圆
C 的极坐标方程
为 2cos ,
0, . 2
(Ⅰ)求 C 的参数方程;
(Ⅱ)设点 D 在 C 上, C 在 D 处的切线与直线 l : y
参数方程,确定 D 的坐标 .
3 x 2 垂直,根据(Ⅰ)中你得到的
3. ( 2014 辽宁)(本小题满分 10 分)选修 4-4 :坐标系与参数方程
将圆
2
x
2
y
轴为极轴建立极坐标系,则线段 y 1 x 0 x 1 的极坐标为( )
x 轴的非负半
1
A.
,0
cos sin
2
1
B.
,0
cos sin
2014--2018年高考数学极坐标与参数方程及答案解析汇编
2014--2018年全国高考试题极坐标与参数方程汇总1、(2014年高考数学全国卷I )已知曲线C :x ²4+y ²9=1,直线l :⎩⎪⎨⎪⎧x =2+ty =2-2t (t 为参数)⑴写出曲线C 的参数方程,直线l 的普通方程;⑵过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值。
【解析】:⑴曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的普通方程为:260x y +-=⑵在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为3sin 6d θθ=+-,则()0||6sin 30d PA θα==+-,其中α为锐角.且4tan 3α=.当()sin 1θα+=-时,||PA当()sin 1θα+=时,||PA 2、(2015年高考数学全国卷I )在直角坐标系xOy 中.直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. ⑴求C 1,C 2的极坐标方程; ⑵若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积。
解:⑴因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=。
⑵将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ=12ρρ-=MN =由于2C 的半径为1,所以2C MN ∆的面积为12。
3、(2016年高考数学全国卷I )在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =acos t ,y =1+asin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a 。
极坐标与参数方程高考题练习含答案
极坐标与参数方程高考题练习含答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN极坐标系与参数方程高考题练习2014年一.选择题1. (2014北京)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( B ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014安徽)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。
已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( D )(A )14 (B )214 (C )2 (D )223(2014江西) (2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( ) A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤∴sin 1cos ρθρθ=-()0cos 1ρθ≤≤ 10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭ 所以选A 。
二.填空题1. (2014湖北)(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014湖南)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,(α为参数)交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.3 (2014重庆)已知直线l 的参数方程为⎩⎨⎧+=+=t y t x 32(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】.5ρ,.541ρ(1,2),∴2044-y 1-x 4y .x 4y θcos ρ4θsin ρ∴0θcos 4-θsin ρ1-,3,2222222==+==⇒=+===⇒===+=+=所以交点得与联立y y x y x y t y t x4 (2014上海)已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 。
高考2014-2019全国卷理数极坐标与参数方程真题
⎩ ( 为 参数).⎨y = t s in α,⎨ 22014-2019 全国卷高考极坐标与参数方程真题(含答案)x 2+y =⎧ x = 2 + t(2014 年 1 卷)已知曲线C : 491,直线l :⎨ y = 2 - 2 t t (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA | 的最大值与最小值.(2014 年 2 卷)(本小题满分 10)选修 4-4:坐标系与参数方程在直角坐标系 xoy 中,以坐标原点为极点,x 轴正半轴 ρ= 2 cos θ θ ∈ ⎡ 0 , π ⎤为极轴建立极坐标系,半圆 C 的极坐标方程为,⎢⎣2 ⎥⎦ .(Ⅰ)求 C 的参数方程;(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 得到的参数方程,确定 D 的坐标.3x + 2 垂直,根据(Ⅰ)中你(2015 年 1 卷)在直角坐标系 xOy 中,直线C : x = - 2,圆C :(x -1)2+ ( y - 2)2= 1,以坐标原点为极点, x 12轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1 , C 2 的极坐标方程;π(Ⅱ)若直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求 ∆C 2 MN 的面积.4(2015 年 2 卷)在直角坐标系 xOy 中,曲线 1 : ⎧ x = t c o s α, ⎩ (t 为参数,且 t≠0),其中 0≤α<π,在以 O 为极点,x 轴正半轴为极轴的极坐标系中,曲线 C 2:ρ=2sin θ,C 3:ρ=2cos θ.(1)求 C 2 与 C 3 交点的直角坐标.(2)若 C 1 与 C 2 相交于点 A,C 1 与 C 3 相交于点 B,求|AB|的最大值.(2016 年 1 卷)在直线坐标系 xOy 中,曲线 C 1 的参数方程为 ⎧x⎩y = acost,= 1 + asint(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 C 2:ρ=4cosθ. (1)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程.(2)直线 C 3 的极坐标方程为θ=α0,其中α0 满足 tanα0=2,若曲线 C 1 与 C 2 的公共点都在 C 3 上,求 a.C10 22 ⎨y = t sin α⎨ θ + ⎨y = sin θ⎨ y = 1 - t⎩ (2016 年 2 卷)在直线坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I ) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程; (II ) 直线 l 的参数方程是 ⎧ x = t co s α (t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎩(2016 年 3 卷)在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ⎧⎪x =3cosα (α为参数),以坐标原点为极点,⎪⎩y = sinα以 x 轴的正半轴为极轴,,建立极坐标系,曲线 C 2 的极坐标方程为ρsin ⎛π ⎫ =2. 4 ⎪ ⎝ ⎭(1) 写出 C 1 的普通方程和 C 2 的直角坐标方程.(2) 设点 P 在 C 1 上,点 Q 在 C 2 上,求|PQ|的最小值及此时 P 的直角坐标.(2017 年 1 卷)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎧ x = 3 cos θ(θ 为参数),直线 l 的参数方程为⎩ ⎧ x = a + 4 t ( t 为参数 ) . ⎩ (1) 若 a = -1 ,求C 与l 的交点坐标;(2)(2)若C 上的点到l 的距离的最大值为,求 a .(2107 年 2 卷)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1)M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足 OM ⋅ OP = 16 ,求点 P 的轨迹C 2 的直角坐标方程;(2) 设点 A 的极坐标为⎛ 2 , π ⎫ ,点 B 在曲线C 2 上,求△OAB 面积的最大值.3 ⎪ ⎝ ⎭(2017 年 3 卷)在平面直角坐标系 xOy 中,直线l 的参数方程为⎧ x = 2+t ( t 为参数),直线l 的参数方程为⎧ x = -2 + m1⎨y = kt2⎪ ⎨ y = m ⎩ k (m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C . (1) 写出C 的普通方程;(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+ sin θ) -= 0 , M 为l 3 与C 的交点,求 M 的极径.17 ⎪⎩ xOy ⊙O(2018年1卷)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极 坐标方程为. ⑴求的直角坐标方程;⑵若与有且仅有三个公共点,求的方程.