数学教案相遇问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教案相遇问题
数学教案相遇问题「篇一」
教学内容:
教科书P14~P15例10、练一练P16第4~7题
教学目标:
1.使学生在解决实际问题的过程中,进一步理解并掌握形如ax+bx=c的方程的解法。

结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。

2.能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。

3.体验用方程解决问题的优越性,获得自主解决问题的积极情感和学好数学的信心。

教学重点:
正确地寻找数量之间的相等关系
教学难点:
掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。

教学过程:
一、复习导入
1.在相遇问题中有哪些等量关系?
甲速相遇时间+乙速相遇时间=路程(甲速+乙速)相遇时间=路程
2.一辆客车和一辆货车从两地出发,相向而行,经过3小时相遇。

客车的速度是95千米/时,货车的速度是85千米/时。

两地相距多少千米?
第一种解法:用两车的速度和相遇时间:(95+85)3
第二种解法:把两车相遇时各自走的路程加起来:953+853
师:画出线段图,并板书出两种解法
3.揭示课题:如果我们把复习准备中的第2题改成已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。

(板书课题)
二、教学新课
1.出示P14例10
一辆客车和一辆货车从相距540千米的两地出发,相向而行,经过3小时相遇。

客车的速度是95千米/时,货车的速度是多少?
(1)指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。

(2)根据线段图学生找出数量间的相等关系
甲速相遇时间+乙速相遇时间=路程
(甲速+乙速)相遇时间=路程
(1)列方程
设未知数列方程并解答。

启发学生用不同方法列方程。

解:设货车的速度是为x千米/时。

953+3x=540 (95+x)3=540
285+3x=1463 95+x=5403
3x=540-285 95+x=180
3x= 255 x=180-95
x=2553 x=85
x=85
答:货车的速度是为85千米/时。

(4)检验
三、拓展应用
1.P15练一练
(1)先画线段图整理条件和问题
(2)找出数量间的相等关系
(3)列方程并解方程
2.P16第4题
1.5x-x=1
4x-85=20
0.22+0.4x=5
3.看图列式
(1)求路程
(2)求相遇时间
(3)求乙汽车速度
4.P16练习三第7题
四、课堂小结
今天这节课我们学习了什么内容?你有哪些收获?
五、课堂作业
P16练习三第5、6题
数学教案相遇问题「篇二」
相遇问题
教学内容:相遇问题(教材第71、72页)
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

教学重点:理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。

教学用具:课件、小黑板
课时安排:1课时
教学过程:
一、复习旧知
1说一说速度、时间和路程三者之间的关系。

2、应用。

(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
3、列方程解应用题,关键是要找出题中的什么,再根据找出的什么列出方程。

二、探索新知
1、揭示课题。

师:数学与交通密切相联。

今天,我们一起来探索相遇问题。

板书课题:相遇问题。

2、创设“结伴出游”的情境。

课件出示教材第71页的情境图。

从图中找出相关的数学信息。

生1:淘气的步行速度为70米/分,笑笑的步行速度为50米/分。

生2:淘气家到笑笑家的路程是840米。

生3:两人同时从家里出发,相向而行。

第一个问题:让学生根据信息进行估计,两人在何处相遇?
因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

第二个问题:画线段图帮助学生理解第二、第三个问题。

通过画线段图帮助学生找出等量关系。

70米/分 50米/分
一共840米
淘气家笑笑家
淘气走的路程+笑笑走的路程=840米
第三个问题:根据等量关系列出方程。

设出发后x分相遇,那么淘气走的路程表示为:70x米,笑笑走的路程表示为50x米。

则方程为:70x+50x=840
学生独立解答。

3、在这个相遇问题中,除了用方程来解答外,还可以用什么方法来解决问题?试一试。

根据“路程÷速度和=相遇时间”列出算式:
840÷(70+50)
三、应用新知,拓展练习:
1、如果淘气的步行速度为80米/分,笑笑的步行速度为60米/分,他们出发后多长时间相遇?请写出等量关系并列方程解答。

先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。

说说怎样找出数量间的相等关系,并列出方程
2、铺设一条长6300米的下水道,有甲乙两个小组从两头同时开始施工,经过60天后还剩300米。

甲组每天完成54米,乙组每天完成多少米?
四、练一练
1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。

