壶关县一中2018-2019学年下学期高二期中数学模拟题
高二第二学期期中考试数学试卷含答案(word版)
2018-2019学年度第二学期期中考试试题高二数学试卷第I 卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是 ( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.函数y=f(x)的导函数y=()'f x 的图象如图所示,则函数y=f(x)的图象可能是 ( )A. B.C. D.3.曲线C 经过伸缩变换后,对应曲线的方程为:122='+'y x ,则曲线C 的方程为( )A. B. C. D. 4x 2+9y 2=14. 31()i i-的虚部是( ) A. -8 B.i 8- C.8 D.05.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y =6.设点P 对应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A. (23,π43) B. (23-,π45) C. (3,π45) D. (-3,π43) 7.用反证法证明“自然数a ,b ,c 中恰有一个偶数”时,下列假设正确的是( )A. 假设a ,b ,c 至少有两个偶数B. 假设a ,b ,c 都是奇数C. 假设a ,b ,c 都是奇数或至少有两个偶数D. 假设a ,b ,c 都是偶数8.若函数xax x x f 1)(2++=在),21(+∞是增函数,则a 的取值范围是( )A.[]-1,0B.[]-∞1,C.[]0,3D.[]3∞,+9.已知函数()cos 1x f x x =+ , ()f x 的导函数为()'f x , 则'2f π⎛⎫= ⎪⎝⎭( )A .2π-B .1π-C .πD .2π10.用演绎推理证明函数y =x 3是增函数时的小前提是( )A .增函数的定义B .函数y =x 3满足增函数的定义 C .若x 1>x 2,则f (x 1)<f (x 2) D .若x 1>x 2,则f (x 1)>f (x 2)11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12. 若x=-2是函数f(x)= (2x +ax-1)1x e -的极值点,则f(x)的极小值为 ( )A.-1B.-23e -C.53e -D.1第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分.) 13.在极坐标系中,以)2,2(πa 为圆心,2a为半径的圆的极坐标方程是 。
壶关县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
壶关县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若cos (﹣α)=,则cos (+α)的值是( )A .B .﹣C .D .﹣2. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .33. 某几何体的三视图如图所示,则它的表面积为( )A .B .C .D .4. 在正方体1111ABCD A BC D 中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11BC 5. 设a=60.5,b=0.56,c=log 0.56,则( ) A .c <b <a B .c <a <b C .b <a <cD .b <c <a6. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.7. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .68. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.9. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1B .3C .5D .911.已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a12.设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2B .8C .﹣2或8D .2或8二、填空题13.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .14.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .15.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .16.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .17.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .18.已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集 是 ▲ .三、解答题19.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于﹣.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.20.已知矩阵A =,向量=.求向量,使得A 2=.21.已知f (α)=,(1)化简f (α);(2)若f (α)=﹣2,求sin αcos α+cos 2α的值.22.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.23.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点C 为圆O 上一点,CP 为圆的切线,CE 为圆的直径,3CP =.(1)若PE 交圆O 于点F ,165EF =,求CE 的长; (2)若连接OP 并延长交圆O 于,A B 两点,CD OP ⊥于D ,求CD 的长.24.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.壶关县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B【解析】解:∵cos (﹣α)=,∴cos (+α)=﹣cos=﹣cos (﹣α)=﹣.故选:B .2. 【答案】D 【解析】解:设等差数列{a n }的公差为d ,则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,联立解得,∴S 6=6a 1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.3. 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.4. 【答案】D 【解析】试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断. 5. 【答案】A【解析】解:∵a=60.5>1,0<b=0.56<1,c=log 0.56<0,∴c<b<a.故选:A.【点评】本题考查了指数函数与对数函数的单调性,属于基础题.6.【答案】B7.【答案】B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B.【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x ,y 后,即可求出参数的值.8. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 9. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x<, 由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x <,即10x<10﹣lg2,由指数函数的单调性可知:x <﹣lg2 故选:D10.【答案】C【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A}, ∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个. 故选C .11.【答案】C【解析】解:由题意f (x )=f (|x|). ∵log 43<1,∴|log 43|<1;2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C12.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.二、填空题13.【答案】.【解析】解:设大小正方形的边长分别为x,y,(x,y>0).则+x+y+=3+,化为:x+y=3.则x2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.14.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.15.【答案】0.3.【解析】离散型随机变量的期望与方差.【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500,∵P(400<ξ<450)=0.3,∴根据对称性,可得P(550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.16.【答案】.【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.17.【答案】 .【解析】解:∵asinA=bsinB+(c ﹣b )sinC ,∴由正弦定理得a 2=b 2+c 2﹣bc ,即:b 2+c 2﹣a 2=bc ,∴由余弦定理可得b 2=a 2+c 2﹣2accosB ,∴cosA===,A=60°.可得:sinA=, ∵bc=4,∴S △ABC =bcsinA==. 故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.18.【答案】[]2,4-考点:利用函数性质解不等式1111]三、解答题19.【答案】【解析】解:(Ⅰ)因为点B 与A (﹣1,1)关于原点O 对称,所以点B 得坐标为(1,﹣1).设点P 的坐标为(x ,y )化简得x 2+3y 2=4(x ≠±1).故动点P 轨迹方程为x 2+3y 2=4(x ≠±1)(Ⅱ)解:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0)则.因为sin ∠APB=sin ∠MPN ,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.20.【答案】=【解析】A2=.设=.由A2=,得,从而解得x=-1,y=2,所以=21.【答案】【解析】解:(1)f(α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)22.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-.【解析】试题解析:(1)设()(0)f x kx b k =+>,111]由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩ ∴()5f x x =+,[]3,2x ∈-.(2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法.23.【答案】(1)4CE =;(2)CD =. 【解析】 试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,090CFE ∠=,所以ECP ∆∽EFC ∆,设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,所以2x =4x =.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.24.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.。
壶关县第一中学校2018-2019学年高二上学期第二次月考试卷数学
壶关县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=e ln|x|+的大致图象为( )A .B .C .D .2. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非3. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1} 4. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|5. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D .6. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3]C .(﹣3,0]D .(﹣3,+∞)7. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力. 8. 在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .9. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④B .①⑤C .②⑤D .③⑤10.在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于( )A .B .5C .3D .11.在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、2512.cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12- D . 二、填空题13.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ . 14.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .15.定积分sintcostdt= .16.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)17.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大. 18.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________三、解答题19.已知过点P (0,2)的直线l 与抛物线C :y 2=4x 交于A 、B 两点,O 为坐标原点. (1)若以AB 为直径的圆经过原点O ,求直线l 的方程;(2)若线段AB 的中垂线交x 轴于点Q ,求△POQ 面积的取值范围.20.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)16 14 12 8每小时生产有缺陷的零件数y(件)11 9 8 5(1)画出散点图;(2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=,=﹣x.21.定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),则(1)求f(0);(2)证明:f(x)为奇函数;(3)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.22.已知等差数列{a n}的首项和公差都为2,且a1、a8分别为等比数列{b n}的第一、第四项.(1)求数列{a n}、{b n}的通项公式;(2)设c n=,求{c n}的前n项和S n.23.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.24.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.壶关县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:∵f (x )=e ln|x|+∴f (﹣x )=eln|x|﹣f (﹣x )与f (x )即不恒等,也不恒反,故函数f (x )为非奇非偶函数,其图象不关于原点对称,也不关于y 轴对称, 可排除A ,D ,当x →0+时,y →+∞,故排除B故选:C .2. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C3. 【答案】D【解析】解:A ∩B={x|﹣2<x <1}∩{x|0<x <2}={x|0<x <1}.故选D .4. 【答案】D【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.5. 【答案】 D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.6.