乙醇-水溶液连续板式精馏塔设计

合集下载

乙醇-水连续精馏筛板塔的设计

乙醇-水连续精馏筛板塔的设计

乙醇-水连续精馏筛板塔的设计班级 :姓名:学号:指导教师:时间:2011-8-29——2011-9-9前言精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。

由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。

精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。

化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。

为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。

要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。

精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。

化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。

为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。

可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。

本次设计的筛板塔是化工生产中主要的气液传质设备。

此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。

本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。

乙醇-水精馏塔设计报告

乙醇-水精馏塔设计报告

(封面)XXXXXXX学院乙醇-水精馏塔设计报告题目:院(系):专业班级:学生姓名:指导老师:时间:年月日目录第一章设计任务书 (1)第二章设计方案的确定及流程说明 (2)2.1 塔类型的选择 (2)2.2 塔板形式的选择 (3)2.3 设计方案的确定 (4)第三章塔的工艺计算 (6)3.1物料衡算 (6)3.2理论板数,板效率及实际板数的计算 (10)3.3平均参数、塔径、塔高的计算 (14)第四章塔板结构设计 (21)4.1塔板结构尺寸的确定 (21)4.2塔板流体力学计算 (23)第五章塔板负荷性能图 (28)5.1 精馏段 (28)5.2提馏段 (30)第六章附属设备设计 (33)6.1产品冷却器 (33)6.2接管 (34)6.3其他 (35)第七章设计方案的比较与讨论 (36)第一章设计任务书一、设计题目:乙醇—水精馏塔本设计是根据生产实际情况并加以一定程度的简化而提出的。

二、设计任务及条件1.进精馏塔料液含乙醇25%(质量),其余为水。

2.产品乙醇含量不得低于94%(质量)。

3.残液中乙醇含量不得高于0.1%(质量)。

4.生产能力为日产(24小时)50吨94%的乙醇产品5.操作条件:精馏塔顶压力:4KPa(表压)进料状况:泡点进料回流比:R/R min=1.6单板压降:不大于667 Pa加热蒸汽压力:101.3kPa(表压)6.设备形式:浮阀塔7.厂址:天津地区第二章设计方案的确定及流程说明2.1 塔类型的选择塔设备的种类很多,按操作压力可分为常压塔、加压塔和减压塔;按塔内气液相接触构件的结构形式又可分为板式塔和填料塔两大类。

板式塔和填料塔各有适用的环境,具体板式塔和填料塔性能的比较可见下表1:表1 板式塔和精馏塔的比较类型板式塔填料塔结构特点每层板上装配有不同型式的气液接触元件或特殊结构,如筛板、泡罩、浮阀等;塔内设置有多层塔板,进行气液接触塔内设置有多层整砌或乱堆的填料,如拉西环、鲍尔环、鞍型填料等散装填料,格栅、波纹板、脉冲等规整填料;填料为气液接触的基本元件操作特点气液逆流逐级接触微分式接触,可采用逆流操作,也可采用并流操作设备性能空塔速度(亦即生产能力)高,效率高且稳定;压降大,液气比的适应范围大,持液量大,操作弹性小大尺寸空塔气速较大,小尺寸空塔气速较小;低压时分离效率高,高压时分离效率低,传统填料效率较低,新型乱堆及规整填料效率较高;大尺寸压力降小,小尺寸压力降大;要求液相喷淋量较大,持液量小,操作弹性大制造与维修直径在600mm以下的塔安装困难,安装程序较简单,检修清理容易,金属材料耗量大新型填料制备复杂,造价高,检修清理困难,可采用非金属材料制造,但安装过程较为困难适用场合处理量大,操作弹性大,带有污垢的物料处理强腐蚀性,液气比大,真空操作要求压力降小的物料在本设计中,之所以选用板式塔,塔底为直接蒸汽加热,板式塔塔底无需再添加气体初始分布装置,且塔顶和进料口位置无需添加液体初始分布装置;另一方面,塔板所需费用要远低于规整填料,正式是因为板式塔的结构简单,造价较低两大优点,导致具有比较大的经济优势。

课程设计乙醇水分离过程板式精馏塔设计

课程设计乙醇水分离过程板式精馏塔设计

课程设计--乙醇-水分离过程板式精馏塔设计课程设计说明书武汉工程大学化工与制药学院课程设计说明书课题名称乙醇-水分离过程板式精馏塔设计专业班级工业催化与煤化工01学生学号1001100306学生姓名侯昆学生成绩指导教师蔡宁课题工作时间2013年6月18日——7月5日武汉工程大学化工与制药学院武汉工程大学化工原理课程设计任务书专业工业催化与煤化工班级工催01 学生姓名侯昆发题时间:2013 年 6 月17 日一、课题名称乙醇-水分离过程板式精馏塔设计二、课题条件参考文献1.大连理工大学化工原理教研室. 化工原理课程设计. 大连:大连理工大学出版社,19942.柴诚敬,刘国维,李阿娜. 化工原理课程设计. 天津:天津科学技术出版社,19953.贾绍义,柴诚敬. 化工原理课程设计. 天津:天津大学出版社,20024.王国胜. 化工原理课程设计. 大连:大连理工大学出版社,20055.匡国柱,史启才.化工单元过程及设备课程设计. 北京:化学工业出版社,20026.上海医药设计院. 化工工艺设计手册(上、下). 化学工业出版社,19867.阮奇,叶长,黄诗煌. 化工原理优化设计与解题指南. 北京:化学工业出版社,2001.98.化工设备技术全书编辑委员会. 化工设备全书—塔设备设计. 上海:上海科学技术出版社,19889.邹兰,阎传智. 化工工艺工程设计. 成都:成都科技大学出版社,199810.李功祥,陈兰英,崔英德. 常用化工单元设备设计. 广州:华南理工大学出版社,200311.童景山, 李敬. 流体热物理性质的计算. 北京:清华大学出版社,198212.马沛生. 化工数据. 北京:中国石化出版社,200313.靳士兰, 邢凤兰. 化工制图. 北京:国防工业出版社,200614.朱有庭,曲文海,于浦义.化工设备设计手册(上、下册). 北京:化学工业出版社,200415.刘雪暖, 汤景凝.化工原理课程设计. 北京:石油大学出版社,2001三、设计任务(含实验、分析、计算、绘图、论述等内容)1 全塔物料衡算。

