第三章 正弦波振荡器习题解答
正弦波振荡器振荡电路分析
正弦波振荡器分析1.振荡器的振荡特性和相应特性如如下面图,试分析该振荡器的建立过程,并判定A、B两平衡点是否稳定。
解:依据振荡器的平衡稳定条件能够判定出A点是稳定平衡点,B点是不稳定平衡点。
因此,起始输进信号必须大于U iB振荡器才有可能起振。
图9.10 图2.具有自偏效应的相应振荡器如如下面图,从起振到平衡过程u BE波形如如下面图,试画出相应的i C和I c0波形。
解:相应的和波形如如下面图。
图9.12 图3.振荡电路如如下面图,试分析以下现象振荡器工作是否正常:〔1〕图中A点断开,振荡停振,用直流电压表测得V B=3V,V E=。
接通A点,振荡器有输出,测得直流电压V B=,V E=。
〔2〕振荡器振荡时,用示波器测得B点为余弦波,且E点波形为一余弦脉冲。
解:〔1〕A点断开,图示电路变为小信号谐振放大器,因此,用直流电压表测得V=3V,V E=。
当A点接通时,电路振荡,由图所示的振荡器从起振到平衡的过程B中能够瞧出,具有自偏效应的相应振荡器的偏置电压u BEQ,从起振时的大于零,等于零,直到平衡时的小于零〔也能够不小于零,但一定比停振时的u BEQ小〕,因此,测得直流电压V B=,V E=是正常的,讲明电路已振荡。
〔2〕是正常的,因为,振荡器振荡时,u be为余弦波,而i c或i e的波形为余弦脉冲,所示E点波形为一余弦脉冲。
4.试咨询仅用一只三用表,如何判定电路是否振荡?解:由上一题分析可知,通过测试三极管的偏置电压u BEQ即可判定电路是否起振。
短路谐振电感,令电路停振,要是三极管的静态偏置电压u BEQ增大,讲明电路差不多振荡,否那么电路未振荡。
5.一相应振荡器,假设将其静态偏置电压移至略小于导通电压处,试指出接通电源后应采取什么措施才能产生正弦波振荡,什么缘故?解:必须在基极加一个起始鼓舞信号,使电路起振,否那么,电路可不能振荡。
6.振荡电路如如下面图,试画出该电路的交流等效电路,标出变压器同名端位置;讲明该电路属于什么类型的振荡电路,有什么优点。
振荡器习题及答案
振荡器习题及答案振荡器习题及答案振荡器是电子电路中常见的一种设备,用于产生稳定的信号波形。
在电子学的学习中,振荡器是一个重要的概念,也是一个常见的习题。
本文将介绍一些关于振荡器的习题,并提供相应的答案,希望能够帮助读者更好地理解和应用振荡器的原理。
习题一:简单振荡器电路考虑一个简单的振荡器电路,由一个放大器和一个反馈电路组成。
放大器的增益为A,反馈电路的增益为β。
假设放大器的输入信号为Vin,输出信号为Vout。
请回答以下问题:1. 当输入信号为零时,输出信号会如何变化?2. 当输入信号为正弦波时,输出信号会如何变化?3. 当输入信号为方波时,输出信号会如何变化?答案:1. 当输入信号为零时,输出信号会在一定的延迟后开始出现,并逐渐增大,直到达到稳定状态。
这是因为反馈电路会将一部分输出信号反馈到放大器的输入端,形成正反馈,从而使输出信号持续增大。
2. 当输入信号为正弦波时,输出信号会在一定的延迟后开始出现,并形成稳定的正弦波形。
这是因为反馈电路会将一部分输出信号反馈到放大器的输入端,使得输出信号与输入信号同频率,并且幅度逐渐增大,直到达到稳定状态。
3. 当输入信号为方波时,输出信号会出现频率较高的谐波成分,并且幅度逐渐减小,直到达到稳定状态。
这是因为方波信号包含多个频率成分,反馈电路会将这些频率成分放大并输出,但是由于放大器的带宽限制,高频成分的增益较低,因此输出信号的幅度会逐渐减小。
习题二:振荡器的稳定条件考虑一个RC振荡器电路,由一个放大器和一个RC网络组成。
假设放大器的增益为A,RC网络的时间常数为τ。
