【必考题】九年级数学下期末一模试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】九年级数学下期末一模试卷及答案
一、选择题
1.下列四个实数中,比1-小的数是()
A.2-B.0 C.1 D.2
2.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;
②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()
A.2个B.3个C.4个D.5个
3.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数
k
y
x
=(0
k>,
x>)的图象上,横坐标分别为1,4,对角线BD x
∥轴.若菱形ABCD的面积为45
2

则k的值为()
A.5
4
B.
15
4
C.4D.5
4.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()
A.24B.16C.413D.23
5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().
A .
B .
C .
D .
6.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )
A .3
B .23
C .32
D .6
7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若
ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )
A .102o
B .112o
C .122o
D .92o
8.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中
位数分别是( )
A .15.5,15.5
B .15.5,15
C .15,15.5
D .15,15
9.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )
A .
B .
C .
D .
10.an30°的值为( ) A .
B .
C .
D .
11.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8%
B .9%
C .10%
D .11%
12.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7
B .6+a >b+6
C .55
a
b >
D .-3a >-3b
二、填空题
13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 50
100
200
400
500
800
1000
1200
1500
2000
色盲患者的频数m 3 7 13 29 37 55 69 85 105 138
色盲患者的频率m/n
0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 14.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C
落在该反比例函数图象上,则n的值为___.
15.
如图,添加一个条件:
,使△ADE∽△ACB,(写出一个即可)
16.分解因式:x3﹣4xy2=_____.
17.不等式组
324
1
11 2
x x
x
x
≤-


⎨-
-
<+
⎪⎩
的整数解是x=.
18.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.
19.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.
20.二元一次方程组
6
27
x y
x y
+=


+=

的解为_____.
三、解答题
21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:
(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角是 °;
(2)请补全条形统计图;
(3)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.
22.如图,AD 是ABC 的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .
(1)求证:四边形ADCE 是平行四边形;
(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是
1
3
S 的三角形.
23.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.
(1)求证:四边形BFDE 是矩形;
(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .
24.某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:
销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)
875
1875
1875
875
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:
该产品的成本单价是 元,当销售单价x= 元时,日销售利润w 最大,最大值是 元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
25.已知抛物线y=ax2﹣1
3
x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发
均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒
(1)求抛物线的解析式;
(2)当BQ=1
3
AP时,求t的值;
(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.
26.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.
(1)求证:△ADC≌△BEC;
(2)如果EC⊥BE,证明:AD∥EC.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
试题分析:A.﹣2<﹣1,故正确;
B.0>﹣1,故本选项错误;
C.1>﹣1,故本选项错误;
D.2>﹣1,故本选项错误;
故选A.
考点:有理数大小比较.
2.C
解析:C
【解析】
【分析】
【详解】
试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AB,
∵AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=1
2
(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;
∵∠AHB=1
2
(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
【点睛】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
3.D
解析:D
【解析】
【分析】
设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推
得m-n=15
4
,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的
值.
【详解】
设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,
∴S菱形ABCD=4×1
2 BM•AM,
∵S菱形ABCD=45
2

∴4×1
2
×3(m-n)=
45
2

∴m-n=15
4

又∵点A,B在反比例函数
k
y
x ,
∴k=m=4n,
∴n=5
4

∴k=4n=5,故选D.
【点睛】
本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.
4.C
解析:C
【解析】
【分析】
由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB 的长,然后利用勾股定理,求得AB的长,继而求得答案.
【详解】
∵四边形ABCD是菱形,AC=6,BD=4,
∴AC⊥BD,
OA=1
2
AC=3,
OB=1
2
BD=2,
AB=BC=CD=AD,
∴在Rt△AOB中,
∴菱形的周长为
故选C.
5.C
解析:C
【解析】
从上面看,看到两个圆形,
故选C.
6.B
解析:B
【解析】
【分析】
根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.
【详解】
由折叠性质得:△ANM≌△ADM,
∴∠MAN=∠DAM,
∵AN平分∠MAB,∠MAN=∠NAB,
∴∠DAM=∠MAN=∠NAB,
∵四边形ABCD是矩形,
∴∠DAB=90°,
∴∠DAM=30°,