乙醇_水精馏塔设计说明

乙醇_水精馏塔设计说明

乙醇_水精馏塔设计说明
1.设备选型
2.工艺流程
(1)加热阶段:将乙醇_水混合物加热到沸点,使其部分汽化,进入下一个阶段。

(2)蒸馏阶段:乙醇和水在塔内进行汽液两相的分离,高纯度的乙醇向上升腾,低纯度的水向下流动。

(3)冷凝阶段:将高纯度的乙醇气体冷凝成液体,便于收集和储存。

(4)分离阶段:将冷凝后的液体进一步分离,得到纯度较高的乙醇和水。

3.操作参数
(1)温度控制:加热阶段需要将混合物加热到适当的沸点,通常控制在80-100摄氏度。

而在蒸馏阶段,控制塔顶和塔底的温度差异,有助于提高分离效果。

(2)压力控制:塔的进料和出料口通常需要控制一定的压力,以保证流量的稳定。

(3)流量控制:塔内液体的流速对塔的操作效果有较大影响,需保持适当的流速,通常通过调节塔顶和塔底的流量或液位来实现。

4.塔的结构及内件设计
乙醇_水精馏塔的结构包括塔壳、进料装置、分离器、冷凝器、再沸器、集液器等。

其中,塔内需要配置一些内件,如填料和板式塔板等,以
提高传质和传热效果。

填料可采用金属或塑料材料,板式塔板可选用槽式、波纹式等不同形式。

通过合理配置和设计这些内件,提高乙醇_水分离效果。

综上,乙醇_水精馏塔的设计需要综合考虑设备选型、工艺流程、操
作参数以及塔的内部结构等因素。

通过合理的设计和选择,可以实现高效
分离乙醇和水的目的。

乙醇-水精馏塔设计

乙醇-水精馏塔设计

设计题目板式精馏塔设计成绩课程设计主要内容化工原理课程设计是化工原理课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性的初次尝试。

本次课程设计的主要思路及内容是:(1)确定流程方案:根据给定任务,选择操作条件、主体设备,确定精馏流程。

(2)精馏塔工艺计算:确定回流比,对全塔进行物料衡算并计算混合气、液操作温度下的物性参数,计算出气、液体积流量。

(3)塔板的设计计算:确定塔板数,进行塔径初步计算,溢流装置的设计计算,筛板布置、流体力学验算及塔板负荷性能图。

(4)塔附件及附属设备设计:通过计算确定接管、筒体、封头、除沫器、裙座、吊柱、人孔等附件的尺寸及型号,计算出塔总体高度,并对预热器、冷凝器、再沸器等附属设备进行设计。

(5)绘制精馏塔的主体设备装配图和带控制点的工艺流程图,编写设计说明书。

指导教师评语建议:从学生的工作态度、工作量、设计(论文)的创造性、学术性、实用性及书面表达能力等方面给出评价。

签名:年月日化工原理课程设计任务书设计题目:板式精馏塔设计设计时间:2011年12月~2012年1月指导老师:设计任务:年处理35000 吨乙醇-水溶液系统1.料液含乙醇40% ,馏出液含乙醇不少于94 %,残液含乙醇不大于0.05 %2.操作条件;(1)泡点进料,回流比R= 1.5 Rmin(2)塔釜加热蒸汽压力:间接0.2 MPa(表压),直接0.1 MPa(绝压);(3)塔顶全凝器冷却水进口温度20℃,出口温度50 ℃;(4)常压操作。

年工作日300~320 天,每天工作24 h;(5)设备形式(筛板塔、浮阀塔、泡罩塔等)自选;(6)安装地点:合肥。

设计成果:1.设计说明书一份(word2003格式);2.主体设备装配图一张(1#图纸),带控制点工艺流程图(3#图纸)一张(AutoCAD2004格式)。

目录中文摘要 (5)英文摘要 (6)1前言 (7)2概述 (7)2.1化工分离技术 (7)2.2板式塔塔板设计与选型 (9)3设计方案的确定 (13)3.1设计方案的选定 (13)3.2设计方案确定的要求 (15)3.3设计方案确定及流程说明 (16)3.4精馏塔的设计步骤 (16)4设计计算 (16)4.1精馏塔的工艺计算 (17)4.2塔板数及塔径计算 (24)4.3溢流装置 (26)4.4塔板布置 (27)4.5筛板的流体力学验算 (28)4.6塔板复合性能图 (31)4.7塔附件设计 (36)4.8塔总体高度设计 (38)4.9附属设备的设计 (39)5总结 (40)5.1筛板塔工艺设计计算结果汇总 (40)5.2设计小结 (42)5.3个人心得体会 (42)参考文献……………………………………………………………………………………附录1 相关物性数据………………………………………………………………………附录2 说明书中出现的各字母及其下标的含义………………………………………板式精馏塔设计摘要:鉴于筛板塔结构简单,造价低;板上液面落差小,气体压降低,生产能力较大;气体分散均匀,传质效率较高等优点,本设计选用筛板式精馏塔精馏分离处理35000吨/年的乙醇-水溶液,首先利用AutoCAD做出相平衡曲线,求出最小回流比为2.2,根据TM 图解法画出全塔所需的理论塔板数为26.2块(含再沸器),通过设计计算,得出实际塔板数为52块(含再沸器),然后对塔和塔板的工艺尺寸进行计算,计算圆整得塔径为m2.1,塔高为m26,物料为泡点进料。