2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。

五、知识回顾,全课总结
今天这节课我们学习了什么?我还有那些困惑。

六、布置作业
教学反思:
数学教案相遇问题「篇三」
教学目标:
1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。

2、能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。

3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。

教学重点:正确地寻找数量之间的相等关系。

教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。

教学过程:
一、激发
1.在相遇问题中有哪些等量关系?
板书:甲速×相遇时间+乙速×相遇时间=路程
(甲速+乙速)×相遇时间=路程
2.出示复习题:甲乙两列火车分别同时从北京和上海开出,相向而行。

甲车每小时行122千米,乙车每小时行87千米,经过7小时相遇。

北京到上海的路程是多少千米?
生做完后,指名说一说自己是怎样解答的,师画出线段图,并板书出两种解法。

甲车相遇乙车
每小时122千米每小时87千米
北京上海
第一种解法:用两车的速度和×相遇时间:(122+87)×7
第二种解法:把两车相遇时各自走的路程加起来:122×7+87×7
3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。

(板书课题)
二、尝试
1.出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。

乙车每小时行87千米,经过7小时相遇。

甲车每小时行多少千米?
2.指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。

3.根据线段图学生找出数量间的相等关系:
甲车7小时行的路程+乙车7小时行的`路程=1463千米
4.设未知数列方程并解答。

解:设甲车平均每小时行x千米。

87×7+7x=1463
609+7x=1463
7x=1463-609
7x= 856
x=856÷7
x=122
答:甲车平均每小时行40千米。

4.启发学生用不同方法列方程,并说说方程所表示的数量关系。

表示相遇时,两车的速度和与时间的积等于两地间铁路的长度。

三、应用
试一试,试着让学生列出两种方程,如:
32x+32×7=480。

480-32x=32×7
四、体验
相遇问题中求速度的应用题,列方程解比较简便。

列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。

五、作业
练一练
教学后记:
这节课的最大特点是演示取代了教师的讲解和灌输,激发了学生浓厚的学习兴趣和求知欲望,学生学得比较轻松、愉快。

不仅掌握了应用题的两种解答方法,而且明白了知识的形成过程,也培养学生自主探究、合作交流的意识和提出问题、分析问题、解决问题的能力。

通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识
数学教案相遇问题「篇四」
教学要求:
使学生掌握相遇问题应用题的相等关系,含用方程分析解答相遇时求其中一个速度的应用题。

教学过程:
一、复习准备
1、解下列方程
(0.9+x)×3=3.6
0.32×5+5x=4.6
2、出示准备题
(1)全体学生审题后列式解答(用两种方法解答)
(2)解题后口述解题思路:
(58+54)×1.5 (先算速度和,在求两地路程)
58×1.5+54×1.5 (先分别算出两车相遇时行的路程,再求总路程)
二、学习例6:
1、审题:
(1)与准备题比较不同在哪里?
(2)如果设乙车每小时行X千米,列方程解你会么?
2、解答后反馈:
(1)你是如何解答的?
(58+x)×1.5=168
(2)还能列出怎样的方程?
58×1.5+1.5x=168
1.5x=168-87
(2)比较这两个方程在思路上有什么不同?
3、与这两种方程相应的算术解法是怎样的?
4、师小结:用方程解这类应用题一般根据速度和×相遇的时间=两地的路程这个等量关系来列出方程。

三、巩固学习
1、独立练习:练1练第1、2两题。

全体学生解答后同坐两人互相说说解答的方法步骤。

2、出示试一试。

(1)弄清问题和要求要求。

(怎样解方便就怎样解
(2)解答后讨论:与例6有比较有什么不同?
你是如何解答的?能否求速度和?
(3)你能列出与这两个方程相应的算术解法吗?
1、独立作业。

(1)练一练第三题,学生独立完成
(2)反馈:与例6比较有什么不同?解题方法呢?
师指出:运动物体行驶的方向不同,行驶的结果也不同,一种是相遇,而另一种则是相离,但计算方法相同。

四、课堂总结
今天这节课我们学习用方程解什么应用题?这类应用题有有哪几种情况?
列方程解这类应用题应注意什么?
五、布置作业
作业本[59]
数学教案相遇问题「篇五」
设计说明
1.注重创设问题情境,为学生提供探索源泉。

