第三章 正弦波振荡器.

合集下载

第3章 正弦波振荡器答案

第3章 正弦波振荡器答案

第3章 正弦波振荡器3.1 为什么振荡电路必须满足起振条件、平衡条件和稳定条件?试从振荡的物理过程来说明这三个条件的含义。

答:(1)在刚接通电源时,电路中会存在各种电扰动,这些扰动在接通电源瞬间会引起电路电流的突变(如晶体管b i 或c i 突变),这些突变扰动的电流均具有很宽的频谱,由于集电极LC 并联谐振回路的选频作用,其中只有角频率为谐振角频率o ω的分量才能在谐振回路两端产生较大的电压()o o u j ω。

通过反馈后,加到放大器输入端的反馈电压()f o u j ω与原输入电压()i o u j ω同相,并且有更大的振幅,则经过线性放大和正反馈的不断循环,振荡电压振幅会不断增大。

故要使振荡器在接通电源后振荡幅度能从小到大增长的条件是:()()()()f o o i o i o u j T j u j u j ωωωω=>即: ()1o T j ω> ……起振条件 (2)振荡幅度的增长过程不可能无休止地延续下去。

随着振幅的增大,放大器逐渐由放大区进入饱和区截止区,其增益逐渐下降。

当因放大器增益下降而导致环路增益下降至1时,振幅的增长过程将停止,振荡器达到平衡状态,即进入等幅状态。

振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。

故平衡条件为:()1o T j ω=(3)振荡器在工作过程中,不可避免地要受到各种外界因素变化的影响,如电源电压波动、噪声干扰等。

这些会破坏原来的平衡条件。

如果通过放大和反馈的不断循环,振荡器能产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。

振荡器在其平衡点须具有阻止振幅变化、相位变化的能力,因此:振幅平衡状态的稳定条件是:()0i iAo iU U T U ω=∂<∂;相位平衡状态的稳定条件是:()0oT o ωωϕωω=∂<∂3.2 图题3.2所示的电容反馈振荡电路中,1100pF C =,2300pF C =,50μH L =。

正弦波振荡器-PPT

正弦波振荡器-PPT

2
2001年9月--12月
6
导致振荡频率不稳定得原因(续2)
2、 影响环路 Q 值得因素
o
Q1 Q2
2
Q2
Q1
f01 f02
f0
f
▪ 器件输入、输出阻抗中得有功 部分。
▪ 负载电阻得变化。
▪ 回路损耗电阻尤其就是电抗元 件 得高频损耗,环路元器件得高频 响应等。
2
2001年9月--12月
7
导致振荡频率不稳定得原因(续3)
• 泛音晶体振荡器:利用石英谐振器得泛音振动特性对频率 实行控制得振荡器称为泛音晶体振荡器。这种振荡器可以将 振荡频率扩展到甚高频以至超高频频段。
2001年9月--12月
19
1、 并联型晶体振荡电路
(1)皮尔斯(C-B)电路
RFC
Rb1
C
B
VCC
Rb 2
E
C1
Cb Re C2
JT
C
C1
E
C2
B
Lq
• 温度隔离法:将关键电抗元件置于特制得恒温槽内,使槽内得 温度基本上不随外界环境温度得变化。
▪ 利用石英谐振器等固体谐振系统代替由电感、电容构成得电 磁谐振系统,她就是高稳频率源得一个重要形式。 由于这种谐振系统构成得振荡器,不但频率稳定性、频率准确 度高,而且体积、耗电均很小,因此,在许多领域已被广泛地 采用。
0
2 L C
▪ 等号右边得负号表示频率变化得方向与电抗变化得方向刚好 相反。如电感量加大,振荡频率将降低。
2001年9月--12月
9
主要稳频措施(续1)
▪ 温度补偿法和温度隔离法:引起电抗元件电感量和电容量 变化最明显得环境因素就是温度得变化。

正弦波振荡器

正弦波振荡器

正弦波振荡器振荡器——就是自动地将直流能量转换为具有一定波形参数的交流振荡信号的装臵。

和放大器一样也是能量转换器。

它与放大器的区别在于,不需要外加信号的激励,其输出信号的频率,幅度和波形仅仅由电路本身的参数决定。

应用范围:在发射机、接收机、测量仪器(信号发生器)、计算机、医疗、仪器乃至电子手表等许多方面振荡器都有着广泛的应用。

主要技术指标:1.振荡频率f及频率范围2.频率稳定度:调频广播和电视发射机要求:10-5~10-7左右标准信号源:10-6~10-12要实现与火星通讯:10-11要为金星定位:10-123.振荡的幅度和稳定度一、反馈式振荡器的工作原理1.反馈振荡器的组成反馈振荡器由放大器和反馈网络两大部分组成。

