函数的概念与基本初等函数第2讲-高考文科数学复习练习卷
高考数学一轮复习 第二章 函数概念与基本初等函数 2.2 函数的单调性与最值练习题(含解析)(1)(
高考数学一轮复习第二章函数概念与基本初等函数2.2 函数的单调性与最值练习题(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第二章函数概念与基本初等函数2.2 函数的单调性与最值练习题(含解析)(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第二章函数概念与基本初等函数2.2 函数的单调性与最值练习题(含解析)(1)的全部内容。
函数的单调性与最值一、选择题1.下列函数中,在(0)-∞,上为增函数的是( ) A.21y x =- B 。
22y x x =+ C.11y x=+D.1x y x =-解析 ∵21y x =-的对称轴为x=0,且开口向下, ∴(0)-∞,为其单调递增区间. 答案 A2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ). A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |解析 (筛选法)对于A :y =x 3为奇函数,不合题意;对于C ,D :y =-x 2+1和y =2-|x |在(0,+∞)上单调递减,不合题意;对于B :y =|x |+1的图象如图所示,知y =|x |+1符合题意,故选B.答案 B【点评】 采用筛选法,根据选项中的函数的图象和性质逐一筛选.3.已知函数f (x )为R 上的减函数,则满足f 错误!〈f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1) C .(-1,0)∪(0,1) D .(-∞,-1)∪(1,+∞)解析 由f (x )为R 上的减函数且f 错误!<f (1), 得:错误!即错误!∴0<x 〈1或-1<x <0. 答案 C4. 函数f (x )=log a (x 2-ax )(a >0且a ≠1)在(2,+∞)上单调递增,则a 的取值范围是( ) A .1<a ≤2 B .1<a 〈12 C .1<a ≤12 D .1<a ≤4解析 设g (x )=x 2-ax =错误!2-错误!,则当a 〉1时,需满足错误!解得1〈a ≤2;当0〈a 〈1时,不满足复合函数的单调性.答案A5.函数f(x)=ln(4+3x-x2)的单调递减区间是().A。
高考数学复习第二章函数概念与基本初等函数I第2讲函数的单调性与最值市赛课公开课一等奖省名师优质课获奖
5.(2016·北京卷)函数 f(x)=x-x 1(x≥2)的最大值为________. 解析 易得 f(x)=x-x 1=1+x-1 1, 当 x≥2 时,x-1>0,易知 f(x)在[2,+∞)是减函数, ∴f(x)max=f(2)=1+2-1 1=2.
答案 2
11/35
考点一 确定函数的单调性Байду номын сангаас区间)
15/35
规律方法 (1)求函数单调区间,应先求定义域,在定义域 内求单调区间,如例1(1). (2)函数单调性判断方法有: ①定义法;②图象法;③利用 已知函数单调性;④导数法. (3)函数y=f(g(x))单调性应依据外层函数y=f(t)和内层函数 t=g(x)单调性判断,遵照“同增异减”标准.
29/35
【迁移探究 1】 在例题第(1)题中,条件不变,若设 m=f(-12), n=f(a),t=f(2),试比较 m,n,t 的大小. 解 由例题知 f(x)在(-∞,+∞)上是增函数, 且32≤a<2,又-12<a<2, ∴f-12<f(a)<f(2),即 m<n<t.
答案 A
8/35
3.假如二次函数f(x)=3x2+2(a-1)x+b在区间(-∞, 1)上是
减函数, 那么( )
A.a=-2
B.a=2
C.a≤-2
D.a≥2
解析 二次函数的对称轴方程为 x=-a-3 1,
由题意知-a-3 1≥1,即 a≤-2.
答案 C
9/35
4.函数f(x)=lg x2单调递减区间是________. 解析 f(x)定义域为(-∞, 0)∪(0, +∞), y=lg u在(0, +∞)上为增函数, u=x2在(-∞, 0)上递减, 在(0, +∞)上递增, 故f(x)在(-∞, 0)上单调递减. 答案 (-∞, 0)
专题02 函数的概念与基本初等函数I-2022年高考真题和模拟题数学分类汇编(解析版)
专题02 函数的概念与基本初等函数I1.【2022年全国甲卷】函数y=(3x−3−x)cosx在区间[−π2,π2]的图象大致为()A.B.C.D.【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令f(x)=(3x−3−x)cosx,x∈[−π2,π2 ],则f(−x)=(3−x−3x)cos(−x)=−(3x−3−x)cosx=−f(x),所以f(x)为奇函数,排除BD;又当x∈(0,π2)时,3x−3−x>0,cosx>0,所以f(x)>0,排除C.故选:A.2.【2022年全国甲卷】已知9m=10,a=10m−11,b=8m−9,则()A.a>0>b B.a>b>0C.b>a>0D.b>0>a 【答案】A【解析】【分析】根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. 【详解】由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0. 又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . 故选:A.3.【2022年全国乙卷】如图是下列四个函数中的某个函数在区间[−3,3]的大致图像,则该函数是( )A .y =−x 3+3x x 2+1B .y =x 3−x x 2+1C .y =2xcosx x 2+1D .y =2sinx x 2+1【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】 设f(x)=x 3−x x 2+1,则f(1)=0,故排除B;设ℎ(x)=2xcosx x 2+1,当x ∈(0,π2)时,0<cosx <1, 所以ℎ(x)=2xcosx x 2+1<2xx 2+1≤1,故排除C;设g(x)=2sinxx 2+1,则g(3)=2sin310>0,故排除D.故选:A.4.【2022年全国乙卷】已知函数f(x),g(x)的定义域均为R ,且f(x)+g(2−x)=5,g(x)−f(x −4)=7.若y =g(x)的图像关于直线x =2对称,g(2)=4,则∑f(k)k=122=( )A .−21B .−22C .−23D .−24【答案】D 【解析】 【分析】根据对称性和已知条件得到f(x)+f(x −2)=−2,从而得到f (3)+f (5)+⋯+f (21)=−10,f (4)+f (6)+⋯+f (22)=−10,然后根据条件得到f(2)的值,再由题意得到g (3)=6从而得到f (1)的值即可求解. 【详解】因为y =g(x)的图像关于直线x =2对称, 所以g (2−x )=g (x +2),因为g(x)−f(x −4)=7,所以g(x +2)−f(x −2)=7,即g(x +2)=7+f(x −2), 因为f(x)+g(2−x)=5,所以f(x)+g(x +2)=5, 代入得f(x)+[7+f(x −2)]=5,即f(x)+f(x −2)=−2, 所以f (3)+f (5)+⋯+f (21)=(−2)×5=−10, f (4)+f (6)+⋯+f (22)=(−2)×5=−10.因为f(x)+g(2−x)=5,所以f(0)+g(2)=5,即f (0)=1,所以f(2)=−2−f (0)=−3. 因为g(x)−f(x −4)=7,所以g(x +4)−f(x)=7,又因为f(x)+g(2−x)=5, 联立得,g (2−x )+g (x +4)=12,所以y =g(x)的图像关于点(3,6)中心对称,因为函数g(x)的定义域为R , 所以g (3)=6因为f(x)+g(x +2)=5,所以f (1)=5−g (3)=−1. 所以∑k=122f(k)=f (1)+f (2)+[f (3)+f (5)+⋯+f (21)]+[f (4)+f (6)+⋯+f (22)]=−1−3−10−10=−24. 故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.5.【2022年新高考2卷】已知函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f(k)22k=1=( ) A .−3 B .−2 C .0 D .1【答案】A 【解析】 【分析】根据题意赋值即可知函数f (x )的一个周期为6,求出函数一个周期中的f (1),f (2),⋯,f (6)的值,即可解出. 【详解】因为f (x +y )+f (x −y )=f (x )f (y ),令x =1,y =0可得,2f (1)=f (1)f (0),所以f (0)=2,令x =0可得,f (y )+f (−y )=2f (y ),即f (y )=f (−y ),所以函数f (x )为偶函数,令y =1得,f (x +1)+f (x −1)=f (x )f (1)=f (x ),即有f (x +2)+f (x )=f (x +1),从而可知f (x +2)=−f (x −1),f (x −1)=−f (x −4),故f (x +2)=f (x −4),即f (x )=f (x +6),所以函数f (x )的一个周期为6.因为f (2)=f (1)−f (0)=1−2=−1,f (3)=f (2)−f (1)=−1−1=−2,f (4)=f (−2)=f (2)=−1,f (5)=f (−1)=f (1)=1,f (6)=f (0)=2,所以 一个周期内的f (1)+f (2)+⋯+f (6)=0.由于22除以6余4, 所以∑f (k )22k=1=f (1)+f (2)+f (3)+f (4)=1−1−2−1=−3. 故选:A .6.【2022年北京】己知函数f(x)=11+2x ,则对任意实数x ,有( ) A .f(−x)+f(x)=0 B .f(−x)−f(x)=0 C .f(−x)+f(x)=1 D .f(−x)−f(x)=13【答案】C 【解析】 【分析】直接代入计算,注意通分不要计算错误. 【详解】f (−x )+f (x )=11+2−x +11+2x =2x1+2x +11+2x =1,故A 错误,C 正确; f (−x )−f (x )=11+2−x−11+2x =2x1+2x −11+2x =2x −12x +1=1−22x +1,不是常数,故BD 错误;7.【2022年北京】在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和lgP的关系,其中T表示温度,单位是K;P表示压强,单位是bar.下列结论中正确的是()A.当T=220,P=1026时,二氧化碳处于液态B.当T=270,P=128时,二氧化碳处于气态C.当T=300,P=9987时,二氧化碳处于超临界状态D.当T=360,P=729时,二氧化碳处于超临界状态【答案】D【解析】【分析】根据T与lgP的关系图可得正确的选项.【详解】当T=220,P=1026时,lgP>3,此时二氧化碳处于固态,故A错误.当T=270,P=128时,2<lgP<3,此时二氧化碳处于液态,故B错误.当T=300,P=9987时,lgP与4非常接近,故此时二氧化碳处于固态,另一方面,T=300时对应的是非超临界状态,故C错误.当T=360,P=729时,因2<lgP<3, 故此时二氧化碳处于超临界状态,故D正确.故选:D8.【2022年浙江】已知2a=5,log83=b,则4a−3b=()A.25 B.5 C.259D.53【解析】 【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 【详解】因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a43b =(2a )2(23b )2=5232=259.故选:C.9.【2022年新高考1卷】(多选)已知函数f(x)及其导函数f ′(x)的定义域均为R ,记g(x)=f ′(x),若f (32−2x),g(2+x)均为偶函数,则( ) A .f(0)=0 B .g (−12)=0C .f(−1)=f(4)D .g(−1)=g(2)【答案】BC 【解析】 【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解. 【详解】因为f(32−2x),g(2+x)均为偶函数,所以f(32−2x)=f(32+2x)即f(32−x)=f(32+x),g(2+x)=g(2−x), 所以f(3−x)=f(x),g(4−x)=g(x),则f(−1)=f(4),故C 正确; 函数f(x),g(x)的图象分别关于直线x =32,x =2对称, 又g(x)=f ′(x),且函数f(x)可导, 所以g(32)=0,g(3−x)=−g(x),所以g(4−x)=g(x)=−g(3−x),所以g(x +2)=−g(x +1)=g(x), 所以g(−12)=g(32)=0,g(−1)=g(1)=−g(2),故B 正确,D 错误;若函数f(x)满足题设条件,则函数f(x)+C (C 为常数)也满足题设条件,所以无法确定f(x)的函数值,故A 错误. 故选:BC.关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.10.【2022年全国乙卷】若f (x )=ln |a +11−x |+b 是奇函数,则a =_____,b =______. 【答案】 −12; ln2. 【解析】 【分析】根据奇函数的定义即可求出. 【详解】因为函数f (x )=ln |a +11−x |+b 为奇函数,所以其定义域关于原点对称. 由a +11−x ≠0可得,(1−x )(a +1−ax )≠0,所以x =a+1a=−1,解得:a =−12,即函数的定义域为(−∞,−1)∪(−1,1)∪(1,+∞),再由f (0)=0可得,b =ln2.即f (x )=ln |−12+11−x|+ln2=ln |1+x 1−x|,在定义域内满足f (−x )=−f (x ),符合题意.故答案为:−12;ln2.11.【2022年北京】函数f(x)=1x +√1−x 的定义域是_________. 【答案】(−∞,0)∪(0,1] 【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】解:因为f (x )=1x +√1−x ,所以{1−x ≥0x ≠0,解得x ≤1且x ≠0,故函数的定义域为(−∞,0)∪(0,1]; 故答案为:(−∞,0)∪(0,1]12.【2022年北京】设函数f(x)={−ax +1, x <a,(x −2)2, x ≥a.若f(x)存在最小值,则a 的一个取值为________;a 的最大值为___________. 【答案】 0(答案不唯一) 1 【解析】根据分段函数中的函数y =−ax +1的单调性进行分类讨论,可知,a =0符合条件,a <0不符合条件,a >0时函数y =−ax +1没有最小值,故f(x)的最小值只能取y =(x −2)2的最小值,根据定义域讨论可知−a 2+1≥0或−a 2+1≥(a −2)2, 解得 0<a ≤1. 【详解】解:若a =0时,f(x)={1(x −2)2,x <0,x ≥0,∴f(x)min =0; 若a <0时,当x <a 时,f(x)=−ax +1单调递增,当x →−∞时,f(x)→−∞,故f(x)没有最小值,不符合题目要求; 若a >0时,当x <a 时,f(x)=−ax +1单调递减,f(x)>f(a)=−a 2+1, 当x >a 时,f(x)min ={0(a −2)2(0<a <2)(a ≥2) ∴−a 2+1≥0或−a 2+1≥(a −2)2, 解得0<a ≤1, 综上可得0≤a ≤1;故答案为:0(答案不唯一),113.【2022年浙江】已知函数f(x)={−x 2+2, x ≤1,x +1x −1, x >1, 则f (f (12))=________;若当x ∈[a,b]时,1≤f(x)≤3,则b −a 的最大值是_________. 【答案】 3728 3+√3##√3+3 【解析】 【分析】结合分段函数的解析式求函数值,由条件求出a 的最小值,b 的最大值即可. 【详解】由已知f(12)=−(12)2+2=74,f(74)=74+47−1=3728,所以 f [f(12)]=3728,当x ≤1时,由1≤f(x)≤3可得1≤−x 2+2≤3,所以−1≤x ≤1, 当x >1时,由1≤f(x)≤3可得1≤x +1x −1≤3,所以1<x ≤2+√3, 1≤f(x)≤3等价于−1≤x ≤2+√3,所以[a,b]⊆[−1,2+√3],所以b −a 的最大值为3+√3. 故答案为:3728,3+√3.1.(2022·河南·模拟预测(文))已知函数()3sin 3f x ax b x =++,若()1f m =,则()f m -=( )A .1-B .2C .5D .7【答案】C 【解析】 【分析】令()3sin g x ax b x =+,利用函数奇偶性计算作答.【详解】设()()33sin g x f x ax b x =-=+,则()()()()33sin sin g x a x b x ax b x g x -=-+-=--=-,即函数()g x 是奇函数, ()()3f x g x =+,则()()()3()36f m f m g m g m +-=++-+=,而()1f m =所以()5f m -=. 故选:C2.(2022·全国·模拟预测(理))若幂函数()(R)a f x x a =∈满足(1)()(e )a f x f x +=,则下列关于函数()f x 的说法正确的是( )①()f x 不是周期函数 ②()f x 是单调函数 ③()f x 关于原点对称 ④()f x 关于点()0,1对称A .①③B .②④C .①④D .②③【答案】C 【解析】 【分析】根据题意可得e 10a a --=,求导利用函数单调性解不等式可得0a =,即0()1(0)f x x x ==≠,结合性质分析判断. 【详解】∵(1)()(e )a f x f x +=,即(1)(e )a a a x x +=,则e 10a a --=构建()=e 1--x g x x ,则()=e 1'-xg x令0g x ,则0x >()g x 在(),0-∞上单调递减,在()0,+∞上单调递增则()()00g x g ≥=当且仅当0x =时等号成立 ∴0a =,则0()1(0)f x x x ==≠,若()f x 是周期函数,则存在非零实数T ,使得()()f x T f x +=对任意的0x ≠总成立, 但x T =-时,()f x T +无意义,()1f T -=,故两者不相等,故()f x 不是周期函数, ①正确;()f x 不是单调函数,②错误;()1()f x f x -=≠-,()f x 不是奇函数,③错误; ()f x 关于点0,1对称,④正确;故选:C .3.(2022·河南省杞县高中模拟预测(理))已知函数()()()22sin 11f x x x x x =--++,则()222log 6log 3f f ⎛⎫+= ⎪⎝⎭( )A .6B .4C .2D .3-【答案】B 【解析】 【分析】构造函数()()()211g x f x x =+=-sin 2x x ++,由()()21sin h x x x x =-+为奇函数,()222log 6log 3f f ⎛⎫+= ⎪⎝⎭()()()()2222log 3log 3log 32log 32g g h h +-=++-+即可得解. 【详解】将()y f x =的图像向左平移1个单位长度, 得到()y g x =的图像,则()()()211g x f x x =+=-sin 2x x ++,令()()21sin h x x x x =-+,显然()h x 为奇函数,所以()()()22222log 6log 1log 31log 33f f f f ⎛⎫+=++- ⎪⎝⎭()()()()2222log 3log 3log 32log 324g g h h =+-=++-+=.故选:B .4.(2022·全国·模拟预测(理))已知定义在R 上的函数()f x ,对任意的x ∈R ,都有()(4)f x f x =--,且()(2)f x f x =-,则下列说法正确的是( )A .()f x 是以2为周期的偶函数B .()f x 是以2为周期的奇函数C .()f x 是以4为周期的偶函数D .()f x 是以4为周期的奇函数【答案】D 【解析】 【分析】由()(4)f x f x =--可得()(2)20f x f x ++-=,结合()(2)f x f x =-可得出()(2)f x f x =-+,再由()(2)f x f x =-+即可求出()f x 的周期,再由()()()(4)44f x f x f x f x =--=--+=--⎡⎤⎣⎦,即可求出()f x 为奇函数.【详解】()(4)f x f x =--即()(4)0f x f x +-=①,在①中将x 变换为2x +,则()(2)420f x f x ++-+=⎡⎤⎣⎦,则()(2)20f x f x ++-=, 又因为()(2)f x f x =-,所以()()20f x f x +=+,所以()(2)f x f x =-+②, 在②将x 变换为2x +,所以()()2(4)f x f x f x +=-+=-,所以()(4)f x f x =+, 所以()f x 的周期为4.因为()()()(4)44f x f x f x f x =--=--+=--⎡⎤⎣⎦,所以()()f x f x -=-, 所以()f x 为奇函数. 故选:D.5.(2022·河南安阳·模拟预测(理))关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③ B .①④ C .②③④ D .①③④【答案】D 【解析】 【分析】根据给定函数,计算(2)f x -判断①;探讨()f x 在(2,)+∞上单调性判断②;探讨()f x 在(0,1)和(1,2)上单调性判断③;求出()f x 的零点判断④作答. 【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于①,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,①正确;对于②,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,②不正确; 对于③,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,③正确;对于④,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,④正确, 所以所有正确结论的编号为①③④. 故选:D 【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.6.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则( ) A .()f x 是偶函数 B .()f x 的图象关于直线12x =对称 C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称【答案】C 【解析】 【分析】由周期函数的概念易知函数()f x 的周期为2,根据图象平移可得()f x 的图象关于点()1,0对称,进而可得奇偶性. 【详解】由()()24f x f x +=+可得2是函数()f x 的周期,因为()1f x +是奇函数,所以函数()f x 的图象关于点()1,0对称, 所以()()2f x f x =--,()()f x f x =--,所以()f x 是奇函数, 故选:C.7.(2022·黑龙江·鸡西市第四中学三模(理))若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列三个函数:()13=x f x ,()243x f x =⨯,()385log 53log 2x f x =⋅⋅,则( )A .()1f x ,()2f x ,()3f x 为“同形”函数B .()1f x ,()2f x 为“同形”函数,且它们与()3f x 不为“同形”函数C .()1f x ,()3f x 为“同形”函数,且它们与()2f x 不为“同形”函数D .()2f x ,()3f x 为“同形”函数,且它们与()1f x 不为“同形”函数 【答案】A 【解析】 【分析】根据题中“同形”函数的定义和2()f x 、3()f x 均可化简成以3为底的指数形式,可得答案. 【详解】解:()33log 4log 4243333x x xf x +=⨯=⨯=,()518385813log 5g lo l log 23lo 233g 53og 23x x x x x f x -=⋅⋅=⋅⋅==⋅⋅=,故2()f x ,3()f x 的图象可分别由1()3x f x =的图象向左平移3log 4个单位、向右平移1个单位得到,故()1f x ,()2f x ,()3f x 为“同形”函数. 故选:A .8.(2022·河南·平顶山市第一高级中学模拟预测(文))定义在R 上的函数()f x 满足(1)(1)f x f x -=+,当1x 时,225,12,()2log ,2,x x f x x x ⎧-+<=⎨-⎩若对任意的[,1]x t t ∈+,不等式()(1)f x f t x --恒成立,则实数t 的取值范围是( ) A .1(,1],3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭B .1(,2],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭C .12,3⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎥⎣⎦【答案】D 【解析】 【分析】由解析式得到函数的单调性和对称轴,结合条件可得|1||11|x t x ----,两边平方转为恒成立求解即可. 【详解】当12x <时,25y x =-+单调递减,2()(2)2log 21f x f >=-=;当2x 时,()f x 单调递减,故()f x 在[1,)+∞上单调递减:由(1)(1)f x f x -=+,得()f x 的对称轴方程为1x =.若对任意的[,1]x t t ∈+,不等式()(1)f x f t x --恒成立,所以|1||11|x t x ----,即22(1)()x x t -+,即22(1)10t x t ++-对任意的[,1]x t t ∈+恒成立,所以()()()222110,21110,t t t t t t ⎧++-⎪⎨+++-⎪⎩解得113t --. 故选:D .9.(2022·青海·大通回族土族自治县教学研究室三模(文))若函数()f x 满足()()31f x f x +=-,且当[]2,0x ∈-时,()31x f x -=+,则()2022f =( )A .109B .10C .4D .2【答案】B 【解析】 【分析】首先得到()f x 的周期,再根据函数的周期性计算可得; 【详解】解:由()()31f x f x +=-,得()()4f x f x +=, ∴函数()f x 是周期函数,且4是它的一个周期,又当[]2,0x ∈-时,()31xf x -=+,∴()()()20224506229110f f f =⨯-=-=+=; 故选:B.10.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 【答案】C 【解析】 【分析】利用函数的奇偶性和单调性的定义以及导数分别判断四个选项即可得出答案. 【详解】对于A ,函数()2x f x =的定义域为R ,关于原点对称,且()22()x xf x f x --===,所以函数()f x 为偶函数,当(0,2)x ∈时()2x f x =,函数()f x 单调递增,故A 不符合题意; 对于B ,函数3()f x x =-的定义域为R ,关于原点对称, 且33()()()f x x x f x -=--==-,所以函数()f x 为奇函数, 由幂函数的性质知函数3y x =在R 上单调递增, 所以函数3()f x x =-在R 上单调递减,故B 不符合题意; 对于C ,函数()cos 2x f x =的定义域为R ,关于原点对称,且()cos()cos ()22x xf x f x -=-==,所以函数()f x 为偶函数,当(0,2)x ∈时(0,1)2x ∈,又()0,10,2π⎛⎫⊆ ⎪⎝⎭,所以函数()cos 2x f x =在(0,1)上单调递减,故C 符合题意; 对于D ,函数2()ln 2xf x x-=+的定义域为(2,2)-,关于原点对称, 且()()1222lnln()ln 222x x xf f x x x xx -+--==--+==--+, 所以()f x 是奇函数,又112()22(2)(2)x f x x x x x '=-=-+-+, 令()020f x x '<⇒-<<,令()002f x x '>⇒<<,所以函数()f x 在(2,0)-上单调递减,在(0,2)上单调递增,故D 不符合题意. 故选:C.11.(2022·浙江绍兴·模拟预测)已知函数()()2()log 9,()log x a a f x a g x x ax =-=-,若对任意1[1,2]x ∈,存在2[3,4]x ∈使得()()12f x g x ≥恒成立,则实数a 的取值范围为____________. 【答案】()()0,11,3【解析】 【分析】恒成立存在性共存的不等式问题,需要根据题意确定最值比大小解不等式即可. 【详解】根据题意可得只需()()12min min f x g x ≥即可,由题可知a 为对数底数且29001a a ->⇒<<或13a <<.当01a <<时,此时(),()f x g x 在各自定义域内都有意义,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递减,所以()21min (2)log (9)a f x f a ==-,()2min (4)log (164)a g x g a ==-,所以22log (9)log (164)9164a a a a a a -≥-⇒-≤-,即2470a a -+≥,可得01a <<;当13a <<时,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递增,所以()21min (2)log (9)a f x f a ==-,()2min (3)log (93)a g x g a ==-,所以22log (9)log (93)993a a a a a a -≥-⇒-≥-,即230a a -≤,可得13a <<.综上:()()0,11,3a ∈⋃.故答案为:()()0,11,3.12.(2022·河南安阳·模拟预测(文))已知函数()x x f x ae e a -=-+是偶函数,则=a _________. 【答案】-1 【解析】 【分析】利用偶函数的定义直接求解. 【详解】函数()x x f x ae e a -=-+的定义域为R.因为函数()x x f x ae e a -=-+是偶函数,所以()()f x f x =-,即x x x x ae e a ae e a ---+=-+对任意R x ∈恒成立,亦即()()11x xa e a e -+=+对任意R x ∈恒成立,所以1a =-. 故答案为:-113.(2022·全国·模拟预测(理))已知函数())33()lnf x x x x -=-为偶函数,则=a ______. 【答案】1 【解析】 【分析】利用偶函数定义列出关于a 的方程,解之即可求得实数a 的值 【详解】函数())33()ln f x x x x -=-为偶函数,则有()()f x f x -=,即())())3333lnlnx x x x x x ---+=-恒成立则))lnln x x =-恒成立即))ln ln ln 0x x a +==恒成立则1a =,经检验符合题意. 故答案为:114.(2022·安徽·合肥市第八中学模拟预测(文))已知定义在(0,+∞)上的函数f (x )满足:ln ,01()2(1),1x x x f x f x x <≤⎧=⎨->⎩,若方程()12f x kx =-在(0,2]上恰有三个根,则实数k 的取值范围是___________. 【答案】11ln 2,2⎛⎫- ⎪⎝⎭【解析】 【分析】由题意知直线12y kx =-与函数()y f x =的图像有三个交点,利用导数研究函数()f x 的性质,结合数形结合的数学思想即可求出k 的取值范围. 【详解】方程()12f x kx =-在(0,2]上恰有三个根,即直线12y kx =-与函数()y f x =的图像有三个交点,当01x <≤时,()ln f x x x =,则()ln 1f x x '=+, 当10e x <<时,()0f x '<;当11ex <≤时,()0f x '>,所以f (x )在(0,1e )上单调递减,f (x )在(1e,1]上单调递增.结合函数的“周期现象”得f (x )在(0,2]上的图像如下:由于直线l ;12y kx =-过定点A (0,12-).如图连接A ,B (1,0)两点作直线11122l y x =-:,过点A 作()()ln 01f x x x x =<≤的切线l 2,设切点P (0x ,0y ),其中000ln l 1()n y x x x f x '==+,,则斜率20ln 1l k x =+ 切线20000:ln (ln 1)()l y x x x x x -=+-过点A (0,12-).则00001ln (ln 1)(0)2x x x x --=+-,即012x =,则21ln 11ln 22l k =+=-,当直线1:2l y kx =-绕点A (0,12-)在1l 与2l 之间旋转时.直线1:2l y kx =-与函数()y f x =在[-1,2]上的图像有三个交点,故1(1ln 2,)2k ∈-故答案为:1(1ln 2,)2-15.(2022·北京·景山学校模拟预测)已知函数()y f x =,x D ∈,若存在实数m ,使得对于任意的x D ∈,都有()f x m ≥,则称函数()y f x =,x D ∈有下界,m 为其一个下界;类似的,若存在实数M ,使得对于任意的x D ∈,都有()f x M ≤,则称函数()y f x =,x D ∈有上界,M 为其一个上界.若函数()y f x =,x D ∈既有上界,又有下界,则称该函数为有界函数.对于下列4个结论中正确的序号是______.①若函数()y f x =有下界,则函数()y f x =有最小值;②若定义在R 上的奇函数()y f x =有上界,则该函数是有界函数; ③对于函数()y f x =,若函数()y f x =有最大值,则该函数是有界函数; ④若函数()y f x =的定义域为闭区间[],a b ,则该函数是有界函数. 【答案】②③ 【解析】 【分析】根据函数上界,下界,有界的定义分别进行判断即可. 【详解】解:①当0x >时,1()f x x=,则()0f x 恒成立,则函数()y f x =有下界,但函数()y f x =没有最小值,故①错误;②若定义在R 上的奇函数()y f x =有上界,不妨设当0x 时,()f x M 成立,则当0x <时,0x ->,则()f x M -,即()f x M -,则()f x M -,该()f x 的下界是M -,则函数是有界函数,故②正确; ③对于函数()y f x =,若函数|()|y f x =有最大值,设|()|f x M ,则()M f x M -,该函数是有界函数,故③正确;④函数tan ,02()02x x f x x ππ⎧<⎪⎪=⎨⎪=⎪⎩,则函数()y f x =的定义域为闭区间02,π⎡⎤⎢⎥⎣⎦, 则函数()f x 的值域为[)0+∞,,则()f x 只有下界,没有上界,即该函数不是有界函数.故④错误;故答案为:②③.。
专题02 函数的概念与基本初等函数Ⅰ-2019年高考真题和模拟题分项汇编数学(文)(解析版)
=
4
+ 2π π2
1,
f
(π)
=
π −1+
π2
0 ,可知应为 D 选项中的图象.