“学起于思,思起于疑”,在教学中,创设问题情境是非常重要的。

根据学生的年龄特征、知识经验、能力水平、认知规律等因素,抓住学生思维的热点与现实生活的联系点,创设问题情境,激发学生探索的欲望。

同时,在本课时的教学中,充分利用学生已有的知识经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,体会数学在现实生活中的作用。

2.注重学生的自主探究,经历知识的形成过程。

学生学习知识是接受的过程,更是发现、创造的过程,引导学生自己去发现,主动去探索。

列方程解决问题的难点是梳理数量关系,为了突破这个难点,运用学具动手演示相遇的过程,调动学生原有的知识和生活经验,初步理解相遇问题;根据实际的路线图,抽象出线段图来帮助学生理解数量关系,进而列出方程,建构数学模型,使学生经历知识的形成过程,对知识的理解更加深刻。

课前准备
教师准备 PPT课件
学生准备玩具小汽车学具卡片
教学过程
⊙创设情境,导入新课
师:星期天,淘气要到笑笑家去玩,这是他们的电话录音。

淘气:喂,是笑笑吗?我今天想到你家去玩,路不熟,你能接我一段吗?
笑笑:好的,我去接你,咱们8点同时出发,不见不散。

淘气:好的,一会儿见。

师:谁能说一说淘气和笑笑在电话里说的是什么事?
预设
生:淘气要到笑笑家去玩,笑笑要去接他。

课件出示教材71页情境图。

1.学生自己观察情境图,交流获得的数学信息,理解题意。

(1)淘气家到笑笑家的路程是840米。

(2)淘气的步行速度是70米/分,笑笑的步行速度是50米/分。

(3)两人同时从家出发。

你能提出什么数学问题?
2.全班交流“相遇”的意思,让学生在讲台上演示。

引导出路程、时间、速度之间的关系。

3.板书课题:相遇问题。

设计意图:有趣的导入,能起到事半功倍的教学效果。

先创设学生熟悉的生活情境,激发学生的学习兴趣,再通过学生的操作演示体会相遇问题的特点,有利于把感性认识向抽象思维过渡,深化了对相遇问题的理解。

⊙探究新知
活动一:估计两人在何处相遇。

1.让学生根据信息进行估计,两人在何处相遇?在小组内交流你的想法。

预设
因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

2.解决相遇问题一般利用线段图来帮助我们分析,你能把这条路线用线段图表示出来吗?同桌合作画线段图后全班展示。

活动二:思考并解决“出发后多长时间相遇”。

小组合作,汇报交流。

(1)小组内讨论,分析题中的数量关系并全班汇报。

预设1
笑笑走的路程+淘气走的路程=总路程(840米)。

预设2
(笑笑的速度+淘气的速度)×相遇时间=总路程(840米),也就是“速度和×相遇时间=总路程”。

预设3
因为“路程÷速度=时间”,所以,先算出两人的速度和,就可以用“路程÷速度”求出相遇时间。

(2)列式解答。

综合列式:840÷(70+50)=7(分)
(3)列方程解决问题:
解:设出发后x分相遇,那么淘气走了70x米,笑笑走了50x米。

数学教案相遇问题「篇六」
教学内容:
相遇问题(教材第71、72页)
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

教学重点:
理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

教学难点:
掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。

课时安排:1课时
教学过程:
一、复习旧知
1、说一说速度、时间和路程三者之间的关系。

2、应用。

(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
3、列方程解应用题,关键是要找出题中的什么,再根据找出的什么列出方程。

二、探索新知
1、揭示课题。

师:数学与交通密切相联。

今天,我们一起来探索相遇问题。

板书课题:相遇问题。

2、创设“结伴出游”的情境。

出示教材第71页的情境图。

从图中找出相关的数学信息。

生1:淘气的步行速度为70米/分,笑笑的步行速度为50米/分。

生2:淘气家到笑笑家的路程是840米。

生3:两人同时从家里出发,相向而行。

第一个问题:让学生根据信息进行估计,两人在何处相遇?
因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

