临夏市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临夏市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )
A .0
B .1
C .2
D .3 2. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )
A .
B .
C .
D .
3. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )
A .
B .
C .
D .3
4. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3] C .(﹣3,0]
D .(﹣3,+∞)
5. 设x ,y ∈R ,且满足,则x+y=( )
A .1
B .2
C .3
D .4
6. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为
真命题的是( )
A .p q ∧
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .()p q ⌝∧ 7. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3
B .6
C .7
D .8
8. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )
9. “p q ∨为真”是“p ⌝为假”的( )条件
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要 10.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则
( )
A .该几何体体积为
B .该几何体体积可能为
C .该几何体表面积应为+
D .该几何体唯一
11.已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面
积为( )
A .4

B .4

C .
D .
+
12.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在
体积为
24316
π
同一球面上,则PA =( )
A .3
B .72
C .
D .9
2
【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
二、填空题
13.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.
14.已知函数f (x )=sinx ﹣cosx ,则
= .
15.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则
OAB ∆面积的最大值为 .
【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.
16.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 17.函数y=1﹣
(x ∈R )的最大值与最小值的和为 2 .
18.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2
()g x x ax =-的下方,则实数a 的取值范围是___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
三、解答题
19.已知函数f (x )=sin2x+(1﹣2sin 2
x ).
(Ⅰ)求f (x )的单调减区间;
(Ⅱ)当x ∈[﹣,
]时,求f (x )的值域.
20.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1
(1)
n n a b n =
+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的
取值范围.
21.(本题满分14分)
在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;
(2)若2=+c a ,求b 的取值范围.
【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.
22.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;
(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.
23.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;
(2)求f(x)在[﹣2,﹣]的最值.
24.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;
(Ⅱ)当x∈时,求f(x)取得最大值和最小值时的x的值.
临夏市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】B
【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.
考点:几何体的结构特征.
2.【答案】D
【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,
画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,
∴△A′B′C′的高为=,
∴△A′B′C′的面积S==.
故选D.
【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.3.【答案】A
【解析】解:由,得3x2﹣4x+8=0.
△=(﹣4)2﹣4×3×8=﹣80<0.
所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.
设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0
联立,得3x2﹣4x﹣m=0.
由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,
得m=﹣.
所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.
所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.
故选:A.
【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.
4.【答案】D
【解析】解:令f(x)=﹣2x3+ax2+1=0,
易知当x=0时上式不成立;
故a==2x﹣,
令g(x)=2x﹣,则g′(x)=2+=2,
故g(x)在(﹣∞,﹣1)上是增函数,
在(﹣1,0)上是减函数,在(0,+∞)上是增函数;
故作g(x)=2x﹣的图象如下,

g(﹣1)=﹣2﹣1=﹣3,
故结合图象可知,a>﹣3时,
方程a=2x﹣有且只有一个解,
即函数f(x)=﹣2x3+ax2+1存在唯一的零点,
故选:D.
5.【答案】D
【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,
∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,
∵(y﹣2)3+2y+sin(y﹣2)=6,
∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,
设f(t)=t3+2t+sint,
则f(t)为奇函数,且f'(t)=3t2+2+cost>0,
即函数f(t)单调递增.
由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,
即f(x﹣2)+f(y﹣2)=2﹣2=0,
即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),
∵函数f(t)单调递增
∴x﹣2=2﹣y,
即x+y=4,
故选:D.
【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.
6.【答案】D
【解析】
考点:命题的真假.
7.【答案】B
【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,
∴2a4=a3+a5=8,解得a4=4,
∴公差d==,
∴a 7=a 1+6d=2+4=6 故选:B .
8. 【答案】
【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM
=2sin x
2,
PB =2OM =2OA ·cos ∠AOM =2cos x
2

∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π
4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,
故选B. 9. 【答案】B 【解析】
试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 10.【答案】C
【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到 且该三棱锥有条过同一顶点且互相垂直的棱长均为1
该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成
故其表面积S=3•(1×1)+3•(×1×1)+•(
)2
=

故选:C .
【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.
11.【答案】 A
【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB , 若存在θ∈R ,使得xcos θ+ysin θ+1=0成立,
则(
cos θ+sin θ)=﹣1,
令sin α=,则cos θ=

则方程等价为
sin (α+θ)=﹣1,
即sin (α+θ)=﹣,
∵存在θ∈R ,使得xcos θ+ysin θ+1=0成立,
∴|﹣
|≤1,即x 2+y 2≥1,
则对应的区域为单位圆的外部,