(2018年2卷)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1) 求和的直角坐标方程;(2) 若曲线截直线所得线段的中点坐标为,求的斜率.⎧ x = cos θ,(2018年3卷)在平面直角坐标系 中, 的参数方程为 ⎨ y = sin θ(θ为参数),过点(0 ,- 2 ) 且倾斜角为α的直线l 与⊙O 交于 A ,B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎧ 1- t 2x = ,⎪ 1+ t 2 (2019 年 1 卷)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨ ⎪ y = ⎩ 4t1+ t 2(t 为参数).以坐标原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.(2019 年 2 卷)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0) 在曲线C :ρ= 4 sin θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P .(1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.3 552⎩y = s i n t ,(2019 年 3 卷)如图,在极坐标系 Ox 中,A (2, 0) ,B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,B C , 44C D 所在圆的圆心分别是(1, 0) ,(1, π) ,(1, π) ,曲线 M 1 是弧 AB ,曲线 M 2 是弧 B C ,曲线 M 3 是弧C D . (1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,若点 P 在M 上,且| OP |= ,求P 的极坐标.【参考答案】(2014 年 1 卷)⎧ x = 2 cos θ.( I ) 曲线C 的参数方程为⎨ y = 3 sin θ. (θ为参数).直线l 的普通方程为2x + y - 6 = 0.( I I ) 曲 线 C 上 任 意 一 点 P ( 2 co s θ. 3 sin θ) 到 l 的 距 离 为d =4 co s θ + 3 sin θ - 6 .则 P A =d= sin 3 0 ︒ 5 sin (θ + α) - 6 , 其 中 α为 锐 角 , 且 tan α = 4.3当 sin (θ+α) = - 1 时 ,P A 取 得 最 大 值 , 最 大 值 为 2 2 5.5 当 sin (θ + α) = 1时 ,P A 取 得 最 小 值 , 最 小 值 为 2 5.5(2014 年 2 卷)解析:(I )C 的普通方程为(x -1)2 + y 2= 1(0 ≤ y ≤ 1) . 可得 C 的参数方程为⎧ x = 1 + c o s t ,⎨⎩ (t 为参数,0 ≤ t ≤ x ) (Ⅱ)设 D (1 + cos t , sin t ) .由(I )知 C 是以 G (1,0)为圆心,1 为半径的上半圆。
(完整版)极坐标与参数方程高考习题练习含答案
欢迎阅读极坐标系与参数方程高考题练习2014年一.选择题1. (2014北京)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( B ).A.C 2.ρ4=A.ρ=C.ρ= 0sin cos 2ρθθθ∴=≤≤ ⎪+⎝⎭ 所以选A 。
二.填空题1. (2014湖北)(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______. 2. (2014湖南)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,(α为参数)交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.3 (2014重庆)已知直线l 的参数方程为⎩⎨⎧+=+=t y t x 32(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014上海)已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 。
【答案】 31【解析】.C (2014陕西)(坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是C5 (2014天津)在以O 为极点的极坐标系中,圆θρ4sin =和直线a =θρsin 相交于,A B 两点.若ΔAOB 是等边三角形,则a 的值为___________. 解:3 圆的方程为2224x y ,直线为y a .因为AOB 是等边三角形,所以其中一个交点坐标为,代入圆的方程可得3a .6. (2014广东)(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__三.解答题1. (2014新课标I)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ).直线ld =则||PA =当(sin θ当(sin θ2. (20142cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.3. (2014辽宁)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.【答案】 (1) π∈[0,θθsin 2,θcos ,==y x (2) 03θsin ρ4-cos θ 2ρ=+ 【解析】(1)(2)4(2014 (I (II 解:圆C (2)故圆(2013)A . C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(2013天津数学(理))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭,则|CP | =1(2013上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为_____152+_____ 解析:2(2013北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于____1_____. 3重庆数学(理))在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,则______AB = 【答案】1642013广东(理))(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为2cos 2sin x ty t ⎧=⎪⎨=⎪⎩(为参数),C 在点()1,1处的切线为 , 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则切线的极坐标方程为 .【答案】x+y=2 ;sin 24πρθ⎛⎫+= ⎪⎝⎭5(2013陕西(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 26(2013江西(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t=⎧⎨=⎩(为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________【答案】2cos sin 0ρθθ-=7(2013湖南卷(理))在平面直角坐标系xoy中,若,3cos, :(t)C:2sin x t xly t a yϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a的值为________.【答案】38(2013湖北(理))在直角坐标系xOy中,椭圆C的参数方程为cossinx ay bθθ=⎧⎨=⎩()0a bϕ>>为参数,.)中,(2013α与β=(Ⅰ(Ⅱ9(20132C(I)12(II)设P为1C的圆心,Q为1C与2C交点连线的中点.已知直线PQ的参数方程为()3312x t at Rby t⎧=+⎪∈⎨=+⎪⎩为参数,求,a b的值【答案】10(2013福建(理))坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线的极坐标方程为cos(4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos(4a πρθ-=上,可得a =(Ⅱ)11(2013程为.【答案】0 ①12(2013新课标1(理))选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos 55sin x ty t =+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将45cos 55sin x ty t =+⎧⎨=+⎩消去参数,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; (Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为(2,4π),(2,)2π. 【2012新课标文23】已知曲线C 1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正三角形ABC 的顶点都在C 2上,且A 、B 、C 以逆时针次序排列,点A 的极坐标为(2,) (Ⅰ)求点A 、B 、C 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2的取值范围. 解析:【2012辽宁文23】在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。
高考专题训练-极坐标与参数方程(含解析)
精品题库试题理数1. (2014天津蓟县邦均中学高三第一次模拟考试,4) 圆为参数)的圆心到直线(t为参数)的距离是()A 1BC D 3[解析] 1. 圆的普通方程为, 圆心为(1, -2).直线的普通方程为, 所以点(1, -2) 到直线的距离为.2.(2014重庆一中高三下学期第一次月考,15)在直角坐标系中,以为极点,轴非负半轴为极轴建立极坐标系。