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)

(一)设计方案的确定本设计任务为乙醇-水混合物。

设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。

酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。

物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。

本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。

此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。

塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。

筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属不易分离物系,最小回流比较小,采用其1.5倍。

设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。

塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。

(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数总理论塔板层数 N T=13进料板位置 N F=第10层5.全塔效率的计算查上图可知,t D=78.43 o C t W=99.53 o Ct平均= t D t W=88.35 o C塔顶P乙醇=101.749 KPa P水=44.607 KPaα顶=2.281塔底P乙醇=222.502 KPa P水=99.754 KPaα底=2.231α平均=α顶α底=2.256平均温度下μA=0.38 mPa·sμB=0.323 mPa·sμL=x AμA+(1-x A)μB=0.079×0.38+(1-0.079)×0.323=0.327 mPa·s 查蒸馏塔全塔效率图,横坐标为α平均μL=0.738可查得E T=52%6.实际板层数求取精馏段实际板层数N精=9/0.52=17.31≈18提馏段实际板层数N提=4/0.52= 7.69≈8(四)精馏塔的工艺条件及有关物性数据的计算1.操作压力计算塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算 塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·s lgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·s lgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·s lgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/sL S =ρ3600LM =0.0023 m 3/s查史密斯关联图,横坐标为Vh Lh (v l ρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20Lσ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s 取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/s D=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m塔截面积A T =(π/4)×1.42=1.539 ㎡实际空塔气速为 u=2.717/1.539=1.765 m/s2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m 在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求 5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。

乙醇—水溶液精馏塔设计

乙醇—水溶液精馏塔设计

乙醇-水溶液连续精馏塔设计目录1.设计任务书 (3)2.英文摘要前言 (4)3.前言 (4)4.精馏塔优化设计 (5)5.精馏塔优化设计计算 (5)6.设计计算结果总表 (22)7.参考文献 (23)8.课程设计心得 (23)精馏塔设计任务书一、设计题目乙醇—水溶液连续精馏塔设计二、设计条件1.处理量: 15000 (吨/年)2.料液浓度: 35 (wt%)3.产品浓度: 93 (wt%)4.易挥发组分回收率: 99%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。

d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计前言乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。

在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。

要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。

精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。

化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。

为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。

可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。

浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。

合肥工业大学化工原理课程设计乙醇—水溶液板式精馏塔设计

合肥工业大学化工原理课程设计乙醇—水溶液板式精馏塔设计

课程设计设计题目:乙醇-水溶液板式精馏塔设计学生姓名:牛璐学号:2015212054专业班级:高分子材料与工程15-3班指导教师:张传玲设计时间:2018.7.2-2018.7.15化工原理课程设计任务书设计任务:年处理44000 吨乙醇- 水溶液系统1.料液含乙醇50% ,馏出液含乙醇不少于94%,残液含乙醇不大于0.5%(wt %)2.操作条件:(1)泡点进料,回流比自选。