== 故选:B . 【点睛】
本题考查了矩形 的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,
7.B
解析:B 【解析】 【分析】
由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1
BDF DBC DFC 202
∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果. 【详解】
AD //BC Q ,
ADB DBC ∠∠∴=,
由折叠可得ADB BDF ∠∠=, DBC BDF ∠∠∴=,
又DFC 40∠=o Q ,
DBC BDF ADB 20∠∠∠∴===o ,
又ABD 48∠=o Q ,
ABD ∴V 中,A 1802048112∠=--=o o o o ,
E A 112∠∠∴==o , 故选B . 【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.
8.D
解析:D 【解析】 【分析】 【详解】
根据图中信息可知这些队员年龄的平均数为:
132146158163172181
268321
⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,
该足球队共有队员2+6+8+3+2+1=22人,
则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .
9.D
解析:D
【解析】
【分析】
由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.
【详解】
根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;
故选D.
【点睛】
此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.10.D
解析:D
【解析】
【分析】
直接利用特殊角的三角函数值求解即可.
【详解】
tan30°=,故选:D.
【点睛】
本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
11.C
解析:C
【解析】
【分析】
设月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
【详解】
设该商店的每月盈利的平均增长率为x,根据题意得:
240000(1+x)2=290400,
解得:x1=0.1=10%,x2=-0.21(舍去),
故选C.
【点睛】
此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-.
12.D
解析:D
【解析】
A.∵a >b ,∴a-7>b-7,∴选项A 正确;
B.∵a >b ,∴6+a >b+6,∴选项B 正确;
C.∵a >b ,∴55
a b >,∴选项C 正确;
D.∵a >b ,∴-3a <-3b ,∴选项D 错误.
故选D. 二、填空题
13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故
解析:07
【解析】
【分析】
随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.
【详解】
解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07
故答案为:0.07.
【点睛】
本题考查利用频率估计概率.
14.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA 根据D (84)和反比例函数的图象经过点D 求出k=32C 点的纵坐标是2×4=8求出C 的坐标即可得出答案∵四边形ABCO 是菱形∴CD=ADBC∥OA
解析:【解析】
试题分析根据菱形的性质得出CD=AD ,BC ∥OA ,根据D (8,4)和反比例函数
的图象经过点D 求出k=32,C 点的纵坐标是2×4=8,求出C 的坐标,即可得出答案. ∵四边形ABCO 是菱形,∴CD=AD ,BC ∥OA ,
∵D (8,4),反比例函数的图象经过点D ,
∴k=32,C 点的纵坐标是2×4=8,∴
, 把y=8代入得:x=4,∴n=4﹣2=2,
∴向左平移2个单位长度,反比例函数能过C 点,
故答案为2.
15.∠ADE=∠ACB (答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;
解析:∠ADE=∠ACB(答案不唯一)
【解析】
【分析】
【详解】
相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:
由题意得,∠A=∠A(公共角),
则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;
添加:AD AE
AC AB
=,利用两边及其夹角法可判定△ADE∽△ACB.
16.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-
2y)点睛:此题考查了提公因式法与公式
解析:x(x+2y)(x﹣2y)
【解析】
分析:原式提取x,再利用平方差公式分解即可.
详解:原式=x(x2-4y2)=x(x+2y)(x-2y),
故答案为x(x+2y)(x-2y)
点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【
解析:﹣4.
【解析】
【分析】
先求出不等式组的解集,再得出不等式组的整数解即可.
【详解】
解:
324
1
11
2
x x
x
x
≤-


⎨-
-<+
⎪⎩


,
∵解不等式①得:x≤﹣4,
解不等式②得:x>﹣5,
∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,
故答案为﹣4.
【点睛】
本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.
18.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角
解析:110°或70°.
【解析】
试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.
考点:1.等腰三角形的性质;2.分类讨论.
19.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出
CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM
解析:5
【解析】
【分析】
连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=1
2
AC=5,再根据∠
A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.
【详解】
解:如图,连接CC1,
∵两块三角板重叠在一起,较长直角边的中点为M,
∴M是AC、A1C1的中点,AC=A1C1,
∴CM=A1M=C1M=1
2
AC=5,
∴∠A1=∠A1CM=30°,
∴∠CMC1=60°,
∴△CMC1为等边三角形,∴CC1=CM=5,
∴CC1长为5.
故答案为5.
考点:等边三角形的判定与性质.
20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单
解析:15x y =⎧⎨=⎩
【解析】
【分析】
由加减消元法或代入消元法都可求解.
【详解】
627x y x y +=⎧⎨+=⎩①②
, ②﹣①得1x =③
将③代入①得5y =
∴15x y =⎧⎨=⎩
故答案为:15x y =⎧⎨=⎩
【点睛】
本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.
三、解答题
21.(1)2000,108;(2)作图见解析;(3)

【解析】
试题分析:(1)根据B 组的人数以及百分比,即可得到被调查的人数,进而得出C 组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;
(2)根据C 组的人数,补全条形统计图;
(3)根据甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.
试题解析:(1)被调查的人数为:800÷40%=2000(人),C 组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C 组对应的扇形圆心角度数为:
×360°=108°,故答案
为:2000,108;
(2)条形统计图如下:
(3)画树状图得:
∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.
考点:列表法与树状图法;扇形统计图;条形统计图.
22.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆
【解析】
【分析】
(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形;
(2)根据面积公式解答即可.
【详解】
证明:∵AD 是△ABC 的中线,
∴BD=CD ,
∵AE ∥BC ,
∴∠AEF=∠DBF ,
在△AFE 和△DFB 中,
AEF DBF AFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩

∴△AFE ≌△DFB (AAS ),
∴AE=BD ,
∴AE=CD ,
∵AE∥BC,
∴四边形ADCE是平行四边形;
(2)∵四边形ABCE的面积为S,
∵BD=DC,
∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,
∴面积是1
2
S的三角形有△ABD,△ACD,△ACE,△ABE.
【点睛】
此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
23.(1)见解析(2)见解析
【解析】
试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得
∠DAF=∠DF A,根据角平分线的判定,可得答案.
试题分析:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DF A=∠F AB.
在Rt△BCF中,由勾股定理,得
BC=,
∴AD=BC=DF=5,
∴∠DAF=∠DF A,
∴∠DAF=∠F AB,
即AF平分∠DAB.
【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.24.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.
【解析】
分析:(1)根据题意和表格中的数据可以求得y关于x的函数解析式;
(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;
(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.
详解;(1)设y 关于x 的函数解析式为y=kx+b ,
8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩
, 即y 关于x 的函数解析式是y=-5x+600,
当x=115时,y=-5×115+600=25,
即m 的值是25;
(2)设成本为a 元/个,
当x=85时,875=175×(85-a ),得a=80,
w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,
∴当x=100时,w 取得最大值,此时w=2000,
(3)设科技创新后成本为b 元,
当x=90时,
(-5×90+600)(90-b )≥3750,
解得,b≤65,
答:该产品的成本单价应不超过65元.
点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.
25.(1)y =-23
x 2-13x +2;(2)当BQ =13AP 时,t =1或t =4;(3)存在.当t
=1-+M (1,1),或当t
=3+M (﹣3,﹣3),使得△MPQ 为等边三角形.
【解析】
【分析】
(1)把A (﹣2,0),B (0,2)代入y =ax 2-
13x +c ,求出解析式即可; (2)BQ=13
AP ,要考虑P 在OC 上及P 在OC 的延长线上两种情况,有此易得BQ ,AP 关于t 的表示,代入BQ=13
AP 可求t 值. (3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ ,发现PQ 为一有规律的线段,易得OPQ 为等腰直角三角形,但仅因此无法确定PQ 运动至何种情形时△MPQ 为等边三角形.若退一步考虑等腰,发现,MO 应为PQ 的垂直平分线,即使△MPQ 为等边三角形的M 点必属于PQ 的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ 为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t 的方程,考虑t 的存在性.
【详解】
(1)∵抛物线经过A (﹣2,0),B (0,2)两点,

2
40,
3
2.
a c
c

++=


⎪=

,解得
2
,
3
2.
a
c

=-


⎪=

∴抛物线的解析式为y=-
2
3
x2-
1
3
x+2.
(2)由题意可知,OQ=OP=t,AP=2+t.
①当t≤2时,点Q在点B下方,此时BQ=2-t.
∵BQ=
1
3
AP,∴2﹣t=
1
3
(2+t),∴t=1.
②当t>2时,点Q在点B上方,此时BQ=t﹣2.
∵BQ=
1
3
AP,∴t﹣2=
1
3
(2+t),∴t=4.
∴当BQ=
1
3
AP时,t=1或t=4.
(3)存在.
作MC⊥x轴于点C,连接OM.
设点M的横坐标为m,则点M的纵坐标为-
2
3
m2-
1
3
m+2.当△MPQ为等边三角形时,MQ=MP,
又∵OP=OQ,
∴点M点必在PQ的垂直平分线上,
∴∠POM=
1
2
∠POQ=45°,
∴△MCO为等腰直角三角形,CM=CO,
∴m=-
2
3
m2-
1
3
m+2,
解得m1=1,m2=﹣3.
∴M点可能为(1,1)或(﹣3,﹣3).
①如图,
当M 的坐标为(1,1)时,
则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,
PQ 2=2t 2,
∵△MPQ 为等边三角形,
∴MP =PQ ,
∴t 2﹣2t +2=2t 2,
解得t 1=1+3-,t 2=13--(负值舍去).
②如图,
当M 的坐标为(﹣3,﹣3)时,
则有PC =3+t ,MC =3,
∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,
∵△MPQ 为等边三角形,
∴MP =PQ , ∴t 2+6t +18=2t 2,
解得t 1=333+t 2=333-
∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.
【点睛】
本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.
26.(1)详见解析;(2)详见解析.
【解析】
【分析】
(1)根据两锐角互余的关系可得∠ACD =∠BCE ,利用SAS 即可证明△ADC ≌△BEC ;
(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】
(1)∵EC⊥DM,
∴∠ECD=90°,
∴∠ACB=∠DCE=90°,
∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,
∴∠ACD=∠BCE,
∵CD=CE,CA=CB,
∴△ADC≌△BEC(SAS).
(2)由(1)得△ADC≌△BEC,
∵EC⊥BE,
∴∠ADC=∠E=90°,
∴AD⊥DM,
∵EC⊥DM,
∴AD∥EC.
【点睛】
本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。

相关文档
最新文档