已知点,若极坐标方程为的曲线与直线(为参数)相交于、两点,则。
[解析] 2. 曲线的直角坐标系方程为,圆心在(3,-3),半径为;直线的普通方程为,该直线过圆心,且|OP|=5,所以过点P 且垂直于直线的直线被圆截得的弦长为,根据相交弦定理可得. 3. (2014天津蓟县第二中学高三第一次模拟考试,13) 圆心在,半径为3的圆的极坐标方程是 [解析] 3. 圆心在直角坐标系内的坐标为(-3,0),由此可得在直角坐标系内圆的方程为,即,根据及可得该圆的极坐标方程是. 4. (2014安徽合肥高三第二次质量检测,12) 在平面直角坐标系中,曲线的参数方程为(为参数). 以为极点,射线为极轴的极坐标系中,曲线的方程为,曲线与交于两点,则线段的长度为___________.[解析] 4.因为曲线的参数方程为(为参数),化为普通方程为, 又因为曲线的极坐标方成为,所以, 所以普通方程为,即, 所以圆心到直线的距离为,弦长.5. (2014重庆杨家坪中学高三下学期第一次月考,15) 直线(为参数)被曲线所截的弦长为_______________.[解析] 5. 由消去得,由整理得, 所以,即, 因为圆心到直线的距离为, 所以所求的弦长为.6. (2014湖北黄冈高三4月模拟考试,16) (选修4-4:坐标系与参数方程)已知曲线的极坐标方程为,则曲线上点到直线(为参数)距离的最大值为 . [解析] 6. 因为,所以,所以,即,其参数方程为(为参数),又因为,所以, 所以点到直线的距离为,(为参数), 故曲线上点到直线(为参数)距离的最大值为.7. (2014广东汕头普通高考模拟考试试题,14)在直角坐标系中,曲线的参数方程为(为参数);在极坐标系(与直角坐标系取相同的长度单位,且原点为极点,以轴正半轴为极轴)中,曲线的方程为,则与交点个数为___________.[解析] 7. 曲线,,由圆心到直线的距离,故与的交点个数为2.8. (2014广东广州高三调研测试,15) (坐标系与参数方程选讲选做题) 若点在曲线(为参数,)上,则的取值范围是______________.[解析] 8. 由已知P 点所在轨迹方程为,表示与原点连线的斜率。
历年(2014-2023)全国高考数学真题分项(极坐标与参数方程)好题汇编(附答案)
历年(2014-2023)全国高考数学真题分项(极坐标与参数方程)好题汇编题型一:极坐标与普通方程互化1.(2023年全国甲卷理科·第22题)已知点(2,1)P ,直线2cos :1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴,y 轴正半轴分别交于A ,B 两点,且||||4PA PB ⋅=. (1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.2.(2021年高考全国甲卷理科·第22题)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρθ=. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 直角坐标为()1,0,M 为C 上的动点,点P满足AP =,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.3.(2018年高考数学课标卷Ⅰ(理)·第22题)[选修4–4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.4.(2015高考数学江苏文理·第23题)已知圆C的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.题型二:极坐标方程的应用1.(2022年高考全国乙卷数学(理)·第22题)在直角坐标系xOy 中,曲线C的参数方程为22sin x ty t⎧=⎪⎨=⎪⎩,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为sin 03m πρθ⎛⎫⎪⎝+⎭+=. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.的2.(2020江苏高考·第22题)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sin C ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.3.(2019·全国Ⅲ·理·第22题)如图,在极坐标系Ox 中,(2,0)A,4B π,)4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD.(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M上,且||OP =P 的极坐标.4.(2019·全国Ⅱ·理·第22题)在极坐标系中,O 为极点,点()00,M ρθ()00ρ>在曲线:C 4sin ρθ=上,直线l 过点且与OM 垂直,垂足为P .()1当03πθ=时,求0ρ及l 的极坐标方程;()2当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.5.(2019·江苏·第22题)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求,A B 两点间的距离;(2)求点B 到直线l 的距离. 6.(2018年高考数学江苏卷·第23题)(本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.7.(2015高考数学新课标2理科·第23题)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=. (Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.8.(2015高考数学新课标1理科·第23题)(本小题满分10分)选修4-4:坐标系与参数方程(4,0)A在直角坐标系xOy 中。
2014~2017年极坐标与参数方程全国高考题汇总(精编完美版)
2014~2017年极坐标与参数方程全国高考题汇总(精编完美版)1.【2014·全国Ⅱ】在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈(0,π)。
⑴求C的参数方程;⑵设点D在C上,C在D处的切线与直线l:y=3x+2垂直,根据⑴中你得到的参数方程,确定D的坐标。
解:⑴C的普通方程为(x-1)²+y²=1(0≤y≤1),可得C的参数方程为x=1+cost。
y=sint} (t为参数,0≤t≤π)。
⑵设D(1+cost。
sint)。
由⑴知C是以G(1,0)为圆心,1为半径的上半圆。
因为C在点D处的切线与t垂直,所以直线GD与t的斜率相同,tant=3,t=π/3.故D的直角坐标为(1+cosπ/3.sinπ/3),即(2.3√3)。
2.【2014·全国Ⅰ】已知曲线C:x²/4+y²/9=1,直线l:y=2-2t。
⑴写出曲线C的参数方程,直线l的普通方程;⑵过曲线C上任意一点P作与l夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值。
解析:⑴曲线C的参数方程为:{x=2cost。
y=3sint} (θ为参数)。
直线l的普通方程为:2x+y-6=0.⑵在曲线C上任意取一点P(2cost。
3sint),到l的距离为d=|2cost+3sint-6|/√(4+9),则|PA|=d/sin(30°)=2d。
设α为PA与x轴正半轴的夹角,则tanα=(2sint-3cost+3)/2cosθ,令其等于tan(30°)=√3/3,解得sinθ=5/√58,cosθ=7/√58.代入d的式子可得d=5/√58,故|PA|max=10/√58,|PA|min=2d=10/√58.3.【2015·全国Ⅰ】在直角坐标系xOy中。
直线⑴求C1,C2的极坐标方程;⑵若直线C3的极坐标方程为θ=π/4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积。
极坐标与参数方程高考题练习含答案
极坐标与参数方程高考题练习含答案This model paper was revised by the Standardization Office on December 10, 2020极坐标系与参数方程高考题练习2014年一.选择题1. (2014北京)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( B ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014安徽)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。
已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( D )(A )14 (B )214 (C )2 (D )223(2014江西) (2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( ) A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。
二.填空题1. (2014湖北)(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______. 2. (2014湖南)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,(α为参数)交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.3 (2014重庆)已知直线l 的参数方程为⎩⎨⎧+=+=t y t x 32(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014上海)已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 。
2014年极坐标与参数方程部分汇编1