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g (﹣1)=﹣2﹣1=﹣3, 故结合图象可知,a >﹣3时, 方程a=2x﹣有且只有一个解,即函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,故选:D .7. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 8. 【答案】D【解析】设的公比为,则,,因为也是等比数列,所以,即,所以 因为,所以,即,所以,故选D答案:D9. 【答案】D【解析】解:当m ⊂α,α∥β时,根据线面平行的定义,m 与β没有公共点,有m ∥β,其他条件无法推出m ∥β, 故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.10.【答案】D【解析】解:由题意可知三角形的面积为S===AC •BCsin60°,∴AC •BC=.由余弦定理AB 2=AC 2+BC 2﹣2AC •BCcos60°=(AC+BC )2﹣3AC •BC ,∴(AC+BC )2﹣3AC •BC=3,∴(AC+BC )2=11.∴AC+BC=故选:D【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.11.【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =. 12.【答案】D 【解析】试题分析:原式()()cos80cos130sin80sin130cos 80130cos210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒=.考点:余弦的两角和公式.二、填空题13.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.14.【答案】8.【解析】解:∵抛物线y2=8x=2px,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10,∴x=8,故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.15.【答案】.【解析】解:0sintcostdt=0sin2td(2t)=(﹣cos2t)|=×(1+1)=.故答案为:16.【答案】, 无.【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350.由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。
壶关县第一中学2018-2019学年下学期高二期中数学模拟题
壶关县第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A 2. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 3. 下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D .4. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( ) A .4320 B .2400 C .2160 D .13205. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( ) A.5B.2D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 6. 与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条 7.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A.B.C.D.8. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .1999. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A .(0,1)B .(0,]C .(0,)D .[,1)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知α是三角形的一个内角,且,则这个三角形是()A.钝角三角形B.锐角三角形C.不等腰的直角三角形D.等腰直角三角形11.已知偶函数f(x)=log a|x﹣b|在(﹣∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是()A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C.f(a+1)≤f(b+2)D.f(a+1)<f(b+2)12.自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟③报考“卓越”联盟的学生,都没报考“京派”联盟④不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是()A.没有同时报考“华约” 和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟二、填空题13.某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元.14.下列说法中,正确的是.(填序号)①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称;③y=()﹣x是增函数;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0.15.(sinx+1)dx的值为.16.复数z=(i虚数单位)在复平面上对应的点到原点的距离为.17.已知命题p:实数m满足m2+12a2<7am(a>0),命题q:实数m满足方程+=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,a的取值范围为.18.计算:×5﹣1=.三、解答题19.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求tan tan AB的值;(Ⅱ)若a =4B π=,求ABC ∆的面积.20.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0(1)若a=,且p ∧q 为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.21.未来制造业对零件的精度要求越来越高.3D 打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A 高校3D 打印实验团队租用一台3D 打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm ). (Ⅰ) 计算平均值μ与标准差σ;(Ⅱ) 假设这台3D 打印设备打印出品的零件内径Z 服从正态分布N (μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm ):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?参考数据:P (μ﹣2σ<Z <μ+2σ)=0.9544,P (μ﹣3σ<Z <μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.22.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.23.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1,且这个几何体的体积为10.(Ⅰ)求棱AA1的长;(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.24.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.壶关县第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可. 与命题“若x ∈A ,则y ∉A ”等价的命题是若y ∈A ,则x ∉A . 故选D .2. 【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).3. 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性 【试题解析】若函数是奇函数,则故排除A 、D ;对C :在(-和(上单调递增,但在定义域上不单调,故C 错; 故答案为:B 4. 【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.5.【答案】A.【解析】6.【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,;;∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.∴两圆的圆心距=r2﹣r1;∴两个圆外切,∴它们只有1条内公切线,2条外公切线.故选C.7.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=恰有4个根,则满足<<2,解得:b∈(,4),故选:D.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.8.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.9.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.10.【答案】A【解析】解:∵(sin α+cos α)2=,∴2sin αcos α=﹣,∵α是三角形的一个内角,则sin α>0, ∴cos α<0, ∴α为钝角,∴这个三角形为钝角三角形.故选A .【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.11.【答案】B【解析】解:∵y=log a |x ﹣b|是偶函数 ∴log a |x ﹣b|=log a |﹣x ﹣b| ∴|x ﹣b|=|﹣x ﹣b|∴x 2﹣2bx+b 2=x 2+2bx+b 2整理得4bx=0,由于x 不恒为0,故b=0 由此函数变为y=log a |x|当x ∈(﹣∞,0)时,由于内层函数是一个减函数, 又偶函数y=log a |x ﹣b|在区间(﹣∞,0)上递增 故外层函数是减函数,故可得0<a <1 综上得0<a <1,b=0∴a+1<b+2,而函数f (x )=log a |x ﹣b|在(0,+∞)上单调递减 ∴f (a+1)>f (b+2) 故选B .12.【答案】D【解析】集合A 表示报考“北约”联盟的学生,集合B 表示报考“华约”联盟的学生, 集合C 表示报考“京派”联盟的学生,集合D 表示报考“卓越”联盟的学生,由题意得U A B B CD C D B=∅⎧⎪⊆⎪⎨=∅⎪⎪=⎩ð,∴U A D B C D B ⊆⎧⎪=⎨⎪=⎩ð, 选项A .B D =∅,正确;选项B .B C =,正确; 选项C .A D ⊆,正确.A D B=C二、填空题13.【答案】18.2【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.14.【答案】②④【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.15.【答案】2.【解析】解:所求的值为(x﹣cosx)|﹣11=(1﹣cos1)﹣(﹣1﹣cos(﹣1))=2﹣cos1+cos1=2.故答案为:2.16.【答案】.【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.17.【答案】[,].【解析】解:由m2﹣7am+12a2<0(a>0),则3a<m<4a即命题p:3a<m<4a,实数m满足方程+=1表示的焦点在y轴上的椭圆,则,,解得1<m<2,若p是q的充分不必要条件,则,解得,故答案为[,].【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q 的等价条件是解决本题的关键.18.【答案】9.【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.三、解答题19.【答案】【解析】(本小题满分12分)解:(Ⅰ)由1)cos2cosa Bb A c-=及正弦定理得1)sin cos2sin cos sin sin cos+cos sinA B B A C A B A B-==,(3分)cos3sin cosA B B A=,∴tantanAB=(6分)(Ⅱ)tan A B=,3Aπ=,sin42sin sin3a BbAππ===,(8分)sin sin()C A B=+=(10分)∴ABC∆的面积为111sin2(3222ab C==+(12分)20.【答案】【解析】解:p:,q:a≤x≤a+1;∴(1)若a=,则q:;∵p∧q为真,∴p,q都为真;∴,∴;∴实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;∴,∴;∴实数a的取值范围为.【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.21.【答案】【解析】解:(I)平均值μ=100+=105.标准差σ==6.(II)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(105,62),∴P(μ﹣2σ<Z<μ+2σ)=P(93<Z<117)=0.9544,可知:落在区间(93,117)的数据有3个:95、103、109,因此满足2σ的概率为:0.95443×0.04562≈0.0017.P(μ﹣3σ<Z<μ+3σ)=P(87<Z<123)=0.9974,可知:落在区间(87,123)的数据有4个:95、103、109、118,因此满足3σ的概率为:0.99744×0.0026≈0.0026.由以上可知:此打印设备不需要进一步调试.【点评】本题考查了茎叶图、平均值与标准差、正态分布,考查了推理能力与计算能力,属于中档题.22.【答案】(1)a=12(2)(-∞,-1-1e].(3)827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立, 所以-(a +1)≥22ln xx . 令g (x )=22ln xx ,x >0,则g '(x )=()3212ln x x-.令g '(x )=0,解得x当x ∈(0g '(x )>0,所以g (x )在(0当x ∞)时,g '(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g 1e, 所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e].(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . f (1)=3a -1,f (2)=4.②当53<a<2时,当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.因为h'(a)=3a2-6a+3=3(a-1)2≥0.所以h(a)在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.③当a≥2时,当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.23.【答案】【解析】解:(Ⅰ)设AA1=h,由题设=﹣=10,∴即,解得h=3.故A1A的长为3.(Ⅱ)∵在长方体中,A1D1∥BC,∴∠O1BC为异面直线BO1与A1D1所成的角(或其补角).在△O1BC中,AB=BC=2,A1A=3,∴AA1=BC1=,=,∴,则cos∠O1BC===.∴异面直线BO1与A1D1所成角的余弦值为.【点评】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离.24.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为。
壶关县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析
第 2 页,共 17 页
14.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由 于爱好者众多,高三学生队队员指定由 5 班的 6 人、16 班的 8 人、33 班的 10 人按分层抽样构成一个 12 人的 篮球队.首发要求每个班至少 1 人,至多 2 人,则首发方案数为( A.720 B.270 C.390 D.300 15.已知定义在 R 上的奇函数 f(x)满足 f(x)=2x﹣4(x>0) ,则{x|f(x﹣1)>0}等于( A.{x|x>3} B.{x|﹣1<x<1} C.{x|﹣1<x<1 或 x>3} D.{x|x<﹣1} ) )
∴存在 x1<a<x2,f'(a)=0, ∴ ,∴ ,解得 a= ,
假设 x1,x2 在 a 的邻域内,即 x2﹣x1≈0.
