人教版七年级数学上册教案之实际问题与一元一次方程(5篇范例)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册教案之实际问题与一元一次方程(5篇
范例)
第一篇:人教版七年级数学上册教案之实际问题与一元一次方程实际问题与一元一次方程
教学目标:
1、知识目标:
(1)建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.
(2)根据问题的实际背景进行检验,利用方程进行简单推理判断.能力目标:
在具体的情景中,通过探究、交流、反思等活动,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析和解决问题的能力.
3、情感态度与价值观:培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值.
教学重点、难点:
重点:建立实际问题的方程模型,运用一元一次方程分析和解决实际问题.
难点:正确地建立方程.
教学过程:
一、创设情景
男生都喜欢看NBA,激烈的对抗中比分交替上升,最终由积分显示牌上的各队积分进行排位.下面我们来看一个2000赛季国内篮球甲A 联赛常规赛的最终积分榜……
二、提出并解决问题:
想一想
用式子表示总积分与胜、负场数之间的数量关系;
如果一个队胜m场,则负(22—m)场,胜场积分为2m,负场积分为22—m,总积分为
2m+(22—m)=m+22
议一议
某队的胜场总积分能等于它的负场总积分吗?
设一个队胜了x场,则负了(22—x)场,如果这个队的胜场总积分等于负场总积分,则有方程
2x=(22—x)
计算得
x=22/3
问题:x表示什么量?它可以是分数吗?
x表示某队获胜的场数,它应该是自然数,不能是分数22/3.所以x=22/3不符合实际.
问题:由此你得出什么结论?
可以判定没有哪个队的胜场总积分等于负场总积分.
问题:“观察积分表,你能选择出其中一行说明负一场积几分吗?”
设胜一场积x分的话,从表中其他任何一行可以列方程,求出x的值
从第一行得出方程:
18x+1×4=40
由此得出
x=2
用表中其他行可以验证,得出结论:负一场积1分,胜一场积2分.
教师应关注培养学生的数学建模思想.给学生一定的思考时间,让学生自己解、设、列,体会建模过程.
三、例题
①引导学生大体估算盈亏情况;
②教师提出问题,学生自主讨论解决;
(1)商品销售中的盈亏如何计算?
(2)两件衣服的进价、售价分别是多少?
③得出结论后,将结论与学生先前的估算进行比较;
④教师归纳解决问题的大致过程.解:设盈利是25%的衣服成本为x元,则它的商品利润是0.25x元,列出方程
x+0.25x = 60,解得x = 48
类似地,设亏损25%的衣服成本为y元,则它的商品利润是−0.25%y,列出方程
y−0.25y = 60,解得y = 80
两件衣服的进价为x+y = 48+80 = 128(元),而两件衣服的售价是60+60 = 120(元),进价高于售价,因此,卖这两件衣服总的是亏损.
四、小结:
通过以下问题引导学生小结:
①由学生谈谈本节课学到了哪些知识?学后有何感受?
②商品销售中的基本等量关系有哪些?
第二篇:七年级《实际问题与一元一次方程》教案
七年级《实际问题与一元一次方程》教
案
一、教学目标
【知识与技能】能利用方程解决实际问题。
【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。
【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。
二、教学重难点
【重点】建立电话计费问题的方程模型。
【难点】建立电话计费问题的方程模型。
三、教学过程
导入新
前面我们已经对一元一次方程解决实际问题进行了初步的探究,
接下来我们继续研究一元一次方程在实际生活中的应用。
2对问题的初步认识
问题1:下面表格给出的是两种移动电话的计费方式:
黑龙江教师招聘考试教学设计:《实际问题与一元一次方程》
你了解表格中这些数字的含义吗?
师生活动:教师提问,学生思考,回答。
教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。
问题2:你觉得哪种计费方式更省钱呢?
师生活动:教师提出问题,学生思考回答。
根据学生的回答情况,教师适当加以引导:
若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;
若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。
讨论后安排学生再次思考,可适当讨论。
3对问题的深入探究
问题3:通过大家的讨论,你对电话计费问题有什么新的认识?