2014年全国高考试卷极坐标与参数方程部分汇编1. (2014安徽理4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩,(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )AB .CD .2. (2014北京理3)曲线{1cos 2sin x y =-+=+θθ,(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上3. (2014福建理21⑵)已知直线l 的参数方程为24x a ty t=-⎧⎨=-⎩,(t 为参数),圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩,(θ为常数). ①求直线l 和圆C 的普通方程;②若直线l 与圆C 有公共点,求实数a 的取值范围.4.(2014广东理14)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为____________.5. (2014广东文14)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为____________.6. (2014湖北理16)已知曲线1C的参数方程是x y ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 与2C 交点的直角坐标为________7. (2014湖南理11)在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数)交于A ,B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是_____________.8. (2014湖南文12)在平面直角坐标系中,曲线2:1x C y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)的普通方程为___________.9. (2014江苏理21C )在平面直角坐标系xoy 中,已知直线l的参数方程12x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 是参数),直线l 与抛物线24y x =相交于,A B 两点,求线段AB 的长.10. (2014江西理11⑵)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( )A .1π,0cos sin 2ρθθθ=+≤≤ B .1π,0cos sin 4ρθθθ=+≤≤C .πcos sin ,02ρθθθ=+≤≤D .πcos sin ,04ρθθθ=+≤≤11. (2014辽宁理23文23)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .⑴写出C 的参数方程;⑵设直线220l x y +-=∶与C 的交点为12P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.12. (2014陕西理15C 文15C )在极坐标系中,点π26⎛⎫ ⎪⎝⎭,到直线πsin 16ρθ⎛⎫-= ⎪⎝⎭的距离是_______.13. (2014天津理13)在以O 为极点的极坐标系中,圆4sin ρθ=和直线sin a ρθ=相交于A B ,两点.若AOB △是等边三角形,则a 的值为_______.14. (2014新课标1理23文23)已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). ⑴写出曲线C 的参数方程,直线l 的普通方程;⑵过曲线C 上任一点P 作与l 夹角为30︒的直线,交l 于点A ,求||PA 的最大值与最小值.15. (2014新课标2理23文23)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π02θ⎡⎤∈,⎢⎥⎣⎦.⑴求C 的参数方程;⑵设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据⑴中你得到的参数方程,确定D 的坐标.16. (2014重庆理15)已知直线l 的参数方程为23x t y t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x 正半轴为极轴线建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=(002πρθ,<≥≤),则直线l 与曲线C 的公共点的极径ρ=________.。
高考理科数学试题分类汇编_参数方程与极坐标_含答案
2014年高考数学试题汇编 参数方程与极坐标一.选择题1. (2014北京)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2(2014安徽)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。
已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22 D3(2014江西) (2).(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为( ) A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A【解析】Q 1y x =-()01x ≤≤∴sin 1cos ρθρθ=-()0cos 1ρθ≤≤ 10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。
二.填空题1. (2014湖北)(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014湖南)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,(α为参数)交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.3 (2014重庆)已知直线l 的参数方程为⎩⎨⎧+=+=t y t x 32(t 为参数),以坐标原点为极点,x 正半轴为极轴线l 与曲线C 的公共点的极经=ρ________. 【答案】5 【解析】.5ρ,.541ρ(1,2),∴2044-y 1-x 4y .x 4y θcos ρ4θsin ρ∴0θcos 4-θsin ρ1-,3,2222222==+==⇒=+===⇒===+=+=所以交点得与联立y y x y x y t y t x ΘΘ4 (2014上海)已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 。
极坐标和参数方程-近三年高考真题汇编
分类汇编:坐标系与参数方程2014年真题: 1.[2014·安徽卷] 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214C. 2 D .2 2 答案:D2.[2014·北京卷] 曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上答案:B 3.[2014·江西卷]若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4答案:A4.[2014·重庆卷] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.答案: 55.[2014·陕西卷]在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin ⎝⎛⎭⎫θ-π6=1的距离是________.答案: 16.[2014·湖北卷]已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________.答案:()3,17.[2014·湖南卷] 在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.答案:ρcos θ-ρsin θ=1 8.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.答案:(1,1)9. [2014·福建卷] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =≤4,解得-25≤a ≤2 5. 10.[2014·辽宁卷]将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线的斜率k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.11.[2014·新课标全国卷Ⅰ]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离 d =55|4cos θ+3sin θ-6|, 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.12.[2014·新课标全国卷Ⅱ]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为 ⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.13.[2014·浙江卷] (1)在极坐标系Ox 中,设集合A ={(ρ,θ)|0≤θ≤π4,0≤ρ≤cos θ},求集合A 所表示区域的面积;(2)在直角坐标系xOy 中,直线l :⎩⎨⎧x =-4+t cos π4,y =t sinπ4(t 为参数),曲线C :⎩⎪⎨⎪⎧x =a cos θ,y =2sin θ(θ为参数),其中a >0.若曲线C 上所有点均在直线l 的右下方,求a 的取值范围. 解:(1)在ρ=cos θ两边同乘ρ,得ρ2=ρcos θ.化成直角坐标方程,得x 2+y 2=x ,即⎝⎛⎭⎫x -122+y 2=14.所以集合A 所表示的区域为:由射线y =x (x ≥0),y =0(x ≥0),圆⎝⎛⎭⎫x -122+y 2=14所围成的区域,如图所示的阴影部分,所求面积为π16+18.(2)由题意知,直线l 因为曲线C 上所有点均在直线l 的右下方,故对θ∈R ,有a cos θ-2sin θ+4>0恒成立,即a 2+4cos(θ+φ)>-4⎝⎛⎭⎫其中tan φ=2a 恒成立, 所以a 2+4<4.又a >0,得0<a <2 3.2013年真题:一、选择题1 .