高中数学必修四教案-简单的三角恒等变换三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2简单的三角恒等变换(三) 教学目标
(一) 知识与技能目标
熟练掌握三角公式及其变形公式.
(二) 过程与能力目标
抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.
(三) 情感与态度目标
培养学生观察、分析、解决问题的能力.
教学重点
和、差、倍角公式的灵活应用.
教学难点
如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明. 教学过程
例1:教材P141面例4
例1. 如图,已知OPQ 是半径为1,圆心角为3π
的扇形,C 是扇形弧上的动点,ABCD 是扇
形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.
例2:把一段半径为R
(分别设边与角为自变量)
解:(1)如图,设矩形长为l ,则面积224l R l S +=, 所以,4)()4(22222222l R l l R l S +-=-=当且仅当,22
422
2R R l == 即R l 2=时,2S 取得最大值44R ,此时S 取得最大值22R ,矩形的宽为
R R
R 2222
=即长、宽相等,矩形为圆内接正方形. (2)设角为自变量,设对角线与一条边的夹角为θ,矩形长与宽分别为 θsin 2R 、θcos 2R ,所以面积θθθ2sin 2sin 2cos 22R R R S =⨯=.
而12sin ≤θ,所以2
2R S ≤,当且仅当12sin =θ时,S 取最大值22R ,所以当且仅当︒=902θ即︒=45θ时, S 取最大值,此时矩形为内接正方形.
变式:已知半径为1的半圆,PQRS 是半圆的内接矩形如图,问P 点在什么位置时,矩形的
面积最大,并求最大面积时的值.
解:设,α=∠SOP 则,cos ,sin αα==OS SP
故S 四边形PQRS ααα2sin cos 2sin =⨯=
故α为︒45时,1max =S
课堂小结
建立函数模型利用三角恒等变换解决实际问题.
课后作业
1. 阅读教材P.139到P.142;
2. 《习案》作业三十五.
O。