反馈型振荡器的原理框图如图4-1所示。

由图可见, 反馈型振荡器是由放大器和反馈网络组成的一个闭合环路, 放大器通常是以某种选频网络(如振荡回路)作负载, 是一调谐放大器, 反馈网络一般是由无源器件组成的线性网络。

自激振荡:没有外加输入信号,但输出端有一定幅度的电压.oU输出,即实现了自激振荡。

自激振荡只可在某一频率上产生,不能在其它频率上产生。

当接通电源时,回路内的各种电扰动信号经选频网络选频后,将其中某一频率的信号反馈到输入端,再经放大→反馈→放大→反馈的循环,该信号的幅度不断增大,振荡由小到大建立起来。

随着信号振幅的增大,放大器将进入非线性状态,增益下降,当反馈电压正好等于输入电压时,振荡幅度不再增大进入平衡状态。

2. 反馈式正弦振荡器分类LC 振荡器 RC 振荡器 石英晶体振荡器 3. 平衡和起振条件 (1)平衡条件平衡状态——反馈电压.f U 等于.i U 时,振荡器能维持等幅振荡,且有稳定的电压输出,称此时电路达到平衡状态看电路可知:电压放大系数...io U A U =反馈系数:..f .oU F U =达到平衡状态时:..f i U U =则平衡条件为:......f f ....i i1o o o o U U U UAF U U U U ∙∙===而根据数学中复数分析:..A F A F ϕϕ∠+=AF 可得出振幅平衡条件为:AF =1相位平衡条件为:A F A F ϕϕϕϕ∠++==+ 2(0123.......)n n π=、、、 (2)起振条件——为了振荡器振荡起来必需满足的条件由振荡的建立过程可知,为了使振荡器能够起振,起振之初反馈电压U f 与输入电压Ui 在相位上应同相(即为正反馈);在幅值上应要求U f >U i , 即:振幅起振条件:AF >1相位起振条件:A F A F ϕϕϕϕ∠++==+ 2(0123.......)n n π=、、、4. 主要性能指标(1)振荡器的平衡稳定条件平衡状态有稳定平衡和不稳定平衡,振荡器工作时要处于稳定平衡状态。

正弦波振荡器原理

正弦波振荡器原理

正弦波振荡器原理
正弦波振荡器是一种产生正弦波信号的电路或设备,它的工作原理基于反馈回路和谐振现象。

首先,正弦波振荡器通常由放大器和反馈网络组成。

放大器负责提供信号的放大,而反馈网络则将一部分输出信号返回输入端,从而使电路产生振荡。

具体来说,当正弦波振荡器开始工作时,放大器会放大输入信号。

将一部分放大后的信号通过反馈网络返回到放大器的输入端,与输入信号相叠加。

这就形成了一个反馈回路。

在反馈回路中,存在向前传输的放大路径和反馈传输的路径。

放大路径将输入信号进行放大,而反馈路径则将一部分输出信号返回输入端。

在理想情况下,放大路径和反馈路径的增益相等,从而使得回路保持稳定。

当反馈回路的增益满足特定的条件时,回路会产生谐振现象。

也就是说,输入信号和反馈信号在回路中互相加强,形成一个持续不衰减的振荡。

为了保持回路稳定,正弦波振荡器会引入一些稳定元件,如电容和电感。

这些元件能够提供适当的频率选择和谐振调节,以确保输出信号的频率稳定和准确。

总之,正弦波振荡器通过反馈回路和谐振现象来产生稳定的正弦波信号。

合适的放大器、反馈网络和稳定元件的组合能够实
现不同频率范围内的正弦波振荡器。

这在电子通信、信号处理、声音合成等许多应用领域中都有着广泛的应用。

第3章正弦波振荡电路.

第3章正弦波振荡电路.