第 8 页,共 17 页
∵ ∴ ,
,
∴f(x)的图象在 a 的邻域内的斜率不断减少小,斜率的导数为正, ∴x0>a, 又∵x>x0,又∵x>x0 时,f''(x)递减, ∴ 故选:A. 【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运 用. 8. 【答案】B 【解析】解:因为 B={0,1,2,3},C={0,2,4},且 A⊆B,A⊆C; ∴A⊆B∩C={0,2} ∴集合 A 可能为{0,2},即最多有 2 个元素, 故最多有 4 个子集. 故选:B. 9. 【答案】B 【解析】解:设 z=a+bi(a,b∈R),则 =a﹣bi, 由z =2( +i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i], 整理得 a2+b2=2a+2(b﹣1)i. 则 所以 z=1+i. 故选 B. 【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实 部,虚部等于虚部,是基础题. 10.【答案】A 【解析】根据复数的运算可知 z 11.【答案】B ,解得 . .
山西省长治市壶关县中学高二数学理月考试卷含解析
山西省长治市壶关县中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若双曲线﹣=1的一个焦点到一条渐近线的距离为2a,则双曲线的离心率为( ) A.2 B.C.D.参考答案:D【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】确定双曲线﹣=1的一个焦点为(c,0),一条渐近线方程为bx+ay=0,利用双曲线﹣=1的一个焦点到一条渐近线的距离为2a,建立方程,即可求出双曲线的离心率.【解答】解:双曲线﹣=1的一个焦点为(c,0),一条渐近线方程为bx+ay=0,∵双曲线﹣=1的一个焦点到一条渐近线的距离为2a,∴=2a,∴b=2a,∴c==a,∴e==.故选:D.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,由双曲线﹣=1的一个焦点到一条渐近线的距离为2a,求出b值,是解题的关键.2. 函数f(x)=2sinxcosx是()A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数参考答案:C3. 当θ是第四象限时,两条直线和的位置关系是()A.平行 B.垂直C.相交但不垂直 D.重合参考答案:B4. 已知是两条不同的直线,是两个不同的平面,给出下列四个命题:①则;②若则;③若则;④若,则.其中正确的命题的序号是A. ①③B. ②③C. ①④D. ②④参考答案:C5. 椭圆的离心率为()A. B. C. D.参考答案:C6. 不等式的解集是()A.(﹣3,﹣2)(0,+∞)B.(﹣∞,﹣3)(﹣2,0)C.(﹣3,0)D.(﹣∞,﹣3)(0,+∞)参考答案:A【考点】其他不等式的解法.【专题】不等式的解法及应用.【分析】原不等式等价于>0.把各个因式的根排列在数轴上,用穿根法求得它的解集.【解答】解:不等式等价于>0.如图,把各个因式的根排列在数轴上,用穿根法求得它的解集为(﹣3,﹣2)∪(0,+∞),故选A.【点评】本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.7. 两条直线mx+y-n=0和x+my+1=0互相平行的条件是( )A.m=±1B.m=1且n≠-1C.m=-1且n≠1D.m=1且n≠-1 或 m=-1且n≠1参考答案:D8. 设的展开式的各项系数之和为M,二项式系数之和为N,若240,则展开式中x的系数为()A. 300B. 150C. -150D. -300 参考答案:B【分析】分别求得二项式展开式各项系数之和以及二项式系数之和,代入,解出的值,进而求得展开式中的系数.【详解】令,得,故,解得.二项式为,展开式的通项公式为,令,解得,故的系数为.故选B.【点睛】本小题主要考查二项式展开式系数之和、二项式展开式的二项式系数之和,考查求指定项的系数,属于中档题.9. 函数y=sin2x的图象可能是A. B.C. D.参考答案:D分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.10. (5分)如果复数z满足(2+i)z=5i(i是虚数单位),则z()A. 1+2i B.﹣1+2i C.2+i D.1﹣2i参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 在的展开式中,设各项的系数和为a,各项的二项式系数和为b,则= .参考答案:112.若关于的不等式有解,则的取值范围为参考答案:13. 已知三棱锥的所有顶点都在球的球面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为__________.参考答案:略14. 设,则四个数,,,中最小的是__________.参考答案:【分析】根据基本不等式,先得到,,再由作商法,比较与,即可得出结果.【详解】因为,所以,,又,所以,综上,最小.故答案为【点睛】本题主要考查由不等式性质比较大小,熟记不等式的性质,以及基本不等式即可,属于常考题型.15. 若等差数列{a n}中有a6+a9+a12+a15=20,则其前20项和等于.参考答案:100【考点】等差数列的前n项和;等差数列的性质.【分析】由等差数列{a n}中有a6+a9+a12+a15=20,知a1+a20=10,由此能求出其前20项和.【解答】解:等差数列{a n}中,∵a6+a9+a12+a15=2(a1+a20)=20,∴a1+a20=10,∴=10×10=100.故答案为:100.16. 若是所在平面外一点,且,则点在平面内的射影是的__________.(外心、内心、重心、垂心)参考答案:外心17. 已知点A(﹣2,3)、B(3,2),若直线l:y=kx﹣2与线段AB没有交点,则l的斜率k的取值范围是.参考答案:【考点】二元一次不等式(组)与平面区域.【分析】根据题意,分析可得,原问题可以转化为点A、B在直线的同侧问题,利用一元二次不等式对应的平面区域可得[k(﹣2)﹣3﹣2)]×[k(3)﹣2﹣2]>0,解可得k的范围,即可得答案.【解答】解:根据题意,直线l:y=kx﹣2与线段AB没有交点,即A(﹣2,3)、B(3,2)在直线的同侧,y=kx﹣2变形可得kx﹣y﹣2=0,必有[k(﹣2)﹣3﹣2)]×[k(3)﹣2﹣2]>0解可得:k∈,故答案为.三、解答题:本大题共5小题,共72分。
壶关县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
壶关县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)2.已知函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.若数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),则{a n}的前28项之和S28=()A.7 B.14 C.28 D.563.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()A.<,乙比甲成绩稳定B.<,甲比乙成绩稳定C.>,甲比乙成绩稳定D.>,乙比甲成绩稳定x-=表示的曲线是()4.方程1A.一个圆B.两个半圆C.两个圆D.半圆5.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC .60+10πD .80+10π6. 已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=7. 已知向量||=, •=10,|+|=5,则||=( )A .B .C .5D .258. 记,那么ABC D9. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.10.定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .1311.己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或12.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A . B . C .D .二、填空题13.设S n 是数列{a n }的前n 项和,且a 1=﹣1,=S n .则数列{a n }的通项公式a n = .14.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.15.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)16.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .17.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.18.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .三、解答题19.已知函数的图象在y 轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f (x )的解析式;(2)将y=f (x )图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g (x )的图象.写出函数y=g (x )的解析式.20.我市某校某数学老师这学期分别用m ,n 两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高? (Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P (K 2≥k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:K 2=,其中n=a+b+c+d )21.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.22.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.23.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).(Ⅰ)求矩阵M 的逆矩阵M ﹣1;(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.24.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîaa(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标; (II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.壶关县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.2.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.3.【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.4.【答案】A【解析】试题分析:由方程1x-=,即221x-=22-++=,所(1)(1)1x y以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.5.【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r×2r+12)×2+5×2r×2+5×2r+πr×5=92+14π,2πr即(8+π)r2+(30+5π)r-(92+14π)=0,即(r-2)[(8+π)r+46+7π]=0,∴r=2,∴该几何体的体积为(4×4+12)×5=80+10π.2π×26.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.7.【答案】C【解析】解:∵;∴由得,=;∴;∴.故选:C.8.【答案】B【解析】【解析1】,所以【解析2】,9. 【答案】A【解析】根据复数的运算可知43)2()2(22--=--=-=i i i ii z ,可知z 的共轭复数为43z i =-+,故选A.10.【答案】 C【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),∵2tan =2,lg =﹣1,∴(2tan )⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne ⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10. 故选:C .11.【答案】B【解析】解:因为y=f (x )为奇函数,所以当x >0时,﹣x <0, 根据题意得:f (﹣x )=﹣f (x )=﹣x+2,即f (x )=x ﹣2, 当x <0时,f (x )=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x <﹣3,解得x <﹣,则原不等式的解集为x <﹣; 当x ≥0时,f (x )=x ﹣2,代入所求的不等式得:2(x ﹣2)﹣1<0,即2x <5,解得x <,则原不等式的解集为0≤x <,综上,所求不等式的解集为{x|x <﹣或0≤x <}. 故选B12.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。
壶关县高中2018-2019学年高二下学期第二次月考试卷数学
壶关县高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. △ABC 中,A (﹣5,0),B (5,0),点C在双曲线上,则=( )A.B.C.D .±2. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?3. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A.B. C. D.4. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -5. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称6. 执行如图的程序框图,若输出i 的值为12,则①、②处可填入的条件分别为( )A .S 384,2i i ≥=+ 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .3840,1S i i >=+D .3840,2S i i ≥=+ 7. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位8. 与椭圆有公共焦点,且离心率的双曲线方程为( )A .B .C .D .9. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >210.设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假11.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )A .向左平移个单位得到B .向右平移个单位得到C .向左平移个单位得到 D .向左右平移个单位得到12.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个二、填空题13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .15.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5;④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).16.命题“若1x ≥,则2421x x -+≥-”的否命题为 .17.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .18.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 .三、解答题19.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2. (Ⅰ)求数列{a n }通项公式;(Ⅱ)设数列{b n }满足b n =(n ∈N *),求证:b 1+b 2+…+b n <.20.(本题满分12分)如图1在直角三角形ABC 中,∠A=90°,AB=2,AC=4,D ,E 分别是AC ,BC 边上的中点,M 为CD 的中点,现将△CDE 沿DE 折起,使点A 在平面CDE 内的射影恰好为M . (I )求AM 的长;(Ⅱ)求面DCE 与面BCE 夹角的余弦值.21.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.(Ⅰ)求函数f (x )的解析式;(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.22.已知函数f (x )=e x ﹣ax ﹣1(a >0,e 为自然对数的底数). (1)求函数f (x )的最小值;(2)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的值.23.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .24.已知,且.(1)求sin α,cos α的值;(2)若,求sin β的值.25.已知椭圆C :+=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.26.设A=2{x|2x+ax+2=0},2A ∈,集合2{x |x 1}B ==(1)求a 的值,并写出集合A 的所有子集;(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。