2
7.【2019 年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗
星的星等与亮度满足
m2
–
m1
=
5 2
lg
E1 E2
,其中星等为 mk
的星的亮度为
Ek (k=1,2).已
知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为
=
−
1 2
,1
x
2
,其中 k>0.若在区间(0,9]上,关于 x 的方程 f (x) = g(x) 有
8 个不同的实数根,则 k 的取值范围是 ▲ .
【答案】
1 3
,
2 4
【解析】作出函数 f (x) , g(x) 的图象,如图:
由图可知,函数 f (x) = 1− (x −1)2 的图象与 g(x) = − 1 (1 x 2,3 x 4,5 x 6, 7 x 8) 的图象仅有 2 个交点,即在区间
专题 02 函数的概念与基本初等函数 I
1.【2019 年高考全国Ⅰ卷文数】已知 a = log2 0.2,b = 20.2, c = 0.20.3 ,则( )
A. a b c
B. a c b
C. c a b
D. b c a
【答案】B
【解析】 a = log2 0.2 log2 1 = 0, b = 20.2 20 = 1, 0 c = 0.20.3 0.20 = 1, 即 0 c 1, 则 a c b .故选 B.
【(2020-2022)三年真题分项汇编】第2讲 函数的概念与基本初等函数Ⅰ(新高考)(原卷版)
【(2020-2022)三年真题分项汇编】第2讲函数的概念与基本初等函数Ⅰ1.【2022年新高考2卷】已知函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f(k)22k=1=( )A .−3B .−2C .0D .12.【2021年新高考2卷】已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c << C .a c b << D .a b c << 3.【2021年新高考2卷】已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f = 4.【2020年新高考1卷(山东卷)】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A .1.2天B .1.8天C .2.5天D .3.5天5.【2020年新高考1卷(山东卷)】若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃6.【2020年新高考2卷(海南卷)】已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a的取值范围是( )A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞ 7.【2022年新高考1卷】已知函数f(x)及其导函数f ′(x)的定义域均为R ,记g(x)=f ′(x),若f (32−2x),g(2+x)均为偶函数,则( )A .f(0)=0B .g (−12)=0C .f(−1)=f(4)D .g(−1)=g(2)8.【2021年新高考2卷】设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅,其中{}0,1i a ∈,记()01k n a a a ω=+++.则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21n n ω-= 9.【2021年新高考1卷】已知函数()()322x x x a f x -=⋅-是偶函数,则=a ______.10.【2021年新高考1卷】函数()212ln f x x x =--的最小值为______.11.【2021年新高考2卷】写出一个同时具有下列性质①②③的函数():f x _______. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数。
函数概念与基本初等函数(选填压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题
专题02函数概念与基本初等函数(选填压轴题)一、函数及其表示①抽象函数定义域②复合函数定义域③根式型、分式型求值域④抽象函数的值域⑤复合函数的值域⑥根据值域求参数二、函数的基本性质①单调性(复合函数的单调性)②函数的值域(复合函数的值域)③恒成立(能成立)问题④奇偶性⑤周期性⑥对称性⑦函数奇偶性+单调性+对称性联袂三、分段函数①分段函数求值域或最值②根据分段函数的单调性求参数四、函数的图象①特殊值②奇偶性③单调性④零点⑤极限联袂五、二次函数①二次函数的单调性②二次函数的值域(最值)六、指对幂函数①单调性②值域③图象④复合型七、函数与方程①函数的零点(方程的根)的个数②已知函数的零点(方程的根)的个数,求参数③分段函数的零点(根)的问题④二分法八、新定义题①高斯函数②狄利克雷函数③劳威尔不动点④黎曼函数⑤纳皮尔对数表⑥同族函数⑦康托尔三分集⑧太极图一、函数及其表示1.(2022·浙江·高三专题练习)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是()A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .2.(2022·北京师大附中高一期末)已知函数()f x x =,()2g x ax x =-,其中0a >,若[]11,3x ∀∈,[]21,3x ∃∈,使得()()()()1212f x f x g x g x =成立,则=a ()A .32B .43C .23D .123.(2022·河南南阳·高一期末)若函数()f x 的定义域为[]0,2,则函数()()lg g x f x =的定义域为______.4.(2022·全国·高三专题练习)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.5.(2022·全国·高三专题练习)设2()lg2xf x x+=-,则2(()2x f f x +的定义域为_______.6.(2022·江西·赣州市赣县第三中学高一开学考试)函数()f x =______.7.(2022·上海·高三专题练习)函数y =_____.8.(2022·上海·模拟预测)若函数()y f x =的值域是1[,3]2,则函数1()(21)(21)F x f x f x =+++的值域是________.9.(2022·全国·高一)函数2y =的值域是________________.10.(2021·全国·高一专题练习)已知函数22y x x =+在闭区间[,]a b 上的值域为[1,3]-,则⋅a b 的最大值为________.二、函数的基本性质1.(2021·江苏·海安高级中学高一阶段练习)已知函数()()2ln 122x xf x x -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是A .()(),11,-∞-+∞U B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭ D .()(),21,-∞-⋃+∞2.(2021·江苏·高一单元测试)已知函数()f x 的定义域是()0+∞,,且满足()()()f xy f x f y =+,112f ⎛⎫= ⎪⎝⎭,如果对于0x y <<,都有()()f x f y >,不等式()()32f x f x -+-≥-的解集为()A .[)(]1034-⋃,,B .112⎡⎤--⎢⎥⎣⎦,C .[)43--,D .[)10-,3.(2022·吉林·梅河口市第五中学高一期末)已知函数()22ln 1f x x x x =-+-,若实数a 满足()()121f a f a ->-,则实数a 的取值范围是()A .40,3⎛⎫ ⎪⎝⎭B .(),0∞-C .41,3⎛⎫ ⎪⎝⎭D .()40,11,3⎛⎫⎪⎝⎭4.(2022·北京·高三专题练习)已知函数()f x 的定义域为R ,当[2x ∈,4]时,224,23()2,34x x x f x x x x⎧-+⎪=⎨+<⎪⎩ ,()1g x ax =+,若对1[2x ∀∈,4],2[2x ∃∈-,1],使得21()()g x f x ,则正实数a 的取值范围为()A .(0,2]B .(0,7]2C .[2,)+∞D .7[2,)+∞5.(2022·全国·高三专题练习)已知函数2()21x x mf x +=+(01x ≤≤),函数()(1)g x m x=-(12x ≤≤).若任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =,则实数m 的取值范围为()A .51,3⎛⎤ ⎥⎝⎦B .[]2,3C .52,2⎡⎤⎢⎥⎣⎦D .55,32⎡⎤⎢⎥⎣⎦6.(多选)(2022·湖北·沙市中学高一期末)定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,若任给[]12,0x =-,存在[]22,1x ∈-,使得()()21g x f x =,则实数a 的取值可以为()A .12-B .14-C .18-D .187.(2022·河北·高三阶段练习)函数()212x ax bf x -+⎛⎫= ⎪⎝⎭的最大值为2,且在1,2⎛⎤-∞ ⎥⎝⎦上单调递增,则a 的范围是______,4b a+的最小值为______.8.(2022·全国·模拟预测)已知函数()f x 的定义域()(),00,D =-∞⋃+∞,对任意的1x ,2x D ∈,都有()()()12123f x x f x f x =+-,若()f x 在()0,∞+上单调递减,且对任意的[)9,t ∈+∞,()f m >m 的取值范围是______.9.(2022·河北省唐县第一中学高一期中)设函数()()20.5log 23f x x x =--,则()f x 的单调递增区间为_________.10.(2022·山西吕梁·高一期末)已知函数2231()2--=ax x y 在区间(-1,2)上单调递增,则实数a 的取值范围是_________.11.(2022·安徽省舒城中学高一阶段练习)已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是________.12.(2022·上海·曹杨二中高一期末)已知常数0a >,函数()y f x =、()y g x =的表达式分别为()21x f x ax =+、()3ag x x =-.若对任意[]1,x a a ∈-,总存在[]2,x a a ∈-,使得()()21f x g x ≥,则a 的最大值为______.13.(2022·全国·高三专题练习)设函数()123f x ax b x=--,若对任意的正实数a 和实数b ,总存在[]01,4x ∈,使得()0f x m >,则实数m 的取值范围是______.14.(2022·上海·高三专题练习)已知t 为常数,函数22y x x t =--在区间[0,3]上的最大值为2,则t =_____________15.(2022·重庆市万州第二高级中学高二阶段练习)已知函数2()(1)ln 1f x a x ax =+++(1a <-)如果对任意12,(0,)x x ∈+∞,1212()()4|f x f x x x -≥-,则a 的取值范围为_____________.16.(2022·浙江宁波·高一期末)已知()()()e 1ln 21x af x x a -=-+-,若()0f x ≥对()12,x a ∈-+∞恒成立,则实数=a ___________.17.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.18.(2022·上海·高三专题练习)已知函数()800x x f x x x a x ⎧-<⎪=⎨⎪-≥⎩,若对任意的[)12,x ∈+∞,都存在[]22,1x ∈--,使得()()12f x f x a ⋅≥,则实数a 的取值范围为___________.19.(2022·全国·高三专题练习)设函数2()f x x ax b =++,对于任意的实数a ,b ,总存在0[0,4]x ∈,使得()f x t ≥成立,则实数t 的取值范围是________.三、分段函数1.(2022·江苏南京·三模)已知()22,0,0x x f x x x ⎧≥=⎨-<⎩,若∀x ≥1,f (x +2m )+mf (x )>0,则实数m 的取值范围是()A .(-1,+∞)B .1,4⎛⎫-+∞ ⎪⎝⎭C .(0,+∞)D .1,12⎛⎫- ⎪⎝⎭2.(2022·河南·二模(理))已知函数1,01()ln ,1x x f x x x -≤≤⎧=⎨>⎩,若()()f a f b =,且a b ¹,则()()bf a af b +的最大值为()A .0B .(3ln 2)ln 2-⋅C .1D .e3.(2022·宁夏·银川一中三模(文))已知()242,01,0x x m x f x x x x +⎧-+≤⎪=⎨+>⎪⎩的最小值为2,则m 的取值范围为()A .(],3-∞B .(],5-∞C .[)3,+∞D .[)5,+∞4.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是()A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞5.(2022·四川攀枝花·二模(文))已知函数()()222,1e ,1xx ax a x f x a R ax x ⎧-+≤=∈⎨->⎩,若关于x 的不等式()0f x ≥恒成立,则实数a 的取值范围为()A .[]0,1B .[]0,2C .[]1,e D .[]0,e6.(2022·浙江·高三专题练习)已知函数()22,,14,,xx a f x x x x x a ⎧<⎪=+⎨⎪-+≥⎩则当5a =时,函数()f x 有______个零点;记函数()f x 的最大值为()g a ,则()g a 的值域为______.7.(2022·北京市十一学校高三阶段练习)已知函数()2ln ,021,0x x f x kx x x ⎧>=⎨+-≤⎩,给出下列命题:(1)无论k 取何值,()f x 恒有两个零点;(2)存在实数k ,使得()f x 的值域是R ;(3)存在实数k 使得()f x 的图像上关于原点对称的点有两对;(4)当1k =时,若()f x 的图象与直线1y ax =-有且只有三个公共点,则实数a 的取值范围是()0,2.其中,所有正确命题的序号是___________.8.(2022·贵州·遵义市南白中学高一期末)已知函数1,0()lg ,0x x f x x x ⎧+<=⎨>⎩,()g x ²222x x λ=-+-,若关于x 的方程(())f g x λ=(R λ∈)恰好有6个不同的实数根,则实数λ的取值范围为_______.9.(2022·河南·鹤壁高中模拟预测(文))已知(),01e ,1x x xf x x <<⎧=⎨≥⎩,若存在210x x >>,使得()()21e f x f x =,则()12x f x ⋅的取值范围为___________.四、函数的图象1.(2022·全国·高三专题练习)已知函数2sin 62()41x x x f x π⎛⎫⋅+ ⎪⎝⎭=-,则()f x 的图象大致是()A.B .C .D .2.(2021·浙江省三门中学高三期中)已知函数()f x 的图像如图,则该函数的解析式可能是()A .ln xe x⋅B .ln xx e C .ln xx e +D .ln xe x-3.(2022·江西·景德镇一中高一期中)已知函数()f x =()A .B .C .D .4.(多选)(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为()A .B .C .D .5.(多选)(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是()A .B .C .D .6.(多选)(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是()A .B .C .D .五、二次函数1.(2022·江西景德镇·三模(理))已知二次函数()2f x ax bx c =++(其中0ac <)存在零点,且经过点()1,3和()1,3-.记M 为三个数a ,b ,c 的最大值,则M 的最小值为()A .32B .43C .54D .652.(2022·浙江·高三专题练习)设I M 表示函数()242f x x x =-+在闭区间I 上的最大值.若正实数...a 满足[][]0,,22a a a M M ≥,则正实数a 的取值范围是()A .122⎡⎤⎢⎥⎣⎦B .2⎡⎤⎣⎦C .2,2⎡⎣D .24⎡⎤+⎣⎦3.(2022·安徽·界首中学高一期末)已知函数()()212f x x mx x =++∈R ,且()y f x =在[]0,2x ∈上的最大值为12,若函数()()2g x f x ax =-有四个不同的零点,则实数a 的取值范围为()4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.5.(2022·浙江·高三专题练习)对于函数()()y f x y g x ==,,若存在0x ,使()()00 f x g x =-,则称()()()()0000M x f x N x g x --,,,是函数()f x 与()g x 图象的一对“雷点”.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,恒有()()1f x f x +=,且当10x -<≤时,()f x x =.若()()()2120g x x a x =++-<<,函数()f x 与()g x 的图象恰好存在一对“雷点”,则实数a 的取值范围为____________________.6.(2022·江西·贵溪市实验中学高二期末)函数21()43f x ax ax =++的定义域为(,)-∞+∞,则实数a 的取值范围是___________.7.(2022·湖北·一模)若函数()f x 的定义域为R ,对任意的12,x x ,当12x x D -∈时,都有()()12f x f x D -∈,则称函数f (x )是关于D 关联的.已知函数()f x 是关于{4}关联的,且当[)4,0x ∈-时,()26f x x x =+.则:①当[)0,4x ∈时,函数()f x 的值域为___________;②不等式()03f x <<的解集为___________.六、指对幂函数1.(2022·山西·太原五中高三阶段练习(理))正实数,,a b c 满足422,33,log 4a b a b c c -+=+=+=,则实数,,a b c 之间的大小关系为()A .b a c <<B .a b c <<C .a c d<<D .b c a <<2.(2022·山东·模拟预测)若282log 323log +=⋅+a b a b ,则()A .12b a b<<B .2<<+b a b C .23b a b<<D .1132b a b<<3.(2022·广东·模拟预测)已知()222022log f x x x =+,且()60.20.2log 11,lg ,4102022a f b f c f -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 之间的大小关系是__________.(用“<”连接)4.(2022·上海·华东师范大学附属东昌中学高三阶段练习)若关于x 的不等式()14log 321x x λ+⋅≤对任意的[)0,x ∈+∞恒成立,则实数λ的取值范围是______.5.(2022·云南·曲靖一中高二期中)函数()21949192120212049x f x x x x=--+,[]1949,2022α∃∈,对[],2049m β∀∈,()()f f αβ<都成立,则m 的取值范围(用区间表示)是_______6.(2022·江西宜春·模拟预测(文))若1,22x ⎡⎤∀∈⎢⎥⎣⎦,不等式2122log 0x x x ax -+<恒成立,则实数a 的取值范围为___________.7.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.8.(2022·陕西·榆林市第十中学高二期中(文))要使函数124x x y a =++⋅在(],1x ∈-∞时恒大于0,则实数a 的取值范围是______.七、函数与方程1.(2022·天津·南开中学模拟预测)已知函数()2221,12810,1x x x f x x x x ⎧++≤=⎨-+>⎩,若函数()()1g x f x x a =+--恰有两个零点则实数a 的取值范围是()A .()723,4,48∞⎛⎫⋃+ ⎪⎝⎭B .23,48⎛⎫ ⎪⎝⎭C .23,8∞⎛⎫+ ⎪⎝⎭D .7,4⎛⎫+∞ ⎪⎝⎭2.(2022·安徽·蚌埠二中模拟预测(理))已知1120xx +=,222log 0x x +=,3233log 0x x --=,则()A .123x x x <<B .213x x x <<C .132x x x <<D .231x x x <<3.(2022·甘肃·临泽县第一中学高二期中(文))若函数2()(1)1x f x m x x =--+在区间(1,1)-上有2个零点()1212,x x x x <,则21e xx +的取值范围是()A .(1,e 1)-B .(2,e 1)+C .(1,)+∞D .(e 1,)-+∞4.(2022·山西·太原五中高三阶段练习(理))正实数,,a b c 满足422,33,log 4a b a b c c -+=+=+=,则实数,,a b c 之间的大小关系为()A .b a c <<B .a b c <<C .a c d<<D .b c a<<5.(2022·全国·模拟预测)已知函数()()22,22cos π,24xx f x x x ⎧-≤⎪=⎨<≤⎪⎩,实数123,,x x x ,4x 是函数()y f x m =-的零点,若1234x x x <<<,则132314242222x x x x x x x x +++++++的取值范围为()A .[)16,20B .()C .[)64,80D .()6.(2022·浙江·效实中学模拟预测)已知函数()2222x xf x --=+,对任意的实数a ,b ,c ,关于x 的方程()()20a f x bf x c ++=⎡⎤⎣⎦的解集不可能是()A .{}1,3B .{}1,2,3C .{}0,2,4D .{}1,2,3,47.(2022·陕西·模拟预测(理))已知1x 是方程32x x ⋅=的根,2x 是方程3log 2x x ⋅=的根,则12x x ⋅的值为()A .2B .3C .6D .108.(2022·福建南平·三模)已知函数()2e 9e 42x a a xf x x x --=++--有零点,则实数=a ___________.9.(2022·内蒙古呼和浩特·二模(文))若2log 3x x ⋅=,23y y ⋅=,ln 3z z ⋅=,则x 、y 、z 由小到大的顺序是___________.八、新定义题1.(2022·广东·梅州市梅江区梅州中学高一阶段练习)设x ∈R ,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[][]3, 5.1π=-6=-.已知函数()221xf x x =+,则函数()]y f x ⎡=⎣的值域为()A .{0,1-}B .{1-,1}C .{0,1}D .{1-,0,1}2.(2022·广东·华南师大附中高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数()()2134142f x x x x =-+<<,则函数()y f x ⎡⎤=⎣⎦的值域为()A .13,22⎡⎫⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,23.(2022·上海民办南模中学高三阶段练习)德国数学家狄利克雷是解析数论的创始人之一,以其名命名狄利克雷函数的解析式为()0,1,x Qf x x Q ∉⎧=⎨∈⎩,关于狄利克雷函数()f x ,下列说法不正确的是().A .对任意x ∈R ,()()1f f x =B .函数()f x 是偶函数C .任意一个非零实数T 都是()f x 的周期D .存在三个点()()11,A x f x 、()()22,B x f x 、()()33,C x f x ,使得ABC 为正三角形4.(2022·新疆·一模(理))德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一.以其命名的函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,称为狄利克雷函数,则关于函数()f x ,下列说法正确的是()A .()f x 的定义域为{}0,1B .()f x 的值域为[]0,1C .x R ∃∈,()()0f f x =D .任意一个非零有理数T ,()()f x T f x +=对任意x ∈R 恒成立5.(2022·河南·鹤壁高中模拟预测(文))黎曼函数是一个特殊的函数,由德国数学家波恩哈德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[]0,1上,其解析式为:()[]1,,,0,0,10,1q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是既约真分数当或上的无理数.若函数()f x 是定义在实数集上的偶函数,且对任意x 都有()()20f x f x ++=,当[]0,1x ∈时,()()f x R x =,则()2022ln 20225f f ⎛⎫--= ⎪⎝⎭()A .15B .25C .25-D .15-6.(2022·吉林长春·模拟预测(文))纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是()1T ℃,空气的温度是()0T ℃,经过t 分钟后物体的温度T (℃)可由公式1034log T T t T T -=-得出,如温度为90℃的物体,放在空气中冷却约5分钟后,物体的温度是30℃,若根据对数尺可以查询出3log 20.6309=,则空气温度约是()A .5℃B .10℃C .15℃D .20℃7.(2022.安徽.淮南第二中学高二阶段练习)纳皮尔在他的《奇妙的对数表》一书中说过:没有什么比大数的运算更让数学工作者头痛,更阻碍了天文学的发展.许凯和斯蒂菲尔这两个数学家都想到了构造了如下一个双数列模型的方法处理大数运算.012345678910124816326412825651210241112...19202122232425 (2048)4096…52428810485762097152419430483886081677721633554432…如5121024⨯,我们发现512是9个2相乘,1024是10个2相乘.这两者的积,其实就是2的个数做一个加法.所以只需要计算91019+=.那么接下来找到19对应的数524288,这就是结果了.若()4log 202112261314520x =⨯,则x 落在区间()A .()1516,B .()22,23C .()42,44D .()44,468.