.
.
F ()

V
.
f
V0
jM

r jL1
A( )
.
F
( )

1
jMgm 2L1C jrC

rC
Mg m j(1
2 L1C)
00:56
21
.
根据相位平衡条件,A() F() 的模值应该为实数,则可以得到:
1
1 2 L1C 0 振荡角频率o为: o = L1C
9
振荡平衡条件: A( j )F( j ) 1
它是维持振荡的基本条件,通常也称为振荡的平衡条件。
A ( j ) Ae j A
又由于

F
(
j
)

Fe
j F
所以振荡平衡条件的约束方程可以分为两个方程:
AF 1
A F 2n (n 0,1,2)
一、开环法
开环法是先假定将振荡环路在某一点处断开,计算它的开环传递函数
.
A() F()
,然后用巴克豪森准则确定平衡条件,从而确定电路的
振荡频率和起振条件。
00:56
18
开环法步骤
1.画出振荡电路的交流通路,判别其是否能构成正反馈电路,即 是否有可能满足振荡的相位平衡条件。
2.画出微变等效电路,并在某一点(一般取晶体管输入端)开环。
3.计算开环传递函数
.
A() F ()
4.利用相位平衡条件确定振荡角频率0。
5.利用o角频率下的幅度平衡条件,确定维持振荡幅度所需要的gm值gmo。
6.选择晶体管的gm使gm >gmo 。此时电路就能够满足起振条件。
00:56

正弦波振荡器的组成

正弦波振荡器的组成

正弦波振荡器的组成
正弦波振荡器主要由四部分组成:放大电路、选频网络、反馈网络和稳幅电路。

其中,放大电路用于提供足够的增益,以补偿振荡过程中的能量损失;选频网络用于选择特定的振荡频率,使振荡器只在该频率下产生振荡;反馈网络则将输出信号的一部分反馈到输入端,与输入信号叠加,形成正反馈,从而维持振荡;稳幅电路则用于控制振荡幅度,使其保持稳定。

正弦波振荡器可以分为两大类:一类是利用反馈原理构成的反馈振荡器,它是应用最广的一类振荡器;另一类是负阻振荡器,它将负阻抗元件直接连接到谐振回路中,利用负阻器件的负阻抗效应去抵消回路中的损耗,从而产生出正弦波振荡。

此外,正弦波振荡器还可以根据使用的元件不同,分为LC振荡器、RC 振荡器和由这三种元件组成的复合振荡器。

其中,LC振荡器由电感(L)和电容(C)组成,可以产生高频振荡;RC振荡器由电阻(R)和电容(C)
组成,可以产生低频振荡;而复合振荡器则结合了LC和RC振荡器的特点,可以在一定范围内调节振荡频率。

总之,正弦波振荡器是一种能够产生稳定正弦波信号的电子电路,其组成包括放大电路、选频网络、反馈网络和稳幅电路等部分,可以根据不同的应用需求选择不同的元件类型和电路结构。

正弦波振荡器的原理

正弦波振荡器的原理

正弦波振荡器的原理
正弦波振荡器是一种电路,用于产生稳定的正弦波信号。

它由几个基本组件构成,包括放大器、反馈电路和频率控制元件。

首先,放大器是振荡器的核心部分。

它负责放大输入信号的幅度,并提供足够的反馈信号以维持振荡器的振荡。

接下来是反馈电路。

它将一部分输出信号反馈到放大器的输入端,形成正反馈回路。

这样,输出信号经过放大后再次进入放大器,形成持续的振荡。

最后是频率控制元件,通常是由电容或电感构成的电路。

它的作用是控制振荡器的频率。

通过调整电容或电感的值,可以改变振荡器输出信号的频率。

当振荡器开始工作时,初始信号经过放大器放大后进入反馈电路。

由于正反馈的存在,输出信号不断增大,直到达到稳定的振荡状态。

振荡器的稳定性取决于正反馈回路的增益和频率控制元件的精确性。

需要注意的是,正弦波振荡器的工作受到许多因素的影响,例如温度、噪声和元件的非线性等。

因此,设计和优化正弦波振荡器需要考虑这些因素,并采取适当的措施来提高其性能和稳定性。

06.正弦波振荡

06.正弦波振荡

第三章 正弦波振荡器学习目标在电子线路中,正弦波是一种非常重要的波形,为什么会这么重要呢?原因在于电子线路中几乎所有的交流信号,不管它的形状如何怪异,都是由各种不同频率和不同强度的正弦波信号组成的,所以在电路中,需要正弦波信号的时候是非常多的,我们现在要给大家介绍的正弦波振荡器不仅可以用来做下面介绍的两种小玩意,更是不少电路的重要组成部分,希望读者能通过下面这些制作对正弦波振荡器有一个清楚的了解。