(2)塔釜加热蒸汽压力:间接0.2MPa(表压),直接0.1MPa (绝压)。

(3)塔顶全凝器冷却水进口温度20℃,出口温度50℃。

(4)常压操作。

年工作日300天,每天工作24小时。

(5)设备形式筛板塔。

任务来源:某中药厂设计成果:1.设计说明书一份。

2.主体设备条件图(1#图纸)一张,带控制点工艺流程图(3#图纸)一张。

摘要工业上乙醇-水分离的过程是在精馏塔中进行的。

乙醇-水分离过程为物理过程。

回流是构成气、液两相接触传质的必要条件,而板式精馏塔的设备设计是关键部分。

此次课程设计是用于分离乙醇-水的筛板式精馏塔的设计,进料口处乙醇的流量为236.16kmol/h。

设计的回流比为最小回流比的 1.2倍,精馏塔径为1.2 m,全塔高度为27.62 m。

最后经设计校核后,此次课程我们设计出了安全且满足生产要求的板式精馏塔。

关键词:乙醇;回流;筛板式;精馏塔AbstractThe process of industrial ethanol-water separation is carried out in a rectification column. The ethanol-water separation process is a physical process. Reflow is a necessary condition for the gas-liquid two-phase contact mass transfer, and the equipment design of the plate rectification column is a key part. The course design was designed for the separation of ethanol-water sieve plate distillation column, and the flow rate of ethanol at the feed port was 236.16 kmol/h. The designed reflux ratio is 1.2 times the minimum reflux ratio, the distillation column diameter is 1.2 m, and the full tower height is 27.62 m. After the final design review, we designed a plate rectification tower that is safe and meets production requirements.Keywords:benzene, toluene, plate type, distillation column目录1 绪论 (8)1.1 概述 (8)1.1.1 乙醇的性质与用途 (8)1.1.2 乙醇的应用 (8)1.2 操作条件的确定 (9)1.2.1 操作压力 (9)1.2.2 进料状态 (9)1.3 设备型式 (9)1.3.1 筛板塔 (9)2 设计方案论证及确定 (10)2.1已知设计条件 (10)2.2 选择塔型 (11)2.3 精馏方式 (11)2.4 操作压力 (11)2.5加热方式 (11)2.6 工艺流程 (11)3 筛板式精馏塔的工艺设计 (12)3.1 塔的物料衡算 (12)3.1.1 原料液及塔顶、塔底产品的摩尔分数 (12)3.2 塔板数的确定 (13)3.2.1最小回流比及操作回流比的计算 (13)3.2.2操作方程的确定 (14)3.2.3板效率及实际塔板数的确定 (14)3.3 精馏段物性衡算 (15)3.3.1物料衡算 (15)3.3.2气液体积流率的计算 (19)3.4 塔和塔板主要工艺尺寸计算 (19)3.4.1 塔板横截面的布置计算 (19)3.4.2 筛板能校塔流体力学校核 (26)3.5 精馏段塔板负荷性能图 (28)3.5.1 过量液沫夹带线 (28)3.5.2溢流液泛线 (29)3.5.3液相上限线 (30)3.5.4漏液线(气相负荷下限线) (30)3.5.5液相下限线 (30)3.5.6 操作线 (31)4 精馏塔的附属设备及选型 (31)4.1 辅助设备的选型 (31)4.1.1 直接蒸汽加热 (32)4.1.2冷凝器 (32)4.1.3馏出液冷却器 (33)4.1.4釜液冷却器 (33)4.2 塔的主要接管尺寸的选取 (35)4.2.1塔附件设计 (35)4.2.2 筒体与封头 (36)4.2.3除沫器 (36)4.2.4 裙座 (37)4.2.5 人孔 (37)4.3输送泵的选取 (38)5 塔高的确定及塔的其它工艺条件 (39)5.1 塔高的设计计算 (39)5.1.1塔高的确定 (39)5.1.2塔板结构的确定 (40)6.塔设备的机械设计 (41)6.1按计算压力计算塔体和封头厚度 (41)6.2 塔设备质量载荷计算 (41)6.3 风载荷与风弯矩计算 (42)6.4地震弯矩计算 (45)6.5各种载荷引起的轴向应力 (47)6.6 塔体和裙座危险截面的强度与稳定校核 (48)6.6.1 塔体的最大组合轴向拉应力校核 (48)6.6.2 塔体与裙座的稳定校核 (49)6.7 塔体水压试验和吊装时的应力校核 (49)6.7.1 水压试验时的各种载荷引起的应力 (49)6.7.2水压试验时应力校核 (50)6.8基础环设计 (50)6.8.1基础环尺寸 (51)6.8.2基础环的应力校核 (51)6.8.3基础环厚度 (51)6.9地脚螺栓计算 (52)6.9.1地脚螺栓承受的最大拉应力 (52)6.9.2地脚螺栓的螺纹小径 (53)7 设计结果概要及汇总表 (54)8.附录 (59)9.设计方案讨论 (60)参考文献 (62)课设感想 (63)1绪论1.1概述1.1.1 乙醇的性质与用途乙醇它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性。

乙醇-水精馏塔设计

乙醇-水精馏塔设计
本工艺中选择系数为1.5,即 。
(十)操作流程
来自储罐的混合液经预热至泡点后,由泵送入精馏塔的进料板上,塔内气液两相不断接触,进行传热和传质,使轻组分不断上升,重组分不断下降。塔顶蒸汽在全凝器中冷凝后,一部分作为产品采出,一部分回流继续和塔内气相接触;塔釜液体一部分采出,一部分由直接蒸汽加热汽化回到塔内和液相接触。塔顶产品经冷却后进入产品储罐。
3.板效率
由物性数据表【4】查得在94.2℃下,水和乙醇的黏度分别为:
可见板效率并不等于初值0.5。因此令 ,迭代计算。重复上述步骤,得:
塔顶压力为
塔釜压力为
塔顶温度为 ℃
塔釜温度 ℃
可见 的计算值和初值差距不大,因此选择 ,得到最终的 ,最终令 。
4.进料温度
进料板位置为 。
确定方式和之前确定塔顶,塔釜温度的思路相同。
式中常数C对不同物系、不同组成的数值均不同。
纯液体的饱和蒸汽压可用Antoine方程计算:
乙醇和水的Antoine常数如下表:
A
B
C
温度范围(K)
乙醇
7.30243
1630.868
-43.569
273~353
6.84806
1358.124
-71.034
370~464

7.074056
1657.459
1.在已做好的X-Y相图中找到A(XD,XD)点,即(0.8598,0.8598)。
2.找到精馏段操作线在纵轴上的截距B(0,XD/R+1),即B(0,0.1961)。
3.连接AB,得到精馏段操作线,交q线方程于C点。
4.由于采用直接蒸汽加热,所以找到提馏段操作线在横轴上的截距D(0.00039,0)。

乙醇--水精馏塔设计

乙醇--水精馏塔设计

化工原理课程设计任务书一设计题目:乙醇-水连续浮阀式精馏塔的设计二任务要求设计一连续筛板浮阀精馏塔以分乙醇和水具体工艺参数如下:原料加料量F=100kmol/h =273进料组成 xF馏出液组成 x=0.831D=0.012釜液组成 xw塔顶压力 p=100kpa单板压降≤0.7 kPa2 工艺操作条件:常压精馏,塔顶全凝器,塔底间接加热,泡点进料,泡点回流。

三主要设计内容1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔径及提馏段塔板结构尺寸的确定(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高4、设计结果汇总5、工艺流程图及精馏塔工艺条件图目录化工原理课程设计任务书.............................. 错误!未定义书签。