(2022·内蒙古·赤峰红旗中学松山分校高一期末(文))纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是1T (℃),空气的温度是0T (℃),经过t 分钟后物体的温度T (℃)可由公式3104log T T t T T -=-得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出3log 20.6309=,则空气温度是()A .5℃B .10℃C .15℃D .20℃9.(2022·山西·朔州市平鲁区李林中学高一阶段练习)16、17世纪,随着社会各领域的科学知识迅速发展,庞大的数学计算需求对数学运算提出了更高要求,改进计算方法,提高计算速度和准确度成了当务之急.苏格兰数学家纳皮尔发明了对数,是简化大数运算的有效工具,恩格斯曾把纳皮尔的对数称为十七世纪的三大数学发明之一.已知ln 20.6931≈,ln 3 1.0986≈,设536N =,则N 所在的区间为(e 2.71828= 是自然对数的底数)()A .()1718,e eB .()1819,e eC .()1920,e eD .()2122,e e10.(2022·新疆石河子一中高三阶段练习(理))16、17世纪之交,苏格兰数学家纳皮尔发明了对数,在此基础上,布里格斯制作了第一个常用对数表,在科学技术中,还常使用以无理数e 为底数的自然对数,其中e 2.71828=⋅⋅⋅称之为“欧拉数”,也称之为“纳皮尔数”对数)x1.3102 3.190 3.797 4.71557.397ln x0.27000.69311.1600 1.33421.550 1.60942.001A .3.797B .4.715C .5D .7.39711.(2022·福建泉州·模拟预测)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成一段,去掉中间的一段,剩下两个闭区间10,3⎡⎤⎢⎥⎣⎦和2,13⎡⎤⎢⎥⎣⎦;第二步,将剩下的两个闭区间分别平均分为二段,各自去掉中间的一段,剩下四段闭区间:10,9⎡⎤⎢⎥⎣⎦,21,93⎡⎤⎢⎥⎣⎦,27,39⎡⎤⎢⎥⎣⎦,8,19⎡⎤⎢⎥⎣⎦;如此不断的构造下去,最后剩下的各个区间段就构成了二分康托集.若经历n 步构造后,20212022不属于剩下的闭区间,则n 的最小值是()A .7B .8C .9D .1012.(2022·全国·高三专题练习)广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”如图是放在平面直角坐标系中的“太极图”整个图形是一个圆形区域224x y +≤.其中黑色阴影区域在y 轴左侧部分的边界为一个半圆.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则当224x y +≤时,下列不等式能表示图中阴影部分的是()A .()22(sgn())10x x y x +--≤B .()22(sgn())10y x y y -+-≤C .()22(sgn())10x x y x +--≥D .()22(sgn())10y x y y -+-≥13.(多选)(2022·安徽·高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[][]1.61, 2.13=-=-,设函数()[]1f x x x =+-,则下列关于函数()f x 叙述正确的是()A .()f x 为奇函数B .()1f x =⎡⎤⎣⎦C .()f x 在()01,上单调递增D .()f x 有最大值无最小值14.(多选)(2022·贵州贵阳·高一期末)历史上第一个给出函数一般定义的是19世纪数学家秋利克需(Dirichlet ),他是最早倡导严格化方法的数学家之一,狄利克雷在1829年给出了著名的狄利克雷函数:1,()0,x Qf x x Q ∈⎧=⎨∉⎩(Q 是有理数集),狄利克雷函数的出现表示数学家们对数学的理解发生了深刻的变化,从研究“算”转变到了研究“概念、性质、结构”.一般地,广文的秋利克雷函数可以定义为:,,(),,a x Q D x b x Q ∈⎧=⎨∉⎩(其中,a b ∈R ,且a b ¹).以下对()D x 说法正确的有()A .()D x 的定义域为RB .()D x 是非奇非偶函数C .()D x 在实数集的任何区间上都不具有单调性D .任意非零有理数均是()D x 的周期15.(多选)(2022·吉林·农安县教师进修学校高一期末)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可以应用到有限维空间并构成了一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ),简单地讲就是对于满足一定条件的连续函数()f x ,如果存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点函数”,下列为“不动点函数”的是()A .()sin f x x x=+B .()23f x x x =--C .()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .()1f x x x=-16.(多选)(2021·吉林油田高级中学高一期中)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A .()2xf x x=+B .()23f x x x =--C .()x f x x=-D .()ln 1f x x =+17.(多选)(2022·山东·广饶一中高一开学考试)中国传统文化中很多内容体现了数学的“对称美”,如图所示的太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:圆O 的圆心在原点,若函数的图像将圆O 的周长和面积同时等分成两部分,则这个函数称为圆O 的一个“太极函数”,则()A .对于圆O ,其“太极函数”有1个B .函数()()()2200x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩是圆O 的一个“太极函数”C .函数()33f x x x =-不是圆O 的“太极函数”D .函数())lnf x x =是圆O 的一个“太极函数”18.(2022·山东·德州市教育科学研究院二模)十九世纪下半叶集合论的创立,奠定了现代数学的基础,著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第1次操作;再将剩下的两个区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第2次操作...;每次操作都在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段:操作过程不断地进行下去,剩下的区间集合即是“康托三分集”,第三次操作后,依次从左到右第三个区间为___________,若使前n 次操作去掉的所有区间长度之和不小于2627,则需要操作的次数n 的最小值为____________.(lg 20.30=,lg 30.47=)19.(2022·江苏常州·高一期末)德国数学家康托(Cantor )创立的集合论奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的产物,具有典型的分形特征,其构造的操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第1次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第2次操作;以此类推,每次在上一次操作的基础上,将剩下的各个区间分别均分为3段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的元素构成的集合为“康托三分集”.定义区间(,)a b 长度为b a -,则构造“康托三分集”的第n 次操作去掉的各区间的长度之和为______,若第n 次操作去掉的各区间的长度之和小于1100,则n 的最小值为______.(参考数据:lg 20.3010=,lg30.4771=)20.(2022·浙江·乐清市知临中学高二期中)黎曼函数(Riemannfunction )是一个特殊函数,由德国数学家黎曼发现并提出,黎曼函数定义在[]0,1上,其定义为()[]1,,,0,0,10,1q qx p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是不可以再约分的真分数或者上的无理数,则1R π⎛⎫= ⎪⎝⎭________.21.(2022·河南新乡·三模(理))黎曼函数是一个特殊的函数,由德国数学家波恩哈德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[]0,1上,其解析式如下:()[]1,,,0,0,10,1.q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩都是正整数,是既约真分数或上的无理数若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()220f x f x ++-=,当[]0,1x ∈时,()()f x R x =,则()202220225f f ⎛⎫+-= ⎪⎝⎭___________.22.(2021·全国·高一单元测试)黎曼函数是一个特殊的函数,由德国著名的数学家波恩哈德·黎曼发现提出,在高等数学中有着广泛的应用.黎曼函数定义在[0,1]上,其定义为:()1,(,00,101q q x p q p p p R x x ⎧=⎪=⎨⎪=⎩都是正整数,是既约真分数),或(,)上的无理数,若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()20f x f x +=-,当[0,1]x ∈时,()()f x R x =,则()18lg 305f f ⎛⎫+= ⎪⎝⎭________.23.(2021·湖北·荆门市龙泉中学高一阶段练习)解析式相同,定义域不同的两个函数称为“同族函数”.对于函数21y x =+,值域为{1,2,4}的“同族函数”的个数为______个.24.(2022·江苏省苏州实验中学高二阶段练习)十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,),33记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于9,10则需要操作的次数n 的最小值为____.(参考数据:lg 2=0.3010,lg 3=0.4771)25.(2022·四川省南充高级中学高三阶段练习(文))太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,设圆22:1O x y +=,则下列说法中正确的序号是______.①函数()3f x x =是圆O 的一个太极函数;②圆O 的所有非常数函数的太极函数都不能为偶函数;③函数()sin f x x =是圆O 的一个太极函数;④函数()f x 的图象关于原点对称是()f x 为圆O 的太极函数的充要条件.26.(2022·广东·惠来县第一中学高一阶段练习)布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续实函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点"函数,而称0x 为该函数的一个不动点.现新定义:若0x 满足()00f x x =-,则称0x 为()f x 的次不动点.(1)判断函数()22f x x =-是否是“不动点”函数,若是,求出其不动点;若不是,请说明理由(2)已知函数()112g x x =+,若a 是()g x 的次不动点,求实数a 的值:(3)若函数()()12log 42x xh x b =-⋅在[]0,1上仅有一个不动点和一个次不动点,求实数b 的取值范围.。
2022版高考数学大一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质1
第二章函数概念与基本初等函数Ⅰ第二讲函数的基本性质练好题·考点自测1.下列说法中正确的个数是() (1)若函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(2)对于函数f(x),x∈D,若对任意x1,x2∈D(x1≠x2),有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数。
(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称。
(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称。
(5)已知函数y=f(x)是定义在R上的偶函数,若f(x)在(-∞,0)上是减函数,则f(x)在(0,+∞)上是增函数。
(6)若T为函数y=f(x)的一个周期,那么nT(n∈Z)也是函数f(x)的周期。
A.3 B。
4 C.5 D。
62。
[2019北京,3,5分][文]下列函数中,在区间(0,+∞)上单调递增的是()A。
y=x12 B.y=2-xC.y=lo g12x D.y=1x3.[2019全国卷Ⅱ,6,5分][文]设f(x)为奇函数,且当x≥0时,f(x)=e x—1,则当x<0时,f(x)=()A .e —x —1B .e -x +1C .—e —x —1 D.—e -x +14.[2020山东,8,5分]若定义在R 的奇函数f (x )在(—∞,0)上单调递减,且f (2)=0,则满足xf (x —1)≥0的x 的取值范围是( )A.[—1,1]∪[3,+∞)B.[-3,-1]∪[0,1] C 。
[—1,0]∪[1,+∞) D 。
[-1,0]∪[1,3]5.[2021大同市调研测试]已知函数f (x )=ax 3+b sin x +c ln(x +√x2+1)+3的最大值为5,则f (x )的最小值为 ( )A.—5 B 。
1 C .2 D.36.[2020福州3月质检]已知f (x )是定义在R 上的偶函数,其图象关于点(1,0)对称。
2019高考数学文科一轮分层演练:第2章函数的概念与基本初等函数 第2讲含解析
一、选择题1.函数f (x )=x 1-x在( ) A .(-∞,1)∪(1,+∞)上是增函数B .(-∞,1)∪(1,+∞)上是减函数C .(-∞,1)和(1,+∞)上是增函数D .(-∞,1)和(1,+∞)上是减函数 解析:选C.函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x-1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.2.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C.因为f (x )在R 上为减函数,且f ⎝⎛⎭⎫1|x |<f (1),所以1|x |>1,即0<|x |<1, 所以0<x <1或-1<x <0.3.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( )A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]解析:选C.法一:由题意知函数f (x )=8x 2-2kx -7的图象的对称轴为x =k 8,因为函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,所以k 8≤1或k 8≥5,解得k ≤8或k ≥40,所以实数k 的取值范围是(-∞,8]∪[40,+∞).故选C.法二:取k =0,则函数f (x )=8x 2-7在[1,5]上为单调递增函数,所以排除B 、D ;取k =40,则函数f (x )=8x 2-80x -7在[1,5]上为单调递减函数,所以排除A.故选C.4.(2018·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,因为f (x )=x -2在[-2,1]上是增函数,所以f (x )≤f (1)=-1,因为f (x )=x 3-2在(1,2]上是增函数,所以f (x )≤f (2)=6,所以f (x )max =f (2)=6.5.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B.因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.6.(2018·湖北八校联考(一))设函数f (x )=2x x -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M =( ) A .2 B .3C .83D .103解析:选C.易知f (x )=2x x -2=2+4x -2,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =166=83. 二、填空题7.函数f (x )=|x -1|+x 2的值域为________.解析:因为f (x )=|x -1|+x 2=⎩⎪⎨⎪⎧x 2+x -1,x ≥1x 2-x +1,x <1, 所以f (x )=⎩⎨⎧⎝⎛⎭⎫x +122-54,x ≥1⎝⎛⎭⎫x -122+34,x <1, 作出函数图象如图,由图象知f (x )=|x -1|+x 2的值域为⎣⎡⎭⎫34,+∞. 答案:⎣⎡⎭⎫34,+∞ 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________. 解析:由题意知g (x )=⎩⎨⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)9.已知函数f (x )=x |2x -a |(a >0)在区间[2,4]上单调递减,则实数a 的值是________.解析:f (x )=x |2x -a |=⎩⎨⎧x (2x -a ),x >a 2,-x (2x -a ),x ≤a 2(a >0),作出函数图象(图略)可得该函数的递减区间是⎣⎡⎦⎤a 4,a 2,所以⎩⎨⎧a 4≤2,a 2≥4,解得a =8. 答案:810.已知函数f (x )=⎩⎪⎨⎪⎧3(a -3)x +2,x ≤1,-4a -ln x ,x >1,对于任意的x 1≠x 2,都有(x 1-x 2)[f (x 2)-f (x 1)]>0成立,则实数a 的取值范围是________. 解析:由(x 1-x 2)[f (x 2)-f (x 1)]>0,得(x 1-x 2)·[f (x 1)-f (x 2)]<0,所以函数f (x )为R 上的单调递减函数,则⎩⎪⎨⎪⎧a -3<0,3(a -3)+2≥-4a ,解得1≤a <3. 答案:[1,3)三、解答题11.已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0, 所以x 1-x 2>0,x 1x 2>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数,所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2, 解得a =25. 12.已知函数f (x )=2x -a x的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解:(1)当a =1时,f (x )=2x -1x,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝⎛⎭⎫1x 1-1x 2 =(x 1-x 2)⎝⎛⎭⎫2+1x 1x 2.因为1≥x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0.所以f (x 1)>f (x 2),所以f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ;当a <0时,f (x )=2x +-a x, 当 -a 2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ;当 -a 2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎤0, -a 2上单调递减,在⎣⎡⎦⎤-a 2,1上单调递增,无最大值,当x =-a 2时取得最小值2-2a .。
高中数学:第2章2节 基本初等函数 对数函数 幂函数总复习试题及答案
2.2 对数函数 2.2.1 对数与对数运算一、选择题(本大题共7小题,每小题5分,共35分) 1.以下四个命题中是真命题的为( ) ①若log 5x =3,则x =15; ②若log 25x =12,则x =5;③若log x5=12,则x =5;④若log 5x =-3,则x =1125.A .①②B .①③C .②④D .③④ 2.log849log27的值是( )A .2 B.32C .1 D.233.已知对数式log a -2(5-a )=b ,则实数a 的取值X 围是( ) A .(-∞,5) B .(2,5) C .(2,3)∪(3,5) D .(2,+∞)4.已知lg 2=a ,lg 3=b ,则lg 12等于( ) A .a 2+b B .2a +b C .a +2b D .a +b 25.对数式2lg 22+lg 25+3lg 2lg 5- lg 2化简的结果是( ) A .1 B .-lg 2C .lg 5 D.126.计算log 2(22)-log (2-1)(3-22)+e ln 2的值为( )A .3B .2C .1D .0 7.lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则lg(ab )·lgab2=( )A .2B .4C .6D .8二、填空题(本大题共4小题,每小题5分,共20分) 8.方程lg x +lg(x -1)=1-lg 5的根是x =________. 9.已知m >0,且10x =lg(10m )+lg1m,则x =________.10.2lg 4+lg 91+12lg 0.36+13lg 8=________.11.已知log 147=a ,log 145=b ,则用a ,b 表示log 3514=________. 三、解答题(本大题共2小题,共25分) 12.(12分)解方程(lg x )2+lg x 5-6=0.13.(13分)计算:(1)[(1-log 63)2+log 62·log 618]÷log 64;(2)lg23-lg 9+1(lg 27+lg 8-lg 1000)lg 0.3·lg 1.2.14.(5分)定义a ⊗b =a 12+b -13,a *b =lg a 2-lg b 12.若M =94⊗8125,N =2*125,则M +N =________.15.(15分)已知log 23=a ,3b =7,求log 1256.答案2.2.1 对数与对数运算1.C [解析] 由对数的定义可知,②④中的命题是真命题. 2.D [解析]log849log27=log272log223÷log 27=23.3.C [解析] 由对数的定义,log a -2(5-a )必满足⎩⎪⎨⎪⎧5-a>0,a -2>0,a -2≠1,解得2<a <5且a ≠3,∴a ∈(2,3)∪(3,5).4.B [解析] lg 12=lg 4+lg 3=2lg 2+lg 3=2a +b .5.A [解析] 2lg 22+lg 25+3lg 2lg 5-lg 2=lg 5(lg 5+3lg 2)+2lg 22-lg 2=(1-lg 2)(1-lg 2+3lg 2)+2lg 22-lg 2=(1-lg 2)(1+2lg 2)+2lg 22-lg 2=1.6.A [解析] 原式=log2(2)3-log (2-1)(2-1)2+2=3-2+2=3.7.B [解析] 由已知得,lg a +lg b =2,即lg(ab )=2,且lg a ·lg b =12,所以lg(ab )·lgab2=2(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ]=2×22-4×12=2×2=4,故选B.8.2 [解析] 方程变形为lg x (x -1)=lg 2,所以x (x -1)=2,解得x =2或x =-1.经检验x =-1不合题意,舍去,所以原方程的根为x =2.9.0 [解析] ∵lg(10m )+lg 1m =lg 10+lg m +lg 1m=1,∴10x =1=100,∴x =0.10.2 [解析] 原式=2(lg 4+lg 3)1+lg 0.36+lg38=2lg 121+lg 0.6+lg 2=2lg 12lg (10×0.6×2)=2.11.1a +b[解析] log 3514=log1414log1435=1log147+log145=1a +b.12.解:原方程可化为(lg x )2+5lg x -6=0,即(lg x +6)(lg x -1)=0, 所以lg x =-6或lg x =1,解得x =10-6或x =10.经检验x =10-6和x =10都是原方程的解. 所以原方程的解为x =10-6或x =10. 13.解:(1)原式=log 6632+log 62·log 6362÷log 64=[(log 62)2+log 62(log 636-log 62)]÷log 64 =[(log 62)2+2log 62-(log 62)2]÷log 64 =2log 62÷log 64=log 64÷log 64=1.(2)原式=lg23-2lg 3+1⎝ ⎛⎭⎪⎫32lg 3+3lg 2-32(lg 3-1)·(lg 3+2lg 2-1)=(1-lg 3)·32(lg 3+2lg 2-1)(lg 3-1)·(lg 3+2lg 2-1)=-32.14.5[解析] M =⎝ ⎛⎭⎪⎫9412+⎝⎛⎭⎪⎫8125-13=32+52=4, N =lg(2)2-lg⎝ ⎛⎭⎪⎫12512=lg 2+lg 5=1,故M +N =5. 15.解:∵log 23=a ,∴log 32=1a. 又3b =7,∴log 37=b ,故log 1256=log356log312=log37+log38log33+log34=log37+3log321+2log32=b +3·1a 1+2·1a=ab +3a +2.2.2.2 对数函数及其性质 第1课时 对数函数及其性质(一)一、选择题(本大题共7小题,每小题5分,共35分)1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =12x ,x>1,则A ∩B =( )A.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12 B .{y |0<y <1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12<y<1 D .∅ 2.函数y =log a (2x -3)+1的图像恒过定点P , 则点P 的坐标是( ) A .(2,1) B .(2,0) C .(2,-1) D .(1,1) 3.函数f (x )=12-log3x的定义域是( )A .(-∞,9]B .(-∞,9)C .(0,9]D .(0,9)4.已知f (x )为R 上的增函数,且f (log 2x )>f (1),则x 的取值X 围为( ) A .