1、重点掌握串联LC 和并联LC 电路的频率特性,以及LC 电路的振荡器的工作原理,了解RC 振荡器的电路构成。

2、通过制作,理解正弦波振荡器的电路特点和调试方法。

第一节 正弦波振荡器的电路组成正弦波是一种与圆周运动关系很紧密的一种波形,这与荡秋千是非常相似的。

如图3-1所示,我们在秋千的漏斗里装上细沙,当这个小秋千在振动的时候拉动下面的纸看到一个正弦波了,而秋千就是一种振荡器,当然,这个正弦波的幅度会越来越小。

在电路中,也有与秋千相类似的振荡器,这就是LC 电路和RC 电路。

请读者注意了,这样的电路要振荡,不是让电路板随着通电而上下抖动(那样会将电路板损坏),而是在电感和电容内有一个大小和方向不断来回变化的电压或电流,这就是振荡——即是电流和电压的振荡。

为什么用一个电感和一个电容就会产生电流或电压的振荡呢?原因在于电容有电压不能突变的特性,而电感则有电流不能突变的特性。

如图3-2所示的电路,假如在电容上已经充有电,也就是说电容上存储有电压,于是电容上的电压就会形成—个流过电感的电流,但由于有碍于电感的脾气,这个电流不能突然产生,它只能逐渐地增大,并且随着这个过程的进行.电容上的电压会越来越低,当这个电压用完的时候,就不能再对电感进行放电了,于是电感上的电流不再增大了,但这个电流也不会因为电容上没电了就消失,这同样是电感的脾气所致。

图3-1 用一个沙漏斗的振荡来画出一个正弦波电感上的电流要逐渐减少,但这个逐渐减少的电流又会对电容形成充电,当这个电流减少为零时,电容上的电压也增加到了—个足够的值,于是电容又会对电感放电,于是周而复始,形成了电容对电感放电后,电感又对电容放电(皇帝轮流做,奴隶换着当),于是振荡图3-2 LC 电路中电压和电流的变化就形成了。

(完整版)高频电子线路杨霓清答案第三章-正弦波振荡器

(完整版)高频电子线路杨霓清答案第三章-正弦波振荡器

思考题与习题3.3 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么? 解:不正确。

因为满足起振条件和平衡条件后,振荡由小到大并达到平衡。

但当外界因素(温度、电源电压等)变化时,平衡条件受到破坏。

若不满足稳定条件,振荡起就不会回到平衡状态,最终导致停振。

3.4 分析图3.2.1(a)电路振荡频率不稳定的具体原因?解:电路振荡频率不稳定的具体原因是晶体管的极间电容与输入、输出阻抗的影响,电路的工作状态以及负载的变化,再加上互感耦合元件分布电容的存在,以及选频回路接在基极回路中,不利于及时滤除晶体管集电极输出的谐波电流成分,使电路的电磁干扰大,造成频率不稳定。

3.7 什么是振荡器的起振条件、平衡条件和稳定条件?各有什么物理意义?振荡器输出信号的振幅和频率分别是由什么条件决定的? 解:(1) 起振条件: 振幅起振条件 01A F >相位起振条件 2A F n ϕϕπ+=(n=0,1,…)(2)平衡条件:振幅平衡条件AF=1相位平衡条件 2A F n ϕϕπ+=(n=0,1,…)(3) 平衡的稳定条件:振幅平衡的稳定条件0AU ∂<∂ 相位平衡的稳定条件0Zϕω∂<∂振幅起振条件01A F >是表明振荡是增幅振荡,振幅由小增大,振荡能够建立起来。

振幅平衡条件AF=1是表明振荡是等幅振荡,振幅保持不变,处于平衡状态。

相位起振条件和相位平衡条件都是2A F n ϕϕπ+=(n=0,1,…),它表明反馈是正反馈,是构成反馈型振荡器的必要条件。

振幅平衡的稳定条件A ∂/0U ∂<0表示放大器的电压增益随振幅增大而减小,它能保证电路参数发生变化引起A 、F 变化时,电路能在新的条件下建立新的平衡,即振幅产生变化来保证AF=1。