请回答以下问题:1. 当RC网络的时间常数τ增大时,振荡器的频率会如何变化?2. 当放大器的增益A增大时,振荡器的频率会如何变化?3. 当RC网络的时间常数τ和放大器的增益A同时增大时,振荡器的频率会如何变化?答案:1. 当RC网络的时间常数τ增大时,振荡器的频率会减小。
这是因为时间常数τ决定了RC网络的响应速度,当时间常数增大时,RC网络的响应速度变慢,从而使得振荡器的频率减小。
高频电子电路参考答案
第1章 高频小信号谐振放大器给定串联谐振回路的0 1.5MHz f =,0100pF C =,谐振时电阻5R =Ω,试求0Q 和0L 。
又若信号源电压振幅1mV ms U =,求谐振时回路中的电流0I 以及回路上的电感电压振幅Lom U 和电容电压振幅Com U 。
解:(1)串联谐振回路的品质因数为061200112122 1.510100105Q C R ωπ-==≈⨯⨯⨯⨯⨯根据0f =40212221200111.125810(H)113μH (2)100104 1.510L C f ππ--==≈⨯=⨯⨯⨯⨯ (2)谐振时回路中的电流为010.2(mA)5ms U I R === 回路上的电感电压振幅为02121212(mV)Lom ms U Q U ==⨯=回路上的电容电压振幅为02121212(mV)Com ms U Q U =-=-⨯=-在图题所示电路中,信号源频率01MHz f =,信号源电压振幅0.1V ms U =,回路空载Q 值为100,r 是回路损耗电阻。
将1-1端短路,电容C 调至100pF 时回路谐振。
如将1-1端开路后再串接一阻抗x Z (由电阻x R 与电容x C 串联),则回路失谐;C 调至200pF 时重新谐振,这时回路有载Q 值为50。
试求电感L 、未知阻抗x Z 。
图题1.2xZ u解:(1)空载时的电路图如图(a)所示。
(a) 空载时的电路 (b)有载时的电路u u根据0f =42122120112.53310(H)253μH (2)10010410L C f ππ--==≈⨯=⨯⨯⨯ 根据00011L Q C r rωω==有: 6120101115.92()21010010100r C Q ωπ-==≈Ω⨯⨯⨯⨯(2)有载时的电路图如图(b)所示。
空载时,1100pF C C ==时回路谐振,则0f =00100LQ rω==;有载时,2200pF C C ==时回路谐振,则0f =050L xLQ r R ω==+。
正弦波振荡器习题课
正弦波振荡器习题课一、主要内容提要1. 振荡器的振荡的一般条件 起振条件:,1>FA )3,2,1(2⋅⋅⋅⋅⋅⋅==+n n f A πϕϕ 平衡条件: ,1=FA )3,2,1(2⋅⋅⋅⋅⋅⋅==+n n f A πϕϕ2. LC 振荡器⑴变压器反馈式——集电极调谐型(调C )、基极调谐型(调B )、发射极调谐型(调E ) (2)三端式(三点式)——①电容三端式:特点——波形好,用在频率高的场合,不易调节频率(改变C 时,同时会改变反馈系数),②改进的电容三端式(考必玆电路)——在电感支路串联一个容量远小于原电路电容量的小电容,特点是:解决了原电容三点式电路,频率调节不便;但存在调节C3时易改变电路增益,所以频率调节范围(覆盖系数)不大。
③西勒电容三端式——在考必玆电路基础上,在电感两端并联一个小容量电容,解决了考必玆电路频率调节范围(覆盖系数)不大的问题。
④电感三端式:特点——波形不好,用在频率不太高的场合,频率调节方便(调节电容量,不会改变反馈系数。
3. 石英晶体振荡器 (1) 特点:频率稳定度高(2) 等效电路:有两个谐振频率——fs 和fp (3) 实际电路——串联型和并联型 4. RC 振荡器是低频的振荡器,分为“桥式”和“相移式”两种。
“桥式”电路的组成——正反馈:RC 串并联网络,负反馈:电压串联负反馈(电阻有一热敏电阻——限幅),同相放大器 振荡频率: 二、典型例题解析1.画出电容三点式振荡器电路图,说明它的应用特性。