(2013年安徽数学(理)试题)在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( )A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和【答案】B二、填空题 2 .(2013年天津数学(理))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = ______.【答案】3 .(2013年高考上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________. 4 .(2013年高考北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.【答案】15 .(2013年重庆数学(理))在直角坐标系中,以原点为极点,轴的正半轴为极轴xOy O x建立极坐标系.若极坐标方程为的直线与曲线(为参数)相交于两点,则【答案】6 .(2013年广东省数学(理)卷)(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为2cos 2sin x ty t ⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.【答案】sin 4πρθ⎛⎫+= ⎪⎝⎭7 .(2013年高考陕西卷(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 28 .(2013年高考江西卷(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t =⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c的极坐标方程为__________【答案】2cossin 0ρθθ-=9 .(2013年高考湖南卷(理))在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________.cos 4ρθ=23x ty t⎧=⎪⎨=⎪⎩t ,A B ______AB =16x【答案】310.(2013年高考湖北卷(理))在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为2sin 42m πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.三、解答题11.(2013年新课标Ⅱ卷数学(理))已知动点都在曲线为参数上,对应参数分别为与,为的中点.(Ⅰ)求的轨迹的参数方程; (Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.【答案】12.(2013年辽宁数学(理))在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.【答案】13.(2013年福建数学(理)坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线的方程可化为cos sin 2ρθρθ+= 从而直线的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r = [来源:学科网]以为圆心到直线的距离1d =<,所以直线与圆相交 14.(2013年江苏卷(数学))在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=ty t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.【答案】C 解:∵直线l 的参数方程为⎩⎨⎧=+=t y t x 21∴消去参数t 后得直线的普通方程为022=--y x ①同理得曲线C 的普通方程为x y 22= ②①②联立方程组解得它们公共点的坐标为)2,2(,)1,21(- [来源:学科网]15.(2013年高考新课标1(理)) 已知曲线C 1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将消去参数,化为普通方程, [来源:学科网] 即:,将代入得, [来源:学*科*网Z*X*X*K],∴的极坐标方程为;(Ⅱ)的普通方程为,由解得或,∴与的交点的极坐标分别为(),.2012真题(部分):1.【2012高考真题辽宁理23】在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。
2014-2020全国卷分类汇编——极坐标系与参数方程
2014年1卷23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为 参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.2014年2卷23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.2015年1卷(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中.直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (I ) 求1C ,2C 的极坐标方程; (II ) 若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△C 2MN 的面积2015年2卷(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1:cos ,sin ,x t y t α=⎧⎨=∂⎩(t 为参数,t ≠0)其中0απ≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=.(Ⅰ).求C 2与C 3交点的直角坐标;(Ⅱ).若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.2016年1卷(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy 中,曲线C 1的参数方程为(t 为参数,a >0)。
在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪种曲线,学.科.网并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a 。
2014年高考 极坐标与参数方程
1. [2014·陕西卷] 在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是________.1 2. [2014广东卷] 在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin 1ρθ=以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.(1,1)3. [2014·湖北卷]已知曲线C 1的参数方程是33x t t y ⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是2ρ=,则C 1与C 2交点的直角坐标为________.()3,14. [2014·重庆卷] 已知直线l 的参数方程为23x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0(0,02)ρθθρθπ-=≥≤≤,则直线l 与曲线C 的公共点的极径_________ρ=5. [2014·安徽卷] 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是=4cos ρθ,则直线l 被圆C 截得的弦长为( ) A .14 B .214 C . 2 D .2 26. [2014·北京卷] 曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ) A .在直线y =2x 上 B .在直线y =-2x 上 C .在直线y =x -1上 D .在直线y =x +1上7. [2014·天津卷] 在以O 为极点的极坐标系中,圆=4sin ρθ和直线sin a ρθ=相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.38. [2014·湖南卷] 在平面直角坐标系中,倾斜角为4π的直线l 与曲线C :2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.cos sin 1ρθρθ-=9. [2014江西卷]若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段1(01)y x x =-≤≤的极坐标方程为( )A .1,0cos sin 2πρθθθ=≤≤+B .1,0cos sin 4πρθθθ=≤≤+ C .cos sin ,02πρθθθ=+≤≤ D .cos sin ,04πρθθθ=+≤≤10. [2014福建卷]已知直线l 的参数方程为24x a t y t =-⎧⎨=-⎩(t 为参数),圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩ (1)求直线l 和圆C 的普通方程; (2)若直线l 与圆C 有公共点,求实数a 的取值范围.-25≤a ≤2 511. [2014·辽宁卷] 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;cos 2sin x y θθ=⎧⎨=⎩ (2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.3=4sin 2cos ρθθ- 12. [2014·新课标全国卷Ⅰ]已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;2x +y -6=0(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.【难】13. [2014·新课标全国卷Ⅱ] 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为=2cos ρθ,[0,]2πθ∈ (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.33(,)2214. [2014·浙江卷](1)在极坐标系Ox 中,设集合{(,)|00cos }4A πρθθρθ=≤≤≤≤,,求集合A 所表示区域的面积;π16+18 (2)在直角坐标系xOy 中,直线l :4cos 4sin 4x t y t ππ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C :cos 2sin x a y θθ=⎧⎨=⎩(θ为参数),其中a >0.若曲线C 上所有点均在直线l 的右下方,求a 的取值范围.023a <<。
