高中物理动量定理解题技巧讲解及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理动量定理解题技巧讲解及练习题(含答案)
一、高考物理精讲专题动量定理
1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;
(2)求运动员在AB 段所受合外力的冲量的I 大小;
(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.
【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】
(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即
22
02v v aL -=
可解得:22
1002v v L m a
-==
(2)根据动量定理可知合外力的冲量等于动量的该变量所以
01800B I mv N s =-=⋅
(3)小球在最低点的受力如图所示
由牛顿第二定律可得:2C
v N mg m R
-= 从B 运动到C 由动能定理可知:
221122
C B mgh mv mv =
-
解得;3900N N =
故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =
点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.
2.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】
(1)设运动过程中摩擦阻力做的总功为W ,则
W =-kmgL -2kmgL =-3kmgL
即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得
mv 1=2mv 2
22101122
kmgL mv mv -=
- 2
21(2)0(2)2
k m gL m v -=-
由以上各式得
010v kgL =
所以人给第一辆车水平冲量的大小
010I mv m kgL ==
3.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与
ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:
(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;
(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32
639
F x =+【解析】 【分析】 【详解】
(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为
4V E =
由欧姆定律得
24A 8A 0.5
E I R =
== (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有
E =2t (V )
4E
I t R
=
= 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43
x L = 又由
F BIL =安
所以
163
F t 安=
即安培力跟时间成正比
所以在1~2s 时间内导体棒所受安培力的平均值
163233N 8N 2
F +=
= 故
8N s I F t =∆=⋅安
(3)因为
43
v
E BLv Bx ==⋅
所以
1.5(m/s)v t =
可知导体棒的运动时匀加速直线运动,加速度
21.5m/s a =
又2
12
x at =
,联立解得 32
639
F x =+
【名师点睛】
本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,
要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.
4.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。

求: (1)物体沿斜面向上运动的加速度大小;
(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。

【解析】 【详解】
(1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为:
F=mg sin θ
根据牛顿第二定律有:
F=ma ;
解得:
a =6.0m/s 2
(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:
21
2
0m W mv -=-
解得
W =18J ;
(3)物体沿斜面上滑和下滑的总时间为:
0226
2s 6
v t a ⨯=
== 重力的冲量:
20N s G I mgt ==⋅
方向竖直向下。

5.滑冰是青少年喜爱的一项体育运动。

如图,两个穿滑冰鞋的男孩和女孩一起在滑冰场沿直线水平向右滑行,某时刻他们速度均为v 0=2m/s ,后面的男孩伸手向前推女孩一下,作用时间极短,推完后男孩恰好停下,女孩继续沿原方向向前滑行。

已知男孩、女孩质量均为m =50kg ,假设男孩在推女孩过程中消耗的体内能量全部转化为他们的机械能,求男孩推女孩过程中:
(1)女孩受到的冲量大小; (2)男孩消耗了多少体内能量? 【答案】(1) 100N •s (2) 200J 【解析】 【详解】
(1)男孩和女孩之间的作用力大小相等,作用时间相等, 故女孩受到的冲量等于男孩受到的冲量,
对男孩,由动量定理得:I =△P =0-mv 0=-50×2=-100N•s , 所以女孩受到的冲量大小为100N•s ; (2)对女孩,由动量定理得100=mv 1-mv 0,
故作用后女孩的速度1100502
m/s 4m/s 50
v +⨯=
= 根据能量守恒知,男孩消耗的能量为
221011125016504200J 222
E mv mv =-⋅=⨯⨯-⨯=;
6.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。


(1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。

【答案】(1)20N ∙s ,方向竖直向下(2)202kg m/s ⋅
, 与水平方向的夹角为45° 【解析】 【详解】
(1)物体做平抛运动,则有:
212
h gt =
解得:
t =2s
则物体从抛出到落到地面过程重力的冲量
I=mgt =1×10×2=20N•s
方向竖直向下。

(2)在竖直方向,根据动量定理得
I=p y -0。

可得,物体落地时竖直方向的分动量
p y =20kg•m/s
物体落地时水平方向的分动量
p x =mv 0=1×20=20kg•m/s
故落地时物体的动量
22202kg m/s x y p p p =
+=⋅
设落地时动量与水平方向的夹角为θ,则
1y x
p tan p θ=
=
θ=45°
7.在水平地面的右端B 处有一面墙,一小物块放在水平地面上的A 点,质量m =0.5 kg ,AB 间距离s =5 m ,如图所示.小物块以初速度v 0=8 m/s 从A 向B 运动,刚要与墙壁碰撞时的速度v 1=7 m/s ,碰撞后以速度v 2=6 m/s 反向弹回.重力加速度g 取10 m/s 2.求: (1) 小物块与地面间的动摩擦因数μ;
(2) 若碰撞时间t =0.05 s ,碰撞过程中墙面对小物块平均作用力F 的大小.
【答案】(1)0.15 (2)130 N
【解析】 【详解】
(1)从A 到B 过程,由动能定理,有:-μmgs =12mv 12-1
2
mv 02 可得:μ=0.15.
(2)对碰撞过程,规定向左为正方向,由动量定理,有:Ft =mv 2-m (-v 1) 可得:F =130 N.
8.用动量定理处理二维问题时,可以在相互垂直的x 、y 两个方向上分别进行研究。