师生活动:教师提出问题,学生思考回答。
根据学生的回答教师适当加以归纳引导:
若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;
若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。
问题4:设一个月内用移动电话主叫为tin。
当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。
第三篇:七年级数学《实际问题与一元一次方程》说课稿
七年级数学《实际问题与一元一次方程》说课稿
七年级数学《实际问题与一元一次方程》说课稿
尊敬的各位评委老师,大家好!
我今天说课的课题是“销售中的盈亏”,是人教版七年级数学第三章第四节《实际问题与一元一次方程》探究一的内容,这节课的重点就是利用一元一次方程解决商品销售中的实际问题。
下面我分别从教材、教法、学法、教学过程四部分来说说我的备课设想。
一、教材分析
前面已经学过解一元一次方程和由实际问题列一元一次方程。
本节课是在此基础上进一步学习如何用一元一次方程解决实际问题。
由于涉及的知识较多,所以学生学习有一定的难度。
通过本节课的学习,熟练掌握列一元一次方程解决实际问题的思维方法,为我们以后学习用二元一次方程组、分式方程以及一元二次方程解决实际问题打下良好的基础。
针对本节课的重要性,结合初中数学现行课程标准和素质教育的要求,以及初一学生的认知规律和实际水平,确定教学目标。
(一)教学目标
知识与技能
1、理解商品销售中的进价、售价、利润、利润率的含义以及这些基本量之间关系。
2、能根据商品销售中的数量关系找出等量关系列出方程,掌握商品盈亏的求法。
3、能利用一元一次方程解决商品销售中的盈亏问题。
过程与方法
通过探究和讨论活动,培养学生建立方程模型将实际问题转化为数学问题的化归能力,培养学生分析问题、解决问题的能力。
情感态度与价值观
让学生在实际生活中感受到数学的重要价值,感受到数学就在我们身边,激发学生学习数学的兴趣。
(二)重点、难点
对于初一学生来说,阅读理解能力和有关商品销售知识有限,考虑问题的全面性、深刻性不够,而盈亏问题中的相等关系是解决销售
问题列方程的重要依据,因此确定本节的重、难点如下:
重点:能利用一元一次方程解决商品销售中的实际问题。
难点:弄清商品销售中的“进价”、“售价”、“利润”、“利润率”的含义以及这些基本量之间的关系。
突破本节课重、难点的方法:弄清问题背景,分析清楚相关数量关系,找出可以作为列方程依据的主要相等关系。
(三)、教具准备多媒体课件
二、教学策略
根据这节课的特点,在教学策略上分为两步:
(一)问题——在生活中产生
根据初一学生活泼、好奇的性格特点,课程一开始就创设了情境,使数学问题生活化,与学生的现实生活联系起来,这样可使学生在数学活动的情境中借助已有的生活经验,去感受,去经历,从而促使学生发现问题、提出问题和解决问题。
上一节课我提前给学生留了一个特殊的作业,让他们作一个市场调查,了解进价、售价、利润、利润率之间的关系,初步理解在销售中的盈亏问题,为本节课的学习奠定基础。
(二)问题——在探究中解决
考虑到本节课的特点,我准备充分发挥每个学生的主动性,让学生先认真分析各自的调查情况,再结合多媒体图片和老师出的问题,引导学生自主学习、合作学习和探究学习,以小组的形式讨论、归纳、总结出“进价”“售价”“利润”“利润率”之间的关系,进而利用关系探究新知,解决实际问题。
三、学情分析
1、学生社会知识有限,往往弄不清销售问题中的有关概念,理解不清概念之间的关系。
2、学生在列方程解应用题时,可能存在两个方面的困难:
(1)抓不准相等关系;
(2)习惯于用小学算术解法,不适应用方程解决应用题。
3、学生在列方程解应用题时可能还会存在分析问题时思路不同,
列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是。