摘要 (Ⅳ)第一章前言......................................... 错误!未定义书签。

1.1精馏原理及其在化工生产上的应用 (1)1.2精馏塔对塔设备的要求 (1)1.3常用板式塔类型及本设计的选型 (1)1.4本设计所选塔的特性 (1)第二章流程的确定和说明 (3)2.1设计思路 (3)2.2设计流程 (3)第三章精馏塔的工艺计算 (4)3.1物料衡算 (4)3.1.1原料液及塔顶,塔底产品的摩尔分率 (4)3.1.2物料衡算 (4)3.2回流比的确定 (5)3.2.1平均相对挥发度的计算 (5)3.2.2最小回流比的确定 (6)3.3板数的确定 (6)3.3.1精馏塔的气液相负荷 (6)3.3.2精馏段与提馏段操作线方程 (6)3.3.3逐板法确定理论板数及进料位置 (6)3.3.4全塔效率 (8)3.4精馏塔的工艺条件及有关物性数据的计算 (8)3.4.1操作温度的计算 (8)3.4.2操作压强 (9)3.4.3塔内各段气液两相的平均分子量 (10)3.4.4精馏塔各组分的密度 (12)3.4.5液体表面张力的计算 (15)3.4.6液体平均粘度的计算 (15)3.4.7气液负荷计算 (16)3.5精馏塔的塔体工艺尺寸计算 (16)3.5.1塔径的计算 ............................................. 错误!未定义书签。

课程设计---乙醇-水溶液连续精馏塔设计

课程设计---乙醇-水溶液连续精馏塔设计

《化工原理课程设计》报告15000吨/年乙醇~水精馏装置设计年级三年级专业精细化工设计者姓名XXX设计单位化工原理课程设计完成日期2012年 6 月28 日1化工原理课程设计任务书一、课程设计题目乙醇-水溶液连续精馏塔设计二、课程设计的内容1.设计方案的确定2.带控制点的工艺流程图的确定3.操作条件的选择(包括操作压强、进料状态、回流比等)4.塔的工艺计算(1)全塔物料衡算(2)最佳回流比的确定(3)理论板及实际板的确定(4)塔径的计算(5)降液管及溢流堰尺寸的确定(6)浮阀数及排列方式(筛板孔径及排列方式)的确定(7)塔板流动性能的校核(8)塔板负荷性能图的绘制(9)塔板设计结果汇总表5.辅助设备工艺计算(1)换热器的面积计算及选型(2)各种接管管径的计算及选型(3)泵的扬程计算及选型6.塔设备的结构设计:(包括塔盘、裙座、进出口料管)三、课程设计的要求21、撰写课程设计说明书一份2、工艺流程图一张3、设备总装图一张四、课程设计所需的主要技术参数原料:乙醇-水溶液原料温度: 30℃处理量: 1.5万吨/年原料组成(乙醇的质量分数):50%产品要求:塔顶产品中乙醇的质量分数:90%,92%,94%;塔顶产品中乙醇的回收率:99%生产时间: 300天(7200 h)冷却水进口温度:30℃加热介质: 0.6MPa饱和水蒸汽五、课程设计的进度安排1、查找资料,初步确定设计方案及设计内容,1-2天2、根据设计要求进行设计,确定设计说明书初稿,2-3天3、撰写设计说明书,总装图,答辩,4-5天六、课程设计考核方式与评分方法指导教师根据学生的平时表现、设计说明书、绘图质量及答辩情况评定成绩,采用百分制。

其中:平时表现20%设计说明书40%绘图质量20%答辩20%3目录一、概述 (6)1.1 设计依据 (6)1.2 技术来源 (7)1.3 设计任务及要求 (7)二:计算过程 (8)1. 塔型选择 (8)2. 操作条件的确定 (8)2.1 操作压力 (8)2.2 进料状态 (8)2.3 加热方式 (9)2.4 热能利用 (9)3. 有关的工艺计算 (9)3.1 最小回流比及操作回流比的确定 (10)3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算 (11)3.3 全凝器冷凝介质的消耗量 (11)3.4 热能利用 (12)3.5 理论塔板层数的确定 (13)3.6 全塔效率的估算 (14)N (15)3.7 实际塔板数P4. 精馏塔主题尺寸的计算 (15)4.1 精馏段与提馏段的体积流量 (16)4.1.1 精馏段 (16)4.1.2 提馏段 (17)4.2 塔径的计算 (18)4.3 塔高的计算 (20)5. 塔板结构尺寸的确定 (21)5.1 塔板尺寸 (21)5.2 弓形降液管 (22)5.2.1 堰高 (22)5.2.2 降液管底隙高度h0 (22)5.2.3 进口堰高和受液盘 (22)5.3 浮阀数目及排列 (23)5.3.1 浮阀数目 (23)45.3.2 排列 (23)5.3.3 校核 (24)6. 流体力学验算 (24)h (24)6.1 气体通过浮阀塔板的压力降(单板压降)ph (25)6.1.1 干板阻力ch (25)6.1.2 板上充气液层阻力16.1.3 由表面张力引起的阻力h (25)6.2 漏液验算 (25)6.3 液泛验算 (26)6.4 雾沫夹带验算 (26)7. 操作性能负荷图 (27)7.1 雾沫夹带上限线 (27)7.2 液泛线 (27)7.3 液体负荷上限线 (28)7.4 漏液线 (28)7.5 液相负荷下限线 (28)7.6 操作性能负荷图 (28)8. 各接管尺寸的确定 (30)8.1 进料管 (30)8.2 釜残液出料管 (31)8.3 回流液管 (31)8.4 塔顶上升蒸汽管 (32)8.5 水蒸汽进口管 ········································错误!未定义书签。

乙醇水精馏塔设计

乙醇水精馏塔设计

乙醇水精馏塔设计-CAL-FENGHAI.-(YICAI)-Company One1⑴综合运用“化工原理”和相关选修课程的知识,联系化工生产的实际完成单元操作的化工设计实践,初步掌握化工单元操作的基本程序和方法。