如图所示,质量为m 的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v 。

碰撞过程中忽略小球所受重力。

若小球与木板的碰撞时间为∆t ,求木板对小球的平均作用力的大小和方向。

【答案】2cos mv F t
θ
=∆,方向沿y 轴正方向 【解析】 【详解】
小球在x 方向的动量变化为sin sin 0x p mv mv θθ∆=-=
小球在y 方向的动量变化为cos (cos )2cos y p mv mv mv θθθ∆=--= 根据动量定理y F t p ∆=∆ 解得2cos mv F t
θ
=
∆,方向沿y 轴正方向
9.如图甲所示,足够长光滑金属导轨MN 、PQ 处在同一斜面内,斜面与水平面间的夹角θ=30°,两导轨间距d =0.2 m ,导轨的N 、Q 之间连接一阻值R =0.9 Ω的定值电阻。

金属杆ab 的电阻r=0.1 Ω,质量m=20 g ,垂直导轨放置在导轨上。

整个装置处在垂直于斜面向上的匀强磁场中,匀强磁场的磁感应强度B =0.5 T 。

现用沿斜面平行于金属导轨的力F 拉着金属杆ab 向上运动过程中,通过R 的电流i 随时间t 变化的关系图像如图乙所示。

不计其它电阻,重力加速度g 取10 m/s 2。

(1)求金属杆的速度v 随时间t 变化的关系式;
(2)请作出拉力F 随时间t 的变化关系图像; (3)求0~1 s 内拉力F 的冲量。

【答案】(1)5t =v (2)图见解析;(3)0.225 N s F I =⋅ 【解析】 【详解】
(1)设瞬时感应电动势为e ,回路中感应电流为i ,金属杆ab 的瞬时速度为v 。

由法拉第电磁感应定律:e Bd =v 闭合电路的欧姆定律:e
i R r
=+ 由乙图可得,0.5i t = 联立以上各式得:5t =v
(2)ab 沿导轨向上运动过程中,由牛顿第二定律,得: sin F Bid mg ma θ--=
由第(1)问可得,加速度25m /s a = 联立以上各式可得:0.050.2F t =+ 由此可画出F -t 图像:
(3)对金属棒ab ,由动量定理可得: sin F I mgt BIdt m θ--=v
由第(1)问可得: 1 s t =时,=5 m/s v 联立以上各式,得:0.225 N s F I =⋅
另解:由F -t 图像的面积可得1
(0.20.25) 1 N s =0.225 N s 2
F I =+⨯⋅⋅
10.一质量为1 kg 的小物块放在水平地面上的A 点,距离A 点8 m 的位置B 处是一面墙,如图所示.物块以v 0=5 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为3 m/s ,碰后以2 m/s 的速度反向运动直至静止.g 取10 m/s 2.
(1)求物块与地面间的动摩擦因数μ;
(2)若碰撞时间为0.01s ,求碰撞过程中墙面对物块平均作用力的大小F ; 【答案】(1)0.1(2)500N 【解析】
(1)由动能定理,有-μmgs=1
2
mv2-
1
2
m v02
可得μ=0.1
(2)由动量定理,规定水平向左为正方向,有FΔt=mv′-(-mv)
可得F=500N
11.高空作业须系安全带.如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,求:
(1)整个过程中重力的冲量;
(2)该段时间安全带对人的平均作用力大小.
【答案】(1)(2)
【解析】
试题分析:对自由落体运动,有:
h=
解得:,
则整个过程中重力的冲量I=mg(t+t1)=mg(t+)
(2)规定向下为正方向,对运动的全程,根据动量定理,有:
mg(t1+t)﹣Ft=0
解得:
F=
12.如图所示,质量为M=5.0kg的小车在光滑水平面上以速度向右运动,一人背靠竖直墙壁为避免小车撞向自己,拿起水枪以的水平速度将一股水流自右向左射向小车后壁,射到车壁的水全部流入车厢内,忽略空气阻力,已知水枪的水流流量恒为(单位时间内流过横截面的水流体积),水的密度为。

求:
(1)经多长时间可使小车速度减为零;
(2)小车速度减为零之后,此人继续持水枪冲击小车,若要维持小车速度为零,需提供多大的水平作用力。

【答案】(1)50s(2)0.2N
【解析】解:(1)取水平向右为正方向,
由于水平面光滑,经t时间,流入车内的水的质量为,①
对车和水流,在水平方向没有外力,动量守恒②
由①②可得t=50s
(2)设时间内,水的体积为,质量为,则③
设小车队水流的水平作用力为,根据动量定理④
由③④可得
根据牛顿第三定律,水流对小车的平均作用力为,由于小车匀速,根据平衡条件。

相关文档
最新文档