壶关县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
壶关县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1202. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,3. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 4. 设函数f (x )=则不等式f (x )>f (1)的解集是( )A .(﹣3,1)∪(3,+∞)B .(﹣3,1)∪(2,+∞)C .(﹣1,1)∪(3,+∞)D .(﹣∞,﹣3)∪(1,3) 5. 已知函数f (x )=2x﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0 B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定6. “4<k <6”是“方程表示椭圆”的( )A .充要条件B .充分不必要条件DABCOC .必要不充分条件D .既不充分也不必要条件7. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( ) A .16B .6C .4D .88. 设a=60.5,b=0.56,c=log 0.56,则( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a9. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米10.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 11.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .D .12.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.13.若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 14.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A .B .(4+π)C .D .15.为了得到函数的图象,只需把函数y=sin3x 的图象( )A .向右平移个单位长度B .向左平移个单位长度C .向右平移个单位长度D .向左平移个单位长度二、填空题16.设函数f (x )=则函数y=f (x )与y=的交点个数是 .17()23k x =-+有两个不等实根,则的取值范围是 .18.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .19.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .三、解答题20.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。
壶关县高中2018-2019学年高二上学期数学期末模拟试卷含解析
壶关县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣202. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .03. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]4. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .125. 过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1 C .﹣=1 D .﹣=16. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈 B .5立方丈 C .6立方丈 D .8立方丈7. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .98. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[-【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力. 9. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.10.若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( )A .1B .2C .3D .411.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .30012.已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1B .3C .5D .9二、填空题13.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)14.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .15.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .16.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 17.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).18.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .三、解答题19.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.20.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.21.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.22.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.23.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)24.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.壶关县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a(0≤a<7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x﹣3的系数为=﹣4320,故选:B..2.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.3.【答案】B【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x≤1,即N=(﹣1,1],则M∩N=(0,1],故选:B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 5. 【答案】A【解析】解:设所求双曲线方程为﹣y 2=λ,把(2,﹣2)代入方程﹣y 2=λ,解得λ=﹣2.由此可求得所求双曲线的方程为.故选A .【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.6. 【答案】 【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.7. 【答案】C【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f (x )=sin ωx+cos ωx=2sin (ωx+).再根据f ()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7, 故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.8. 【答案】C.【解析】由题意得,[11]A =-,,(,0]B =-∞,∴(0,1]U AC B =,故选C.9. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.10.【答案】A【解析】解:∵f (x )=acosx ,g (x )=x 2+bx+1,∴f ′(x )=﹣asinx ,g ′(x )=2x+b ,∵曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,∴f (0)=a=g (0)=1,且f ′(0)=0=g ′(0)=b , 即a=1,b=0. ∴a+b=1. 故选:A .【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.11.【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队. 各个班的人数有5班的3人、16班的4人、33班的5人, 首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: ++=390.故选:C . 12.【答案】C【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A}, ∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个.故选C.二、填空题13.【答案】①②④【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.14.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y过图形上的点A的坐标,即可求解.【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,即圆心为(1,﹣2),半径为的圆,(如图)设z=x ﹣2y ,将z 看做斜率为的直线z=x ﹣2y 在y 轴上的截距, 经平移直线知:当直线z=x ﹣2y 经过点A (2,﹣4)时,z 最大, 最大值为:10. 故答案为:10.15.【答案】 .【解析】设A (1,1),B (﹣1,﹣1),则直线AB 过原点,且阴影面积等于直线AB 与圆弧所围成的弓形面积S 1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.16.【答案】6π,18123+ 【解析】17.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB ′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等, 故本命题不正确. 故答案为:BC .18.【答案】 [5,+∞) .【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得 f (x )=x 3,再由条件可得m ≥x 2在区间[,]上恒成立,求得x 2在区间[,]上的最大值,可得m 的范围.【解答】解:由题意可得 f (x )=x 6=x 3.由f (x )≤mx 在区间[,]上恒成立,可得m ≥x 2在区间[,]上恒成立,由于x 2在区间[,]上的最大值为 5,故m ≥5,即m 的范围为[5,+∞), 故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.三、解答题19.【答案】(1)()21sin cos S θθ=+,其中02πθ<<.(2)6πθ=时,max S =【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,()1cos sin BC θθ=++最后根据梯形面积公式得()2AD BC AB S +⋅=()21sin cos θθ=+,交代定义域02πθ<<.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6πθ=,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=, 所以()2AD BC ABS +⋅=()21sin cos θθ=+,其中02πθ<<.考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x )>0或f′(x )<0求单调区间;第二步:解f′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小. 20.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解.21.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】试题解析: (1)()2af'x x b x =+-,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;(2)22626()6ln '()21x x f x x x x f x x x x--=--⇒=--=,因为函数()f x 的定义域为0x >,令(23)(2)3'()02x x f x x x +-==⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,(3)当1a =时,函数2()ln f x x bx x =+-,21111()ln 0f x x bx x =+-=,22222()ln 0f x x bx x =+-=,两式相减可得22121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=-+-. 1'()2f x x b x =+-,0001'()2f x x b x =+-,因为1202x x x +=,所以12120121212ln ln 2'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦设211xt x =>,2(1)()ln 1t h t t t -=-+,∴2222214(1)4(1)'()0(1)(1)(1)t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,∴()0h t >,又2110x x >-,所以0'()0f x >.考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 22.【答案】⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭⑶2【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()在点11f (,())处的切线方程,代入点211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得,2min max f x g x +≥()(),分析可得必有()()215218f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:⑵()()()211'ax x f x x-+=,∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,410{ 610a a -≥∴-≥,得14a ≥;若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,410{ 610a a -≤∴-≤,得16a ≤,综上,实数a 的取值范围为11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;⑶由题意得,()()min max 2f x g x +≥,()max 128g x g π⎛⎫== ⎪⎝⎭,()min 158f x ∴≥,即()()21521ln 8f x ax a x x =+--≥,由()()()()()222112111'221ax a x ax x f x ax a x x x+---+=+--==, 当0a ≤时,()10f <,则不合题意;当0a >时,由()'0f x =,得12x a=或1x =-(舍去), 当102x a<<时,()'0f x <,()f x 单调递减, 当12x a>时,()'0f x >,()f x 单调递增. ()min 11528f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117ln 2228a a -⋅≥, 设()1ln 2h x x x =-,()21102h x x x∴=+>',()h x ∴单调递增,a Z ∈,2a ∴为偶数,又()172ln248h =-<,()174ln488h =->,24a ∴≥,故整数a 的最小值为2。