,解得
,即B (2,2
),
A (4,0),则三角形OA
B 的面积S=×
=4

直线y=x 的倾斜角为

则∠AOB=
,即扇形的面积为

则P (x ,y )构成的区域面积为S=4﹣

故选:A
【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.
12.【答案】B
【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O E
P A ,所以OE ⊥底面ABCD ,则O
到四棱锥的所有顶点的距离相等,即O 球心,均为12PC =
=
可得34243316ππ=,解得7
2
PA =,故选B .
二、填空题
13.【答案】(,0)(4,)-∞+∞
【解析】
试题分析:把原不等式看成是关于的一次不等式,在2],[-2
a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 2
2+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2
a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是
{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.
考点:换主元法解决不等式恒成立问题.
【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简
洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2
a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.
14.【答案】 .
【解析】解:∵函数f (x )=sinx ﹣cosx=sin (x ﹣),

=
sin (﹣)=﹣
=﹣

故答案为:﹣

【点评】本题主要考查两角差的正弦公式,属于基础题.
15.【



16.【答案】1ln 2
【解析】 试题分析:
()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 17.【答案】2
【解析】解:设f (x )=﹣
,则f (x )为奇函数,所以函数f (x )的最大值与最小值互为相反数,
即f (x )的最大值与最小值之和为0. 将函数f (x )向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣
(x ∈R )
的最大值与最小值的和为2. 故答案为:2.
【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.
18.【答案】[2e,)-+∞
【解析】由题意,知当0,1x ∈()时,不等式2
e 1x
x ax -≥-,即21e x x a x +-≥恒成立.令()21e x
x h x x
+-=,
()()()
2
11e 'x x x h x x
-+-=
.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,x k x =-<∴()
k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()
2
11e '0x x x h x x
-+-=
>,∴()h x 在()0,1x ∈为递增,∴
()()12e h x h <=-,则2e a ≥-. 三、解答题
19.【答案】
【解析】解:(Ⅰ)f (x )=sin2x+(1﹣2sin 2
x )=sin2x+
cos2x
=2(sin2x+cos2x )=2sin (2x+),
由2k π+
≤2x+
≤2k π+
(k ∈Z )得:k π+
≤x ≤k π+
(k ∈Z ),
故f (x )的单调减区间为:[k π+,k π+
](k ∈Z );
(Ⅱ)当x ∈[﹣

]时,(2x+)∈[0,
],2sin (2x+
)∈[0,2],
所以,f (x )的值域为[0,2].
20.【答案】
【解析】【命题意图】本题考查等差数列通项与前n 项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.
21.【答案】(1)3
B π
=;(2)[1,2).




22.【答案】(1)2
()243f x x x =-+;(2)1
02
a <<
;(3)1m <-.

题解析:
(1)由已知,设2()(1)1f x a x =-+,
由(0)3f =,得2a =,故2
()243f x x x =-+.
(2)要使函数不单调,则211a a <<+,则102
a <<. (3)由已知,即2243221x x x m -+>++,化简得2
310x x m -+->,
设2
()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.
【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:
()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为
()()()2
0f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为
()()()()120f x a x x x x a =--≠.
23.【答案】
【解析】解:(1)∵f (x )=x 3+3ax 2
+bx , ∴f'(x )=3x 2
+6ax+b ,
又∵f (x )在x=﹣1时有极值0, ∴f'(﹣1)=0且f (﹣1)=0, 即3﹣6a+b=0且﹣1+3a ﹣b=0,
解得:a=,b=1 经检验,合题意.
(2)由(1)得f'(x )=3x 2
+4x+1,
令f'(x)=0得x=﹣或x=﹣1,
又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,
∴f(x)max=0,f(x)min=﹣2.
24.【答案】
【解析】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,
由f′(x)=0,得x1=,x2=,x1<x2,
∴由f′(x)<0得x<,x>;
由f′(x)>0得<x<;
故f(x)在(﹣∞,)和(,+∞)单调递减,
在(,)上单调递增;
(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈,当时,即a≥4
①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.
②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在单调递增,在上单调递减,
因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,
∴当0<a<1时,f(x)在x=1处取得最小值;
当a=1时,f(x)在x=0和x=1处取得最小值;
当1<a<4时,f(x)在x=0处取得最小值.。

相关文档
最新文档