相位平衡的稳定条件Z ϕ∂/ω∂<0表示振荡回路的相移Z ϕ随频率增大而减小是负斜率。

它能保证在振荡电路的参数发生变化时,能自动通过频率的变化来调整A F ϕϕ+=YF Z ϕϕ+=0,保证振荡电路处于正反馈。

实验三LC正弦波振荡器

实验三LC正弦波振荡器

压增益, 为反馈系数。
实验三 LC正弦波振荡器
相位起振条件为: o 2 s c L C 1 C 2 C 1 C 2 L g ig L 0
振幅起振条件为: gmgL (1C C 1 2 )gi(1o 2sc1LC 1)
g L R 1 L ( R L R L //R p ) ,g i R 1 i( R i R E //r e r e ) ,C 2 C 2 C b e
(1)改变CT电容,当分别接C9、C10、C11时,记录相应的频率值, 并填入表。
(2)改变CT电容,当分别接C9、C10、C11时,用示波器测量振荡 电压的峰峰值VP-P,并填入表
(3)比较起振前后工作点的变化,其中起振前 VBEQ=VBQ-VEQ 起振后为VBE0=VB0-VE0
实验三 LC正弦波振荡器
3、测试当C、 不同时,起振点振幅与工作电流IEQ的关系 (R=110k )
实验三 LC正弦波振荡器
3、测试当C不同时,起振点振幅与工作电流IEQ的关系 (R=110k )
实验三 LC正弦波振荡器
4、回路的Q值、改变晶体管的静态电流值,对振荡频率的影响 实验条件:C T 1 0 0 p F ,C C 1 0 0 1 2 0 0 、 I E Q 3 m A时。改变L两端的并 联电阻R,使其分别为 ,分别记录电路的振荡频率,并填入表 3-3。(注意:频率计后几位跳动变化的情况)
实验三 LC正弦波振荡器
六、实验报告
1、画出实验电路图及其交流等效电路。 2、整理实验数据、分析实验结果,比较LC振荡器与晶体振荡
器的优缺点。 3、以IEQ为横轴,输出电压峰值VP-P为纵轴,将不同 C C 值下
测得的三组数据,在同一坐标纸上绘制成曲线。 4、回答思考题1、2、5。

正弦波振荡器工作原理

正弦波振荡器工作原理

正弦波振荡器工作原理
正弦波振荡器是一种能够产生连续的正弦波信号的电路或装置。

其工作原理主要涉及负反馈和多级放大。

首先,正弦波振荡器需要一个放大器来提供正反馈。

放大器输入一个小的信号,经过放大后得到一个较大的信号,然后再经过反馈回到放大器的输入端。

这个反馈信号会与输入信号相加,形成一个增强的信号。

其次,放大器需要一个频率选择网络。

频率选择网络可以选择特定频率范围内的信号进行放大,而抑制其他频率的信号。

这个频率选择网络由电容和电感组成,被称为谐振电路。

谐振电路能够产生一个特定的频率,使其成为正弦波振荡器的频率。

最后,通过不断调整放大器增益和频率选择网络的参数,正弦波振荡器能够在稳定的条件下产生连续的正弦波信号。

当输入的幅度大于输出信号的放大倍数时,放大器会把它抑制回到指定的幅度,使信号保持稳定。

总结起来,正弦波振荡器的工作原理是通过负反馈和多级放大实现连续的正弦波信号输出。

频率选择网络能够选择特定频率范围内的信号进行放大,而抑制其他频率的信号。

不断调整放大器增益和频率选择网络的参数,可以使正弦波振荡器产生稳定的正弦波信号。

正弦波振荡电路

正弦波振荡电路
上-页 下-页 返回
第二节 几种典型正弦波振荡电路
由于RC串并联网络在f=f0时的传输系数F=1/3,因此,要 求放大器的总电压增益Au应大于3,这对于集成运放组成的 同相放大器来说是很容易满足的。
2.RC移相式振荡电路 RC移相式振荡电路如图3-11所示,图中反馈网络由三节
RC移相电路构成。 由于集成运算放大器的相移为180°,为满足振荡的相位平
返回
图3-13石英晶体的符号和等效电路
返回
图3-16串联型石英晶体振荡电路
返回
石英晶体振荡器可以归结为两类:一类称为并联型;另一类 称为串联型。前者的振荡频率接近于fP,后者的振荡频率接 近于fs分别介绍如下。
图3 -16为串联型石英晶体振荡电路。 当电路中的石英晶体T作于串联谐振频率时,晶体呈现的阻
抗最小,且为纯电阻性,因此,电路的正反馈电压幅度最大, 且相移φF=0。 VD1采用共基极接法,VD2为射极输出器, VD1、VD2组成的放大电路的相移φA=0 。所以整个电路满 足振荡的相位平衡条件。至于偏离,的其他信号电压,晶体 的等效阻抗增大,且φF=0 ≠0,所以都不满足振荡条件。 由此可见,这个电路只能在这个频率上自激振荡。
衡条件,要求反馈网络对某一频率的信号再相移180°,图 3 -11中RC构成超前相移网络。因一节RC电路的最大相移 为90°,不能满足振荡的相位条件;两节RC电路的最大相 移可以达到180°,但当相移等于180°时,输出电压已接 近于零,故不能满足起振的幅度条件。
上-页 下-页 返回
第二节 几种典型正弦波振荡电路
(2) RC桥式振荡电路RC桥式振荡电路如图3-10所示。 在图3 -10中,集成运放组成一个同相放大器,它的输出电
压uo作为RC串并联网络的输入,而将RC串并联网络的输出 电压作为放大器的输入电压,当f=f0时,RC串并联网络的 相位移φA =0°,放大器是同相放大器φF=0°,电路的总 相位移φA+ φF=0°,满足相位平衡条件,而对于其他频率 的信号,RC串并联网络的相位移≠0°,不满足相位平衡条 件。