2.画出电感三点式振荡器电路图,并说明它的应用特征。
3.分析下图所示电路的工作原理。
RCf o π21=4.分析下图所示电路的工作原理。
5.在下图所示收音机变频器电路中,那些元件构成振荡器电路?属于那种振荡器类型?CR B2至中放收音机变频器电路三、课后习题解析。
习题答案第三章
第三章 正弦交流电路习题参考答案1.已知t e 314sin 2220=V ,试问e 的最大值、有效值、角频率、频率和初相位各是多少?解:e 的最大值 V E m 3112220==有效值 E=220V角频率 ω=314( rad/s)频率和初相位 f = ω/2л = 50Hz 初相位为零2.已知某正弦电流的有效值是10A ,频率为50Hz 。
初相为30°,(1)写出它的瞬时表达式,并画出其波形图;(2)求该正弦电流在t=0.0025s 时的相位和瞬时值。
解:(1)A t i )30314sin(210︒+= (2)当t=0.0025s 时相位角 ︒=⨯⨯=452/3600025.0314πφ瞬时值 A i 1022210sin 210=⨯==φ 3.已知)30314sin(2101︒+=t i A ,)30314sin(10︒-=t i A ,画出这个电流的波形图,哪个电流超前?它们的相位差是多少?若用万用表测量这两个电流,试问读数各为多少?解:i 超前60°。
用万用表测量时,i 1=10A,i =7.07A4.已知)30314sin(210︒+=t u V ,t i 314sin 25=A ,求u 、i 的相量并画出相量图。
解: u 的相量为︒∠=3010UV i 的相量为︒∠=05IA 5.指出并改正下列各式的错误1)︒∠=4520u V 2))60sin(10︒+=t Iω A 3)︒∠=120220E V 4))30sin(5︒-=t I ω A解:1)V U︒∠=4520 2)A t i )60sin(10︒+=ω3)V E︒∠=120220 4)A t i )30sin(5︒-=ω 6.当频率提高时,R 、X L 、X C 如何变化?解:R 与频率无关。
X L =ωL ,频率提高时,X L 成比例提高。
X C =1/ωC ,频率提高时,X C 成反比例下降。
正弦波振荡习题
在LC正弦波振荡电路中,不用通用型集成运放作放大电路的定工作在非线性区。( )
一般情况下,在电压比较器中,集成运放不是工作在开环状态,就是仅仅引入了正反馈。( )
在输入电压从足够低逐渐增大到足够高的过程中,单限比较器和滞回比较器的输出电压均只跃变一次。( )
8.4 选择下面一个答案填入空内,只需填入A、B或C。 A.容性 B.阻性 C.感性 (1)LC并联网络在谐振时呈 ,在信号频率大于谐振频率时呈 ,在信号频率小于谐振频率时呈 。 (2)当信号频率等于石英晶体的串联谐振频率或并联谐振频率时,石英晶体呈 ;当信号频率在石英晶体的串联谐振频率和并联谐振频率之间时,石英晶体呈 ;其余情况下石英晶体呈 。 (3)当信号频率f=f0时,RC串并联网络呈 解:(1)B A C (2)B C A (3)B
R3
R3
R2
R1
R2
04
在RC桥式正弦波振荡电路中,若RC串并联选频网络中的电阻均为R,电容均为C,则其振荡频率f0=1/RC。( )
负反馈放大电路不可能产生自激振荡。( )
因为RC串并联选频网络作为反馈网络时的φF=0°,单管共集放大电路的φA=0°,满足正弦波振荡的相位条件φA+φF=2nπ(n为整数),故合理连接它们可以构成正弦波振荡电路。( )
判断如题6图所示电路能否振荡,若不能振荡请修正使之能够振荡,并写出其振荡频率的表达式。 题6图
(12分)试分析如下图示电路能否产生正弦波振荡,说明其原因,不能振荡试修改,能振荡写出振荡电路的振荡频率
五、题给出电路如下,运放均视为理想运放,推导电压增益为
题5图
∞?