第二个问题:画线段图帮助学生理解第二、第三个问题。

通过画线段图帮助学生找出等量关系。

淘气走的路程+笑笑走的路程=840米
第三个问题:根据等量关系列出方程。

解:设出发后x分相遇,那么淘气走的路程表示为:70x米,笑笑走的路程表示50x米。

则方程为:
70x+50x=840
学生独立解答。

3、在这个相遇问题中,除了用方程来解答外,还可以用什么方法来解决问题?试一试。

根据“路程÷速度和=相遇时间”列出算式:
840÷(70+50)
三、应用新知,拓展练习:
1、如果淘气的步行速度为80米/分,笑笑的步行速度为60米/分,他们出发后多长时间相遇?请写出等量关系并列方程解答。

先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。

说说怎样找出数量间的相等关系,并列出方程
2、铺设一条长6300米的下水道,有甲乙两个小组从两头同时开始施工,经过60天后还剩300米。

甲组每天完成54米,乙组每天完成多少米?
四、练一练
1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的
2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。

五、知识回顾,全课总结
今天这节课我们学习了什么?我还有那些困惑。

六、布置作业
教学反思:
这节课的主要内容是相遇问题,要求会用线段图分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,重点是会列方程解决相遇问题中求相遇时间的问题,难点是相遇问题相等关系的抽象,对同时相遇的理解。

我个人认为本节课教学设计和组织上很好的体现了新课程标准理念。

具体体现在:
1、情境的创设贴近生活,从生活实际入手,引导学生将生活问题转化成数学问题,学生比较容易理解“相遇”,并能自主地分析并尝试解决问题,本着“从生活入手—抽象成数学问题---尝试解决方案—应用生成的知识解决更多问题“的思路展开教学。

有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。

2、教学中较为充分地发挥学生的自主性,教师创设问题情景,让学生在观察、思考中明确问题的产生,经历尝试解决问题的探究过程,从而获得到成功的体验。

尤其是在得到用列方程方法解决相遇问题的最初步骤,我较大地利用了多媒体的演示作用,学生容易理解“相遇”的数量关系,整个过程在教师的“主导”,充分发挥了学生自我思考、探索、思辩的作用。

3、在教学过程中,还能注意实施差异教学。

学生的水平参差不一,有的解题速度比较快,有的比较慢,甚至有的对所学的内容存在困难,因此我通过在完成练习时,要求早完成的学生要与旁边的同学实行一帮一的互相检查以及辅导,让学生在互助合作的良好氛围中学习,同时在实施评价、反馈时,教师注意捕捉、发现学生的思维火花,及时鼓励、肯定,极大的调动学生学习积极性,形成平等和谐的学习氛围。

数学教案相遇问题「篇七」
一、教材分析:
青岛版小学四年级上册数学第46—48页的“相遇问题”,是在学习简单行程问题基础上继续学习的内容,情节、数量关系比以前学的内容复杂。

教学时,要启发学生抓住题目中主要的数量关系,联系学过的知识,解决新问题。

在教学中要紧紧地抓住对“速度”、“相遇时间”、“路程”这三个量之间的相依关系的理解。

通过可逆性改编、变化题目中情节,进一步培养学生认真分析数量关系的能力;逆向思维的能力;及综合分析应用题的能力。

在教学中还要帮助学生突破对一些概念的理解。

如“速度和”、“相向”、“相遇”、“同时”等。

可以通过学生生活实际,通过演示,帮助学生理解这些概念。

学生对这些概念理解了,有利于进一步理解题目的情节,并掌握数量之间的关
系。

在教学中还要充分发挥准备题的作用,运用旧知识迁移,学会新知识。

过去学习过一个物体走完一段路的行程问题,相遇问题是在这个基础上发展的,它的特点是由两个物体同走一段路,抓住新旧知识的联系与区别进行教学,有利于学生对“相遇问题”的理解和掌握。

二、设计理念:
本着以“学生的发展为本”的教育理念,在设计本课教学时,注重了学生的参与,注重了学生思维的开放,注重了学生个性的发展,使教学跟随学生的学习过程,紧贴学生的学习需求,让学生学有所得,学有所获。