第3章 正弦波振荡器

第3章  正弦波振荡器

)
AF = 1 = n = 0,1,2, L ϕ A + ϕ F = 2 nπ
分别称为振幅平衡条件和相位平衡条件。
1. 振幅平衡条件
Uo
U0 U f U f AF = . = =1 Ui U0 Ui U f = Ui
Uf
0
Uo
θ>90° θ<90°
放大特性
A B
Ui
① ②
F 0 Uo
0
C Ui=Uf
ω02 < ω g < ω01
图3.9 多回路三点式振荡器组成
ωg < M min (ω01 , ω02 )
实际上电抗元件总有电阻损耗;管子各极间存在极间 阻抗,这些都影响振荡器的工作状态。工程中,振荡器工 作频率ωg近似等于回路谐振角频率ω0。
例3.1 在右图所示振 荡器交流等效电路中, 三 个LC并联回路的谐振频 率分别是f01, f02, f03, 试问 f01、 f02、f03满足什么 条件时该振荡器能正常工 作? 解: 只要满足三点式组成 法则, 该振荡器就能正常 工作。
(6)利用自偏置保证振荡器能自行起振,并使放大器由甲 类工作状态转换成丙类工作状态。 根据振荡条件,振荡器应包括放大器、选频网络、反馈 网络。 放大器采用有源器件,如晶体三极管、场效应管、差分 放大器、运算放大器等。 选频网络可用LC并联谐振回路、RC选频网络、晶体滤波 LC RC 器等。 反馈网络可以是RC移相网络、电容分压网络、电感分压 网络、变压器耦合反馈网络或电阻分压网络等。
V X1 C2 X3 L (a) X2 C1 L2 X1 X3
V L1 X2 C (b)
反馈网络是由电容元件完成的, 称为电容反馈振荡器, 也称 为考必兹(Colpitts)振荡器。图(b)称为电感反馈振荡器,也 称哈特莱(Hartley)振荡器。