作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4、学生在学习过程中可能不完全理解概念之间的关系,而习惯于套题型,找解题模式。
四、教学过程
根据初一学生的认知规律和新课标教学理念,在课堂教学中分为七步:
(一)创设情境,导入新课
出示多媒体图片,创设问题情境。
(二)提出问题,归纳公式
学生以小组合作,讨论得出下面概念的含义。
进价:购进商品时的价格(有时也叫成本价)
售价:在销售商品时的价格(有时叫卖出价)
打折:卖货时,按照标价乘以十分之几或百分之几十。
利润:在销售过程中的纯收入。
即:利润= 售价0.25y元,列出方程 y(1-0.25)= 60,解得 y =80。
(亏损就是负盈利,即利润为-0.25y元)
两件衣服的进价是x + y = 48 + 80 = 128 元,而两件衣服的售价是60 + 60 = 120元,进价大于售价,可知卖这两件衣服总的盈亏情况是亏损8元。
(将结论与先前的估算进行比较)
(设计意图:通过学习前面三个问题,学生掌握了一些销售知识,在此基础上,我针对例题又设计了这道填空题,使学生初步感受“数学建模”的方法,更好地培养学生有条理地进行思考和表达,从而突破本节课重点。
)
(四)新知应用
1、巩固练习
新华书店出售A、B两种不同型号的学习机,每台售价为960元。
A型一台盈利20%,B型一台亏损20%。
该书店出售A、B型学习机各一台是盈利还是亏损,或是不盈不亏?
2、拓展延伸
商场将某款服装按标价打9折出售,仍可盈利10%,已知该款服装的标价是330元,那么该款服装的进价是多少元?
(设计意图:为了及时检测学生掌握的情况,培养学生类比解决问题的能力,巩固所学方法,渗透数学建模思想,设计了两道练习题。
)(五)总结升华
让学生谈谈收获:
1、本节学了哪些知识?
2、商品销售中的盈亏是如何计算的?
3、用一元一次方程解决实际问题的关键是找出什么?
(设计意图:通过师生对话式交流,让学生真正意识到数学来源于生活,服务于生活,我们要努力学好数学,增强学生的求知欲。
)(六)布置作业作业:课本习题3.4第3题、第4题
(七)板书设计
销售中的盈亏
1、基本概念:
2、公式
进价:利润率= ×100% = ×100%
售价:售价=进价×(1+利润率)
利润:
利润率:
(设计意图:简洁美观的板书设计给学生以美感,同时可以使学生感到脉络清晰,对本节的重点有个整体认识。
)
我的说课完毕,谢谢各位评委老师!
第四篇:七年级数学上册《实际问题与一元一次方程》教学反思本周进行了实际问题与一元一次方程教学,球赛积分问题,尽管在课前与学生体会了一下赛事得分问题,但是在上课时学生仍感到茫然,农村孩子几乎与各类体育项目绝缘了,没有什么机会去接触篮球足球,各种规则仅仅就是从电视上了解,知道得不多,我让学生对问题进行讨论时,学生半天理不出头绪,头脑里难以呈现比赛场面,就
更别提常用规则了,没办法,我只好先给学生描述了一下,简单介绍规则后,再引导学生结合本题进行了分析,正确建立数学模型,学生之间的探究讨论就没有充分进行。
课后,我反思我的教学,在教学时学生没有体验无法感知问题,作为教师一定要发扬民主,真正做好教学的组织与引导,鼓励学生大胆想象,质疑,并尽可能的提供丰富多彩的学习素材。
比如本节课如果先与体育课联系进行提前渗透,就会节省很多的介绍规则时间,讨论会更充分,效率会更高,才能从根本上帮助学生。
我们现在正在进行数学课堂生生互动教学策略的研究,学生的学习内容应该是现实的、有意义、富有挑战性的,这对教师也是一个挑战,如何为学生的互动创造条件,是我们在备课时要提前设想的。
第五篇:实际问题与一元一次方程教案
实际问题与一元一次方程教案
教学目标:
一、知识和技能:
㈠知识目标:
1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.