三、教学目标:
1.学会分析“相遇问题”的数量关系。

2.掌握“相遇问题”应用题解题思路和解答方法,提高解题能力。

3.培养学生积极动脑,刻苦钻研的学习精神。

教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。

教学难点:
理解相遇问题中速度和、相遇时间和总路程之间的关系。

教学关键:
使学生弄清每经过一个单位时间,两物体之间的距离变化。

四、教法学法:
为了更好地突出重点,突破难点,本节课我准备采用如下教法:
复习铺垫法直观演示法分组讨论法启发讲解法练习巩固法这样通过多种教法的交叉进行,相信一定会取得理想的教学效果。

在学法上引导学生通过观察、思考、讨论的方法掌握知识,学会知识的迁移、类推。

教具准备:计算机及辅助软件
教学过程:
一、展示设疑
1.口答:一架飞机平均每小时飞行600千米,从甲地飞往乙地用了4小时,甲乙两地相距多少千米?
师:谁会用一个数量关系式来回答?能把其它几个关系式也说出来吗?
看来大家对过去的行程问题学得很不错,为自己鼓鼓掌,也对各位和我们一起学习讨论的老师表示欢迎!
这一道题用几个速度和走完全程?
小结:相遇应用题通常有两种解法,第一种先求什么?再求什么?第二种是又先求什么?再求什么?
(板书:速度和×相遇时间=总路程)
四、拓思创新
1.两个邮递员同时从相距3000米的两地相对而行,骑摩托车的速度是800米/分,骑自行车的速度是200米/分。

经过几分钟两个邮递员相遇?
这道题与刚才研究过的有什么不一样吗?
2.甲乙两人同时从相距600米的两地相对而行,5分后相遇.甲每分行70米,乙每分行多少米?
3.甲乙两人同时从相距600米的两地相对而行,5分后相遇.乙每分行50米,甲每分行多少米?
这两道题是怎样求一方速度的呢?
根据路程÷时间=速度和
速度和一方速度=另一方速度
4.小红和小刚同时从两家出发,小红每分钟走38米,小刚每分钟走45米,经过3分钟两人相距100米,小红和小刚家相距多少米?
这道题中的两人相遇了吗?
5.甲乙两人同时从M地相背而行,甲每分行70米,乙每分行50米,5分后他们相距多少米?”
这道题什么发生了变化?你觉得还可以用今天学的方法做吗?
(这是运动的双方方向上发生了变化,可数量关系并没有改变,因此,解题方法完全相同。

像这样运动双方某一方面发生变化的譬如时间有先后的变化等等以后我们在研究。


五、小结:谈谈这节课你又获得了哪些知识?
师:这节课我们研究的都是两个人走路呀、骑车呀这类问题,它还能不能研究其他问题呢?还可能研究哪些问题呢?这些都是值得我们思考的,老师想在下一节课中得到你们的答案。

数学教案相遇问题「篇八」
数学相遇问题应用题教案参考
教学内容:课本第54页例3以及相应的“做一做”,数学教案-相遇问题应用题。

教学要求:进一步提高学生分析应用题的能力,学会列综合算式解答相向运动求路程的应用题。

教学过程:
一、复习。

口答:
①. 一辆汽车从甲地开往乙地,平均每小时行30千米,5小时到达。

可以求什么?怎样求?为什么这样求?
②. 甲乙两地相距150千米,一辆汽车从甲地开往乙地,需要5小时。

可以求什么?怎样求?为什么这样求?
③. 甲乙两地相距150千米,一辆汽车从甲地开往乙地,每小时行30千米。

可以求什么?怎样求?为什么这样求?
问:从以上三道题中可看出什么数量关系?
速度×时间=路程
二、新授。

1、导入新课。

刚才我们复习了一个物体运动的行程应用题,今天我们要来学习两个物体运动的行程应用题。

两个物体运动的行程应用题比较复杂,比如出发地点、行车方向、出发时间是相同还是不相同,运动的结果又怎样呢?这些都是我们研究的内容。

出示准备题:
张华家距李诚家390米,两人同时从家里出发,向对方走去,张华每分走60米,李诚每分走70米。

390米
60米
60米
70米
70米
张华
李诚
问:题目中“同时”是什么意思?(出发时间一样)
出示下表,学生独立完成。

走的时间
张华走的'路程
李诚走的路程
两人所走的路程和
现在两人的距离
1分
60米
70米
130米
260米。

相关文档
最新文档