壶关县一中2018-2019学年高二上学期数学期末模拟试卷含解析
壶关县一中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .42. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.3. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .15B .C .15D .15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 4. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN <<5. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .136. 函数f (x )=21﹣|x|的值域是( ) A .(0,+∞)B .(﹣∞,2]C .(0,2]D .[,2]7. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.8. 若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( )A .10B .11 C.12 D .139. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件10.设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A. BC. D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 11.已知a >0,实数x ,y满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C.D.12.极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( ) A .1 B. C. D .213.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( ) A .30° B .60° C .120° D .150° 14.定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .⎡⎢⎣⎦B .[]1,1-C .,12⎤⎥⎣⎦D .1,2⎡-⎢⎣⎦15.已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定二、填空题16.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
壶关县高中2018-2019学年高三下学期第三次月考试卷数学
壶关县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D.2. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④3. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣54. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 800 5. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )A .k >7B .k >6C .k >5D .k >4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.3127. 给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即{x}=m在此基础上给出下列关于函数f (x )=|x ﹣{x}|的四个命题:①;②f (3.4)=﹣0.4;③;④y=f (x )的定义域为R ,值域是;则其中真命题的序号是( ) A .①② B .①③C .②④D .③④8. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .279. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)10.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:111.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}12.设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)二、填空题13.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 15.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= . 16.已知是圆为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .17.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是 .18.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xx e x f e (其 中为自然对数的底数)的解集为 .三、解答题19.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是棱DD 1的中点. (Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值;(Ⅱ)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.20.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD , 平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点. (Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF与平面ACE所成角的正弦值为,求AG的长.21.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.22.在中,,,.(1)求的值;(2)求的值。
壶关县第一中学2018-2019学年高二上学期第二次月考试卷数学
壶关县第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 2. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A ) 13 ( B ) 49 (C ) 23 (D ) 893. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )A .B .C .D .5. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种6. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④7. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .8. 由直线与曲线所围成的封闭图形的面积为( )A B1C D9. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .12010.若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .111.拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .1012.若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为( )A .B .C .D .二、填空题13.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .14.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.15.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .16.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .17.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .18.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .三、解答题19.设M 是焦距为2的椭圆E :+=1(a >b >0)上一点,A 、B 是椭圆E 的左、右顶点,直线MA 与MB 的斜率分别为k 1,k 2,且k 1k 2=﹣.(1)求椭圆E 的方程;(2)已知椭圆E :+=1(a >b >0)上点N (x 0,y 0)处切线方程为+=1,若P是直线x=2上任意一点,从P 向椭圆E 作切线,切点分别为C 、D ,求证直线CD 恒过定点,并求出该定点坐标.20.函数f (x )是R 上的奇函数,且当x >0时,函数的解析式为f (x )=﹣1. (1)用定义证明f (x )在(0,+∞)上是减函数;(2)求函数f(x)的解析式.21.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.22.若函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,求a的值.23.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.24.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]壶关县第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.2. 【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.3. 【答案】D 【解析】试题分析:分析题意可知:对应法则为31y x =+,则应有42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩(1)或42313331a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩(2),由于*a N ∈,所以(1)式无解,解(2)式得:25a k =⎧⎨=⎩。
壶关县第一高级中学2018-2019学年高二上学期第二次月考试卷数学
壶关县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.随机变量x1~N(2,1),x2~N(4,1),若P(x1<3)=P(x2≥a),则a=()A.1 B.2 C.3 D.42.函数的定义域为()A.{x|1<x≤4} B.{x|1<x≤4,且x≠2} C.{x|1≤x≤4,且x≠2} D.{x|x≥4}3.已知随机变量X服从正态分布N(2,σ2),P(0<X<4)=0.8,则P(X>4)的值等于()A.0.1 B.0.2 C.0.4 D.0.64.已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个5.有下列四个命题:①“若a2+b2=0,则a,b全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q≤1”,则x2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为()A.①②B.①③C.②③D.③④6.已知向量=(1,),=(,x)共线,则实数x的值为()A.1 B.C.tan35°D.tan35°7.已知向量=(1,2),=(x,﹣4),若∥,则x=()A.4 B.﹣4 C.2 D.﹣28.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A.4πB.12πC.16πD.48π9.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件 B.必要而不充分条件C .充要条件D .既不充分也不必要条件10.若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .11.抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )A .1B .C .D .12.曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+1二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 .14.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .17.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .18.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.三、解答题19.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表;(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.独立性检验观察值计算公式,独立性检验临界值表:20.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.21.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.22.若函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,求a的值.23.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名2295%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌3.841 6.635附:K2=.24.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值.(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.壶关县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.2.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B3.