2014高考数学--极坐标与参数方程
1.[2014广东文]在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2 交点的直角坐标为________.5.[2014·广东理] (坐标系与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立 平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.2.[2014湖南文] 在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________.6.[2014·湖北理] 已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________.7. [2014·湖南理] 在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极 坐标方程是________.11.[2014·陕西文理]在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝⎛⎭⎪⎫θ-π6=1的距离是________.4.[2014江苏] 在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.5.[2014辽宁文理] 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐 标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.6.[2014新课标Ⅱ]在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系, 半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.7.[2014新课标Ⅰ] 已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.1.[2014·天津理] 在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.2.[2014·安徽理] 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系 中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14 B .214 C. 2 D .223.[2014·北京理]曲线1cos 2sin x y θθ=-+⎧⎨=+⎩ (θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上4.[2014·福建理] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ (θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.8. [2014·江西理]若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .1,0sin cos 2πρθθθ=≤≤+ B .1,0sin cos 4πρθθθ=≤≤+C .cos sin ,02πρθθθ=+≤≤D .cos sin ,04πρθθθ=+≤≤10.[2014·新课标Ⅰ理] 已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值12. [2014·浙江理](1)在极坐标系Ox 中,设集合A ={(ρ,θ)|0≤θ≤π4,0≤ρ≤cos θ},求集合A 所表示区域的面积;(2)在直角坐标系xOy 中,直线l :⎩⎪⎨⎪⎧x =-4+t cos π4,y =t sinπ4(t 为参数),曲线C :⎩⎪⎨⎪⎧x =a cos θ,y =2sin θ(θ为参数),其中a >0.若曲线C 上所有点均在直线l 的右下方,求a 的取值范围.13.[2014·新课标Ⅱ理] 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.14.[2014·重庆理] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.。
极坐标与参数方程高考题练习含答案
极坐标系与参数方程高考题练习2014年一.选择题1. 2014北京曲线1cos 2sin x y θθ=-+⎧⎨=+⎩θ为参数的对称中心 B.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.2014安徽以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位;已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x t 为参数,圆C的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为 DA 14 B214 C 2 D2232014江西 2.坐标系与参数方程选做题若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤答案A 解析1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭ 所以选A; 二.填空题1. 2014湖北选修4-4:坐标系与参数方程已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. 2014湖南直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,α为参数交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.3 2014重庆已知直线l 的参数方程为⎩⎨⎧+=+=t y t x 32t 为参数,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. . 答案5 解析4 2014上海已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 ;答案 31解析.C 2014陕西坐标系与参数方程选做题在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是C5 2014天津在以O 为极点的极坐标系中,圆θρ4sin =和直线a =θρsin 相交于,A B两点.若ΔAOB 是等边三角形,则a 的值为___________. 解:3 圆的方程为2224x y,直线为y a .因为AOB 是等边三角形,所以其中一个交点坐标为,代入圆的方程可得3a.6. 2014广东坐标与参数方程选做题在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__三.解答题1. 2014新课标I 本小题满分10分选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩t 为参数.Ⅰ写出曲线C 的参数方程,直线l 的普通方程;Ⅱ过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.解析:.Ⅰ 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩θ为参数,直线l 的普通方程为:260x y +-= ………5分 Ⅱ2在曲线C 上任意取一点P 2cos θ,3sin θ到l 的距离为53sin 65d θθ=+-, 则()025||6sin 305d PA θα==+-,其中α为锐角.且4tan 3α=. 当()sin 1θα+=-时,||PA 取得最大值,225;当()sin 1θα+=时,||PA 取得最小值,最小值为5…………10分 2. 2014新课标II 本小题满分10选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=, 0,2πθ⎡⎤∈⎢⎥⎣⎦. Ⅰ求C 的参数方程;Ⅱ设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据Ⅰ中你得到的参数方程,确定D 的坐标.3. 2014辽宁本小题满分10分选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. 1写出C 的参数方程;2设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程. 答案 1 π∈[0,θθsin 2,θcos ,==y x 2 03θsin ρ4-cos θ 2ρ=+ 解析1]π∈[0,θθsin 2,θcos ,的参数方程:曲线==y x C 242014福建本小题满分7分选修4—4:极坐标与参数方程 已知直线l 的参数方程为⎩⎨⎧-=-=ty ta x 42,t 为参数,圆C 的参数方程为⎩⎨⎧==θθsin 4cos 4y x ,θ为常数.I 求直线l 和圆C 的普通方程;II 若直线l 与圆C 有公共点,求实数a 的取值范围.解:1直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. 2因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d =52a -≤4,解得-2错误!≤a ≤2错误!.2007--2013年高考 极坐标与参数方程2013安徽数学理在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为 BA .