⑵熟悉查阅资料和标准、正确选用公式,数据选用简洁,文字和工程语言正确表达设计思路和结果。

⑶树立正确设计思想,培养工程、经济和环保意识,提高分析工程问题的能力。

二、设计任务及操作条件在一常压操作的连续精馏塔内分离乙醇-水混合物。

生产能力(塔顶产品) 3000 kg/h操作周期 300 天/年进料组成 25% (质量分数,下同)塔顶馏出液组成≥94%塔底馏出液组成≤0.1%操作压力 4kPa(塔顶表压)进料热状况泡点单板压降:≤0.7 kPa设备型式筛板三、设计内容:(1) 精馏塔的物料衡算;(2) 塔板数的确定:(3) 精馏塔的工艺条件及有关物件数据的计算;(4) 精馏塔的塔体工艺尺寸计算;(5) 塔板主要工艺尺寸的计算;(6) 塔板的流体力学验算:(7) 塔板负荷性能图;(8) 精馏塔接管尺寸计算;(9) 绘制生产工艺流程图;(10) 绘制精馏塔设计条件图;(11) 对设计过程的评述和有关问题的讨论。

[ 设计计算 ](一)设计方案选定本设计任务为分离水-乙醇混合物。

原料液由泵从原料储罐中引出,在预热器中预热至84℃后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25℃后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。

1精馏方式:本设计采用连续精馏方式。

原料液连续加入精馏塔中,并连续收集产物和排出残液。

其优点是集成度高,可控性好,产品质量稳定。

由于所涉浓度范围内乙醇和水的挥发度相差较大,因而无须采用特殊精馏。

2操作压力:本设计选择常压,常压操作对设备要求低,操作费用低,适用于乙醇和水这类非热敏沸点在常温(工业低温段)物系分离。

乙醇—水溶液精馏塔设计

乙醇—水溶液精馏塔设计

第一章绪论 (2)一、目的: (2)二、已知参数: (2)三、设计内容: (2)第二章课程设计报告内容 (3)一、精馏流程的确定 (3)二、塔的物料衡算 (3)三、塔板数的确定 (4)四、塔的工艺条件及物性数据计算 (6)五、精馏段气液负荷计算 (10)六、塔和塔板主要工艺尺寸计算 (10)七、筛板的流体力学验算 (15)八、塔板负荷性能图 (18)九、筛板塔的工艺设计计算结果总表 (22)十、精馏塔的附属设备及接管尺寸 (22)第三章总结 (23).乙醇——水连续精馏塔的设计第一章绪论一、目的:通过课程设计进一步巩固课本所学的内容,培养学生运用所学理论知识进行化工单元过程设计的初步能力,使所学的知识系统化,通过本次设计,应了解设计的内容,方法及步骤,使学生具有调节技术资料,自行确定设计方案,进行设计计算,并绘制设备条件图、编写设计说明书。

在常压连续精馏塔中精馏分离含乙醇25%的乙醇—水混合液,分离后塔顶馏出液中含乙醇量不小于94%,塔底釜液中含乙醇不高于0.1%(均为质量分数)。

二、已知参数:(1)设计任务●进料乙醇 X = 25 %(质量分数,下同)●生产能力 Q = 80t/d●塔顶产品组成 > 94 %●塔底产品组成 < 0.1 %(2)操作条件●操作压强:常压●精馏塔塔顶压强:Z = 4 KPa●进料热状态:泡点进料●回流比:自定待测●冷却水: 20 ℃●加热蒸汽:低压蒸汽,0.2 MPa●单板压强:≤ 0.7●全塔效率:E T = 52 %●建厂地址:南京地区●塔顶为全凝器,中间泡点进料,筛板式连续精馏三、设计内容:(1)设计方案的确定及流程说明(2)塔的工艺计算(3) 塔和塔板主要工艺尺寸的计算(a 、塔高、塔径及塔板结构尺寸的确定;b 、塔板的流体力学验算;c 、塔板的负荷性能图) (4) 设计结果概要或设计一览表 (5) 精馏塔工艺条件图(6) 对本设计的评论或有关问题的分析讨论第二章 课程设计报告内容一、精馏流程的确定乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。

分离乙醇-水混合液的筛板精馏塔设计_化工原理与化工机械课程设计(可编辑)

分离乙醇-水混合液的筛板精馏塔设计_化工原理与化工机械课程设计(可编辑)

化工原理-化工设备机械基础课程设计设计题目分离乙醇-水混合液的筛板精馏塔设计化工原理?化工设备机械基础课程设计任务书设计题目分离乙醇?水混合液的筛板精馏塔设计二. 原始数据及条件生产能力:年处理量8万吨(开工率300天/年),每天工作24小时;原料:乙醇含量为20%(质量百分比,下同)的常温液体;分离要求:塔顶,乙醇含量不低于90%,塔底,乙醇含量不高于 8%;塔顶压强进料热状况回流比塔釜加热蒸汽压力单板压降建厂地址4 KPa(表压) 饱和液体1.5 Rmin 0.5MPa(表压) ≤0.7KPa 重庆操作条件: 三. 设计要求:(一)编制一份设计说明书,主要内容包括:1. 前言2. 设计方案的确定和流程的说明3. 塔的工艺计算4. 塔和塔板主要工艺尺寸的设计 a. 塔高、塔径及塔板结构尺寸的确定 b. 塔板的流体力学验算c. 塔板的负荷性能图5. 附属设备的选型和计算6. 设计结果一览表7. 注明参考和使用的设计资料8. 对本设计的评述或有关问题的分析讨论。