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.4.【答案】A【解析】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.5.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.6.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.7.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.8.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.9.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.10.【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.11.【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A.【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.12.【答案】D【解析】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D二、填空题13.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.14.【答案】.【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为.∴点到直线l的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.,0(16.【答案】)【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.117.【答案】 .【解析】解:∵△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a 2=b 2+c 2﹣2bccosA ,可得:9=4+c 2﹣2c ,即c 2﹣2c ﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.18.【答案】 y=﹣1.7t+68.7【解析】解: =, ==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y 关于t 的线性回归方程为y=﹣1.7t+68.7. 故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.三、解答题19.【答案】【解析】解:(1)(2)所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的20.【答案】【解析】(1)证明:取ED的中点为O,由题意可得△AED为等边三角形,,,∴AC2=AO2+OC2,AO⊥OC,又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,∴平面AED⊥平面BCDE;…(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),,,,设面EAC的法向量为,面BAC的法向量为由,得,∴,∴,由,得,∴,∴,∴,∴二面角E﹣AC﹣B的余弦值为.…2016年5月3日21.【答案】【解析】解:(Ⅰ)根据直线l的参数方程为(t为参数),消去参数,得x+y﹣=0,直线l的直角坐标方程为x+y﹣=0,∵圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).∴(x+)2+(y+)2=r2(r>0).∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).(Ⅱ)∵圆心C(﹣,﹣),半径为r,…(5分)圆心C到直线x+y﹣=0的距离为d==2,又∵圆C上的点到直线l的最大距离为3,即d+r=3,∴r=3﹣2=1.【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.22.【答案】【解析】解:由题意可得:∵当a>1时,函数f(x)在区间[1,2]上单调递增,∴f(2)﹣f(1)=a2﹣a=a,解得a=0(舍去),或a=.∵当0<a<1时,函数f(x)在区间[1,2]上单调递减,∴f(1)﹣f(2)=a﹣a2=,解得a=0(舍去),或a=.故a的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.23.【答案】100人中,“歌迷”有25人,从而完成2×2列联表如下:将2×2列联表中的数据代入公式计算,得:K2==≈3.030因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b i表示女性,i=1,2.Ω由10个等可能的基本事件组成.…用A表示“任选2人中,至少有1个是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成.∴P(A)= (12)【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.24.【答案】【解析】【专题】计算题.【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.∵m∈N*,∴m=5时,x2的系数取得最小值22,此时n=3.(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2++a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=﹣1,a0﹣a1+a2﹣a3+a4﹣a5=﹣1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30.【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.。
壶关县高级中学2018-2019学年高二上学期第一次月考测试数学
壶关县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4 B .﹣4 C .0 D .2 2. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( )A .1B .2C .3D .43. 设函数f (x )=,则f (1)=( )A .0B .1C .2D .34. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦5. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个6. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B.C. D.7. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .8. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1= 9. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .410.函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .911.已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .20152212.“x >0”是“>0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件二、填空题13.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 . 14.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .15.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .16.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 17.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sinsin sin αβγ++= .18.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .三、解答题19.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.20.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y ) (1)求f (1)的值,(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.21.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .22.实数m 取什么数值时,复数z=m+1+(m ﹣1)i 分别是: (1)实数?(2)虚数? (3)纯虚数?23.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;(2)若a =5c =,求.24.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.壶关县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.2.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.3.【答案】D【解析】解:∵f(x)=,f(1)=f[f(7)]=f(5)=3.故选:D.4.【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .5. 【答案】C【解析】解:若不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,则根据题意需分两种情况: ①当a 2﹣4=0时,即a=±2,若a=2时,原不等式为4x ﹣1≥0,解得x ≥,故舍去, 若a=﹣2时,原不等式为﹣1≥0,无解,符合题意; ②当a 2﹣4≠0时,即a ≠±2,∵(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集是空集,∴,解得,综上得,实数a 的取值范围是.则当﹣1≤a ≤1时,命题为真命题,则命题的逆否命题为真命题, 反之不成立,即逆命题为假命题,否命题也为假命题, 故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,故选:C .【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想.6. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆的面积为1||2AB d '⋅=,选C . 7. 【答案】C【解析】解:∵集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n}, P={x|0≤x ≤1},且M ,N 都是集合P 的子集,∴根据题意,M 的长度为,N 的长度为, 当集合M ∩N 的长度的最小值时,M 与N 应分别在区间[0,1]的左右两端, 故M ∩N的长度的最小值是=.故选:C .8. 【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R . B .实数是复数,实数能比较大小. C .∵=,则z 1=z 2,正确;D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确. 故选:C .9. 【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C .10.【答案】C【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f (x )=sin ωx+cos ωx=2sin (ωx+).再根据f()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7, 则ω的可能值为7, 故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.11.【答案】C 【解析】试题分析:因为函数22()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()1010f f -≤⎧⎪⎨≤⎪⎩,解得3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等比数列,T 122015...a a a =,201521...T a a a =,两式相乘,根据等比数列的性质得()()2015201521201513T a a ==⨯,T =201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 12.【答案】A【解析】解:当x >0时,x 2>0,则>0∴“x >0”是“>0”成立的充分条件;但>0,x 2>0,时x >0不一定成立∴“x >0”不是“>0”成立的必要条件;故“x >0”是“>0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.二、填空题13.【答案】 A <G .【解析】解:由题意可得A=,G=±,由基本不等式可得A ≥G ,当且仅当a=b 取等号,由题意a ,b 是互异的负数,故A <G .故答案是:A <G .【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.14.【答案】 2n ﹣1 .【解析】解:∵a 1=1,a n+1=a n +2n, ∴a 2﹣a 1=2, a 3﹣a 2=22, …a n ﹣a n ﹣1=2n ﹣1,相加得:a n ﹣a 1=2+22+23+2…+2n ﹣1,a n =2n ﹣1,故答案为:2n﹣1,15.【答案】 ﹣21 .【解析】解:∵等比数列{a n }的公比q=﹣,a 6=1,∴a 1(﹣)5=1,解得a 1=﹣32,∴S 6==﹣21故答案为:﹣2116.【答案】32π 【解析】17.【答案】 【解析】试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:2222221111222111sin sin sin BC DC AC AC AC AC αβγ++=++2221212()2AB AD AA AC ++==.考点:直线与直线所成的角.【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键.18.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.三、解答题19.【答案】【解析】解:(1)∵ABC﹣A1B1C1为直三棱柱,∴CC1⊥平面ABC,AC⊂平面ABC,∴CC1⊥AC…∵AC=3,BC=4,AB=5,∴AB2=AC2+BC2,∴AC⊥CB …又C1C∩CB=C,∴AC⊥平面C1CB1B,又BC1⊂平面C1CB1B,∴AC⊥BC1…(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点…又D为AB中点,∴AC1∥DE…DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1…【点评】本题考查直线与平面垂直,直线与直线垂直,直线与平面平行的证明,考查逻辑推理能力.20.【答案】【解析】解:(1)在f()=f(x)﹣f(y)中,令x=y=1,则有f(1)=f(1)﹣f(1),∴f(1)=0;(2)∵f(6)=1,∴2=1+1=f(6)+f(6),∴不等式f(x+3)﹣f()<2等价为不等式f(x+3)﹣f()<f(6)+f(6),∴f(3x+9)﹣f(6)<f(6),即f()<f(6),∵f(x)是(0,+∞)上的增函数,∴,解得﹣3<x<9,即不等式的解集为(﹣3,9).21.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.22.【答案】【解析】解:(1)当m ﹣1=0,即m=1时,复数z 是实数; (2)当m ﹣1≠0,即m ≠1时,复数z 是虚数;(3)当m+1=0,且m ﹣1≠0时,即m=﹣1时,复数z 是纯虚数.【点评】本题考查复数的概念,属于基础题.23.【答案】(1)6B π=;(2)7b =.【解析】1111](2)根据余弦定理,得2222cos 2725457b a c ac B =+-=+-=,所以7b =考点:正弦定理与余弦定理.24.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=,。