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和2013天津数学理已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭,则|CP | = 23 .12013上海卷理在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为_____152+_____ 解析:22013北京卷理在极坐标系中,点2,6π到直线ρsin θ=2的距离等于____1_____.32013重庆数学理在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩为参数相交于,A B 两点,则______AB = 答案1642013广东理坐标系与参数方程选讲选做题已知曲线C 的参数方程为22x ty t ⎧=⎪⎨=⎪⎩为参数,C 在点()1,1处的切线为 ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则切线的极坐标方程为 .答案x+y=2 ;sin 4πρθ⎛⎫+= ⎪⎝⎭52013陕西理C. 坐标系与参数方程选做题 如图, 以过原点的直线的倾斜角θ为参数,则圆220y x x +-=的参数方程为______ .答案R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 262013江西理坐标系与参数方程选做题设曲线C 的参数方程为2x ty t=⎧⎨=⎩为参数,若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________答案2cos sin 0ρθθ-=72013湖南卷理在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________. 答案3 82013湖北理在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,直线与圆O 的极坐标方程分别为sin 4πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.2013新课标理已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.Ⅰ求M 的轨迹的参数方程;Ⅱ将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 答案92013辽宁理在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭.I 求1C 与2C 交点的极坐标;II 设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t at R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值 答案102013福建理坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上.1求a 的值及直线的直角坐标方程;2圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,α为参数,试判断直线与圆的位置关系.答案解:Ⅰ由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线的方程可化为cos sin 2ρθρθ+= 从而直线的直角坐标方程为20x y +-=Ⅱ由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离1d =<,所以直线与圆相交112013江苏在平面直角坐标系xoy 中,直线的参数方程为⎩⎨⎧=+=t y t x 21为参数,曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x θ为参数,试求直线与曲线C 的普通方程,并求出它们的公共点的坐标.答案C 解:∵直线的参数方程为⎩⎨⎧=+=t y t x 21∴消去参数后得直线的普通方程为022=--y x ①同理得曲线C 的普通方程为x y 22= ②①②联立方程组解得它们公共点的坐标为)2,2(,)1,21(-122013新课标1理选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. Ⅰ把C 1的参数方程化为极坐标方程; Ⅱ求C 1与C 2交点的极坐标ρ≥0,0≤θ<2π.答案将45cos 55sin x ty t=+⎧⎨=+⎩消去参数,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; Ⅱ2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为4π,(2,)2π.2012新课标文23已知曲线C 1的参数方程是φ为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正三角形ABC 的顶点都在C 2上,且A 、B 、C 以逆时针次序排列,点A 的极坐标为2, Ⅰ求点A 、B 、C 的直角坐标;Ⅱ设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2的取值范围. 解析:2012辽宁文23在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=;Ⅰ在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆12,C C 的极坐标方程,并求出圆12,C C 的交点坐标用极坐标表示; Ⅱ求圆12C C 与的公共弦的参数方程; 2012江苏23在极坐标中,已知圆C 经过点()24P π,,圆心为直线3sin 32ρθπ⎛⎫-=- ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.2012陕西文15直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 32012广东文14在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为5cos 5sin x y θθ⎧=⎪⎨=⎪⎩θ为参数,02πθ≤≤和21222x t y t ⎧=-⎪⎪⎨⎪=-⎪⎩t 为参数,则曲线1C 和2C 的交点坐标为 2,12011陕西文15直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ θ为参数和曲线2:1C ρ=上,则AB 的最小值为____1____.2011广东卷文14已知两曲线参数方程分别为⎩⎨⎧==θθsin cos 5y x )(πθ<≤0和⎪⎩⎪⎨⎧==t y t x 245t ∈R ,它们的交点坐标为 )552,1( .2011江苏21在平面直角坐标系xOy 中,求过椭圆5cos 3sin x y ϕϕ=⎧⎨=⎩ϕ为参数的右焦点且与直线423x ty t =-⎧⎨=-⎩t 为参数平行的直线的普通方程; 2010重庆卷文科8若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩[0,2)θπ∈有两个不同的公共点,则实数b 的取值范围为 DA (22,1)-B [22,22]-+C (,22)(22,)-∞-++∞D (22,22)-+ 2010湖南卷文科4极坐标cos p θ=和参数方程12x ty t⎧=--⎨=+⎩t 为参数所表示的图形分别是 DA. 直线、直线B. 直线、圆C. 圆、圆D. 圆、直线2010广东卷文15在极坐标系),(θρ)20(πθ≤≤中,曲线1)sin (cos =+θθρ与1)sin (cos =-θθρ的交点的极坐标为 1,0 .2010陕西卷文15坐标系与参数方程选做题参数方程cos ,1sin x y αα=⎧⎨=+⎩α为参数化成普通方程为 1)1(22=-+y x .2010辽宁卷文23已知P 为半圆C :cos sin x y θθ=⎧⎨=⎩θ为参数,0≤θ≤π上的点,点A 的坐标为1,0,O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3. Ⅰ以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; Ⅱ求直线AM 的参数方程.2010海南、宁夏已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ t 为参数, C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩θ为参数; 1化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;2若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线332,:2x t C y t =+⎧⎨=-+⎩t 为参数距离的最小值; 2009广东若直线12,23.{x t y t =-=+t 为参数与直线41x ky +=垂直,则常数k =___-6_____2008广东已知曲线12,C C 的极坐标方程分别为cos 3,4cos (0,0)2πρθρθρθ==≥≤<,则曲线1C 2C 交点的极坐标为2007广东在极坐标系中,直线l 的方程为ρsin θ=3,则点2,π/6到直线l 的距离为 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年全国高考试卷极坐标与参数方程部分汇编
1. (2014安徽理4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标
系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是13
x t y t =+⎧⎨=-⎩,
(t 为参数),圆C
的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为()
A .14
B .214
C .2
D .22
2. (2014广东理14)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为____________.
