2016-2017学年人教A版选修1-2 1.1 回归分析的基本思想及其初步应用教案2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.
教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学过程:
一、复习准备:
1. 给出例3:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.
/y 个 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. 二、讲授新课:
1. 探究非线性回归方程的确定:
① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.
② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量.
③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =
,则21ln z c x c =+,而z 与x 间的线的附近,因此可以用线性回归方程来拟合.
④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.
⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→
确定方程”这三个步骤进行.
其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2. 小结:用回归方程探究非线性回归问题的方法、步骤. 三、巩固练习:
(1(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy
=e x +.)
教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.
教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学过程:
一、复习准备:
1. 提问:在例3中,观察散点图,我们选择用指数函数模型来拟合红铃虫的产卵数y 和温度x 间的关系,还可用其它函数模型来拟合吗?
2. 讨论:能用二次函数模型234y c x c =+来拟合上述两个变量间的关系吗?(令2t x =,则
34y c t c =+,此时y 与t
条直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次曲线234y c x c =+来拟合y 与x 之间的关系. )小结:也就是说,我们可以通过观察变换后的散点图来判断能否用此种模型来拟合. 事实上,除了观察散点图以外,我们也可先求出函数模型,然后利用残差分析的方法来比较模型的好坏.
二、讲授新课:
1. 教学残差分析:
① 残差:样本值与回归值的差叫残差,即i i i e y y =-.
② 残差分析:通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.
③ 残差图:以残差为横坐标,以样本编号,或身高数据,或体重估计值等为横坐标,作出的图形称为残差图. 观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高.
2. 例3中的残差分析: 计算两种模型下的残差
一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果. 残差平方和越小的模型,拟合的效果越好. 由于两种模型下的残差平方和分别为1450.673和15448.432,故选用指数函数模型的拟合效果远远优于选用二次函数模型. (当然,还可用相关指数刻画回归效果) 3. 小结:残差分析的步骤、作用
三、巩固练习:练习:教材P13 第1题。