(二)绘制一个带控制点的工艺流程图(2#图)(三)绘制精馏塔的工艺条件图(1#图纸) 四. 设计日期:2013年 11月25日至 2013年12 月15日推荐教材及主要参考书:1.王国胜, 裴世红,孙怀宇化工原理课程设计. 大连:大连理工大学出版社,20052.?贾绍义,柴诚敬. 化工原理课程设计. 天津:天津科学技术出版社,2002.3、马江权,冷一欣. 化工原理课程设计. 北京:中国石化出版社,2009.4、《化工工艺设计手册》,上、下册;5、《化学工程设计手册》;上、下册;6、化工设备设计全书编辑委员会.化工设备设计全书-塔设备;化学工业出版社:北京. 2004,017、化工设备设计全书编辑委员会.化工设备设计全书-换热器;化学工业出版社:北京. 2004,018、化工设备设计全书编辑委员会.化工设备设计全书-管道;化学工业出版社:北京. 2004,019?陈敏恒. 化工原理第三版. 北京:化学工业出版社,2006摘要课程设计是化工原理课程的一个非常重要的实践教学内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1设计内容及任务(一) 设计内容乙醇-水溶液连续板式精馏塔设计 (二) 设计任务处理能力:3.6万吨/年,每年按300天计算,每天24小时连续运转。

原料乙醇-水溶液:7.4%组成(乙醇的质量分数) 产品要求:塔顶产品组成(质量分数):≥38.2% 塔底的产品组成(质量分数):≤0.1%1) 塔型选择根据生产任务,若按年工作日300天,每天开动设备24小时计算,产品流量为265.3kmol/h,由于产品黏度较小,流量增大,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率,选择浮阀塔。

2) 操作条件(1) 操作压力:塔顶压强为常压101.3kPa (2) 单板压降: 0.7KPa(3) 进料状况:30°C 冷夜进料 (4) 回流比:自选(5) 加热方式:间接蒸汽加热 (6) 冷却水进口温度:30°C一、 塔的工艺计算a1工艺过程物料衡算工艺过程 1.1物料衡算W=7.4%D W =38.2% 46/M g mol =乙醇 18/M g m o l=水 F=265.3kmol/hF X ==-+水乙醇乙醇)(M W M M W F F /1/W /F 0.03039481.0)/M W 1/M W M W D D D=-+=水乙醇乙醇(D Xh kmol X X X X F D WD w F /66.36)(=--=塔底产品流量:h kmol D F W /64.22866.363.265=-=-=1.1表1 物料衡算数据记录F 265.3kmol/h F X 0.0303 D 36.66kmol/h D X 0.1948 W228..64kmol/hW X0.00039由图(在《化工原理》(第三版,王志魁)265P 页)查出组成0303.0=F X 的乙醇-水溶液泡点为95.7°C ,在平均温度为(95.7+30)/2=61.35下,由《化工原理》(第三版,王志魁)附录查得乙醇与水的有关物性为:(数值为在范围内的一个估值)乙醇的摩尔热容: 3.0246138.92/()mA C kJ kmol K =⨯=∙ 乙醇的摩尔汽化潜热:914.24642053.2/()A r kJ koml K =⨯=∙ 水的摩尔热容:)./(3.75k kmol kJ C mB =水的摩尔汽化潜热:2392.861843071.48/B r kJ kmol =⨯=比较水与乙醇的摩尔汽化潜热可知,系统满足衡摩尔流的假定。

加料液的平均摩尔热容:)/(19.77)0303.01(*26.750303.0*92.138K kmol kJ X C X C C B m b A m a m p ∙=-+=+=加料液的平均汽化热:r=kmol kJ X r X r r B B A A /6.43040)0303.01(*48.430710303.0*2.42053=-+=+=11.1)(1=-+=rr T C q mp1.2最小回流比及操作回流比的确定由于产品纯度不高,故可采取塔顶进料,无回流,只有提留段操作,从而达到节约成本的目的。