∞
1
A
2
A
∞
《电工与电子技术》考试【 正弦波振荡电路】题目类型【问答题】难度【易】
为实现下述要求,试问应分别选择何种类型的振荡器?⑴产生100Hz~20kHz的正弦波信号。⑵产生200kHz~1MHz的正弦波信号。⑶产生500kHz的正弦波信号,且要求高的频率稳定度。
答案:
⑴采用RC振荡器;⑵采用LC振荡器;⑶采用石英晶体振荡器。
问题【7】删除修改
答案:
问题【8】删除修改
答案:
问题【9】删除修改
自激正弦波振荡器输出电压的幅值(振幅)会不会无限增大?为什么?
答案:
不会,因为振荡器中的三极管是非线性器件,振荡器的放大倍数Au是非线性变化的,随着输入ui的增Au减小,AF减小,抑制了输出幅值的进一步增大,进而达到某一数值稳定下来。
问题【10】删除修改
自激正弦波振荡器与交流放大器有什么区别?
答案:
⑴采用RC振荡器;⑵采用LC振荡器;⑶采用石英晶体振荡器。
答案:
自激正弦波振荡器:⑴是产生一定频率和幅值的正弦波信号的装置;⑵是不需要外加输入信号而能产生一定振幅和一定频率的正弦波信号;⑶是一个完整的正弦波振荡器,由放大电路、正反馈电路、选频电路和稳幅环节组成。交流放大电路:⑴是放大交流信号的装置;⑵是必须外加输入信号才能有信号输出;⑶是很少采用正反馈(即放大器输入端)断开。
问题【11】删除修改
为了实现下述各要求,试问应分别选择何种类型的振荡器?⑴产生100Hz~20kHz的正弦波信号;⑵产生200kHz~1MHz的正弦波信号;⑶产生500kHz的正弦波信号,且要求高的频率稳定度。
答案:
⑴采用RC振荡器;⑵采用LC振荡器;⑶采用石英晶体振荡器。
问题【12】删除修改
为了实现下述各要求,试问应分别选择何种类型的振荡器?⑴产生100Hz~20kHz的正弦波信号;⑵产生200kHz~1MHz的正弦波信号;⑶产生500kHz的正弦波信号,且要求高的频率稳定度。
第三章 电路习题答案
题解图 3.8
3.9 在题图 3.9 所示电路中,已知 R=100Ω,L=31.8 mH,C=318μF。试求电源的频率和 电压分别为 50Hz、100V 和 1000Hz、100V 两种情况下,开关 S 合向 a、b、c 位置时电流表 A 的读数,并计算各元件中的有功功率和无功功率。
A
+
R
L
C
u
b
63
3
•
•
•
•
I1 = 12/ 30° A, I 2 = 12/− 30° A, I3 = 12/150° A, I 4 = 12/− 150° A,
i1 = 12 2 sin(314t + 30°) A, i2 = 12 2 sin(314t − 30°) A,
i3 = 12 2 sin(314t + 150°) A, i4 = 12 2 sin(314t −150°) A
=ω 2π
= 50Hz , I1m
= 50
2 A, I1 = 50 A,ψ i1 = 30° ,
I 2m = 25 2 A, I 2 = 25 A,ψ i2 = −60° ,ϕ = ψ i1 −ψ i2 = 30° − (−60°) = 90° , i1 超前
于 i2 90°。
i/A
50 2
i1
25 2
S 断开时
Z = R + j( X L − X C ) = R = 10Ω
I = U = 220 = 22 A, Z 10
U R = RI = 10 × 22 = 220 V
U L = X L I = 10 × 22 = 220 V,
U C = X C I = 10 × 22 = 220 V