3. (2014广东文14)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则1C 与2C 的交点的直角坐标为_______.
4.
(2014湖北理16)已知曲线1C 的参数方程是33x t
t
y ⎧=⎪⎨=
⎪⎩
(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 与2C 交点的直角
坐标为________ 5.
(2014湖南文12)在平面直角坐标系中,曲线2
22:212
x t C y t ⎧=+
⎪⎪⎨
⎪=+⎪⎩(t 为参数)的普通方程
为_________
6. (2014陕西理15C 文15C )在极坐标系中,点π26⎛⎫ ⎪⎝⎭,到直线πsin 16ρθ⎛
⎫-= ⎪⎝
⎭的距离是
______ 7.
(2014江苏理21C )在平面直角坐标系xoy 中,已知直线l 的参数方程2
12222
x t
y t ⎧
=-
⎪⎪
⎨
⎪=+⎪⎩
(t 是参数),直线l 与抛物线24y x =相交于,A B 两点,求线段AB 的长.
8. (2014福建理21⑵)已知直线l 的参数方程为24x a t
y t =-⎧⎨=-⎩
,(t 为参数),圆C 的参数方程
为4cos 4sin x y θθ=⎧⎨=⎩,(θ为参数). (1)求直线l 和圆C 的普通方程;
(2)若直线l 与圆C 有公共点,求实数a 的取值范围.
9. (2014辽宁文理23)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .
⑴写出C 的参数方程;
⑵设直线220l x y +-=∶与C 的交点为12P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.
10. (2014新课标I 文理23)已知曲线C :22
149x y +=,直线l :222x t y t =+⎧⎨=-⎩
(t 为参数).
⑴写出曲线C 的参数方程,直线l 的普通方程;
⑵过曲线C 上任一点P 作与l 夹角为30︒的直线,交l 于点A ,求||PA 的最大值与最小值11.(2014新课标II 文理23)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π02θ⎡⎤
∈,⎢⎥⎣⎦
.
⑵ 求C 的参数方程;
⑵设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据⑴中你得到的参数方程,确定D 的坐标.
12.(2013·江西理科·T15)设曲线C 的参数方程为2
x=t y=t ⎧⎨⎩(t 为参数),若以直角坐标系
的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为_______. 13(2013·北京理科·T9)在极坐标系中,点(2,π/6)到直线ρsin θ=2的距离等于————
14.(2013·湖南理科·T9) 在平面直角坐标系xoy 中,若,3cos ,
:(t )C :2sin ϕϕϕ==⎧⎧⎨⎨=-=⎩⎩
为参数过椭圆(为参数)
x t x l y t a y 的右顶点,则常数a 的值为.
15(2013·广东文科·T14)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为.————
16.2013·陕西文·T15)圆锥曲线22x t y t ⎧=⎨
=⎩ (t 为参数)的焦点坐标是 ——————
17..(2013·辽宁文理·T23)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立
极坐标系。
圆
1C ,直线2C 的极坐标方程分别为
4sin ,cos()2 2.
4
π
ρθρθ=-=()I 求1C 与
2C 的交点的极坐标;
()II 设P 为1C 的圆心,Q 为1C 与2C 的交点连线的中点,已知直线PQ 的参数方程为
33,().12x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数求,a b 的值。
18.(2013·新课标Ⅰ文理·T23)已知曲线C 1的参数方程为45cos ,
55sin ,x t y t =+⎧⎨
=+⎩(t 为参数)
,
以坐标原点为极点,
x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为
θ
ρsin
2
=.
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。
19.(2013·江苏·T21)在平面直角坐标系xOy中, 直线l的参数方程为
1
2
x t
y t
=+
⎧
⎨
=
⎩(t 为参
数),曲线C 的参数方程为
2
2tan
2tan
x
y
θ
θ
⎧=
⎨
=
⎩(θ为参数).试求直线l和曲线C的普通方程, 并求
出它们的公共点的坐标.
20.(2013·福建理·T21)在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建
立极坐标系.已知点A的极坐标为
⎪
⎭
⎫
⎝
⎛
4
,2
π
,直线l的极坐标方程为
a
=
-)
4
cos(
π
θ
ρ
,且点A
在直线l上。
(Ⅰ)求a的值及直线l的直角坐标方程;
(Ⅱ)圆C的参数方程为
)
(
sin
,
cos
1
为参数
a
a
y
a
x
⎩
⎨
⎧
=
+
=
,试判断直线l与圆C的位置关系.。