第三章正弦波振荡器ppt课件

第三章正弦波振荡器ppt课件
2、 相位平衡的稳定条件
相位平衡的稳定条件为:
Байду номын сангаас
T (osc )
T ()
0SC
0
' osc
osc
()arctanQ0 2 0
——当相位平衡条件遭到破坏时,线路本身 重新建立起相位平衡点的条件。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
A
1
V iA
Vi
图3-1-2 满足起振和平衡条件时的环路增益
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
3.1.2 稳定条件
平衡状态有稳定平衡和不稳定平衡,振荡器工作 时要处于稳定平衡状态。
如果振荡器在各种不稳定因素作用下,能在原平 衡点附近达到新的平衡,而一旦排除了不稳定因素 ,振荡器又能自动回到原平衡状态,则称这种平衡 状态是稳定的。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
互感耦合振荡器
根据振荡回路(相移网络)与三极管不同电极的连 接点分为集电极调谐型、发射极调谐型和基极调谐型。
+(+) - -
三种互感耦合振荡器
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
X3异性
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.4
振荡器的频率稳定问题
一、振荡器的频率稳定度
• 绝对频率稳定度
实际振荡频率与标准频率的偏差 f osc f f osc • 相对频率稳定度 在一定条件下,绝对频率稳定度与标准频率之间的比值 (一定的时间范围,或一定的温度,或电压变化范围)
f osc f osc
长期频稳度 —— 一天以上 短期频稳度 —— 一天以内 瞬时频稳度 —— 秒级频稳度
• 考虑输入、输出电容Ci、Co
(或结电容Cbe、Cce)
CiCo
改进电路——克拉泼电路、西勒电路
C3
C3
克拉泼电路
振荡器的频率
其中
osc
1 LC
1 1 1 1 C C3 C1 C0 C 2 Ci
选 C1 >> C3,C2 >> C3 时, C C3 1 osc (与 C0 和 Ci 无关) • 振荡频率 LC 3 • 不稳定电容对振荡频率的影响减小,且C3越小,影响越小。 但:输出电阻折算到c-e间的值减小
基频等效电路
符号
1 Q rq
Lq Cq
外电路对晶体电特性的影响小,频稳度高
二、石英晶体的阻抗特性
• 两个谐振频率 串联谐振频率
s
1 Lq C q
(Lq、Cq组成)
并联谐振频率
p
1 CqC0 Lq Cq C0
( Lq、Cq与Co组成)
• 两谐振频率相隔很近
(Co >> Cq)
• 石英晶体的电抗特性
gm n ' 1 2 g L n gi
电压分压比
Av ( o )k fv 1
一般取 IEQ = 1 ~ 5 mA
C1 n ' C1 C2
fT > 5fosc
RL > 1k n 适中 一般能满足起振条件
电感三点式
振 荡 电 路
等效电路
电容三点式
电感三点式
三点式相位判据
射同集(基)反
振荡频率?
晶体作用:短路元件
• 振荡频率等于石英谐振器的串联频率
频稳度一般指短期频稳度
二、造成频率不稳定的因素
参考P138 频稳度定性分析
• LC回路参数的不稳定 (温度变化、机械振动) • 晶体管参数的不稳定 (温度、电源变化,引起静态工作点、
晶体管结电容变化)
三、稳频措施 • • • • • • 减小温度的影响 稳定电源电压 减小负载的影响 晶体管与回路之间的连接采用松耦合 提高回路的品质因素Q 屏蔽、远离热源
环路增益减小
'' L 2 2 ' L
停振
' RL ( RL // Reo )
C3 ' R n R ( )2 RL C3 C1,2
C1、C2愈大愈好?
'' 2 ' 负载接在L两端,折合到ce端的电阻为:RL n RL
接入系数(分压比) n C2 C3
C 2 C3
( C1
C 2 C3 ) C 2 C3
振荡器分类
按原理
• 反馈式振荡器
• 负阻式振荡器
按波形
• 正弦波振荡器
• 非正弦波振荡器
RC振荡器
LC振荡器 石英晶体振荡器
微波电子管 微波半导体器件
各频段的振荡器
本章主要讨论正弦波振荡器的基本原理,并对典型 振荡电路进行分析。
§3.2
反馈振荡器的工作原理
(注意同名端)



Vi

主网络
Vo
-
A gRL1( c )(1 cosc ) A0 1( c )
Ao为小信号线性放大倍数
乙类:
丙类:
1( 90 ) 0.5
o
1( c ) 0.3
T=Akf 随输入电压振幅增大而下降
§3.3 LC正弦波振荡器
一、三点式振荡电路 定义 LC回路引出的三个端点,分别同晶体管 的三个电极相连的振荡器 • 电容三点式电路 分类
Ri 1 F Rs F
Ri 1 Rs F
F大,等效负载电阻减小,放大倍数下降,不易起振; F过大会使振荡波形的非线性失真严重。因此通常F选 得较小(0.01-0.5)。
或 起振条件
1 ' g m g L ng i n
gm
I EQ 26m V
gm为三极管跨导,gL’为负载等效到振荡回路的电导, gi为振荡器输入电导,n为反馈系数。
石英晶体的电抗特性
( rq=0)
三、晶体振荡电路
(根据晶体在电路中的作用分类)
并联晶振电路
分类
• 工作在晶体并联谐振频率附近 • 晶体等效为电感
串联晶振电路
• 工作在晶体串联谐振频率上
• 晶体用作高选择性的短路元件
• 石英谐振器决不能工作于容性区原因
如果振荡器电路是设计在晶体呈现的电容性时产生振荡, 那么,由于晶体在静止时就是呈现电容性的,所以这时 就无法判断晶体是否已经在工作,从而就不能保证频率 稳定作用。
第三章 §3.1 概述
正弦波振荡器
§3.2 反馈振荡器的工作原理 §3.3 LC正弦波振荡器 §3.4 振荡器的频率稳定问题
§3.5 石英晶体振荡器
§3.6 RC正弦波振荡器
§3.7 特殊振荡现象
§3.1 振荡器
概述
在没有外加信号作用下的一种自动将直流电源 的能量变换为一定波形的交变振荡能量的装置
Vc1 Vb
.
.