第三章习题解答
•
1) I1 = j10 A;
•
2) I2 = (4 + j2) A;
• ••
3) I = I1 + I2 。 解:
•
由: I1 = j10 = 10∠90o A;
i1 = 10 2 cos(200t + 90o ) A;
•
由: I2 = (4 + j2) = 20∠26.57o A;
i2 = 42 + 22 2 cos(200t + 26.57o ) = 2 10 cos(200t + 26.57o ) A;
4)由: u = −33.8sin(2πt − 28.6o ) = 33.8 cos(2πt − 28.6o + 90o ) = 33.8 cos(2πt + 61.4o ) V;
i = 2.5 cos(2πt − 30o ) A,得: u 超前 i 91.4o 。 3、将下列每一个正弦量变换成相量形式,并画出相量图。 1) u1 = 50cos(600t −110o ) V; 2) u2 = 30cos(600t + 30o ) V; 3) u = u1 + u2 。
•
解:由已知得:U = 220∠20o V ,ω = 250rad / s
X L = ωL = 250 ×1 = 250Ω
X C1
=1 ωC
=
1 250 × 20 ×10−6
= 200Ω , X C2
=1 ωC
=
1 250 × 80 ×10−6
= 50Ω
j( X L − X C1 − X C1 ) = j(250 − 200 − 50) = j0Ω
X m = 58.31
(完整版)高频电子线路杨霓清答案第三章-正弦波振荡器
思考题与习题3.3 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么? 解:不正确。
因为满足起振条件和平衡条件后,振荡由小到大并达到平衡。
但当外界因素(温度、电源电压等)变化时,平衡条件受到破坏。
若不满足稳定条件,振荡起就不会回到平衡状态,最终导致停振。
3.4 分析图3.2.1(a)电路振荡频率不稳定的具体原因?解:电路振荡频率不稳定的具体原因是晶体管的极间电容与输入、输出阻抗的影响,电路的工作状态以及负载的变化,再加上互感耦合元件分布电容的存在,以及选频回路接在基极回路中,不利于及时滤除晶体管集电极输出的谐波电流成分,使电路的电磁干扰大,造成频率不稳定。
3.7 什么是振荡器的起振条件、平衡条件和稳定条件?各有什么物理意义?振荡器输出信号的振幅和频率分别是由什么条件决定的? 解:(1) 起振条件: 振幅起振条件 01A F >相位起振条件 2A F n ϕϕπ+=(n=0,1,…)(2)平衡条件:振幅平衡条件AF=1相位平衡条件 2A F n ϕϕπ+=(n=0,1,…)(3) 平衡的稳定条件:振幅平衡的稳定条件0AU ∂<∂ 相位平衡的稳定条件0Zϕω∂<∂振幅起振条件01A F >是表明振荡是增幅振荡,振幅由小增大,振荡能够建立起来。
振幅平衡条件AF=1是表明振荡是等幅振荡,振幅保持不变,处于平衡状态。
相位起振条件和相位平衡条件都是2A F n ϕϕπ+=(n=0,1,…),它表明反馈是正反馈,是构成反馈型振荡器的必要条件。
振幅平衡的稳定条件A ∂/0U ∂<0表示放大器的电压增益随振幅增大而减小,它能保证电路参数发生变化引起A 、F 变化时,电路能在新的条件下建立新的平衡,即振幅产生变化来保证AF=1。
相位平衡的稳定条件Z ϕ∂/ω∂<0表示振荡回路的相移Z ϕ随频率增大而减小是负斜率。