2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.㈡能力目标:
数学思考:能结合实际问题背景发现和提出数学问题。
解决问题:能利用一元一次方程解决商品销售中的一些实际问题
二、过程与方法:.经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.三、情感态度与价值观目标:
1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.
2、学会与人交流,通过实际问题情景的体验,让学生增强学习
数学的兴趣。
刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.教学难点:找到问题中的数量关系,将未知数参与其中的代数式用“=”连接起来,使之构成方程.教学关键:明确问题中的数量关系,找出等量关系.教学课型:新授课
课时安排:一课时
教学方法:启发式讲授,与学生探索相结合,情境教学法。
教学准备:幻灯片出示探究题目,三四个可供标价的纸板
教学过程:
一、引入新课
做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?)→→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。
(1)商品利润=商品售价-商品进价.(2)商品利润率=.(3)打x折的售价=原售价×.二、新授
第一大部分
探究1:销售中的盈亏.某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
①由学生借以往经验解决(极有可能使用四则运算),作出判断.②要求应用方程
再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设
④学生自主修整完成该方程,进而解决问题.解:设……………………
————————=——---
……………………
……………………
答:…………………….另外:求出方程的解后,一定要检验解的合理性.题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.第一大部分附题
随堂练习1:
刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?
分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。
“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?
解:设……………………
————————=——---
……………………
……………………
答:…………………….求出方程的解后,一定要检验解的合理性.随堂练习2:较难的一道利润问题
某商品去年提价25%,今年要恢复原价,应下调几个百分点?
分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x
Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调
m个百分点.Ⅳ [(1+25%)x](1-m%)=x
Ⅴ 将Ⅳ中可简化为(1+25%)x(1-m%)=x
Ⅵ 由学生努力解决这种含有两个未知数的方程,并做演示讲解
Ⅶ 老师分析两个未知数之一在该题中起一个解释说明的作用
并且能够借助等式的性质2.消去x
Ⅷ 方程简单变形为(1+25%)(1-m%)=1
问题得以解决
第三大部分
探究2:油菜种植的计算.某村去年种植的油菜籽亩产量达160千克,含油率为40%。
今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。
今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?
分析完成[重点是翻译]过程
①亩产量达160千克,含油率为40%。
————160×40%
亩产量提高了20千克————﹙160+20﹚
提高了10个百分点————40%+10%
…………
②可设今年油菜种植面积是x亩.③让x能够参与其中,开始第二遍审题
去年:(x+44)亩今年:x亩
160(x+44)﹙160+20﹚
160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x
由“本村所产油菜籽的产油量提高20%”
得到
160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x
………………………………
………………………………
答:________________________________.第四大部分
课堂小结:
一、归纳:
用一元一次方程分析和解决实际问题的基本过程.学生:________________________________________
二、小结:
这节课你学会了什么?
学生们:_______________________________________
三、作业:
课本第108页习题3.4第3、4题.选用课时作业设计
第一课时作业设计
一、填空题.⒈某商品原标价为165元,降价10%后,售价为_____元,若成本为110元,则利润为______元.⒉新华书店一天内销售甲种书籍共卖得1560元,其利润率为25%,•则这一天售出甲种书的总成本为_______元.二、选择题.⒊下面四个关系中,错误的是().A.商品利润率=;B.商品利润率= C.商品售价=商品进价×(1+利润率)D.商品利润=商品利润率×商品进价
⒋ 一件商品标价a元,打九折后售出为a元,如果再打一次九折,•那么现在的售价是()元.A.(1+)a B.a
三、解答题.⒌甲种商品每件的进价是400元,现按标价560元的8折出售,•乙种商品每件的进价是600元,现按标价1100元的六折出售,相比较哪种商品的利润率高一些?
答案:
一、1.148.5 38.5 2.1248
二、⒊ B ⒋ B •
三、⒌ 甲商品利润率为12%,•乙商品的利润率为10%,甲商品比乙商品利润率高.。