2018-2019学年山西省长治市壶关县中学高二数学文模拟试题含解析
2018-2019学年山西省长治市壶关县中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等差数列的前项和,满足,则=()A.-2015 B.-2014 C.-2013 D.-2012参考答案:D2. 如图所示的程序框图,若f(x)=logπx,g(x)=lnx,输入x=2016,则输出的h(x)=()A.2016 B.2017 C.logπ2016 D.ln2016参考答案:C【考点】EF:程序框图.【分析】根据程序框图求出h(x)的解析式即可.【解答】解:x=2016时,f(x)=logπ2016<g(x)=ln2016,故h(x)=f(x),故选:C.【点评】本题考查了程序框图,考查对数函数的性质,是一道基础题.3. 在同一直角坐标系中,表示直线与正确的是()参考答案:C4. 函数f(x)=a x﹣1+3(a>0,且a≠1)的图象过一个定点P,且点P在直线mx+ny﹣1=0(m>0,n>0)上,则+的最小值是()A.12 B.13 C.24 D.25参考答案:D【考点】基本不等式.【分析】函数f(x)=a x﹣1+3(a>0,且a≠1)的图象过一个定点P(1,4),可得m+4n=1.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:函数f(x)=a x﹣1+3(a>0,且a≠1)的图象过一个定点P(1,4),∵点P在直线mx+ny﹣1=0(m>0,n>0)上,∴m+4n=1.则+=(m+4n)=17+≥17+4×2=25,当且仅当m=n=时取等号.故选:D.5. 用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数参考答案:B【考点】R9:反证法与放缩法.【分析】找出题中的题设,然后根据反证法的定义对其进行否定.【解答】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.6. 已知直三棱柱ABC﹣A1B1C1的各棱长均为1,棱BB1所在直线上的动点M满足,AM与侧面BB1C1C所成的角为θ,若λ∈[],则θ的取值范围是()A.[,] B.[] C.[,] D.[,]参考答案:B【考点】向量在几何中的应用.【分析】取BC中点O,连接AO,MO,可得∠AMO是AM与侧面BB1C1C所成的角,从而可得=,结合条件,即可得到结论.【解答】解:取BC中点O,连接AO,MO,则∵棱柱ABC﹣A1B1C1是直三棱柱,∴AO⊥侧面BB1C1C,∴∠AMO是AM与侧面BB1C1C所成的角∵直三棱柱ABC﹣A1B1C1的各棱长均为1,,∴,AM=∴=∵λ∈[],∴∴∴θ∈[]故选B.【点评】本题考查线面角,考查向量知识的运用,考查学生的计算能力,确定线面角是关键.7. 经过抛物线y2=2px(p>0)的焦点作一条直线l交抛物线于A(x1,y1)、B(x2,y2),则的值为()A. 4 B.﹣4 C.p2 D.﹣p2参考答案:B8. 下表是离散型随机变量X的分布列,则常数a的值是()A. B. C. D.参考答案:C【分析】利用概率和为1解得答案.【详解】,解得.故答案选C【点睛】本题考查了分布列概率和为1,属于简单题.9. 在△ABC中,a,b,c分别为A,B,C的对边,如果,B=,那么C等于A. B. C. D.参考答案:A10. 直线,若从0,1,2,3,5,7这六个数字中每次取两个不同的数作为A,B 的值,则表示成不同直线的条数是……………………()A.2B.12C.22D.25参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:.记作数列{a n},若数列{a n}的前n项和为S n,则___ .参考答案:2059【分析】将数列排列成杨辉三角数阵,使得每行的项数与行的相等,并计算出每行的各项之和,然后确定数列第所处的行数与项的序数,然后利用规律将这些项全部相加可得答案。
壶关县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
壶关县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣2. 已知命题且是单调增函数;命题,.:()(0xp f x a a =>1)a ≠5:(,44q x ππ∀∈sin cos x x >则下列命题为真命题的是( )A .B .C. D .p q ∧p q ∨⌝p q ⌝∧⌝p q⌝∧3. 给出函数,如下表,则的值域为()()f x ()g x (())f g xA .B .C .D .以上情况都有可能{}4,2{}1,3{}1,2,3,44. 下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=5. 已知集合,,若,则( )},052|{2Z x x x x M ∈<+=},0{a N =∅≠N M =a A .B .C .或D .或1-1-1-2-6. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A .钱B .钱C .钱D .钱7. 某几何体的三视图如图所示,则该几何体的表面积为()A.12π+15B.13π+12C.18π+12D.21π+158.已知命题p:∃x∈R,cosx≥a,下列a的取值能使“¬p”是真命题的是()A.﹣1B.0C.1D.29.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.10.直线l过点P(2,﹣2),且与直线x+2y﹣3=0垂直,则直线l的方程为()A.2x+y﹣2=0B.2x﹣y﹣6=0C.x﹣2y﹣6=0D.x﹣2y+5=011.已知函数f(x)=x4cosx+mx2+x(m∈R),若导函数f′(x)在区间[﹣2,2]上有最大值10,则导函数f′(x)在区间[﹣2,2]上的最小值为()A.﹣12B.﹣10C.﹣8D.﹣612.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是()A.πB.2πC.4πD.π二、填空题13.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.14.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.15.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()21ln 2f x x x =-16.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .17.(lg2)2+lg2•lg5+的值为 .18.若函数在区间上单调递增,则实数的取值范围是__________.()ln f x a x x =-(1,2)三、解答题19.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R .(Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围;(Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.20.已知F 1,F 2分别是椭圆=1(9>m >0)的左右焦点,P 是该椭圆上一定点,若点P 在第一象限,且|PF 1|=4,PF 1⊥PF 2.(Ⅰ)求m 的值;(Ⅱ)求点P 的坐标.21.已知定义在的一次函数为单调增函数,且值域为.[]3,2-()f x []2,7(1)求的解析式;()f x (2)求函数的解析式并确定其定义域.[()]f f x 22.如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ; (Ⅱ)求点D 到平面AMP 的距离.23.已知函数f (x )=.(1)求函数f (x )的最小正周期及单调递减区间;(2)当时,求f (x )的最大值,并求此时对应的x 的值.24.数列中,,,且满足.{}n a 18a =42a =*2120()n n n a a a n N ++-+=∈(1)求数列的通项公式;{}n a (2)设,求.12||||||n n S a a a =++ n S壶关县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】D 【解析】解:∵;∴在方向上的投影为==.故选D .【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算. 2. 【答案】D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.3. 【答案】A 【解析】试题分析:故值域为()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========.{}4,2考点:复合函数求值.4. 【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数;B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确.故选:C . 5. 【答案】D 【解析】试题分析:由,集合,{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M {}a N ,0=又,或,故选D .φ≠N M 1-=∴a 2-=a 考点:交集及其运算.6. 【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a+d ,a+2d ,则由题意可知,a ﹣2d+a ﹣d=a+a+d+a+2d ,即a=﹣6d ,又a ﹣2d+a ﹣d+a+a+d+a+2d=5a=5,∴a=1,则a ﹣2d=a ﹣2×=.故选:B . 7. 【答案】C【解析】解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为2,∴圆锥的母线长为5,∴几何体的表面积S=×π×42+×π×4×5+×8×3=18π+12.故选:C . 8. 【答案】D【解析】解:命题p :∃x ∈R ,cosx ≥a ,则a ≤1.下列a 的取值能使“¬p ”是真命题的是a=2.故选;D . 9. 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S 底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量. 10.【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2,故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.11.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.12.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.二、填空题13.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:14.【答案】48【解析】0,1 15.【答案】()【解析】+ 16.【答案】20【解析】考点:棱台的表面积的求解.17.【答案】 1 .【解析】解:(lg2)2+lg2•lg5+=lg2(lg2+lg5)+lg5=lg2+lg5=1,故答案为:1.18.【答案】2a ≥【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即()ln f x a x x =-(1,2)(1,2)x ∈()'10a f x x=-≥恒成立,可得,故答案为.1a x ≥2a ≥2a ≥考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.三、解答题19.【答案】(1)a =(2)(-∞,-1-].(3)121e 827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥.22ln xx 令g (x )=,x >0,则g '(x )=.22ln xx ()3212ln x x -令g'(x )=0,解得x .当x ∈(0)时,g '(x)>0,所以g (x )在(0)上单调递增;当x∞)时,g'(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g ,1e 所以-(a +1)≥,即a ≤-1-,1e 1e 所以a 的取值范围为(-∞,-1-].1e (3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4.令f ′(x )=0,则x =1或a .f (1)=3a -1,f (2)=4.②当<a <2时,53当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减;当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2,所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ' (a )=3a 2-6a +3=3(a -1)2≥0.所以h (a )在(,2)上单调递增,53所以当a ∈(,2)时,h (a )>h ()=.5353827③当a ≥2时,当x ∈(1,2)时,f '(x )<0,所以f (x )在(1,2)上单调递减,所以M (a )=f (1)=3a -1,m (a )=f (2)=4,所以h (a )=M (a )-m (a )=3a -1-4=3a -5,所以h (a )在[2,+∞)上的最小值为h (2)=1.综上,h (a )的最小值为.827点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.20.【答案】【解析】解:(Ⅰ)由已知得:|PF 2|=6﹣4=2,在△PF 1F 2中,由勾股定理得,,即4c 2=20,解得c 2=5.∴m=9﹣5=4;(Ⅱ)设P 点坐标为(x 0,y 0),由(Ⅰ)知,,,∵,,∴,解得.∴P ().【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,属中档题.21.【答案】(1),;(2),.()5f x x =+[]3,2x ∈-[]()10f f x x =+{}3x ∈-【解析】试题解析:(1)设,111]()(0)f x kx b k =+>由题意有:解得32,27,k b k b -+=⎧⎨+=⎩1,5,k b =⎧⎨=⎩∴,.()5f x x =+[]3,2x ∈-(2),.(())(5)10f f x f x x =+=+{}3x ∈-考点:待定系数法.22.【答案】【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA∵△PCD为正三角形∴PE⊥CD,PE=PDsin∠PDE=2sin60°=∵平面PCD⊥平面ABCD∴PE⊥平面ABCD∵四边形ABCD是矩形∴△ADE、△ECM、△ABM均为直角三角形由勾股定理得EM=,AM=,AE=3∴EM2+AM2=AE2,∴∠AME=90°∴AM⊥PM(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM ∴而在Rt△PEM中,由勾股定理得PM=∴∴∴,即点D到平面PAM的距离为23.【答案】【解析】解:(1)f(x)=﹣=sin2x+sinxcosx﹣=+sin2x﹣=sin (2x ﹣)…3分周期T=π,因为cosx ≠0,所以{x|x ≠+k π,k ∈Z}…5分当2x ﹣∈,即+k π≤x ≤+k π,x ≠+k π,k ∈Z 时函数f (x )单调递减,所以函数f (x )的单调递减区间为,,k ∈Z …7分(2)当,2x ﹣∈,…9分sin (2x ﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f (x )取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.24.【答案】(1);(2).102n a n =-229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩【解析】试题分析:(1)由,所以是等差数列且,,即可求解数列的通2120n n n a a a ++-+={}n a 18a =42a ={}n a 项公式;(2)由(1)令,得,当时,;当时,;当时,,0n a =5n =5n >0n a <5n =0n a =5n <0n a >即可分类讨论求解数列.n S当时,5n ≤12||||||n n S a a a =++ 2129n a a a n n=+++=- ∴.1229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩考点:等差数列的通项公式;数列的求和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