(2,+∞) B .0,12∪(2,+∞)C.12,2 D .(0,1)∪(2,+∞)5.函数f (x )=log 2(1-x )的图像为( )图L2216.已知x =20.5,y =log 52,z =log 50.7,则x ,y ,z 的大小关系为( ) A .x <y <z B .z <x <y C .z <y <x D .y <z <x7.已知0<a <1,log am <log an <0,则() A .1<n <m B .1<m <n C .n <m <1 D .m <n <1二、填空题(本大题共4小题,每小题5分,共20分) 8.函数f (x )=log2x -2的定义域是________.9.已知对数函数f (x )的图像过点P (8,3),则f ⎝ ⎛⎭⎪⎫132=________.10.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________.11.设函数f (x )=log a x (a >0且a ≠1),若f (x 1x 2…x 2014)=9,则f (x 21)+f (x 2)+…+f (x 2014)的值等于________.三、解答题(本大题共2小题,共25分) 12.(12分)判断函数f (x )=log 2(x +1+x2)的奇偶性.13.(13分)已知函数f (x )=lg (3x -3).(1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x +3),若不等式h (x )>t 无解,某某数t 的取值X 围.14.(5分)设函数f (x )=⎩⎪⎨⎪⎧log2(x -1),x ≥2,12x -1,x<2,若f (x 0)>1,则x0的取值X 围是________.15.(15分)已知实数x 满足-3≤log 12x ≤-12.求函数y =⎝⎛⎭⎪⎫log2x 2·⎝ ⎛⎭⎪⎫log2x 4的值域.答案2.2.2 对数函数及其性质 第1课时 对数函数及其性质(一)1.A [解析] 因为A ={y |y >0},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12,所以A ∩B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12.2.A [解析] 当2x -3=1,即x =2时,y =1,故点P 的坐标是(2,1). 3.D [解析] 要使函数有意义,只需2-log 3x >0,即log 3x <2,所以0<x <9. 4.A [解析] 依题意有log 2x >1,所以x >2.5.A [解析] 由定义域知x <1,排除选项B ,D.又f (x )=log 2(1-x )是定义域上的减函数,故选A.6.C [解析] 因为x =20.5>20=1,0<y =log 52<1,z =log 50.7<0,所以z <y <x . 7.A [解析] 原式变形为log a m <log a n <log a 1,根据减函数的性质得m >n >1.8.[4,+∞) [解析] 由已知得⎩⎪⎨⎪⎧x>0,log2x -2≥0,解得x ≥4.9.-5 [解析] 设f (x )=log a x ,将点P (8,3)代入得3=log a 8,所以a 3=8,所以a =2,所以f (x )=log 2x ,所以f132=log 2132=log 22-5=-5.10.2 [解析] 根据题意,得3x -a >0,∴x >a 3,∴a 3=23,解得a =2.11.18 [解析] 因为f (x 1x 2…x 2014)=log a (x 1x 2…x 2014)=9,所以f (x 21)+f (x 2)+…+f (x 2014)=log a x 21+log a x 2+…+log a x 2014=log a (x 21x 2…x 2014)=log a (x 1x 2…x 2014)2=2log 2(x 1x 2…x 2014)=2×9=18. 12.解:要使函数有意义,需满足x +1+x2>0,∴x ∈R ,故函数的定义域为R ,关于原点对称.∵f (-x )+f (x )=log 2(-x +1+x2)+log 2(x +1+x2)=log 2(1+x 2-x 2)=log 21=0,∴f (-x )=-f (x ),即函数为奇函数.13.解:(1)由3x -3>0得x >1,所以定义域为(1,+∞). 因为(3x -3)∈(0,+∞),所以值域为R . (2)因为h (x )=lg(3x -3)-lg(3x +3)=lg3x -33x +3=lg1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数,所以函数h (x )的值域为(-∞,0).若不等式h (x )>t 无解,则t 的取值X 围是t ≥0.14.(-∞,-1)∪(3,+∞) [解析] 当x 0≥2时,log 2(x 0-1)>1,得log 2(x 0-1)>1=log 22,所以x 0-1>2,得x 0>3;当x 0<2时,12x 0-1>1,即12x 0>2=12-1,所以x 0<-1.所以x 0的取值X 围是(-∞,-1)∪(3,+∞).15.解:y =⎝⎛⎭⎪⎫log2x 2·⎝ ⎛⎭⎪⎫log2x 4=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2.∵-3≤log 12x ≤-12,∴12≤log 2x ≤3.令t =log 2x ,则t ∈⎣⎢⎡⎦⎥⎤12,3,y =t 2-3t +2=⎝ ⎛⎭⎪⎫t -322-14,∴t =32时,y min =-14;t =3时,y max =2.故函数的值域为⎣⎢⎡⎦⎥⎤-14,2.第2课时 对数函数及其性质(二)一、选择题(本大题共7小题,每小题5分,共35分)1.若log 3a <0,13b >1,则( )A .a >1,b >0B .0<a <1,b >0C .a >1,b <0D .0<a <1,b <0 2.下列函数中,在(0,2)上为增函数的是( ) A .y =log 12(x +1)B .y =log 2x2-1C .y =log 21xD .y =log12(x 2-4x +5)3.设f (x )=⎩⎪⎨⎪⎧2ex -1,x<2,log3(x2-1),x ≥2,则f [f (2)]的值为( )A .0B .1C .2D .34.已知a >0,且a ≠1,则函数y =a -x 与y =log a (-x )的图像可能是( )图L2225.设a =30.7,b =0.43,c =log 30.5,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <a6.已知函数f (x )=2x +a ·2-x ,则对于任意实数a ,函数f (x )不可能( ) A .是奇函数B .既是奇函数,又是偶函数C .是偶函数D .既不是奇函数,又不是偶函数7.已知y =log a (8-3ax )在[1,2]上是减函数,则实数a 的取值X 围是( ) A .(0,1) B .1,43C.43,4 D .(1,+∞)二、填空题(本大题共4小题,每小题5分,共20分) 8.函数y =log 12(1-2x )的单调递增区间为________.9.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f 12=0,则不等式f (log 4x )<0的解集是________.10.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系为________.11.函数y =log 12(x 2-6x +17)的值域为________.三、解答题(本大题共2小题,共25分)12.(12分)已知函数f (x )=log2(1-x )-log2(1+x ). (1)求函数f (x )的定义域; (2)判断f (x )的奇偶性.13.(13分)解不等式:log a (x -4)>log a (x -2).14.(5分)若不等式lg 1+2x +(1-a )3x3≥(x -1)lg 3对任意的x ∈(-∞,1]恒成立,则a 的取值X 围是( )A .(-∞,0]B .(-∞,1]C .[0,+∞)D .[1,+∞)15.(15分)已知定义在R 上的函数y =f (x )是偶函数,且x ≥0时,f (x )=ln(x 2-2x +2). (1)求f (x )的解析式; (2)求出f (x )的单调递增区间.答案第2课时 对数函数及其性质(二)1.D [解析] 由函数y =log 3x ,y =13x 的图像知,0<a <1,b <0.2.D [解析] A ,C 中函数为减函数,(0,2)不是B 中函数的定义域.D 中,函数y =x 2-4x +5在(0,2)上为减函数,又∵12<1,故y =log12(x 2-4x +5)在(0,2)上为增函数,故选D.3.C [解析] f [f (2)]=f [log 3(22-1)]=f (1)=2e 1-1=2. 4.C [解析] a >1时,y =a -x =1ax 是减函数,y =loga (-x )是减函数,且其图像位于y轴左侧;当0<a <1时,y =a -x =1ax 是增函数,y =loga (-x )是增函数,且其图像位于y 轴左侧.由此可知C 正确.5.B [解析] a =30.7>30=1,0<b =0.43<0.40=1,c =log 30.5<log 31=0,所以c <b <a .6.B [解析] 验证可知,当a =-1时,f (x )=2x -2-x ,f (-x )=2-x -2x =-f (x ),所以a =-1时,函数f (x )是奇函数,当a =1时,f (-x )=f (x )=2x +2-x ,函数f (x )是偶函数.当a =0时,函数f (x )既不是奇函数,又不是偶函数.故选B.7.B [解析] 因为a >0,所以t =8-3ax 为减函数,而当a >1时,y =log a t 是增函数,所以y =log a (8-3ax )是减函数,于是a >1.由8-3ax >0,得a <83x在[1,2]上恒成立,所以a <83xmin =83×2=43.8.-∞,12[解析] 令u =1-2x ,函数u =1-2x 在区间-∞,12内递减,而y =log12u 是减函数,故函数y =log 12(1-2x )在-∞,12内递增.9.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x<2 [解析] 由题意可知,由f (log 4x )<0得-12<log 4x <12,即log 44-12<log 4x <log 4412,得12<x <2.10.a =b >c [解析] 由已知得a =32log 23,b =log 232-12=32log 23>32,c =log 32<1.故a =b >c .11.(-∞,-3] [解析] 令t =x 2-6x +17=(x -3)2+8≥8,因为y =log 12t 为减函数,所以y =log 12t ≤log 128=-3.12.解:(1)要使函数有意义,则⎩⎪⎨⎪⎧1-x>0,1+x>0,∴-1<x <1,故函数的定义域为(-1,1).(2)∵f (-x )=log 2(1+x )-log 2(1-x )=-f (x ),∴f (x )为奇函数.13.解:当a >1时,原不等式等价于⎩⎪⎨⎪⎧x -4>x -2,x -4>0,x -2>0,该不等式组无解;当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧x -4<x -2,x -4>0,x -2>0,解得x >4.所以当a >1时,原不等式的解集为空集;当0<a <1时,原不等式的解集为(4,+∞). 14.B [解析] 不等式lg1+2x +(1-a )3x3≥(x -1)lg 3变为lg1+2x +(1-a )3x3≥lg 3x -1,即1+2x +(1-a )3x3≥3x -1,整理得a ≤13x +23x .因为y =13x +23x 是减函数,所以y ≥131+231=1. 若不等式lg1+2x +(1-a )3x3≥(x -1)lg 3对任意的x ∈(-∞,1]恒成立,则a ≤13x+23xmin =1.15.解:(1)x <0时,-x >0,∵x ≥0时,f (x )=ln(x 2-2x +2), ∴x <0时,f (-x )=ln(x 2+2x +2).∵y =f (x )是偶函数,∴f (-x )=f (x ),即x <0时,f (x )=ln(x 2+2x +2).故f (x )=⎩⎪⎨⎪⎧ln (x2+2x +2),x<0,ln (x2-2x +2),x ≥0.(2)当x ≥0时,f (x )=ln(x 2-2x +2),函数的单调递增区间即为t =x 2-2x +2的增区间,增区间为(1,+∞);当x <0时,f (x )=ln(x 2+2x +2),函数的递增区间为(-1,0). 故函数f (x )的单调递增区间是(-1,0),(1,+∞).2.3 幂函数一、选择题(本大题共7小题,每小题5分,共35分)1.下列函数是幂函数的是( )A .y =x xB .y =3x 12C .y =x 12+1 D .y =x -22.若函数f (x )=(2m +3)xm 2-3是幂函数,则实数m 的值为( ) A .-1 B .0 C .1 D .23.已知幂函数f (x )=x α的图像经过点3,33,则f (4)的值为( )A.12B.14C.13D .24.下列函数中既是偶函数,又在(0,+∞)上单调递增的是( ) A .y =x B .y =-x 2 C .y =2x D .y =|x |5.函数y =x 23图像的大致形状是( )图L2316.幂函数f (x )=(m 2-4m +4)xm 2-6m +8在(0,+∞)上为减函数,则m 的值为( ) A .1或3 B .1 C .3 D .27.如图L232所示,曲线C 1,C 2,C 3,C 4是幂函数y =x α在第一象限内的图像,已知α分别取±1,12,2四个值,对应于曲线C 1,C 2,C 3,C 4的α分别为( )图L232A .-1,12,1,2B .2,1,12,-1C.12,1,2,-1D .2,1,-1,12二、填空题(本大题共4小题,每小题5分,共20分)8.由幂函数的图像可知,使x 3-x 2>0成立的x 的取值X 围是________.9.若函数f (x )=⎩⎪⎨⎪⎧x -12,x>0,-2,x =0,(x +3)12,x<0,则f {f [f (0)]}=________.10.已知幂函数f (x )=k ·x α的图像过点⎝ ⎛⎭⎪⎪⎫12,22,则k +α=________.11.已知f (x )=a x,g (x )为幂函数,若F (x )=f (x )+g (x )的图像过点A (1,2)和B 2,52,则F (x )=________.三、解答题(本大题共2小题,共25分)12.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数. (1)求a 的值;(2)求函数g (x )=f (x )+[f (x )]2在⎣⎢⎡⎦⎥⎤0,12上的值域. 13.(13分)已知函数f (x )=x -k 2+k +2(k ∈N ),满足f (2)<f (3).(1)求k 的值与f (x )的解析式;(2)对于(1)中的函数f (x ),试判断是否存在m ,使得函数g (x )=f (x )-2x +m 在[0,2]上的值域为[2,3],若存在,请求出m 的值;若不存在,请说明理由. 14.(5分)给出下面三个不等式,其中正确的是________.①-8-13<-1913;②4.125>3.8-25>(-1.9)-35;③0.20.5>0.40.3.15.(15分)已知幂函数y =x 3m -9(m ∈N *)的图像关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m 3的a 的取值X 围.答案 2.3 幂函数1.D [解析] 由幂函数的定义,幂函数满足三个条件:①系数为1,②底数为自变量,③指数为常数.故选D.2.A [解析] 依题意2m +3=1,得m =-1.3.A [解析] 依题意有33=3α,所以α=-12,所以f (x )=x -12,所以f (4)=4-12=12.4.D [解析] A 中的函数不具备奇偶性;B 中的函数是偶函数,但是在区间(0,+∞)上是减函数;C 中的函数不具备奇偶性;D 中的函数是偶函数且在(0,+∞)上单调递增.5.D [解析] 因为y =x 23是偶函数,且在第一象限图像沿x 轴递增,所以选项D 正确.6.C [解析] 因为f (x )为幂函数,所以m 2-4m +4=1,解得m =3或m =1,所以f (x )=x -1或f (x )=x 3.因为f (x )为(0,+∞)上的减函数,所以m =3.7.B [解析] 由幂函数的图像性质,C 1:y =x 2;C2:y =x ;C 3:y =x 12;C 4:y =x-1.8.(1,+∞) [解析] 在同一坐标系中作出y =x 3及y =x 2的图像(图略),可得不等式成立的x 的取值X 围是(1,+∞).9.1 [解析] f (0)=-2,f (-2)=1,f (1)=1,即f {f [f (0)]}=1.10.32 [解析] 因为函数是幂函数,所以k =1,又因为其图像过点⎝ ⎛⎭⎪⎪⎫12,22,所以22=⎝ ⎛⎭⎪⎫12α,解得α=12,故k +α=32.11.1x+x [解析] 设g (x )=x b ,则F (x )=a x+x b ,依题意a 1+1b =2且a 2+2b =52,解得a=b =1,所以F (x )=1x+x .12.解:(1)因为函数f (x )=(a 2-a +1)x a +1为幂函数, 所以a 2-a +1=1,解得a =0或a =1.当a =0时,f (x )=x ,函数是奇函数;当a =1时,f (x )=x 2,函数是偶函数.故a =0.(2)由(1)知g (x )=x +x 2=⎝ ⎛⎭⎪⎫x +122-14.当x =0时,函数取得最小值g (0)=0;当x =12时,函数取得最大值g ⎝ ⎛⎭⎪⎫12=12+14=34.故g (x )在区间⎣⎢⎡⎦⎥⎤0,12上的值域为⎣⎢⎡⎦⎥⎤0,34.13.解:(1)由f (2)<f (3),得-k 2+k +2>0,解得-1<k <2, 又k ∈N ,则k =0,1. 当k =0,1时,f (x )=x 2.(2)由已知得g (x )=x 2-2x +m =(x -1)2+m -1,当x ∈[0,2]时,易求得g (x )∈[m -1,m ], 由已知值域为[2,3],得m =3. 故存在满足条件的m ,且m =3. 14.①② [解析] ①-1913=-9-13,由于幂函数y =x -13在(0,+∞)上是减函数,所以8-13>9-13,因此-8-13<-9-13,故①正确;②由于4.125>1,0<3.8-25<1,(-1.9)-35<0,故②正确;③由于y =0.2x 在R 上是减函数,所以0.20.5<0.20.3,又y =x 0.3在(0,+∞)上是增函数,所以0.20.3<0.40.3,所以0.20.5<0.40.3,故③错误.15.解:∵函数y =x 3m -9在(0,+∞)上递减, ∴3m -9<0,解得m <3.又m ∈N *,∴m =1,2. 又函数图像关于y 轴对称,∴3m -9为偶数,故m =1, ∴原不等式为(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均单调递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a , 解得23<a <32或a <-1.滚动习题(五)[X 围2.1~2.3] [时间:45分钟 分值:100分]一、选择题(本大题共7小题,每小题5分,共35分)1.(lg 9-1)2=( )A .lg 9-1B .1-lg 9C .8D .222.若集合A ={x |lg x ≤0},B ={y |y =1-x 2},则A ∩B =( ) A .(-∞,1] B .(0,1) C .(0,1] D .[1,+∞) 3.函数y =ln (x +1)-x2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1] 4.若a >1,b <-1,则函数y =a x +b 的图像必不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.函数f (x )=4x +12x( )A .既是奇函数又是偶函数B .为非奇非偶函数C .为奇函数D .为偶函数6.设偶函数f (x )=log a |x +b |在(0,+∞)上单调递增,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)>f (a +1)B .f (b -2)=f (a +1)C .f (b -2)<f (a +1)D .不能确定7.已知f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c二、填空题(本大题共4小题,每小题5分,共20分) 8.设a =log 75,b =log 67,则a ,b 的大小关系是________.9.已知0<x <y <1,m =log2x +log2y ,则m 的取值X 围是________.10.已知f (x )=2+log3x ,x ∈[1,9],则函数y =f 2(x )+f (x 2)的最大值是________.11.关于下列命题:①若函数y =2x 的定义域是{x |x ≤0},则它的值域是{y |y ≤1};②若函数y =1x 的定义域是{x |x >2},则它的值域是⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤12;③若函数y =x 2的值域是{y |0≤y ≤4},则它的定义域一定是{x |-2≤x ≤2}; ④若函数y =log 2x 的值域是{y |y ≤3},则它的定义域是{x |0<x ≤8}.其中不正确的命题的序号是________(注:把你认为不正确的命题的序号都填上). 三、解答题(本大题共3小题,共45分)12.(15分)(1)化简:4x 14·(-3x 18y -16)2÷(-6x -12y -23)(结果保留根式形式);(2)计算:log 34273·log 5[412log 210-(33)23-7log 72].13.(15分)记函数f (x )=x2-1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B .(1)求区间A ;(2)若B ⊆A ,某某数a 的取值X 围.14.(15分)已知函数f (x )满足f (log a x )=x -1-x ,其中a >0且a ≠1.(1)求函数f (x )的解析式,判断并证明奇偶性;(2)对于函数f (x ),当x ∈(-1,1)时,f (1-m )+f (1-m 2)>0,某某数m 的取值X 围.答案 滚动习题(五)1.B [解析] 因为lg 9<lg 10=1,所以(lg 9-1)2=1-lg 9.2.C [解析] 由已知得集合A ={x |lg x ≤0}={x |0<x ≤1},B ={y |y =1-x 2}={y |y ≤1},故A ∩B =(0,1].3.C [解析] 要使函数有意义,则有x +1>0且-x 2-3x +4>0,即x >-1且x 2+3x -4<0,解得-1<x <1.4.B [解析] 函数y =a x +b 的图像可以看成是由y =a x 的图像平移得到的.因为a >1,所以函数y =a x 单调递增且图像在x 轴的上方.又因为b <-1,所以把y =a x 的图像向下平移|b |个单位即可得到函数y =a x +b 的图像,易知y =a x +b 的图像必不经过第二象限.5.D [解析] f (-x )=4-x +12-x =1+4x 2x =f (x ),故f (x )为偶函数.6.C [解析] ∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |.当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数,∴f (a +1)>f (2)=f (b -2).7.C [解析] 因为f (x )是定义在R 上的偶函数,所以b =f (log 123)=f (-log 23)=f (log 23),log 23=log 49>log 47>1,0<0.20.6<1. 因为f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,所以f (x )在(0,+∞)上是减函数,所以b <a <c .8.a <b [解析] 因为a =log 75<log 77=1,b =log 67>log 66=1,所以a <b .9.m <0 [解析] 由0<x <y <1,得0<xy <1,故m =log 2x +log 2y =log 2xy <log 21=0.10.13 [解析] 由f (x )=2+log 3x ,x ∈[1,9],得f (x 2)=2+log 3x 2,x 2∈[1,9],则y =(2+log 3x )2+2+log 3x 2,即y =(log 3x )2+6log 3x +6=(log 3x +3)2-3.令log 3x =t ,0≤t ≤1,则y =(t +3)2-3,当t =log 3x =1,即x =3时,y max =13.11.①②③ [解析] 作出这四个函数的图像(图略),可知只有④是正确的,①②③都是不正确的.12.解:(1)原式=4x 14·3x 14·y -13÷(-6x -12·y -23)=-2x 3y . (2)原式=(log 3334-log 33)·log 5[4log 210-(332)23-7log 72] =34-1·log 5(10-3-2)=-14. 13.解:(1)由x 2-1≥0,得x ≤-1或x ≥1,故A =(-∞,-1]∪[1,+∞).(2)因为(x -a -1)(2a -x )>0,且a <1,所以2a <x <a +1,所以B =(2a ,a +1).由于B ⊆A ,从而有2a ≥1或a +1≤-1,即a ≥12或a ≤-2,结合a <1,故12≤a <1或a ≤-2.故实数a 的取值X 围为(-∞,-2]∪⎣⎢⎡⎭⎪⎫12,1. 14.解:(1)令t =log a x ,则x =a t ,故f (t )=a -t -a t ,即f (x )=a -x -a x . 因为f (-x )=a x -a -x =-f (x ),故函数f (x )为奇函数.(2)①当a >1时,函数f (x )在(-1,1)上单调递减且为奇函数,则由f (1-m )+f (1-m 2)>0得f (1-m )>f (m 2-1),所以⎩⎪⎨⎪⎧1>1-m>-1,-1<m2-1<1,1-m<m2-1,解得1<m <2.②当0<a <1时,函数f (x )在(-1,1)上单调递增且为奇函数,则由f (1-m )+f (1-m 2)>0得f (1-m )>f (m 2-1),所以⎩⎪⎨⎪⎧1>1-m>-1,-1<m2-1<1,1-m>m2-1,解得0<m <1. 综上知,当a >1时,m ∈(1,2);当0<a <1时,m ∈(0,1).。
2020版高考文科数学第一轮复习练习:第二章 函数的概念与基本初等函数 课后跟踪训练8
当 x=-5 时,f(x)取最大值 37. (2)f(x)=x2+2ax+2=(x+a)2+2-a2 的对称轴为 x=-a,
因为 f(x)在区间[-5,5]上是单调函数, 所以-a≤-5 或-a≥5,即 a≥5 或 a≤-5.