它能保证在振荡电路的参数发生变化时,能自动通过频率的变化来调整A F ϕϕ+=YF Z ϕϕ+=0,保证振荡电路处于正反馈。
第3章正弦波振荡器练习
第3章正弦波振荡器练习1.反馈型振荡器是由(主网络放大器/放大网络)和(反馈网络/选频网络)组成的一个闭合环路,构成能量补偿部分和选频线性网络。
2.电容三点式振荡电路输出的谐波成分比电感三点式的大,因此波形较差。
(╳)3.正弦波谐振电路1)LC三点式振荡器属于正反馈放大器(√)2)克拉泼电路是电感三点式的一种改进形式(╳)3)在串联型晶体振荡器中,石英晶体相当于一个特殊的高Q电感元件。
(╳)4)LC三点式振荡器的幅度稳定条件是由并联谐振回路的幅频特性决定的(╳)4.晶体管LC正弦波振荡器采用的偏置电路大都是:(C)A、固定偏置B、自给偏置C、固定与自给的混合偏置D、不需要偏置5.要产生频率较高的正弦波信号应采用(A)振荡器,要产生频率较低的正弦波信号应采用(B)振荡器,要产生频率稳定度高的正弦波信号应采用(C)振荡器。
A)LC振荡器B)RC振荡器C)晶体振荡器6.正弦波自激振荡器振荡建立过程,晶体管的工作状态是(D)。
A)甲类B)甲乙类C)丙类D)甲类->甲乙类->丙类7.克拉泼振荡电路比考毕兹振荡电路的频率稳定度高,是因为克拉泼电路的振荡回路中接入一个电容C3,从而能减小晶体管输入、输出电容对振荡回路的影响。
(√)8.写出反馈振荡器的平衡条件、起振条件表达式。
答:平衡条件:振幅平衡条件:T(oc)1相位平衡条件:T(oc)2n起振条件:振幅起振条件:T(oc)1相位起振条件:T(oc)2nVf9.振荡器的环路增益为T(j)T()ejT(),振荡频率为oc,试写出振幅稳定条件:Vi[T(OSC)0]ViViAVf10.振荡器的环路增益为T(j)T()ejT(),振荡频率为oc,试写出相位稳定条件:Vi[T()oc0]11.有一个LC并联谐振电路,其电感损耗电阻为r,则谐振频率fp=12LC1112Q2LC(Q0Lr1,00rC1LC),当f〈fp时,回路阻抗呈感性,当f〉fp时,回路阻抗呈容性12.三点式振荡器的基本组成原则是晶体管的e到c和b间要接同性电抗,而b-c间接异性电抗。
电子测量与仪器课后习题解答
参考答案第一章习题解答1.1 解:测量是人类认识和改造世界的一种重要手段。
测量是通过实验方法对客观事物取得定量数据的过程。
其实测量和我们每个人都有着密切的联系,人们或多或少都对它有一定的了解。
关于测量的科学定义,可以从狭义和广义两个方面进行阐述。
狭义而言,测量是为了确定被测对象的量值而进行的实验过程。
在测量过程中,人们借助专门的设备,把被测对象直接或间接地与同类已知单位进行比较,取得用数值和单位共同表示的测量结果。
广义而言,测量不仅对被测的物理量进行定量的测量,而且包括对更广泛的被测对象进行定性、定位的测量。
例如,故障诊断、无损探伤、遥感遥测、矿藏勘探、地震源测定、卫星定位等。
电子测量是泛指以电子技术为基本手段的一种测量技术。
它是测量学和电子学互相结合的产物;也是在科学研究、生产和控制中,人们为了对被测对象所包含的信息进行定性分析、定量掌握所采取的一系列电子技术措施;是分析事物,做出有关判断和决策的依据。
在电子测量过程中,以电子技术理论为依据,以电子测量仪器为手段,对各种电量、电信号、电路特性和元器件参数进行测量,还可以通过传感器对各种非电量进行测量。
严格地讲,电子测量是指利用电子技术对电子学中有关物理量所进行的测量。