I c1 RL Vb
.
.
集电极电流
ic gUbm (cost cos )
余弦脉冲电流的幅度 (当 t 时)
I c max gU bm ( 1 cos )
I c1m 1 ( ) I c max
I c1m 1I c max gVbm1( c )( 1 cos c )
§3.5 石英晶பைடு நூலகம்振荡器
以石英晶体谐振器取代LC振荡器中谐振回路的元件所组成的 正弦波振荡器,频稳度可达10-10 到10-11 数量级。
一、石英晶体的压电效应及等效电路 • 硅石的一种,化学成分SiO2 • 切下薄片的两个对应表面上用 喷涂金属的方法装上一对金属 极板——构成石英晶体振荡元 件(如右图) • 具有正、反压电效应 正:机械力作用 反:加不同极性电压 异号电荷 机械变形
两种三点式振荡电路比较
电容三点式
• 振荡波形更接近正弦波
(反馈电压取自电容,
电感三点式
• 振荡波形不好
(反馈电压取自电感,
而电容对高次谐波呈低阻抗,
滤除谐波电流能力强)
而电感对高次谐波呈高阻抗,
不易滤去高次谐波)
• 不便作可变频率振荡器
(用了两个电容)
• 可以作可变频率振荡器
(只用一只电容调频率)
等效电路
振荡频率等于 LC谐振 频率时,Uce与Ube (矢量)反相,电流I 滞后Uce90度。反馈电 压Uf滞后电流I 90度, 故Uf与Ube同相,满足 相位平衡条件。
+ -
Uf
L
满足起振条件?
分析起振条件
放大倍数K、反馈系数F,KF>1?
Rs、Co为晶体管输出电阻、电容;Ri、Ci为晶体 管输入电阻、电容;Ro为回路谐振电阻。
比 较
克拉泼电路
西勒电路
C3
• LC3串联代替原来的 L • C1 >> C3 ,C2 >> C3 • 振荡频率主要由 L、C3 决定 (不受输入、输出电容影响) • 幅度不平稳
• 克拉泼电路中增加C(与L并联) • C1 >> C3 ,C2 >> C3 • 振荡频率主要由 L、C+C3 决定 • n和C 无关(调C改变频率) 幅度比较稳定
( n 0 ,1,2, )
(开环增益)
(在谐振频率点,总相移360度;其他频率,回路失谐, 总相移不是360度,不能振荡)
二、振荡的建立和起振条件
• 振荡器起振的初始激励
振荡器闭合电源后,各种电扰动
(如晶体管电流的突然增长、电路的热噪声等,频谱很宽)
• 建立振荡
LC谐振回路的选频作用—— 谐振频率的电压分量被 选出,幅度微小;存在正反馈,经反馈和放大的循环 过程,建立了振荡
反馈系数F等于Ueb与Uce之比,忽略电阻对电容的旁路作用, 可得: C1 Co 把各元件折合到c-e端 F C 2 Ci
放大倍数为
K
R
Ri
为电流放大倍数
c-e间总电阻 R

Ri 1 1 ( 2 ) F F Rs n Ro
如果 nRo Rs 时,得
F较小时,近似写为
• 起振条件
KF > 1
(且正反馈)
振荡的建立过程
Ube较小
Ube增大
起振条件:KF >1 Ube的幅度增加,振 荡电压增加,但不会 无止境增加。因为振 荡幅度增加,晶体管 出现饱和、截止现象, ic不是正弦波,但由 于谐振回路的选频性, 选出它的基频分量, uce仍是正弦形状。 uce的幅度基本不再增 大,振荡建立过程结 束,波形稳定下来。
(L两端的电阻)
因为C1>> C3, C2>> C3,分压比可近似为
n
C3 C1
克拉泼电路可以提高频率稳定度,但存在以下缺点: ' 1. C1、C2过大,则振荡幅度太低(n小, R'L 小)。 2. 减小C来提高fo时,振荡幅度显著下降;但 C减到一定 程度时,可能停振。因此,限制了fo的提高。 3. 用作频率可调振荡器时,振荡幅度随频率增加而下降, 在波段范围内幅度不稳定。
相关文档
最新文档