壶关县一中2018-2019学年下学期高二期中数学模拟题一、选择题1. 数列中,,对所有的,都有,则等于( ){}n a 11a =2n ≥2123n a a a a n =gg L 35a a +A .B .C .D .2592516611631152. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 23. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=4. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[]B[]C[]D[]5. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .6. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )A .kB .﹣kC .1﹣kD .2﹣k7. 设集合P={3,log 2a},Q={a ,b},若P ∩Q={0},则P ∪Q=( )A .{3,0}B .{3,0,1}C .{3,0,2}D .{3,0,1,2}8. 下列各组表示同一函数的是()A .y=与y=()2B.y=lgx 2与y=2lgxC .y=1+与y=1+D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )9. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( )A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)10.已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于()A .0B .1C .2D .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( )A .(﹣∞,﹣1)∪(0,1)B .(﹣∞,﹣1)(∪1,+∞)C .(﹣1,0)∪(0,1)D .(﹣1,0)∪(1,+∞)12.设函数f (x )=的最小值为﹣1,则实数a 的取值范围是()A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣二、填空题13.如图,在矩形中,,点为线段(含端点)上一个动点,且,ABCD AB =Q CD DQ QC λ=u u u r u u u rBQ交于,且,若,则 .AC P AP PC μ=u u u r u u u rAC BP ⊥λμ-=14.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .15.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b)上至少有一个零点;③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5;④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是 (把所有正确命题的序号都写上). 16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .17.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小;③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数;④四棱锥C ′﹣MENF 的体积v=h (x )为常函数;以上命题中真命题的序号为 .ABCDPQ18.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.三、解答题19.设0<||≤2,函数f (x )=cos 2x ﹣||sinx ﹣||的最大值为0,最小值为﹣4,且与的夹角为45°,求|+|.20.(本小题12分)在多面体中,四边形与是边长均为正方形,平面ABCDEFG ABCD CDEF a CF ⊥,平面,且.ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)若,求三棱锥的体积.4a =G ADE -【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.21.已知椭圆C : =1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.(1)求椭圆C 的离心率的值;(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.22.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6,(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{}的前n 项和.23.(本小题满分12分)椭圆C :+=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,Bx 2a 2y 2b 2是C 的长轴上的两个顶点,已知|PF |=1,k PA ·k PB =-.12(1)求椭圆C 的方程;(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.24.如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=90°.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.壶关县一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由,则,两式作商,可得,所以2123n a a a a n =g g L 21231(1)n a a a a n -=-g g L 22(1)n n a n =-,故选C .22352235612416a a +=+=考点:数列的通项公式.2. 【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2,所以S 球=4πR 2=6πa 2.故选B 3. 【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D . 4. 【答案】B 【解析】当x ≥0时,f (x )=,由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2;当a 2<x <2a 2时,f (x )=﹣a 2;由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。
∴当x >0时,。
∵函数f (x )为奇函数,∴当x <0时,。
∵对∀x ∈R ,都有f (x ﹣1)≤f (x ),∴2a 2﹣(﹣4a 2)≤1,解得:。
故实数a的取值范围是。
5.【答案】 A【解析】进行简单的合情推理.【专题】规律型;探究型.【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.【解答】因为=(a1×103+a2×102+a3×10+a4),括号内表示的10进制数,其最大值为9999;从大到小排列,第2013个数为9999﹣2013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A.【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.6.【答案】D【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,∴f(2016)=20163a+2016b+1=k,∴20163a+2016b=k﹣1,∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.故选:D.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.7.【答案】B【解析】解:∵P∩Q={0},∴log2a=0∴a=1从而b=0,P∪Q={3,0,1},故选B.【点评】此题是个基础题.考查集合的交集和并集及其运算,注意集合元素的互异性,以及对数恒等式和真数是正数等基础知识的应用.8.【答案】C【解析】解:A.y=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.D.两个函数的定义域不同,不能表示同一函数.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.9.【答案】C【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.10.【答案】C【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,可得b的最小值为:2.故选:C.【点评】本题考查集合的基本运算,交集的意义,是基础题.11.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.12.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x <时,f (x )=x 2﹣2x+a=(x ﹣1)2+a ﹣1,即有f (x )在(﹣∞,)递减,则f (x )>f ()=a ﹣,由题意可得a ﹣≥﹣1,解得a ≥﹣.故选:C .【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题. 二、填空题13.【答案】1-【解析】以为原点建立直角坐标系,如图:A 设,,.AB =1AD=B C 直线的方程为,ACy x =直线的方程为,BP 3y =+直线的方程为,DC 1y =由,得,13y y =⎧⎪⎨=+⎪⎩Q 由,得,3y x y ⎧=⎪⎨⎪=+⎩3)4P ∴,,由,得.DQ =QC DQ =-=DQ QC λ=u u u r u u u r 2λ=由,得,AP PC μ=u u u r u u ur 331))])444μμ=-=∴,.3μ=1λμ-=-14.【答案】1ln 2【解析】试题分析:()()111ln 2ln 2f x k f x ''=∴==Q 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 15.【答案】 ②③④⑤ 【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.16.【答案】 4 .【解析】解:∵sinA,sinB,sinC依次成等比数列,∴sin2B=sinAsinC,由正弦定理可得:b2=ac,∵c=2a,可得:b=a,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC=acsinB==4.故答案为:4.17.【答案】 ①②④ .【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF 的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.18.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-1三、解答题19.【答案】【解析】解:f(x)=cos2x﹣||sinx﹣||=﹣sin2x﹣||sinx+1﹣||=﹣(sinx+)2++1﹣||,∵0<||≤2,∴﹣1≤﹣<0,由二次函数可知当sinx=﹣时,f(x)取最大值+1﹣||=0,当sinx=1时,f(x)取最小值﹣||﹣||=﹣4,联立以上两式可得||=||=2,又∵与的夹角为45°,∴|+|===【点评】本题考查数量积与向量的夹角,涉及二次函数的最值和模长公式,属基础题. 20.【答案】【解析】(1)连接,由题意,知,,∴平面.FH CD BC⊥CD CF⊥CD⊥BCFG 又∵平面,∴.GH⊂BCFG CD⊥GH又∵,∴……………………………2分EF CDP EF GH⊥由题意,得,,,∴,14BH a=34CH a=12BG a=2222516GH BG BH a=+=,,22225()4FG CF BG BC a=-+=22222516FH CF CH a=+=则,∴.……………………………4分222FH FG GH=+GH FG⊥又∵,平面.……………………………5分EF FG F=I GH⊥EFG∵平面,∴平面平面.……………………………6分GH⊂AGH AGH⊥EFG21.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q (0,). 22.【答案】【解析】解:(Ⅰ)设数列{a n }的公比为q ,由a 32=9a 2a 6得a 32=9a 42,所以q 2=.由条件可知各项均为正数,故q=.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=.故数列{a n }的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n )=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n 项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n 项和的公式,会进行数列的求和运算,是一道中档题.23.【答案】【解析】解:(1)可设P 的坐标为(c ,m ),则+=1,c 2a 2m 2b 2∴m =±,b 2a ∵|PF |=1 ,即|m |=1,∴b 2=a ,①又A ,B 的坐标分别为(-a ,0),(a ,0),由k PA ·k PB =-得12·=-,即b 2=a 2,②b 2a c +a b 2a c -a 1212由①②解得a =2,b =,2∴椭圆C 的方程为+=1.x 24y 22(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (,1),此时S △PMN =×2×=212222.当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得+=1,即x =±,x 24k 2x 2221+2k 2∴y =±,2k 1+2k 2即M (,),N (,),21+2k 22k 1+2k 2-21+2k 2-2k 1+2k 2∴|MN |= (41+2k 2)2+(4k 1+2k 2)2 =4,1+k 21+2k 2点P (,1)到l :kx -y =0的距离d =,∴S △PMN =|MN |d =·2|2k -1|k 2+112124·1+k 21+2k 2|2k -1|k 2+1=2·=2 |2k -1|1+2k 22k 2+1-22k 1+2k 2=2 ,1-22k 1+2k 2当k >0时,≤=1,22k 1+2k 222k 22k 此时S ≥0显然成立,当k =0时,S =2.当k <0时,≤=1,-22k 1+2k 21+2k 21+2k 2当且仅当2k 2=1,即k =-时,取等号.22此时S ≤2,综上所述0≤S ≤2.22即当k =-时,△PMN 的面积的最大值为2,此时l 的方程为y =-x .2222224.【答案】 【解析】解:(1)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD ⊥BC .由∠BCD=90°,得CD ⊥BC ,又PD ∩DC=D ,PD 、DC ⊂平面PCD ,所以BC ⊥平面PCD .因为PC ⊂平面PCD ,故PC ⊥BC .(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则:易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积.由V A﹣PBC=V P﹣ABC,,得,故点A到平面PBC的距离等于.【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.。