1.3理论及实际塔板数的确定(1)由相平衡方程式1(1)x y x αα=+-,可得(1)(1)y x x y α-=-根据乙醇-水体系的相平衡数据可以查得:1948.01==D x y )(0255.01塔顶第一块板=x 00039.0=w x )(00287.0塔釜=w y 因此可以求得:()()()()312.610255.00255.011948.01948.01111111=-⨯-⨯=--=y x x y α()()()()946.8100039.000039.0100287.000287.011=-⨯-⨯=--=W W W W W y x x y α 平均相对挥发度的求取:514.7946.8312.61=⨯==W ααα用逐板法计算理论板数 相平衡方程 yyyyx 514.6514.7)1(-=--=αα000039.0106.70005699.00005699.000426.004260.03119.00(0303.003119.01948.0543432321211≤⨯=→===→===→==≈=→==-x x y x x y x x y x x y D 加料板包括塔釜共四块(2)根据乙醇-水体系的相平衡数据可以查得: 塔顶: 1948.0=D x ,0.83=D t °C 塔釜: 5106.7-⨯=W x , 100=W t °C塔顶和塔釜的算术平均温度:t=91.5°C 由《化工原理》(第三版,化学工业出版社,王志魁)书中附表12查得: 在91.5°C 下,s mPa ∙=7.30乙醇μ ,s mPa ∙=92.0水μ根据公式lg lg Lm iix μμ=∑ 得()[]304.01029.0lg 0303.0137.0lg 0303.0==⨯-+⨯LMμ(1) 由奥康奈尔关联式:()%02.40304.0514.749.0)(49.0245.0245.0=⨯⨯==--L T E αμC 求解实际塔板数 5.7%02.40141=-=-=T T E N N 取N=81.4塔的结构设计1.4.1塔径的计算A. 查得有关乙醇与水的安托因方程: 乙醇:1652.05lg(/)7.33827(/)(/)231.48sB P kPa A T KC T K =-=-+-得: 1652.05[7.33827](/)231.4810T K AP --=水:1657.46lg(/)7.07406(/)(/)227.03sB P kPa A T KC T K =-=-++得:1657.46[7.07406](/)227.0310T K B P -+=将0,A B P P 代入00A AB B P x P x P += 进行试差,求塔顶、进料板、及塔釜的压力和温度:1) 塔顶:1101.3P kPa =, 0255.01==x x A 试差得℃7.951=t 2)塔釜压力:kPa P w 9.10687.03.101=⨯+= 塔釜:5106.7-⨯==W A x x , kPa P w 9.106=试差得℃6.1011=t 求得塔内的平均压力及温度:℃65.9827.956.101=+=tkPa P 1.10429.1063.101=+=B. 平均摩尔质量的计算:塔顶:kmol kg M VD M /45.2318)19481(461948.0=*-+*= k m o l kg M LD M /714.1818)0255.01(460255.0=*-+*=塔釜: k m o lkg M VWm /70.1818*)00287.01(46*00287.0=-+=k m o lkg M Lwm /01.1818)00039.01(4600039.0=*-+*= 平均摩尔质量:kmol kg M M M VWMVDM VM /765.202=+=k m o lkg M M M LWMLDM lM /362.182=+=表2 平均摩尔质量的计算塔顶VDm Mkmol kg /45.23平均摩尔质量LDm M kmol kg /71.18 塔釜Vwm Mkmol kg /08.18 Vm MLm MLwm Mkmol kg /01.18kmol kg /765.20kmol kg /362.18C. 平均密度的计算:1) 汽相平均密度计算:Vm PMRTρ= 汽相平均密度:()3/699.065.9815.273314.8765.201.104m kg RT M P Vm m Vm =+⨯⨯=⨯=ρ2) 液相平均密度计算:1iLiw ρρ=∑塔顶:3/02.740m kg A =ρ,3/16.970m kg B =ρ 3/28.94716.97003119.012.74003119.011m kg w w BBAALDm =-+=+=ρρρ塔釜:3/6.724m kg A =ρ,3/70.959m kg B =ρ,()45551094.118106.7146106.746106.7)1(----⨯=⨯⨯-+⨯⨯⨯⨯=-+=B A A A A A A M x M x M x w得:344/6.95916.9701094.116.7241094.111m kg w w BBAALDm =⨯-+⨯=+=--ρρρ 液相平均密度:kmol kg Lm /44.95326.95928.947=+=ρ表3 液相平均密度的计算塔顶A ρ 3/02.740m kg 塔釜A ρ 3/6.724m kgB ρ3/16.970m kgB ρ3/70.959m kgA w0.03119A w41094.1-⨯LDm ρ 3/28.947m kgLDm ρ 3/6.959m kg精馏段液相平均密度Lm ρkmolkg /44.953D. 液体平均表面张力计算液体平均表面张力按下式计算:Lm iix σσ=∑塔顶:℃7.951=t ,由《化工原理》(第三版,化学工业出版社,王志魁)附录二十m mN A /9.16=σ,m mN B /8.60=σm mN x x B A LD m /43.598.60)03119.01(9.1603119.0)1(11=⨯-+⨯=-+=σσσ塔釜:℃6.101=w t ,查附录:m mN A /5.15=σ,m mN B /2.60=σm mN x x B A LWm /2.602.60)106.71(5.15106.7)1(5511=⨯⨯-+⨯⨯=-+=--σσσ液体表面平均张力:m mN Lm /815.5922.6043.59=+=σ表4 液体平均表面张力计算塔顶1t℃7.95塔釜w t℃6.101 A σ m mN /9.16 A σ m mN /5.15 B σm mN /8.60 B σm mN /2.60 LDm σ m mN /2.60Lwm σm mN /2.60液体表面平均张力Lm σmmN /815.58E. 液体平均黏度计算:液体平均黏度按下式计算:lg lg Lm iix μμ=∑塔顶:℃7.951=t ,查由《化工原理》(第三版,化学工业出版社,王志魁)附录十二s mPa A ∙=37.0μ,s mPa B ∙=29.0μ得:[]s mPa LD m ∙==-+291.01029.0lg )03119.01(37.0lg 03119.0μ塔釜:℃6.101=w t ,查附录:s mPa A ∙=30.0μ,s mPa B ∙=27.0μ 得:[]s mPa LWm∙==--⨯-+⨯270.01027.0lg )106.71(30.0lg 106.755μ液体平均黏度:s mPa Lm ∙=+=2805.02270.0291.0μ表5 液体平均黏度计算塔顶1t℃7.95塔釜w t℃6.101A μ s mPa ∙37.0 A μ s mPa ∙30.0B μs mPa ∙29.0 B μs mPa ∙27.0 LDm μ s mPa ∙291.0Lwm μs mPa ∙270.0液体平均黏度Lm μsmPa ∙2805.0F. 气液相体积流率计算:汽相体积流率:s m VM V Vm Vm S /302.0699.03600765.2066.3636003=⨯⨯==ρ液相体积流率:s m LM L Lm Lm S /00122.044.9533600362.1864.22836003=⨯⨯==ρ表6 气液相体积流率计算s Vs m /302.03s Ls m /00122.03G. 塔径的确定塔径的确定,需求max Lm Vm VmC ρρμρ-==C C 92.36699.0699.044.953=-,C 由下式计算:0.220()20LC C σ=20C 由Smith 图查取。

相关文档
最新文档