10.已知函数 f(x)=-x2+2ax+1-a 在[0,1]上有最大值 2,求 a 的值.
[★答案★] (-∞,-5]
三、解答题
9.已知函数 f(x)=x2+2ax+2,x∈[-5,5].
(1)当 a=-1 时,求函数 f(x)的最大值和最小值;
(2)若 y=f(x)在区间[-5,5]上是单调函数,求实数 a 的取值范围.
Байду номын сангаас[解] (1)当 a=-1 时,
f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5]. 因为 f(x)的对称轴为 x=1,所以当 x=1 时,f(x)取最小值 1;
B.偶函数 D.定义域内的增函数
[解析] ∵函数 f(x)=(a-1)xb 为幂函数,
∴a-1=1,得 a=2,
又∵2,12在函数 f(x)的图象上,
∴2b=12,得 b=-1.
∴f(x)=1x,
∴f(x)为奇函数,在定义域内不具有单调性.故选 A.
[★答案★] A
12.(2018·湖北荆州模拟)二次函数 f(x)满足 f(x+2)=f(-x+2),
数 a 满足的条件是( )
A.a≥8
B.a≤8
C.a≥4
D.a≥-4
[解析] 函数图象的对称轴为 x=a2,由题意得2a≥4,解得 a≥8.
故选 A.
[★答案★] A
4.(2019·江西模拟)若四个幂函数 y=xa,y=xb,y=xc,y=xd 在 同一坐标系中的图象如图所示,则 a、b、c、d 的大小关系是( )
2025届高考数学一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质作业试题2含解析新人教版
其次讲 函数的基本性质1.[2024江西红色七校第一次联考]下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是 ( )A.y=cos xB.y=x 2C.y=ln|x|D.y=e-|x|2.[2024湖北省四地七校联考]若函数f(x)=sin x·ln(mx+√1+4x 2)的图象关于y 轴对称,则m= ( )A.2B.4C.±2D.±43.[2024郑州三模]若函数f(x)={e x -x +2a,x >0,(a -1)x +3a -2,x ≤0在(-∞,+∞)上是单调函数,则a 的取值范围是( )A.[1,+∞)B.(1,3]C.[12,1) D.(1,2]4.[2024广州市阶段模拟]已知f(x),g(x)分别是定义在R 上的偶函数和奇函数,且 f(x)-g(x)=x 3+x 2+a,则g(2)=( ) A.-4B.4C.-8D.85.[2024长春市第一次质量监测]定义在R 上的函数f(x)满意f(x)=f(x+5),当x∈[-2,0)时,f(x)=-(x+2)2,当x∈[0,3)时,f(x)=x,则f(1)+f(2)+…+f(2 021)= ( )A.809B.811C.1 011D.1 0136.[2024陕西省部分学校摸底检测]已知函数f(x)=2x cosx 4x +a是偶函数,则函数f(x)的最大值为 ( )A.1B.2C.12 D.37.[2024济南名校联考]已知定义在R 上的函数f(x)满意f(x+6)=f(x),y=f(x+3)为偶函数,若f(x)在(0,3)上单调递减,则下面结论正确的是 ( )A.f(192)<f(e 12)<f(ln 2)B.f(e 12)<f(ln 2)<f(192)C.f(ln 2)<f(192)<f(e 12) D.f(ln 2)<f(e 12)<f(192)8.[2024江苏苏州初调]若y=f(x)是定义在R 上的偶函数,当x∈[0,+∞)时,f(x)={sinx,x ∈[0,1),f(x -1),x ∈[1,+∞),则f(-π6-5)= .9.函数f(x)=x 3-3x 2+5x-1图象的对称中心为 .10.[2024蓉城名校联考]已知函数f(x)=x+cosx,x∈R,设a= f(0.3-1), b= f(2-0.3),c= f(log 20.2),则 ( )A.b<c<aB.c<a<bC.b<a<cD.c<b<a11.[2024辽宁葫芦岛其次次测试]已知y=f(x-1)是定义在R 上的偶函数,且y=f(x)在[-1,+∞)上单调递增,则不等式f(-2x-1-1)<f(3)的解集为 ( )A.(2,+∞)B.(3,+∞)C.(-∞,2)D.(-∞,3)12.已知f(x)是定义在(1,+∞)上的增函数,若对于随意x,y∈(1,+∞),均有f(x)+f(y)=f(2x+y),f(2)=1,则不等式f(x)+f(x-1)-2≥0的解集为 ( )A.[52,+∞)B.(52,+∞)C.[1,52]D.(2,52]13.[2024广东七校联考]已知定义在R 上的偶函数y=f(x+2),其图象是连续的,当x>2时,函数y=f(x)是单调函数,则满意f(x)=f(1-1x+4)的全部x 之积为 ( )A.3B.-3C.-39D.3914.[原创题]设增函数f(x)={lnx,x >1,-1+ax x ,0<x ≤1的值域为R,若不等式f(x)≥x+b 的解集为{x|c≤x≤e},则实数c 的值为 ( )A.e -√e 2-42B.e+√e 2-42C.e±√e 2-42D.1215.[多选题]已知奇函数f(x)在(-∞,+∞)上单调递增,f(1)=2,若0<f(m)<2,则 ( )A.log m (1+m)<log m (1+m 2) B.log m (1-m)<0 C.(1-m)2>(1+m)2D.(1-m )13>(1-m )1216.[2024湖南六校联考][多选题]已知f(x)是定义在R 上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是( ) A.g(x)为偶函数B.g(x)在(1,2)上单调递增C.g(x)在[2 016,2 020]上恰有三个零点D.g(x)的最大值为2答 案其次讲 函数的基本性质1.D 函数y=cos x 是偶函数且是周期为2π的周期函数,所以y=cos x 在(0,+∞)上不具有单调性,所以A 选项不符合题意;函数y=x 2为偶函数,但在(0,+∞)上单调递增,所以B 选项不符合题意;函数y=ln|x|={lnx,x >0,ln(-x),x <0为偶函数,但在(0,+∞)上单调递增,所以C 选项不符合题意;函数y=e -|x|={e -x ,x ≥0,e x ,x <0为偶函数,在(0,+∞)上单调递减,所以D 选项符合题意.故选D.2.C ∵f(x)的图象关于y 轴对称,∴f(x)为偶函数,又y=sin x 为奇函数,∴y=ln(mx+√1+4x 2)为奇函数,即ln[-mx+√1+4·(-x)2]+ln(mx+√1+4x 2)=0,即ln(1+4x 2-m 2x 2)=0,1+4x 2-m 2x 2=1,解得m=±2.故选C.3.B 当x>0时,f(x)=e x -x+2a,则f '(x)=e x-1>0,所以函数f(x)在(0,+∞)上单调递增.因为函数f(x)在(-∞,+∞)上是单调函数,所以函数f(x)在(-∞,+∞)上是单调递增函数.当x≤0时,f(x)=(a-1)x+3a-2是单调递增函数,所以a-1>0,得a>1.e 0-0+2a≥(a -1)×0+3a -2,解得a≤3.所以1<a≤3,故选B.4.C 依题意f(x)是偶函数,g(x)是奇函数,且f(x)-g(x)=x 3+x 2+a ①,所以f(-x)-g(-x)=-x 3+x 2+a,即f(x)+g(x)=-x 3+x 2+a ②,②-①得2g(x)=-2x 3,g(x)=-x 3,所以g(2)=-23=-8.故选C. 5.A 由f(x)=f(x+5)可知f(x)的周期为5,又f(0)=0,f(1)=1,f(2)=2,f(-1)=-1,f(-2)=0,∴f(3)=f(-2)=0,f(4)=f(-1)=-1,f(5)=f(0)=0,∴f(1)+f(2)+f(3)+f(4)+f(5)=2,∴f(1)+f(2)+…+f(2 021)=f(1)+2×404=809.故选A. 6.C 解法一 因为函数f(x)=2x cosx 4x +a 是偶函数,所以f(-x)=f(x),即2-x cos(-x)4-x +a=2x cosx 4x +a ,化简可得a(4x -1)=4x-1,得a=1,所以f(x)=2x cosx4x +1=cosx2x +2-x .又cos x≤1,2x+2-x≥2,当且仅当x=0时两个“=”同时成立,所以f(x)≤12.故选C. 解法二 因为函数f(x)为偶函数,所以f(-1)=f(1),即2-1cos(-1)4-1+a=21cos14+a ,解得a=1,所以f(x)=2x cosx4x +1=cosx2x +2-x .因为cosx≤1,2x+2-x≥2,当且仅当x=0时两个“=”同时成立,所以f(x)max =12,故选C.7.A 由f(x+6)=f(x)知函数f(x)是周期为6的函数.因为y=f(x+3)为偶函数,所以f(x+3)=f(-x+3),所以f(192)=f(72)=f(12+3)=f(-12+3)=f(52).(题眼)(难点:利用函数的性质把自变量的取值化到同一个单调区间内) 因为1<e 12<2,0<ln 2<1,所以0<ln 2<e 12<52<3.因为f(x)在(0,3)上单调递减,所以f(52)<f(e 12)<f(ln 2),即f(192)<f(e 12)<f(ln 2),故选A.8.12 因为y=f(x)是定义在R 上的偶函数,所以f(-π6-5)=f(π6+5).因为x≥1时,f(x)=f(x-1),所以f(π6+5)=f(π6+4)=…=f(π6).又0<π6<1,所以f(π6)=sin π6=12.故f(-π6-5)=12.9.(1,2) 解法一 由题意设图象的对称中心为(a,b),则2b=f(a+x)+f(a-x)对随意x 均成立,代入函数解析式得,2b=(a+x)3-3(a+x)2+5(a+x)-1+(a-x)3-3(a-x)2+5(a-x)-1=2a 3+6ax 2-6a 2-6x 2+10a-2=2a 3-6a 2+10a-2+(6a-6)x 2对随意x 均成立,所以6a-6=0,且2a 3-6a 2+10a-2=2b,即a=1,b=2,即f(x)的图象的对称中心为(1,2).解法二 由三次函数对称中心公式可得,f(x)的图象的对称中心为(1,2).10.D f(x)=x+cos x,则f '(x)=1-sin x≥0,所以f(x)在R 上单调递增,又log 20.2<2-0.3<1<0.3-1=103,所以f(log 20.2)<f(2-0.3)<f(103),即c<b<a.11.D 由题可知y=f(x-1)的图象关于y 轴对称.因为y=f(x)的图象向右平移1个单位长度得到y=f(x-1)的图象,所以y=f(x)的图象关于直线x=-1对称.因为y=f(x)在[-1,+∞)上单调递增,所以f(x)在(-∞,-1)上单调递减.所以|-2x-1-1-(-1)|<|3-(-1)|,即0<2x-1<4,解得x<3,所以原不等式的解集为(-∞,3),故选D.12.A 依据f(x)+f(y)=f(2x+y),f(2)=1,可得2=1+1=f(2)+f(2)=f(24),所以f(x)+f(x-1)-2≥0得f(22x-1)≥f(24).又f(x)是定义在(1,+∞)上的增函数,所以{22x -1≥24,x >1,x -1>1, 解得x≥52.所以不等式f(x)+f(x-1)-2≥0的解集为[52,+∞).13.D 因为函数y=f(x+2)是偶函数,所以函数y=f(x)图象关于x=2对称,因为f(x)在(2,+∞)上单调,所以f(x)在(-∞,2)上也单调,所以要使f(x)=f(1-1x+4),则x=1-1x+4或4-x=1-1x+4.由x=1-1x+4,得x 2+3x-3=0,Δ1>0,设方程的两根分别为x 1,x 2,则x 1x 2=-3;由4-x=1-1x+4,得x 2+x-13=0,Δ2>0,设方程的两根分别为x 3,x 4,则x 3x 4=-13.所以x 1x 2x 3x 4=39.故选D.14.A 当x>1时,f(x)为增函数,且f(x)∈(0,+∞), 当0<x≤1时,-1+ax x=a-1x≤a -1,即f(x)∈(-∞,a -1].因为f(x)为增函数,所以a-1≤0,则a≤1,又函数f(x)的值域为R,所以a-1≥0,即a≥1,从而a=1,函数f(x)={lnx,x >1,-1+x x,0<x ≤1.因为不等式f(x)≥x+b 的解集为{x|c≤x≤e},易知ln x=x+b 的解为x=e,所以b=1-e,当x=1时,x+b=1+1-e=2-e<0=f(1),故0<c<1.令-1+x x=x+1-e,得x 2-ex+1=0,从而x=e -√e 2-42,则c=e -√e 2-42,故选A.15.AD ∵f(x)为奇函数,0<f(m)<2,f(1)=2,f(0)=0,∴f(0)<f(m)<f(1).又f(x)在R 上单调递增,∴0<m<1,∴1+m>1,0<1-m<1,∴log m (1-m)>0,B 错误.∵1+m>1+m 2,∴log m (1+m)<log m (1+m 2),A 正确.∵y=x 2在(0,+∞)上单调递增,1-m<1+m,∴(1-m)2<(1+m)2,C 错误.∵y=(1-m)x在(0,+∞)上单调递减,∴(1-m )13>(1-m )12,D 正确.故选AD. 16.AD 易知函数g(x)的定义域为R,且g(-x)=|f(-x)|+f(|-x|)=|-f(x)|+f(|x|)=|f(x)|+f(|x|)=g(x),所以g(x)为偶函数,故A 正确.因为f(1+x)=f(1-x),所以f(x)的图象关于直线x=1对称,又f(x)是奇函数,所以f(x)是周期为4的函数,其部分图象如图D 2-2-1所示,图D 2-2-1所以当x≥0时,g(x)={2f(x),x∈[4k,2+4k]0,x∈(2+4k,4+4k],k∈N,当x∈(1,2)时,g(x)=2f(x),g(x)单调递减,故B错误.g(x)在[2 016,2 020]上零点的个数等价于g(x)在[0,4]上零点的个数,而g(x)在[0,4]上有多数个零点,故C错误. 当x≥0时,易知g(x)的最大值为2,由偶函数图象的对称性可知,当x<0时,g(x)的最大值也为2,所以g(x)在整个定义域上的最大值为2,故D正确.综上可知,选AD.。
课标版(文理)数学 第一轮专题练习--第二章 函数概念与基本初等函数Ⅰ
2023课标版(文理)数学高考第一轮专题练习第二章函数概念与基本初等函数I第一讲函数及其表示夯基础考点练透1.醐/WV5FT +土,义勸(A.[i l)U(l,+«>) B. [|, 2)C. [j l)U(l,2)D. (0, 2)2.[2022内蒙古赤峰二中模拟]若函数AAl)的定义域为[-1,1],则Alg W的定义域为(A.[-1,1]B. [1,2]C. [10, 100]D. [0, lg 2]3.[2022武汉市第-中学模拟]己知函数Ax)=Vax24-bx + c的定义域与值域均为[0, 4],则(A.-4B. -2C.-lD. 14.[2021 南昌市三模]若函数/-a)4^g2X,x^ 则AA-^))= ((4smx, x < 0, 4A.-|B. IC. 1D.|5.[2021合肥市三检]若函数0 2’满足/•U)=/X2'1),则/(2a)的值等于(k • X,X 2 ZA. 2B.OC. -2D. -4lnx, x > 1,6.[2021武汉市5月模拟]己知函数Ax)= 0, 0 < x < 1,若/彡0,则实数a的取值范围是(X, x < 0,A.[宁,+~)B.(-~,-j] U [0,甲]C.[0,宁]1.若函数: 2(a>0, a^l)的最人值是4,则a的取值范围是A.(0, 1)U(1,2]B.(0, 1)U(1,V2]C.(0, 1)D.(0, 1) U (1, V2]8.[开放题]当2^0吋,函数/满足K/aXe'-l,写出-个满足条件的函数M的解析式.1提能力考法实战9.[2022青岛市质检]将函数厂VU^-2(xe[-3,3])的图象绕点(-3, 0)逆时针旋转a (0彡a彡0),得到曲线C,对于每一个旋转角a,曲线(7都是一个函数的图象,则6最大吋的正切值为()A.|B. |C. 1D. V310.[2021洛阳市第三次统考]高斯是徳国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名了“尚斯函数”.设A-eR,用Ld表示不超过A•的最大整数,则尸[x]称为“高斯函数”,例如:[-2. 1]=-3,[3.1]=3.已知函数则函数尸[/W]的值域为()A.(0, -3(B. (0,-1)C. (0,-1,-2}D. {1,0,-1,-2)第二讲函数的基本性质夯基础考点练透1.[2022青岛市质检]己知双曲正弦函数则()A.f(x)为偶函数B./*(X)在区间(-OO, +OO)上单凋递减C./U)没有零点D./C Y)在区间(-~,+-)上单调递增2.[2022湖北部分重点中学联考]己知函数f(x)=\x2~(^ + l)x + 2,x<l,若函数/•&)在R上为减函数,则ka x, x > 1,实数a的取值范围为()A.[丢,1)B. [|, |]C. (0,!]D. [i 1)3.[2022西安复习检测]若定义域为R的奇函数Ax)满足All) =/(1+尤),且A3) =2,则f(4)+f(2 021) =()A. 2B. 1C. 0D. -24.定义在R上的偶函数/U)在[0, +°°)上单调递减,且/(-2)=0,若彡0的解集为[1,5],则6F ()A. -3B. -2C.2D. 35.[2022郑州一模]己知函数M的定义域为R,且/(x)不恒为0,若f⑽为偶函数,A3T»-1)为奇函数,则下列选项中一定成立的是()A. /(-|)=0B./(-l)=oC. r(2)=0D. /(4)=06.[2021四川成都石室中学三模]己知函数尸fCvl)的图象关子直线尸1对称,满足r(2-x)=rtx),且/U)在区间(-1, 0)上单调递减,若a=f&),Zz=/X-ln 2),c=Alog;(18),则a、b, c的大小关系为()A. a<c<bB. c<b<aC. a<b<cD. b<a<c7.[开放题]写出一个值域为[2, 3]的周期函数: .(不能用分段函数形式)8.[2022重庆凤鸣山中学模拟]己知函数f(x)是定义在R上的奇函数,且在区间[0, +~)上单调递减.若f(2a+l) + f(l)〈0,则实数a的取值范围是.9.[2021陕西宝鸡二模]己知函数^U)=A+^UeR),A-G[l,9L则〆x)的值域是 ____________ .设函数f(x)=|,若对于任意实数a,总存在沿£ [1,9],使得f(x<>)彡r成立,则实数t的取值范围是.提能力考法实战10.[2021广东茂名4月模拟]己知函数/U)是定义在R上的奇函数,且满足/U)=-A A4-1),数列UJ是首项为1,公差为1的等差数列,则/(&)+/•(&)+/*(&)+•••+/(&。
高中数学专题02函数的概念与基本初等函数 (2)
专题02函数的概念与基本初等函数1.【2019年天津文科05】已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log27>log24=2,b=log38<log39=2,c=0.30.2<1,∴c<b<a.故选:A.2.【2019年天津文科08】已知函数f(x)若关于x的方程f(x)x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()A.[,] B.(,] C.(,]∪{1} D.[,]∪{1}【解答】解:作出函数f(x)的图象,以及直线y x的图象,关于x的方程f(x)x+a(a∈R)恰有两个互异的实数解,即为y=f(x)和y x+a的图象有两个交点,平移直线y x,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a或a,考虑直线与y在x>1相切,可得ax x2=1,由△=a2﹣1=0,解得a=1(﹣1舍去),综上可得a的范围是[,]∪{1}.故选:D.3.【2019年新课标3文科12】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年新课标2文科06】设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1 B.e﹣x+1 C.﹣e﹣x﹣1 D.﹣e﹣x+1【解答】解:设x<0,则﹣x>0,∴f(﹣x)=e﹣x﹣1,∵设f(x)为奇函数,∴﹣f(x)=e﹣x﹣1,即f(x)=﹣e﹣x+1.故选:D.5.【2019年新课标1文科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年北京文科03】下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y【解答】解:在(0,+∞)上单调递增,和在(0,+∞)上都是减函数.故选:A.7.【2018年新课标2文科12】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.8.【2018年新课标1文科12】设函数f(x),则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1] B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)【解答】解:函数f(x),的图象如图:满足f(x+1)<f(2x),可得:2x<0<x+1或2x<x+1≤0,解得x∈(﹣∞,0).故选:D.9.【2018年新课标3文科07】下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)【解答】解:首先根据函数y=lnx的图象,则:函数y=lnx的图象与y=ln(﹣x)的图象关于y轴对称.由于函数y=lnx的图象关于直线x=1对称.则:把函数y=ln(﹣x)的图象向右平移2个单位即可得到:y=ln(2﹣x).即所求得解析式为:y=ln(2﹣x).故选:B.10.【2018年北京文科05】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.11.【2018年天津文科05】已知a,b,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:∵a,b,c,且5,∴,则b,∴c>a>b.故选:D.12.【2017年北京文科05】已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.13.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.14.【2017年天津文科06】已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f (20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【解答】解:奇函数f(x)在R上是增函数,∴a=﹣f()=f(log25),b=f(log24.1),c=f(20.8),又1<20.8<2<log24.1<log25,∴f(20.8)<f(log24.1)<f(log25),即c<b<a.故选:C.15.【2017年天津文科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[﹣2,2] B.C.D.【解答】解:根据题意,函数f(x)的图象如图:令g(x)=|a|,其图象与x轴相交与点(﹣2a,0),在区间(﹣∞,﹣2a)上为减函数,在(﹣2a,+∞)为增函数,若不等式f(x)≥|a|在R上恒成立,则函数f(x)的图象在g(x)上的上方或相交,则必有f(0)≥g(0),即2≥|a|,解可得﹣2≤a≤2,故选:A.16.【2018年新课标1文科13】已知函数f(x)=log2(x2+a),若f(3)=1,则a=.【解答】解:函数f(x)=log2(x2+a),若f(3)=1,可得:log2(9+a)=1,可得a=﹣7.故答案为:﹣7.17.【2018年新课标3文科16】已知函数f(x)=ln(x)+1,f(a)=4,则f(﹣a)=.【解答】解:函数g(x)=ln(x)满足g(﹣x)=ln(x)ln(x)=﹣g(x),所以g(x)是奇函数.函数f(x)=ln(x)+1,f(a)=4,可得f(a)=4=ln(a)+1,可得ln(a)=3,则f(﹣a)=﹣ln(a)+1=﹣3+1=﹣2.故答案为:﹣2.18.【2018年天津文科14】已知a∈R,函数f(x).若对任意x∈[﹣3,+∞),f (x)≤|x|恒成立,则a的取值范围是.【解答】解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,在射线y=x的下方或在y=x上,由﹣x2+2x﹣2a≤x,即x2﹣x+2a≥0,由判别式△=1﹣8a≤0,得a,综上a≤2,故答案为:[,2].19.【2017年新课标2文科14】已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=.【解答】解:∵当x∈(﹣∞,0)时,f(x)=2x3+x2,∴f(﹣2)=﹣12,又∵函数f(x)是定义在R上的奇函数,∴f(2)=12,故答案为:1220.【2017年新课标3文科16】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).21.【2017年北京文科11】已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x,开口向上,所以函数的最小值为:f().最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].1.【山西省晋城市2019届高三第三次模拟考试】若函数的图象关于y轴对称,则实数a的值为()A.2 B.4 C.2±D.4±【答案】C【解析】f x为偶函数.由于为奇函数,故也为奇函数.而依题意,函数(),故,即,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式的解集为( )A .()10-,B .()12-,C .()02,D .()2,+∞ 【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( ) A . B . C .D .【答案】C 【解析】∵f (x )为偶函数∴∵f (x )在[0,+∞)内单调递减,∴,即故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】且即a b c ∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -【答案】B 【解析】 因为故函数()f x 关于点(2,1)对称,则()4f a -=2b - 故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】 由题意知:当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误;当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;,则()f x 不关于1x =对称,C 错误;,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足,当01x ≤≤时,2()f x x =,则( )A .2019B .0C .1D .-1【答案】B 【解析】 由得:()f x 的周期为4又()f x 为奇函数()11f ∴=,,,即:本题正确选项:B8.【天津市红桥区2019届高三一模】若方程有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞- B .()1,0-C .()0,4D .【答案】D 【解析】 解:y,画出函数y =kx ﹣2,y 211x x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4, ①当0<k <1时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点,即方程211x x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4. 故选:D .9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】在R 上递减,∴若充分性成立,若112m n-⎛⎫> ⎪⎝⎭,则,必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。
高三数学(文)一轮复习课时跟踪训练:第二章函数的概念与基本初等函数课时跟踪训练7含解析
课时跟踪训练(七)[基础巩固]一、选择题1.(2017·石家庄质检)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝ ⎛⎭⎪⎫12|x |[答案] B2.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎪⎫-52等于( )A .-12B .-14 C.14D.12[解析] ∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2 =f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12 =-2×12×⎝ ⎛⎭⎪⎫1-12=-12. [答案] A3.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3[解析] 解法一:根据题意作出y =f (x )的简图,由图知,选B.解法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ], 由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间[-b ,-a ]上f (x )min =-4,f (x )max =3,故选B.[答案] B4.(2017·绵阳诊断)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 [解析] ∵f (x )是偶函数,∴f (x )=f (|x |),∴f (|2x -1|)<f ⎝ ⎛⎭⎪⎫13,再根据f (x )的单调性,得|2x -1|<13,解得13<x <23,故选A.[答案] A5.(2017·陕西省高三一检)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (8)=( )A .-1B .0C .1D .-2[解析] 由奇函数f (x )的定义域为R ,可得f (0)=0,由f (x +2)为偶函数,可得f (-x +2)=f (x +2),故f (x +4)=f [(x +2)+2]=f [-(x +2)+2]=f (-x )=-f (x ),则f (x +8)=f [(x +4)+4]=-f (x +4)=-f [-f (x )]=f (x ),即函数f (x )的周期为8,所以f (8)=f (0)=0,选B.[答案] B6.(2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎪⎫x +12=f ⎝⎛⎭⎪⎫x -12,则f (6)=( )A .-2B .-1C .0D .2[解析] 由题意得,当x >12时,f (x +1)=f ⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),所以当x >12时,f (x )的周期为1,所以f (6)=f (1).又f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2,故选D. [答案] D 二、填空题7.(2017·全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.[解析] 依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.[答案] 128.(2018·唐山一中测试)已知函数f (x )=ax 5-bx +|x |-1,若f (-2)=2,则f (2)=________.[解析] 因为f (-2)=2,所以-32a +2b +2-1=2,则32a -2b =-1,即f (2)=32a -2b +2-1=0.[答案] 09.(2017·甘肃省张掖市高三一诊)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2017)的值为________.[解析] ∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2,∴f (x +1)+2≤f (x +3)≤f (x )+3,∴f (x +1)≤f (x )+1.又f (x +1)+1≥f (x +2)≥f (x )+2,∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用迭加法,得f (2017)=2018.[答案] 2018 三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0, x =0,x 2+mx , x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.[解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].[能力提升]11.(2017·广东省惠州市高三三调)已知定义在R 上的函数y =f (x )满足条件f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,给出以下四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为( ) A .①③④ B .①②③ C .①②④D .②③④[解析] f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎪⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎪⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎪⎫-34,0对称,-34=-x +⎝ ⎛⎭⎪⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎪⎫-32+x ,又f ⎝⎛⎭⎪⎫-32+x =-f ⎝⎛⎭⎪⎫-32+x +32=-f (x ),所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误.故真命题的序号为①②③.选B.[答案] B12.(2017·湖北省七市(州)高三联考)函数y =f (x )为R 上的偶函数,函数y =g (x )为R 上的奇函数,f (x )=g (x +2),f (0)=-4,则g (x )可以是( )A .4tan πx8 B .-4sin πx2 C .4sin πx4D .-4sin πx4[解析] ∵f (x )=g (x +2),f (0)=-4,∴g (2)=-4.而4tan 2π8=4tan π4=4,-4sin 2π2=-4sin π=0,4sin 2π4=4sin π2=4,-4sin 2π4=-4,∴y =g (x )可以是g (x )=-4sin πx4,经检验,选项D 符合题干条件.故选D.[答案] D13.(2017·江西调研)已知函数f (x )是偶函数,且当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )的解析式为________.[解析] 设x <0,则-x >0,因为当x >0时,f (x )=x 3+x +1,所以f (-x )=-x 3-x +1.又函数f (x )是偶函数,所以f (x )=-x 3-x +1.[答案] f (x )=-x 3-x +114.(2017·云南省高三统一检测)已知函数f (x )=⎩⎪⎨⎪⎧3x 2+ln (1+x 2+x ),x ≥0,3x 2+ln (1+x 2-x ),x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.[解析] 若x >0,则-x <0,f (-x )=3(-x )2+ln(1+(-x )2+x )=3x 2+ln(1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.[答案] (-∞,-2)∪(0,+∞)15.(2018·日照检测)设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ).当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式. [解] (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ). 又f (x +2)=f (x ),∴f (-x )=f (x ),∴f (x )是偶函数. (2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ; 进而当x ∈[1,2]时,x -2∈[-1,0], f (x )=f (x -2)=-(x -2)=-x +2. 故所求为f (x )=⎩⎪⎨⎪⎧-x ,x ∈[-1,0),x ,x ∈[0,1),-x +2,x ∈[1,2].16.函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数; (3)解不等式f (t -1)+f (t )<0.[解](1)依题意得⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,即⎩⎪⎨⎪⎧b1+02=0,a 2+b1+14=25⇒⎩⎪⎨⎪⎧a =1,b =0.∴f (x )=x 1+x 2. (2)证明:任取-1<x 1<x 2<1, f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵-1<x 1<x 2<1,∴x 1-x 2<0,1+x 21>0,1+x 22>0.又-1<x 1x 2<1,∴1-x 1x 2>0, ∴f (x 1)-f (x 2)<0,∴f (x )在(-1,1)上是增函数. (3)f (t -1)<-f (t )=f (-t ). ∵f (x )在(-1,1)上是增函数, ∴-1<t -1<-t <1,解得0<t <12.[延伸拓展](2017·昆明市高三质检)定义“函数y =f (x )是D 上的a 级类周期函数”如下:函数y =f (x ),x ∈D ,对于给定的非零常数a ,总存在非零常数T ,使得定义域D 内的任意实数x 都有af (x )=f (x +T )恒成立,此时T 为f (x )的周期.若y =f (x )是[1,+∞)上的a 级类周期函数,且T =1,当x ∈[1,2)时,f (x )=2x +1,且y =f (x )是[1,+∞)上的单调递增函数,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫56,+∞ B .[2,+∞) C.⎣⎢⎡⎭⎪⎫53,+∞ D .[10,+∞)[解析] 因为x ∈[1,2)时,f (x )=2x +1,所以当x ∈[2,3)时,f (x )=af (x -1)=a (2x -1),当x ∈[n ,n +1)时,f (x )=af (x -1)=a 2f (x -2)=…=a n -1f (x -n +1)=a n -1·(2x -2n +3),即x ∈[n ,n +1)时,f (x )=a n -1·(2x -2n +3),n ∈N *,同理可得,x ∈[n -1,n )时,f (x )=a n -2(2x -2n +5),n ∈N *.因为f (x )在[1,+∞)上单调递增,所以a >0且a n -1·(2n-2n +3)≥an -2(2n -2n +5),解得a ≥53,故选C.[答案] C合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。
2020版高考文科数学总复习:函数的概念与基本初等函数课题练习(共10套,含解析)
2020版高考文科数学总复习函数的概念与基本初等函数课题练习(共10套,含解析) 函数的概念与基本初等函数一基础巩固练一、选择题1.(2019·长春模拟)下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3},f :x →x 的平方根;②A =R ,B =R ,f :x →x 的倒数;③A =R ,B =R ,f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1},f :A 中的数平方.其中是A 到B 的映射的是( ) A .①③ B .②④ C .③④ D .②③[解析] ①中对于A 中任一元素在B 中有两个元素与之对应,故①不是A 到B 的映射;②中A =R ,A 中元素0在f :x →x 的倒数作用下在B 中没有唯一元素对应,故②不是A 到B 的映射;③④符合映射的定义,故选C.[答案] C2.(2019·山东滨州期末)已知f (x )=⎩⎪⎨⎪⎧f (x +1),x <1,3x ,x ≥1,则f (-1+log 35)=( )A .15 B.53 C .5 D.15[解析] ∵1<log 35<2,∴-1+log 35∈(0,1),∴f (-1+log 35)=f (-1+log 35+1)=f (log 35)=3log 35=5,故选C.[答案] C3.(2019·山西太原一模)若函数f (x )满足f (1-ln x )=1x ,则f (2)等于( ) A.12 B .e C.1e D .-1[解析] 解法一:令1-ln x =t ,则x =e 1-t,于是f (t )=1e 1-t ,即f (x )=1e1-x ,故f (2)=e.故选B.解法二:由1-ln x =2,得x =1e ,这时1x =11e =e ,即f (2)=e.故选B.[答案] B4.已知f ⎝⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( ) A .(x +1)2 B .(x -1)2 C .x 2-x +1D .x 2+x +1[解析] f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1,令x +1x =t ,则f (t )=t 2-t +1,即f (x )=x 2-x +1.故选C.[答案] C5.(2019·新疆乌鲁木齐一诊)函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,-log 3(x -1),x ≥2,则不等式f (x )>1的解集为( )A .(1,2) B.⎝ ⎛⎭⎪⎫-∞,43 C.⎝ ⎛⎭⎪⎫1,43 D .[2,+∞)[解析] 当x <2时,不等式f (x )>1即e x -1>1,∴x -1>0,∴x >1,则1<x <2;当x ≥2时,不等式f (x )>1即-log 3(x -1)>1, ∴0<x -1<13,∴1<x <43,此时不等式无解. 综上可得,不等式的解集为(1,2).故选A. [答案] A 二、填空题6.(2019·湖南衡阳八中一模)f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=________.[解析] ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. [答案] 97.设函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,f (x -3)+2,x >0,则f (9)=________.[解析] f (9)=f (6)+2=f (3)+4=f (0)+6=0+2+6=8. [答案] 88.已知f (2sin x2-1)=cos x +1,则f (x )的解析式为________. [解析] ∵f (2sin x 2-1)=1-2sin 2x 2+1=2-2sin 2x 2 设2sin x2-1=t ,则-3≤t ≤1,sin x 2=t +12,∴f (t )=2-2·⎝ ⎛⎭⎪⎫t +122=-12t 2-t +32. 故f (x )=-12x 2-x +32(-3≤x ≤1). [答案] -12x 2-x +32(-3≤x ≤1) 三、解答题9.设二次函数f (x )满足f (2+x )=f (2-x ),且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.[解] ∵f (2+x )=f (2-x ), ∴f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a , ∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a,∴a =1.∴f (x )=x 2-4x +3.10.如图,点M 是边长为1的正方形ABCD 的边CD 的中点.当点P 在正方形的边上沿A —B —C 运动时,点P 经过的路程为x ,△APM 的面积为y ,求y 关于x 的函数关系式.[解] 利用分段函数建立关系式.当点P 在线段AB 上,即0<x ≤1时,y =12x ;当点P 在线段BC 上,即1<x ≤2时,y =12×⎝ ⎛⎭⎪⎫12+1×1-12(x -1)×1-12×(2-x )×12=14(3-x ).所以所求函数关系式为y =⎩⎪⎨⎪⎧12x ,0<x ≤1,14(3-x ),1<x ≤2.能力提升练11.(2019·西安调考)若函数f (x )满足关系式f (x )+2f ⎝ ⎛⎭⎪⎫1x =3x ,则f (2)的值为( )A .1B .-1C .-32 D.32 [解析] 由f (x )+2f (1x )=3x ,得⎩⎪⎨⎪⎧f (2)+2f (12)=6,f (12)+2f (2)=32.消去f (12),得f (2)=-1.故选B. [答案] B12.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B.[]0,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D.[)1,+∞[解析] 由f [f (a )]=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1. 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C. [答案] C13.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.[解析] ①当x ≤0时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=x +1+x -12+1>1,得x >-14,∴-14<x ≤0;②当0<x ≤12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +x -12+1>1恒成立; ③当x >12时,f (x )+f ⎝⎛⎭⎪⎫x -12=2x +2x -12>1恒成立.综上所述,x >-14.[答案] ⎝⎛⎭⎪⎫-14,+∞[解]拓展延伸练15.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x[解析]由已知可得x sgn x =⎩⎪⎨⎪⎧x ,x >0,0,x =0,-x ,x <0,而|x |=⎩⎪⎨⎪⎧x ,x >0,0,x =0,-x ,x <0,所以|x |=x sgn x ,故选D.[答案] D16.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1 B.78 C.34 D.12 [解析][答案] D函数的概念与基本初等函数二基础巩固练一、选择题1.(2018·山东临沂月考)y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,则⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,解得x ∈(-2,0)∪[1,2),即函数的定义域是(-2,0)∪[1,2).故选C.[答案] C2.(2018·陕西宝鸡月考)若函数y =f (x +1)的值域为[-1,1],则函数y =f (3x +2)的值域为( )A .[-1,1]B .[-1,0]C .[0,1]D .[2,8][解析] 函数y =f (x +1)的值域为[-1,1],由于函数中的自变量取定义域内的任意数,函数的值域都为[-1,1],故函数y =f (3x +2)的值域为[-1,1].故选A.[答案] A3.(2018·山东滨州期末)函数y =12x +log 12x ,x ∈[1,2)的值域为( )A .[12,+∞)B.⎝ ⎛⎦⎥⎤-34,-12 C.⎝⎛⎦⎥⎤-34,12 D.⎝⎛⎭⎪⎫-∞,-34[解析] ∵函数y =12x +log 12x 在[1,2)上是减函数,∴-34<y ≤12,即函数的值域为⎝ ⎛⎦⎥⎤-34,12.故选C.[答案] C4.(2018·江西宜春月考)若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为( )A .(-2,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2][解析] 函数f (x )=x 2+ax +1的定义域为实数集R , 则x 2+ax +1≥0恒成立,即Δ=a 2-4≤0,解得-2≤a ≤2, 即实数a 的取值范围是[-2,2],故选D. [答案] D5.(2018·西安联考)已知函数f (x )=-x 2+4x ,x ∈[m,5]的值域是[-5,4],则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2]C .[-1,2]D .[2,5][解析] ∵f (x )=-x 2+4x =-(x -2)2+4,∴当x =2时,f (2)=4,由f (x )=-x 2+4x =-5,解得x =5或x =-1,∴结合图象可知,要使函数在[m,5]上的值域是[-5,4],则-1≤m ≤2.故选C.[答案] C 二、填空题6.函数y =1-x 2x +5的值域为________.[解析] y =1-x 2x +5=-12(2x +5)+722x +5=-12+722x +5.∵722x +5≠0,∴y ≠-12, ∴函数y =1-x 2x +5的值域为⎩⎨⎧⎭⎬⎫y |y ≠-12.[答案] ⎩⎨⎧⎭⎬⎫y |y ≠-12 7.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为________. [解析] 设f (x )=ax 2+2x +1,由题意知, f (x )取遍所有的正实数.当a =0时, f (x )=2x +1符合条件;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4-4a ≥0,解得0<a ≤1.所以0≤a ≤1.[答案] [0,1]8.(2018·山东省实验中学段考)已知函数f (x )的定义域为(0,+∞),则函数y =f (x +1)-x 2-3x +4的定义域是________. [解析] ∵函数f (x )的定义域为(0,+∞),∴⎩⎪⎨⎪⎧ x +1>0,-x 2-3x +4>0,解得⎩⎪⎨⎪⎧x >-1,-4<x <1,即-1<x <1, ∴所求函数的定义域是(-1,1). [答案] (-1,1) 三、解答题9.求下列函数的值域: (1)y =x -3x +1;(2)y =x -1-2x ; (3)y =x 2+x +1x +1;(4)y =1-x 21+x 2.[解] (1)y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}.(2)解法一:令1-2x =t ,则t ≥0且x =1-t 22, 于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≤12.解法二:函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≤12.(3)x ≠-1且由已知得x 2+(1-y )x +1-y =0(*) 方程有解,∴Δ=(1-y )2-4(1-y )≥0, 即y 2+2y -3≥0 解得y ≥1或y ≤-3 由x =-1不满足(*)∴函数的值域为(-∞,-3]∪[1,+∞) (4)y =1-x 21+x 2=-1-x 2+21+x 2=-1+21+x 2.由1+x 2≥1,得0<21+x 2≤2,所以-1<-1+21+x 2≤1.故函数的值域为(-1,1].10.已知函数f (x )=(1-a 2)x 2+3(1-a )x +6. (1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为[0,+∞),求实数a 的取值范围. [解] (1)①若1-a 2=0,即a =±1,(ⅰ)当a =1时,f (x )=6,定义域为R ,符合要求; (ⅱ)当a =-1时, f (x )=6x +6,定义域不为R .②若1-a 2≠0,g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数, ∵f (x )的定义域为R ,∴g (x )≥0,∀x ∈R 恒成立,∴⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≤0 ⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0⇒-511≤a <1. 综合①②得a 的取值范围是⎣⎢⎡⎦⎥⎤-511,1.(2)∵函数f (x )的值域为[0,+∞),∴函数g (x )=(1-a 2)x 2+3(1-a )x +6取一切非负实数,①当1-a 2≠0时有⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≥0 ⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≥0⇒-1<a ≤-511. ②当1-a 2=0时a =±1,当a =1时,f (x )=6不合题意.当a =-1时,f (x )=6x +6的值域为[0,+∞),符合题目要求.故所求实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,-511.能力提升练11.(2019·湖南邵阳期末)设函数f (x )=log 2(x -1)+2-x ,则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为( )A .[1,2]B .(2,4]C .[1,2)D .[2,4)[解析] ∵函数f (x )=log 2(x -1)+2-x 有意义,∴⎩⎪⎨⎪⎧x -1>0,2-x ≥0,解得1<x ≤2,∴函数的f (x )定义域为(1,2],∴1<x2≤2,解得x ∈(2,4],则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为(2,4].故选B.[答案] B12.(2019·广东珠海质检)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是( )A .(-∞,-1] B.⎝⎛⎭⎪⎫-1,12C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12 [解析] 由题意知y =ln x (x ≥1)的值域为[0,+∞),故要使f (x )的值域为R ,则必有y =(1-2a )x +3a 为增函数,且1-2a +3a ≥0,所以1-2a >0,且a ≥-1,解得-1≤a <12,故选C.[答案] C13.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于__________.[解析] 由已知得1⊕x =⎩⎪⎨⎪⎧1 -2≤x ≤1,x 2 1<x ≤2,当x ∈[-2,2]时,2⊕x =2,∴f (x )=⎩⎪⎨⎪⎧x -2,-2≤x ≤1,x 3-2,1<x ≤2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.[答案] 614.已知二次函数f (x )=ax 2+bx (a 、b 是常数,且a ≠0)满足条件:f (2)=0,且方程f (x )=x 有两个相等实根.(1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]?如存在,求出m 、n 的值;如不存在,说明理由.[解] (1)方程f (x )=x ,即ax 2+bx =x , 亦即ax 2+(b -1)x =0,由方程有两个相等实根,得Δ=(b -1)2-4a ×0=0, ∴b =1.①由f (2)=0,得4a +2b =0,②由①、②得,a =-12,b =1,故f (x )=-12x 2+x . (2)假设存在实数m 、n 满足条件,由(1)知, f (x )=-12x 2+x =-12(x -1)2+12≤12, 则2n ≤12,即n ≤14.∵f (x )=-12(x -1)2+12的对称轴为x =1,∴当n ≤14时,f (x )在[m ,n ]上为增函数.于是有⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧-12m 2+m =2m ,-12n 2+n =2n ,∴⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0. 又m <n ≤14,∴⎩⎪⎨⎪⎧m =-2,n =0.故存在实数m =-2,n =0,使f (x )的定义域为[m ,n ],值域为[2m,2n ].拓展延伸练15.(2019·江西鄱阳月考)已知函数f (x )=1-log 2x 的定义域为[1,4],则函数y =f (x )·f (x 2)的值域是( )A .[0,1]B .[0,3]C.⎣⎢⎡⎦⎥⎤-18,1 D.⎣⎢⎡⎦⎥⎤-18,3 [解析] 对于y =f (x )·f (x 2),由函数f (x )的定义域是[1,4],得1≤x ≤4,且1≤x 2≤4,解得1≤x ≤2,故函数y =f (x )·f (x 2)的定义域是[1,2],易得y =f (x )·f (x 2)=1-3log 2x +2log 22x ,令t =log 2x ,则t ∈[0,1],y =1-3t +2t 2=2⎝ ⎛⎭⎪⎫t -342-18,故t =34时,y 取最小值-18;t =0时,y 取最大值1,故所求函数的值域是⎣⎢⎡⎦⎥⎤-18,1,故选C.[答案] C16.(2019·江苏南京、盐城一模)设函数y =e x+1e x -a 的值域为A ,若A ⊆[0,+∞),则实数a 的取值范围是________.[解析] ∵e x+1e x ≥2e x·1e x =2,∴函数y =e x +1e x -a 的值域为[2-a ,+∞).又∵A ⊆[0,+∞),∴2-a ≥0,即a ≤2. [答案] (-∞,2]函数的概念与基本初等函数三基础巩固练一、选择题1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x[解析] 函数y =11-x,y =ln(x +1)在(-1,1)上都是增函数,函数y =cos x在(-1,0)上是增函数,在(0,1)上是减函数,而函数y =2-x=⎝ ⎛⎭⎪⎫12x在(-1,1)上是减函数,故选D.[答案] D2.下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞)时,均有(x 1-x 2)[f (x 1)-f (x 2)]>0”的是( )A .f (x )=12B .f (x )=x 2-4x +4C .f (x )=2xD .f (x )=log 12x[解析] (x 1-x 2)[f (x 1)-f (x 2)]>0等价于x 1-x 2与f (x 1)-f (x 2)正负号相同,故函数f (x )在(0,+∞)上单调递增.显然只有函数f (x )=2x 符合,故选C.[答案] C3.(2018·湖北高三调研)函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是( )A .(-∞,-2)B .(-∞,-1)C .(2,+∞)D .(5,+∞)[解析] 根据题意,得x 2-4x -5>0,得x <-1或x >5,设u =x 2-4x -5=(x -2)2-9,易知u =x 2-4x -5的单调递增区间为(2,+∞),f (x )=log a (x 2-4x -5)的单调递增区间是(5,+∞),故选D.[答案] D4.函数f (x )=11-x (1-x )的最大值是( )A.45B.54C.34D.43[解析] 由f (x )=1⎝ ⎛⎭⎪⎫x -122+34≤43, 则[f (x )]max =43,故选D. [答案] D5.(2019·河北保定模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 当c =-1时,函数y =log 2x 和y =x +c 均是单调递增函数,且1+c =log 21,所以函数f (x )在R 上递增;当函数f (x )在R 上递增时,c 不一定等于-1.故“c =-1”是“函数f (x )在R 上递增”的充分不必要条件.故选A.[答案] A 二、填空题6.函数y =log 12|x -3|的单调递减区间是________.[解析] 函数的定义域为{x |x ≠3},令u =|x -3|,则在(-∞,3)上u 为x 的减函数,在(3,+∞)上u 为x 的增函数.又∵0<12<1,∴在区间(3,+∞)上,y 为x 的减函数.[答案] (3,+∞)7.(2019·福建龙岩质量检查)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +4)在区间[-2,2]上的最大值为________.[解析] 由函数的解析式可知f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +4)在区间[-2,2]上是单调递减函数,则函数的最大值为f (-2)=⎝ ⎛⎭⎪⎫13-2-log 2(-2+4)=9-1=8.[答案] 88.若函数f (x )=ax +1x +2在区间(-2,+∞)上是单调递增函数,则实数a 的取值范围是________.[解析] 解法一:f (x )=ax +1x +2=a (x +2)+1-2ax +2=1-2ax +2+a . 任取x 1,x 2∈(-2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=1-2a x 1+2-1-2ax 2+2=(1-2a )(x 2-x 1)(x 1+2)(x 2+2). ∵函数f (x )=ax +1x +2在区间(-2,+∞)上是递增的, ∴f (x 1)-f (x 2)<0.∵x 2-x 1>0,x 1+2>0,x 2+2>0, ∴1-2a <0,a >12,即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.解法二:f (x )=a (x +2)+1-2ax +2=a +1-2a x +2,∵f (x )在(-2,+∞)上单调递增, ∴1-2a <0,∴a >12.[答案] ⎝ ⎛⎭⎪⎫12,+∞三、解答题9.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.[解] (1)证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2, 又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,易知a =25. 10.(2018·江苏徐州期中)已知a ∈R ,函数f (x )=x |x -a |. (1)当a =2时,写出函数y =f (x )的单调递增区间; (2)当a >2时,求函数y =f (x )在区间[1,2]上的最小值.[解] (1)当a =2时, f (x )=x |x -2|=⎩⎪⎨⎪⎧x (x -2),x ≥2,x (2-x ),x <2.由图象可知,y =f (x )的单调递增区间为(-∞,1],[2,+∞). (2)因为a >2,x ∈[1,2],所以f (x )=x (a -x )=-x 2+ax =-⎝ ⎛⎭⎪⎫x -a 22+a 24.当1<a 2≤32,即2<a ≤3时, f (x )min =f (2)=2a -4; 当a 2>32,即a >3时, f (x )min =f (1)=a -1.∴f (x )min =⎩⎪⎨⎪⎧2a -4,2<a ≤3,a -1,a >3.能力提升练11.(2019·陕西西安模拟)已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( )A .(0,1]B .[1,2]C .[1,+∞)D .[2,+∞)[解析] 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.故选C.[答案] C12.已知f (x )=⎩⎨⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a的取值范围是( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)[解析] 由已知可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥⎝ ⎛⎭⎪⎫4-a 2+2,解得4≤a <8.故选B. [答案] B13.(2019·郑州模拟)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.[解析] 由题意知g (x )=⎩⎪⎨⎪⎧ x 20-x 2,x >1,,x =1,,x <1,函数的图象如图所示的实线部分,根据图象,g (x )的减区间是[0,1). [答案] [0,1)14.(2019·湖南长沙调研)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. [解] (1)由x +ax -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +ax -2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax 2>0.因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=lg a2.(3)对任意x ∈[2,+∞),恒有f (x )>0.即x +ax -2>1对∀x ∈[2,+∞)恒成立. ∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2. 故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).拓展延伸练15.(2019·湖南衡阳联考)若函数f (x )=2x -a +1+x -a -a 的定义域与值域相同,则a =( )A .-1B .1C .0D .±1[解析] ∵函数f (x )=2x -a +1+x -a -a , ∴函数f (x )的定义域为[a ,+∞). ∵函数f (x )的定义域与值域相同, ∴函数f (x )的值域为[a ,+∞).又∵函数f (x )在[a ,+∞)上是单调递增函数, ∴当x =a 时,f (a )=2a -a +1-a =a ,解得a =1.故选B. [答案] B16.(2018·安徽合肥八中期中)已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则n +m =________.[解析] 根据题意并结合函数f (x )=|log 2x |的图象知,0<m <1<n ,所以0<m 2<m <1.根据函数图象易知,当x =m 2时函数f (x )取得最大值,所以f (m 2)=|log 2m 2|=2.又0<m <1,解得m =12.再结合f (m )=f (n )求得n =2,所以n +m =52.[答案] 52函数的概念与基本初等函数四基础巩固练一、选择题1.(2019·石家庄质检)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝ ⎛⎭⎪⎫12|x |[解析] ∵函数y =|x |-1和y =⎝ ⎛⎭⎪⎫12|x |是偶函数,其中y =|x |-1在(0,+∞)单调递增,y =⎝ ⎛⎭⎪⎫12|x |在(0,+∞)且单调递减.故选B.[答案] B2.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52等于( )A .-12 B .-14 C.14D.12[解析] ∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2 =f ⎝⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12 =-2×12×⎝ ⎛⎭⎪⎫1-12=-12.故选A. [答案] A3.(2019·贵阳市高三监测考试)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4[解析] 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3log 22=-2.故选C.[答案] C4.(2018·石家庄市高三一检)已知函数f (x )为奇函数,当x >0时,f (x )单调递增,且f (1)=0,若f (x -1)>0,则x 的取值范围为( )A .{x |0<x <1或x >2}B .{x |x <0或x >2}C .{x |x <0或x >3}D .{x |x <-1或x >1}[解析] 由于函数f (x )是奇函数,且当x >0时f (x )单调递增,f (1)=0,故由f (x -1)>0,得-1<x -1<0或x -1>1,所以0<x <1或x >2,故选A.[答案] A5.(2018·合肥市高三二检)已知函数f (x )=1-2x1+2x,实数a ,b 满足不等式f (2a +b )+f (4-3b )>0,则下列不等关系恒成立的是( )A .b -a <2B .a +2b >2C .b -a >2D .a +2b <2[解析] 由题意知f (-x )=1-2-x 1+2-x =2x -12x +1=-1-2x1+2x =-f (x ),函数f (x )为奇函数,又f (x )=1-2x 1+2x =2-(1+2x )1+2x =21+2x-1,所以f (x )在R 上为减函数,由f (2a +b )+f (4-3b )>0得f (2a +b )>-f (4-3b )=f (3b -4),故2a +b <3b -4,即b -a >2.故选C.[答案] C 二、填空题6.(2019·豫东十校联考)若f (x )=12x -1+a 是奇函数,则a =________.[解析] 依题意得f (1)+f (-1)=0, 由此得121-1+a +12-1-1+a =0,解得a =12.[答案] 127.(2019·山西省八校第一次联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝ ⎛⎭⎪⎫-112=________.[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f (x ),∴f ⎝ ⎛⎭⎪⎫-112=f ⎝ ⎛⎭⎪⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝ ⎛⎭⎪⎫52=52,∴f ⎝ ⎛⎭⎪⎫-112=52. [答案] 528.(2019·陕西省高三一检)若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.[解析] 由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即[-2,-12].[答案] [-2,-12] 三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0, x =0,x 2+mx , x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. [解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.(2019·日照检测)设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ).当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式. [解] (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ). 又f (x +2)=f (x ),∴f (-x )=f (x ),∴f (x )是偶函数. (2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ; 进而当x ∈[1,2]时,x -2∈[-1,0], f (x )=f (x -2)=-(x -2)=-x +2. 故所求为f (x )=⎩⎪⎨⎪⎧-x ,x ∈[-1,0),x ,x ∈[0,1),-x +2,x ∈[1,2].能力提升练11.(2019·山东淄博月考)已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,53 B.⎝ ⎛⎭⎪⎫-∞,53 C .(1,3)D.⎝⎛⎭⎪⎫53,+∞ [解析] ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ),∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),即f (m -2)>f (-2m +3).∵f (x )是减函数,∴⎩⎪⎨⎪⎧-1<m -2<1,-1<2m -3<1,m -2<-2m +3,∴1<m <53.故选A.[答案] A12.(2019·四川达州模拟)定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[-1,0]上单调递减,设a =f (-2.8),b =f (-1.6),c =f (0.5),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .b >c >aD .a >c >b[解析] ∵偶函数f (x )满足f (x +2)=f (x ),∴函数的周期为2. ∴a =f (-2.8)=f (-0.8),b =f (-1.6)=f (0.4)=f (-0.4),c =f (0.5)=f (-0.5).∵-0.8<-0.5<-0.4,且函数f (x )在[-1,0]上单调递减,∴a >c >b ,故选D.[答案] D13.(2019·湖南永州质检)已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )=________.[解析] 设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数.又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-F (a )=-1,从而f (-a )=0.[答案] 014.函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数; (3)解不等式f (t -1)+f (t )<0.[解](1)依题意得⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,即⎩⎪⎨⎪⎧b1+02=0,a 2+b1+14=25⇒⎩⎪⎨⎪⎧a =1,b =0.∴f (x )=x 1+x 2. (2)证明:任取-1<x 1<x 2<1, f (x 1)-f (x 2)=x 11+x 21-x 21+x 22 =(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵-1<x 1<x 2<1,∴x 1-x 2<0,1+x 21>0,1+x 22>0.又-1<x 1x 2<1,∴1-x 1x 2>0, ∴f (x 1)-f (x 2)<0,∴f (x )在(-1,1)上是增函数. (3)f (t -1)<-f (t )=f (-t ). ∵f (x )在(-1,1)上是增函数, ∴-1<t -1<-t <1,解得0<t <12.拓展延伸练15.(2018·甘肃兰州期中)对任意实数x ,定义[x ]为不大于x 的最大整数(例如[3.4]=3,[-3.4]=-4等).设函数f (x )=x -[x ],给出下列四个结论:①f (x )≥0;②f (x )<1;③f (x )是周期函数;④f (x )是偶函数.其中正确结论的个数是( )A .1B .2C .3D .4[解析] 由题意有[x ]≤x <[x ]+1,∴f (x )=x -[x ]≥0,且f (x )<1,∴①②正确;∵f (x +1)=x +1-[x +1]=x +1-([x ]+1)=x -[x ]=f (x ),∴f (x )为周期函数,③正确;∵f (-0.1)=-0.1-[-0.1]=-0.1-(-1)=0.9,f (0.1)=0.1-[0.1]=0.1-0=0.1≠f (-0.1),∴f (x )不是偶函数,④错误.故选C.[答案] C16.(2019·北京朝阳期末联考)设函数f (x )的定义域为D ,如果存在正实数m ,使得对任意x ∈D ,都有f (x +m )>f (x ),则称f (x )为D 上的“m 型增函数”.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-a (a ∈R ).若f (x )为R 上的“20型增函数”,则实数a 的取值范围是________.[解析] 若a ≤0,当x >0时,f (x )=|x -a |-a =x -2a ,又∵f (x )是定义在R 上的奇函数,∴f (x )=⎩⎪⎨⎪⎧x -2a ,x >0,0,x =0,x +2a ,x <0,符合题意.若a >0,当x >0时,f (x )=|x -a |-a =⎩⎪⎨⎪⎧-x ,0<x <a ,x -2a ,x ≥a .∵f (x )是定义在R 上的奇函数,∴函数f (x )大致的图象如图所示,根据题意可知f (x +20)>f (x )对于任意x ∈R 恒成立,等价于将f (x )的图象向左平移20个单位长度后得到的新图象对应的函数f (x +20)恒在f (x )图象上方.根据图象可知4a <20,即0<a <5.综上,实数a 的取值范围是(-∞,5).[答案] (-∞,5)函数的概念与基本初等函数五基础巩固练一、选择题1.幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )[解析] ∵幂函数y =f (x )的图象过点(4,2),∴f (x )=x 12.故选C. [答案] C[答案] A3.如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( )A .a ≥8B .a ≤8C .a ≥4D .a ≥-4[解析] 函数图象的对称轴为x =a 2,由题意得a2≥4,解得a ≥8.故选A. [答案] A4.(2019·江西模拟)若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图象如图所示,则a 、b 、c 、d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c[解析] 由幂函数的图象可知在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B.[答案] B5.(2019·重庆五中模拟)一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )[解析] 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;由B 选项中的直线可知,a >0,b >0,故-b2a <0,与二次函数y =ax 2+bx +c 图象的对称轴不符,故可排除B.故选C.[答案] C 二、填空题6.二次函数的图象过点(0,1),对称轴为x =2,最小值为-1,则它的解析式为________.[解析] 依题意可设f (x )=a (x -2)2-1,又其图象过点(0,1),∴4a -1=1,∴a =12.∴f (x )=12(x -2)2-1, 即f (x )=12x 2-2x +1. [答案] f (x )=12x 2-2x +17.已知幂函数y =x m 2-2m -3(m ∈N *)的图象与x 轴、y 轴,无交点且关于原点对称,则m =________.[解析] 由题意知m 2-2m -3为奇数且m 2-2m -3<0. 由m 2-2m -3<0得-1<m <3,又m ∈N *,故m =1,2. 当m =1时,m 2-2m -3=1-2-3=-4(舍去). 当m =2时,m 2-2m -3=22-2×2-3=-3,所以m =2. [答案] 28.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.[解析] 解法一:设f (x )=x 2+mx +4,当x ∈(1,2)时,f (x )<0恒成立⇔⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0⇒⎩⎪⎨⎪⎧m ≤-5,m ≤-4⇒m ≤-5. 解法二:∵不等式x 2+mx +4<0对x ∈(1,2)恒成立,∴mx <-x 2-4对x ∈(1,2)恒成立,即m <-⎝⎛⎭⎪⎫x +4x 对x ∈(1,2)恒成立,令y=x +4x ,则函数y =x +4x 在(1,2)上是减函数,∴4<y <5,∴-5<-⎝ ⎛⎭⎪⎫x +4x <-4, ∴m ≤-5.[答案] (-∞,-5] 三、解答题9.已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)若y =f (x )在区间[-5,5]上是单调函数,求实数a 的取值范围.[解] (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5].因为f (x )的对称轴为x =1,所以当x =1时,f (x )取最小值1; 当x =-5时,f (x )取最大值37.(2)f (x )=x 2+2ax +2=(x +a )2+2-a 2的对称轴为x =-a , 因为f (x )在区间[-5,5]上是单调函数, 所以-a ≤-5或-a ≥5,即a ≥5或a ≤-5.10.已知函数f (x )=-x 2+2ax +1-a 在[0,1]上有最大值2,求a 的值. [解] 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,对称轴方程为x =a .当a <0时,f (x )在[0,1]上单调递减,所以f (x )max =f (0)=1-a , 所以1-a =2,所以a =-1; 当0≤a ≤1时,f (x )max =f (a )=a 2-a +1 所以a 2-a +1=2, 解得a =1±52(舍去);当a >1时,f (x )在[0,1]上单调递增,所以f (x )max =f (1)=a ,所以a =2. 综上可知,a =-1或a =2.能力提升练11.(2018·河南洛阳二模)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,则函数f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数[解析] ∵函数f (x )=(a -1)x b 为幂函数,∴a -1=1,得a =2,又∵⎝⎛⎭⎪⎫2,12在函数f (x )的图象上,∴2b=12,得b =-1.∴f (x )=1x ,∴f (x )为奇函数,在定义域内不具有单调性.故选A. [答案] A12.(2018·湖北荆州模拟)二次函数f (x )满足f (x +2)=f (-x +2),又f (0)=3,f (2)=1,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是( )A .(0,+∞)B .[2,+∞)C .(0,2]D .[2,4][解析] ∵二次函数f (x )满足f (2+x )=f (2-x ),∴其图象的对称轴是x =2,又f (0)=3,∴f (4)=3,又f (2)<f (0),∴f (x )的图象开口向上,∵f (0)=3,f (2)=1,f (4)=3,f (x )在[0,m ]上的最大值为3,最小值为1,∴由二次函数的性质知2≤m ≤4.故选D.[答案] D13.(2019·郑州一测)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥m恒成立,则m 的最大值为__________.[解析] 依题意得2x -1>0,y -1>0,4x 2y -1+y 22x -1=[(2x -1)+1]2y -1+[(y -1)+1]22x -1≥4(2x -1)y -1+4(y -1)2x -1≥4×22x -1y -1×y -12x -1=8,即4x 2y -1+y 22x -1≥8,当且仅当⎩⎪⎨⎪⎧2x -1=1,y -1=1,2x -1y -1=y -12x -1,即⎩⎪⎨⎪⎧x =1,y =2时取等号,因此4x 2y -1+y 22x -1的最小值是8,m ≤8,m 的最大值是8.[答案] 814.(2019·河南郑州期中)已知函数g (x )=ax 2-2ax +b +1(a ≠0,b <1)在区间[2,3]上有最大值4,最小值1.(1)求a ,b 的值;(2)设f (x )=g (x )x ,不等式f (2x )-k ·2x ≥0对x ∈[-1,1]恒成立,求实数k 的取值范围.[解] (1)g (x )=ax 2-2ax +b +1=a (x -1)2-a +b +1, 若a >0,则g (x )在[2,3]上单调递增,∴g (2)=b +1=1,g (3)=3a +b +1=4,解得a =1,b =0; 若a <0,则g (x )在[2,3]上单调递减, ∴g (2)=b +1=4,解得b =3, ∵b <1,∴b =3舍去. 综上,a =1,b =0.(2)∵f (x )=g (x )x ,∴f (x )=x 2-2x +1x =x +1x -2,∵不等式f (2x)-k ·2x≥0对x ∈[-1,1]恒成立,∴2x+12x -2-k ·2x ≥0对x∈[-1,1]恒成立,即k ≤⎝ ⎛⎭⎪⎫12x 2-2⎝ ⎛⎭⎪⎫12x +1=⎝⎛⎭⎪⎫12x -12对x ∈[-1,1]恒成立,∵x ∈[-1,1],∴12x ∈⎣⎢⎡⎦⎥⎤12,2,∴⎝ ⎛⎭⎪⎫12x -12∈[0,1],∴k ≤0. 拓展延伸练15.(2019·山东德州期末)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2)∪[23,+∞)D .(0,2]∪[3,+∞)[解析] 根据题意,知y =(mx -1)2在区间⎝⎛⎭⎪⎫0,1m 上为增函数,⎝⎛⎭⎪⎫1m ,+∞上为减函数,函数y =x +m 为增函数.分两种情况讨论:①当0<m ≤1时,有1m ≥1,在区间[0,1]上,y =(mx -1)2为减函数,且其值域为[(m -1)2,1],函数y =x +m 为增函数,其值域为[m,1+m ],此时两个函数的图象有1个交点,符合题意;②当m >1时,有1m <1,y =(mx -1)2在区间⎝⎛⎭⎪⎫0,1m 上为减函数,⎝ ⎛⎭⎪⎫1m ,1上为增函数.函数y =x +m 为增函数,在x ∈[0,1]上,其值域为[m,1+m ],若两个函数的图象有1个交点,则有(m -1)2≥1+m ,解得m ≤0或m ≥3.又m 为正数,故m ≥3.综上所述,m 的取值范围是(0,1]∪[3,+∞),故选B. [答案] B16.(2019·安徽滁州期末)已知函数f (x )=x 2+(2a -1)x +1,若对区间(2,+∞)内的任意两个不等实数x 1,x 2都有f (x 1-1)-f (x 2-1)x 1-x 2>0,则实数a 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,-12 B.⎣⎢⎡⎭⎪⎫-52,+∞ C.⎣⎢⎡⎭⎪⎫-12,+∞ D.⎝ ⎛⎦⎥⎤-∞,-52 [解析] ∵f (x 1-1)-f (x 2-1)x 1-x 2>0,∴f (x 1-1)-f (x 2-1)(x 1-1)-(x 2-1)>0, ∵x 1,x 2∈(2,+∞),∴x 1-1,x 2-1∈(1,+∞). ∴f (x )在区间(1,+∞)上是增函数, ∴-2a -12≤1,解得a ≥-12.故选C. [答案] C函数的概念与基本初等函数六基础巩固练一、选择题[答案] C2.(2019·山西太原一模)当a ≠0时,函数y =ax +b 和y =b x 的图象不可能是()[解析] A ,B ,D 三个选项中,指数函数单调递减,故0<b <1,此时直线y =ax +b 的纵截距0<b <1,所以A ,D 正确,B 错误;C 选项中,指数函数单调递增,此时直线的纵截距大于1,故C 正确.故图象不可能是B.[答案] B3.函数y =⎝ ⎛⎭⎪⎫12-x 2+x +2 的单调增区间是( )A.⎣⎢⎡⎦⎥⎤-1,12B .(-∞,-1]C .[2,+∞)D.⎣⎢⎡⎦⎥⎤12,2 [解析] 由-x 2+x +2≥0,解得-1≤x ≤2,故函数y=⎝ ⎛⎭⎪⎫12-x 2+x +2 的定义域为[-1,2].根据复合函数“同增异减”原则,得所求增区间为⎣⎢⎡⎦⎥⎤12,2.故选D.[答案] D[答案] D5.(2019·天津部分区期末)已知函数f (x )=2|x |,且f (log 2m )>f (2),则实数m 的取值范围为( )A .(4,+∞) B.⎝ ⎛⎭⎪⎫0,14 C.⎝⎛⎭⎪⎫-∞,14∪(4,+∞)D.⎝ ⎛⎭⎪⎫0,14∪(4,+∞) [解析] 由题意知函数f (x )=2|x |为偶函数,且在(-∞,0)上单调递减,在(0,+∞)上单调递增.∵f (log 2m )>f (2),∴|log 2m |>2,即log 2m >2或log 2m <-2,解得m >4或0<m <14, ∴实数m 的取值范围为⎝⎛⎭⎪⎫0,14∪(4,+∞).故选D.[答案] D 二、填空题6.不等式2-x 2+2x >⎝ ⎛⎭⎪⎫12x +4的解集为________.[解析] 2-x 2+2x >2-x -4,∴-x 2+2x >-x -4,即x 2-3x -4<0,∴-1<x <4.[答案] {x |-1<x <4}7.(2019·陕西西安二模)若函数f (x )=a x -2-2a (a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫x 0,13,则函数f (x )在[0,3]上的最小值等于________. [解析] 令x -2=0得x =2,且f (2)=1-2a ,所以函数f (x )的图象恒过定点(2,1-2a ),因此x 0=2,a =13,于是f (x )=⎝ ⎛⎭⎪⎫13x -2-23,f (x )在R 上单调递减,故函数f (x )在[0,3]上的最小值为f (3)=-13.[答案] -138.若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.[解析] 若a >1,有a 2=4,a -1=m .此时a =2,m =12,此时g (x )=-x 为减函数,不合题意. 若0<a <1,有a -1=4,a 2=m , 故a =14,m =116,检验知符合题意. [答案] 14 三、解答题9.求下列函数的定义域和值域.(1)y =⎝ ⎛⎭⎪⎫23-|x +1|;(2)y =2x2x +1;。
2024年高考数学总复习第二章函数的概念与基本初等函数真题分类8对数与对数函数
第15页
返回层目录 返回目录
真题分类8 对数与对数函数
高考·数学
01 掌握对数函数图象的特征,底数大小决定了图象的高低,指数函数 y=ax(a>0 且 a≠1)
图象中“底大图高”,而对数函数 y=logax 图象中“底大图低”.具体见下图(图 1 中 a>b>1>c>d>0,图 2 中 b>a>1>d>c>0).
C5.对数函数的图象及性质
高考·数学
命题者说:(1)理解对数函数的图象的特点及性质,能应用其性质比较大小,解不等式,并能 处理简单的对数型复合函数问题.
第1题 第2题 第11题
第3题
第4题
第5题
第6题
第7题
第8题
第9题
第10题
第12页
返回层目录 返回目录
真题分类8 对数与对数函数
高考·数学
Ⅰ.对数函数图象过定点问题 Ⅱ.对数函数图象的辨析
第10页
返回层目录 返回目录
真题分类8 对数与对数函数
高考·数学
6.(2023·北京,11,5
分)已知函数
f(x)=4x+log2x,则
1 f(2
)=____1____.
答案:1
函数
f(x)=4x+log2x,所以
1 f(2
1 )=42
+log212
=2-1=1.
第11页
返回层目录 返回目录
真题分类8 对数与对数函数
第8页
返回层目录 返回目录
真题分类8 对数与对数函数
高考·数学
5.(2017·北京,8,5 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而 可观测宇宙中普通物质的原子总数 N 约为 1080.则下列各数中与MN 最接近的是(参考数据: lg3≈0.48)( )
2022高考数学一轮总复习第二章函数概念与基本初等函数第2讲函数的单调性与最值学案文(含答案)
高考数学一轮总复习学案:第2讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(1)对于任意x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值1.函数单调性的常用结论(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(2)若k>0,则kf(x)与f(x)的单调性相同;若k<0,则kf(x)与f(x)的单调性相反.(3)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. (4)函数y =f (x )(f (x )≥0)在公共定义域内与y =f (x )的单调性相同.(5)复合函数单调性的判断方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”.2.单调性定义的等价形式 设x 1,x 2∈[a ,b ],x 1≠x 2.(1)若有(x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0,则f (x )在闭区间[a ,b ]上是增函数;(2)若有(x 1-x 2)[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0,则f (x )在闭区间[a ,b ]上是减函数.3.函数最值的结论(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取得.(2)开区间上的“单峰”函数一定存在最大值或最小值.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的单调递增区间是[1,+∞).( )(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到. ( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区| (1)求单调区间忘记定义域导致出错; (2)对于分段函数,一般不能整体单调,只能分段单调; (3)利用单调性解不等式忘记在单调区间内求解;(4)混淆“单调区间”与“在区间上单调”两个概念. 1.函数y =log 12(x 2-4)的单调递减区间为________.答案:(2,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝ ⎛⎭⎪⎫12x -1,x <2是定义在R 上的减函数,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧a -2<0,2(a -2)≤⎝ ⎛⎭⎪⎫122-1, 解得⎩⎪⎨⎪⎧a <2,a ≤138,即a ≤138.答案:⎝⎛⎦⎥⎤-∞,138 3.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,即⎩⎪⎨⎪⎧-3≤a ≤1,-1≤a ≤1,a <1. 所以-1≤a <1. 答案:[-1,1)4.(1)若函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是________;(2)若函数f (x )=x 2+2(a -1)x +2的单调递减区间为(-∞,4],则a 的值为________. 答案:(1)a ≤-3 (2)-3确定函数的单调性(区间)(多维探究) 角度一 判断或证明函数的单调性(一题多解)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解】 方法一:(定义法)设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1), 由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 方法二:(导数法)f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.利用定义法证明或判断函数单调性的步骤[提醒] 判断函数的单调性还有图象法、导数法、性质法等. 角度二 求具体函数的单调区间求函数f (x )=-x 2+2|x |+1的单调区间.【解】 f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和(0,1],单调递减区间为(-1,0]和(1,+∞).【迁移探究】 (变条件)若本例函数变为f (x )=|-x 2+2x +1|,如何求解? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1]和(1+2,+∞);单调递减区间为(-∞,1- 2 ]和(1,1+ 2 ].确定函数的单调区间的方法[注意] (1)函数在某个区间上是单调函数,但在整个定义域上不一定是单调函数,如函数y =1x在(-∞,0)和(0,+∞)上都是减函数,但在定义域上不具有单调性.(2)“函数的单调区间是M ”与“函数在区间N 上单调”是两个不同的概念,显然N ⊆M .1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x解析:选D .A 项中,y =11-x在(-1,1)上为增函数;B 项中,y =cos x 在(-1,1)上不单调;C 项中,y =ln(x +1)在(-1,1)上为增函数;D 项中,y =⎝ ⎛⎭⎪⎫12x在(-1,1)上为减函数.故选D .2.函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:选D .由x 2-2x -8>0得x <-2或x >4.令g (x )=x 2-2x -8,则g (x )在(-∞,-2)上单调递减,在(4,+∞)上单调递增,而y =ln x 为单调递增函数,根据复合函数的性质,函数f (x )=ln(x 2-2x -8)的单调递增区间为(4,+∞).3.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.解析:由f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),得g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,作出图象如下:故函数g (x )的单调递减区间为[0,1). 答案:[0,1)4.判断并证明函数f (x )=ax 2+1x(其中1<a <3)在x ∈[1,2]上的单调性.解:函数f (x )=ax 2+1x(其中1<a <3)在x ∈[1,2]上单调递增,证明如下:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-⎝ ⎛⎭⎪⎫ax 21+1x 1=(x 2-x 1)⎣⎢⎡⎦⎥⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又1<a <3, 所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.函数单调性的应用(多维探究) 角度一 比较大小已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称.所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52. 当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立, 故f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),所以b >a >c . 【答案】 D比较函数值的大小时,若自变量的值不在同一个单调区间内,则要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.角度二 解函数不等式(1)已知函数f (x )=⎩⎪⎨⎪⎧e -x,x ≤0,-x 2-2x +1,x >0,若f (a -1)≥f (-a ),则实数a 的取值范围是( )A .⎝⎛⎦⎥⎤-∞,12B .⎣⎢⎡⎭⎪⎫12,+∞C .⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎦⎥⎤12,1 (2)已知函数f (x )=-x |x |,x ∈(-1,1),则不等式f (1-m )<f (m 2-1)的解集为________.【解析】 (1)函数f (x )=e -x=⎝ ⎛⎭⎪⎫1e x在(-∞,0]上为减函数,函数f (x )=-x 2-2x +1在(0,+∞)上为减函数,且e -0=-02-2×0+1=1,所以函数f (x )在(-∞,+∞)上为减函数.由f (a -1)≥f (-a )得a -1≤-a ,解得a ≤12.故选A .(2)由已知得f (x )=⎩⎪⎨⎪⎧x 2,-1<x ≤0,-x 2,0<x <1,则f (x )在(-1,1)上单调递减,所以⎩⎨⎧-1<1-m <1,-1<m 2-1<1,m 2-1<1-m ,解得0<m <1, 所以所求解集为(0,1). 【答案】 (1)A (2)(0,1)解函数不等式的理论依据是函数单调性的定义,具体步骤是:(1)将函数不等式转化成f (x 1)>f (x 2)的形式;(2)考查函数f (x )的单调性;(3)根据函数f (x )的单调性去掉法则“f ”,转化为形如“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解.[提醒] 要注意函数的定义域,如本例(2)易忽视“-1<1-m <1,-1<m 2-1<1”而致误.角度三 利用函数的单调性求最值(1)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.(2)函数y =x 2+4x 2+5的最大值为________.【解析】 (1)由于y =⎝ ⎛⎭⎪⎫13x在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(2)令 x 2+4=t ,则t ≥2,所以x 2=t 2-4,所以y =t t 2+1=1t +1t,设h (t )=t +1t在[2,+∞)上为增函数,所以h (t )min =h (2)=52,所以y ≤152=25(x =0时取等号).即y 的最大值为25.【答案】 (1)3 (2)25运用函数单调性求最值是求函数最值的重要方法,特别是当函数图象不易作出时,单调性法几乎成为首选方法.角度四 利用函数的单调性求参数的范围(或值)(1)已知f (x )=⎩⎪⎨⎪⎧(3-a )x ,x ∈(-∞,-1],a x ,x ∈(1,+∞)是R 上的增函数,则实数a的取值范围是( )A .(0,3)B .(1,3)C .(1,+∞)D .⎣⎢⎡⎭⎪⎫32,3 (2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.【解析】 (1)由题意得⎩⎪⎨⎪⎧3-a >0,a >1,3-a ≤a ,解得32≤a <3,故选D .(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (1)D (2)(-∞,1]∪[4,+∞)(1)根据函数的单调性,将题设条件转化为含参数的不等式(组),即可求出参数的值或范围;(2)若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.1.函数y =f (x )在[0,2]上单调递增,且函数f (x )的图象关于直线x =2对称,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72<f (1) 解析:选B .因为f (x )的图象关于直线x =2对称,所以f (x )=f (4-x ),所以f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫72=f ⎝ ⎛⎭⎪⎫12.又0<12<1<32<2,f (x )在[0,2]上单调递增,所以f ⎝ ⎛⎭⎪⎫12<f (1)<f ⎝ ⎛⎭⎪⎫32,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 2.已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x 的取值范围是( ) A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C .由f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.所以-1<x <0或0<x <1.故选C .3.设函数f (x )=2x x -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m2M =( )A .23 B .38 C .32D .83解析:选D .由题意得f (x )=2x x -2=2+4x -2,所以函数f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =426=83.故选D .4.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是________.解析:当a =0时,f (x )=-12x +5, 在(-∞,3)上是减函数;当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3,得0<a ≤34.综上可知,a 的取值范围是⎣⎢⎡⎦⎥⎤0,34. 答案:⎣⎢⎡⎦⎥⎤0,34思想方法系列2 函数最值的求法方法一 单调性法已知a >0,设函数f (x )=2 022x +1+2 0212 022x+1+2 022x 3(x ∈[-a ,a ])的最大值为M ,最小值为N ,则M +N 的值为( )A .2 022B .2 023C .4 043D .4 044【解析】 f (x )=2 022x +1+2 0212 022x +1+2 022x 3=2 022(2 022x+1)-12 022x+1+2 022x 3=2 022-12 022x+1+2 022x 3. 因为y =-12 022x+1,y =2 022x 3均为增函数, 所以f (x )在[-a ,a ]上单调递增, 故最大值为f (a ),最小值为f (-a ), 所以M +N =f (a )+f (-a )=2 022-12 022a +1+2 022a 3+2 022-12 022-a+1+2 022(-a )3=4 044-1=4 043.【答案】 C利用函数的单调性求解函数的值域是最基本的方法,解题的关键是准确确定函数的单调性.方法二 不等式法主要是指运用均值不等式及其变形公式来解决函数最值问题的一种方法.常用的基本不等式有以下几种:a 2+b 2≥2ab (a ,b 为实数); a +b2≥ab (a ≥0,b ≥0);ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b 为实数).设x ,y ,z 为正实数,x -2y +3z =0,则y 2xz的最小值为________.【解析】 因为x -2y +3z =0,所以y =x +3z2,所以y 2xz =x 2+9z 2+6xz4xz.又x ,z 为正实数,所以由基本不等式,得y 2xz ≥6xz +6xz 4xz =3.当且仅当x =3z 时取“=”.故y 2xz的最小值为3.【答案】 3先对解析式进行变形,使之满足“一正、二定、三相等”的条件,再利用基本不等式求得最值.常用的不等式有a 2+b 2≥2ab ,a +b ≥2ab (a ,b 均为正实数).解题时要注意验证等号成立的条件,如果在求解时发现等号不成立,可尝试利用函数性质解题.方法三 配方法配方法是求二次函数最值的基本方法,如函数F (x )=af 2(x )+bf (x )+c 的最值问题,可以考虑用配方法.已知函数y =(e x -a )2+(e -x -a )2(a ∈R ,a ≠0),求函数y 的最小值.【解】 y =(e x -a )2+(e -x -a )2=(e x +e -x )2-2a (e x +e -x )+2a 2-2.令t =e x +e -x (t ≥2),设f (t )=t 2-2at +2a 2-2.因为t ≥2,所以f (t )=t 2-2at +2a 2-2=(t -a )2+a 2-2,定义域为[2,+∞). 因为函数y =f (t )图象的对称轴为直线t =a ,所以当a ≤2且a ≠0时,y min =f (2)=2(a -1)2;当a >2时,y min =f (a )=a 2-2.利用二次函数的性质求最值,要特别注意自变量的取值范围,同时还要注意对称轴与区间的相对位置关系.如本例化为含参数的二次函数后,求解最值时要细心区分对称轴与区间的位置关系,然后再根据不同情况分类解决.方法四 换元法换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.(1)函数f (x )=x +21-x 的最大值为________.(2)函数y =x -4-x 2的值域为________.【解析】 (1)设1-x =t (t ≥0),所以x =1-t 2.所以y =f (x )=x +21-x =1-t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,f (x )max =2.(2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ-4-4cos 2θ=2cos θ-2sin θ=22cos ⎝ ⎛⎭⎪⎫θ+π4,因为θ+π4∈⎣⎢⎡⎦⎥⎤π4,5π4,所以cos ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤-1,22,所以y ∈[]-22,2. 【答案】 (1)2 (2)[]-22,2换元法方式很多,常见的有代数换元和三角换元.如可用三角代换解决形如a 2+b 2=1及部分根式函数形式的最值问题.方法五 数形结合法数形结合法,是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的一种常用的方法.对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值是________.【解析】 由|x +1|≥|x -2|,得(x +1)2≥(x -2)2.所以x ≥12.所以f (x )=⎩⎪⎨⎪⎧|x +1|,x ≥12,|x -2|,x <12. 其图象如图所示.由图象易知,当x =12时,函数有最小值,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12+1=32.【答案】 32本例作出y =|x +1|与y =|x -2|的图象,作出f (x )的图象是解题关键.。
高考数学一轮复习练习第二章 函数概念与基本初等函数 第2讲 Word版含答案
基础巩固题组(建议用时:分钟)一、填空题.(·苏北四市调研)下列四个函数:①=;②=;③=-;④=.其中在区间(,)上是减函数的是(填序号).解析=在(,+∞)上为增函数;=在(,+∞)上是增函数;=在(,+∞)上是减函数,=-在(,+∞)上是增函数;=在(,+∞)上是减函数,故=在(,)上是减函数.答案④.已知函数()=+(-)+在区间(-∞,)上是减函数,则的取值范围是.解析当=时,()=-+,在(-∞,)上是减函数;当≠时,由得<≤,综上的取值范围是.答案.函数()=(-)的单调递增区间为.解析根据复合函数的单调性判断.因为=在定义域上是减函数,所以求原函数的单调递增区间,即求函数=-的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-).答案(-∞,-)=-++的单调增区间为.解析由题意知当≥时,=-++=-(-)+;当<时,=--+=-(+)+,函数的图象如图.由图象可知,函数=-++在(-∞,-],[,]上是增函数.答案(-∞,-],[,].已知函数()为(,+∞)上的增函数,若(-)>(+),则实数的取值范围为.解析由已知可得解得-<<-或>.所以实数的取值范围为(-,-)∪(,+∞).答案(-,-)∪(,+∞).(·南京、盐城模拟)函数()=-(+)在区间[-,]上的最大值为.解析由于=在上递减,=(+)在[-,]上递增,所以()在[-,]上单调递减,故()在[-,]上的最大值为(-)=.答案.已知函数()=+,若∈(,),∈(,+∞),则(),()=(填“>”、“<”、“≥”、“≤”).解析因为函数()=+在(,+∞)上为增函数,且()=,所以∈(,)时,()<()=,当∈(,+∞)时,()>()=,即()<,()>.答案< >.设∈,若函数()为单调递增函数,且对任意实数,都有(()-)=+(是自然对数的底数),则( )的值等于.解析由()的单调性知存在唯一的实数使()=+,即()=+,令=得()=+=+,所以=,从而()=+,则( )=+=.答案二、解答题.已知函数()=-(>,>).()求证:()在(,+∞)上是增函数;()若()在上的值域是,求的值.()证明设>>,则->,>,∵()-()=-=-=>,∴()>(),∴()在(,+∞)上是增函数.()解∵()在上的值域是,又由()得()在上是单调增函数,∴=,()=,易知=..讨论函数()=+(>)的单调性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.函数f (x )=x
1-x
在( )
A .(-∞,1)∪(1,+∞)上是增函数
B .(-∞,1)∪(1,+∞)上是减函数
C .(-∞,1)和(1,+∞)上是增函数
D .(-∞,1)和(1,+∞)上是减函数
解析:选C.函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x
-1,根据函数y =-1
x 的单
调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.
2.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭
⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1) C .(-1,0)∪(0,1) D .(-∞,-1)∪(1,+∞)
解析:选C.因为f (x )在R 上为减函数,且f ⎝⎛⎭⎫1|x |<f (1),所以1
|x |>1,即0<|x |<1, 所以0<x <1或-1<x <0.
3.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( ) A .(-∞,8] B .[40,+∞) C .(-∞,8]∪[40,+∞) D .[8,40]
解析:选C.法一:由题意知函数f (x )=8x 2-2kx -7的图象的对称轴为x =k
8
,因为函数
f (x )=8x 2-2kx -7在[1,5]上为单调函数,所以k 8≤1或k
8
≥5,解得k ≤8或k ≥40,所以实数
k 的取值范围是(-∞,8]∪[40,+∞).故选C.
法二:取k =0,则函数f (x )=8x 2-7在[1,5]上为单调递增函数,所以排除B 、D ;取k =40,则函数f (x )=8x 2-80x -7在[1,5]上为单调递减函数,所以排除A.故选C.
4.(2018·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )
A .-1
B .1
C .6
D .12 解析:选C.由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2,
因为f (x )=x -2在[-2,1]上是增函数, 所以f (x )≤f (1)=-1,
因为f (x )=x 3-2在(1,2]上是增函数, 所以f (x )≤f (2)=6, 所以f (x )max =f (2)=6.
5.已知函数f (x )=log 2x +1
1-x
,若x 1∈(1,2),x 2∈(2,+∞),则( )
A .f (x 1)<0,f (x 2)<0
B .f (x 1)<0,f (x 2)>0
C .f (x 1)>0,f (x 2)<0
D .f (x 1)>0,f (x 2)>0
解析:选B.因为函数f (x )=log 2x +1
1-x
在(1,+∞)上为增函数,且f (2)=0,所以当x 1
∈(1,2)时,f (x 1)<f (2)=0;
当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.
6.(2018·湖北八校联考(一))设函数f (x )=2x
x -2
在区间[3,4]上的最大值和最小值分别为
M ,m ,则m 2
M =( )
A .2
B .3
C .83
D .103
解析:选C.易知f (x )=
2x x -2=2+4x -2
,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2
=4,所以m 2M =166=8
3.
二、填空题
7.函数f (x )=|x -1|+x 2的值域为________.
解析:因为f (x )=|x -1|+x 2
=⎩
⎪⎨⎪⎧x 2+x -1,x ≥1x 2-x +1,x <1,
所以f (x )=⎩
⎨⎧⎝⎛⎭⎫x +122
-54
,x ≥1⎝⎛⎭⎫x -122
+34
,x <1, 作出函数图象如图,
由图象知f (x )=|x -1|+x 2的值域为⎣⎡⎭⎫34,+∞. 答案:⎣⎡⎭
⎫3
4,+∞ 8.设函数f (x )=⎩⎪⎨⎪
⎧1,x >0,0,x =0,-1,x <0,
g (x )=x 2f (x -1),则函数g (x )的递减区间是________.
解析:由题意知g (x )=⎩⎪⎨⎪
⎧x 2,x >1,0,x =1,-x 2,x <1.
函数图象如图所示,其递减区间是[0,1).
答案:[0,1)
9.已知函数f (x )=x |2x -a |(a >0)在区间[2,4]上单调递减,则实数a 的值是________.
解析:f (x )=x |2x -a |=⎩
⎨⎧x (2x -a ),x >a
2
,
-x (2x -a ),x ≤
a
2
(a >0),作出函数图象(图略)可得该函数的
递减区间是⎣⎡⎦⎤a 4,a
2,所以⎩
⎨⎧a
4≤2,a
2
≥4,解得a =8.
答案:8
10.已知函数f (x )=⎩
⎪⎨⎪⎧3(a -3)x +2,x ≤1,
-4a -ln x ,x >1,对于任意的x 1≠x 2,都有(x 1-x 2)[f (x 2)-
f (x 1)]>0成立,则实数a 的取值范围是________.
解析:由(x 1-x 2)[f (x 2)-f (x 1)]>0,得(x 1-x 2)·[f (x 1)-f (x 2)]<0,所以函数f (x )为R 上的单调
递减函数,则⎩
⎪⎨⎪⎧a -3<0,
3(a -3)+2≥-4a ,解得1≤a <3.
答案:[1,3) 三、解答题
11.已知函数f (x )=1a -1
x
(a >0,x >0).
(1)求证:f (x )在(0,+∞)上是增函数;
(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦
⎤1
2,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,
则f (x 1)-f (x 2)=1a -1x 1-1a +1
x 2
=x 1-x 2x 1x 2
,因为x 1>x 2>0, 所以x 1-x 2>0,x 1x 2>0,
所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以f (x )在(0,+∞)上是增函数.
(2)由(1)可知,f (x )在⎣⎡⎦⎤
12,2上为增函数,
所以f ⎝⎛⎭⎫12=1a -2=12
, f (2)=1a -1
2=2,
解得a =2
5
.
12.已知函数f (x )=2x -a
x
的定义域为(0,1](a 为实数).
(1)当a =1时,求函数y =f (x )的值域;
(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.
解:(1)当a =1时,f (x )=2x -1
x
,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝⎛⎭⎫1x 1-1x 2 =(x 1-x 2)⎝⎛⎭⎫2+1x 1x 2.
因为1≥x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0.
所以f (x 1)>f (x 2),所以f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].
(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ;当
a <0时,f (x )=2x +-a
x ,
当 -a
2
≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1
时取得最小值2-a ;
当 -a 2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎤0, -a 2上单调递减,在⎣
⎡⎦⎤-a
2,1上单调递增,无最大值,当x =-a
2
时取得最小值2-2a .。