1.2 解:电子测量的范围十分广泛,从狭义上来看,对电子学中电的量值的测量是最基本、最直接的电子测量,其内容有以下几个方面:(1)电能量的测量,如测量电流、电压、功率等。
(2)电子元件和电路参数的测量,如测量电阻、电容、电感、品质因数及电子器件的其他参数等。
(3)电信号的特性和质量的测量,如测量信号的波形、频谱、调制度、失真度、信噪比等。
(4)基本电子电路特性的测量,如测量滤波器的截止频率和衰减特性等。
(5)特性曲线的测量,如测量放大器幅频特性曲线与相频特性曲线等。
1.3 解:精密度(δ)说明仪表指示值的分散性,表示在同一测量条件下对同一被测量进行多次测量时,得到的测量结果的分散程度。
正弦波振荡器练习题及答案
正弦波振荡器练习题及答案一、选择题1、振荡器的振荡频率取决于。
()A .供电电源B .选频网络C .晶体管的参数D .外界环境2、为提高振荡频率的稳定度,高频正弦波振荡器一般选用。
()A .LC 正弦波振荡器B .晶体振荡器C .RC 正弦波振荡器3、设计一个振荡频率可调的高频高稳定度的振荡器,可采用()A .RC 振荡器B .石英晶体振荡器C .互感耦合振荡器D .并联改进型电容三点式振荡器4、串联型晶体振荡器中,晶体在电路中的作用等效于。
( )A .电容元件B .电感元件C .大电阻元件D .短路线5、振荡器是根据反馈原理来实现的,反馈振荡电路的波形相对较好。
()A 、正、电感B 、正、电容C 、负、电感D 、负、电容6、振荡器的频率稳定度高。
()A .互感反馈B .克拉泼电路C .西勒电路D .石英晶体7、石英晶体振荡器的频率稳定度很高是因为()A .低的Q 值B .高的Q 值C .小的接入系数D. 大的电阻8、正弦波振荡器中正反馈网络的作用是()A .保证产生自激振荡的相位条件B .提高放大器的放大倍数,使输出信号足够大C .产生单一频率的正弦波D .以上说法都不对9、在讨论振荡器的相位稳定条件时,并联谐振回路的Q 值越高,值ω???越大,其相位稳定性()A 、越好B 、越差C 、不变D 、无法确定10、并联型晶体振荡器中,晶体在电路中的作用等效于( )A .电容元件B .电感元件C .电阻元件D .短路线11、克拉拨振荡器属于振荡器。
( )A . RC振荡器B .电感三点式振荡器C .互感耦合振荡器D .电容三点式振荡器12、振荡器与放大器的区别是()A.振荡器比放大器电源电压高B.振荡器比放大器失真小C.振荡器无需外加激励信号,放大器需要外加激励信号D.振荡器需要外加激励信号,放大器无需外加激励信号13、如图所示电路,以下说法正确的是()A.该电路由于放大器不能正常工作,不能产生正弦波振荡B.该电路由于无选频网络,不能产生正弦波振荡C.该电路由于不满足相位平衡条件,不能产生正弦波振荡D.该电路满足相位平衡条件,可能产生正弦波振荡14、改进型电容三点式振荡器的主要优点是()A.容易起振B.振幅稳定C.频率稳定度较高D.减小谐波分量15、在自激振荡电路中,下列哪种说法是正确的()A.LC振荡器、RC振荡器一定产生正弦波B.石英晶体振荡器不能产生正弦波C.电感三点式振荡器产生的正弦波失真较大D.电容三点式振荡器的振荡频率做不高16、利用石英晶体的电抗频率特性构成的振荡器是()A.f=fs时,石英晶体呈感性,可构成串联型晶体振荡器B.f=fs时,石英晶体呈阻性,可构成串联型晶体振荡器C.fs<f<fp时,石英晶体呈阻性,可构成串联型晶体振荡器< p="">D.fs<f<fp时,石英晶体呈感性,可构成串联型晶体振荡器< p="">17、如图所示是一个正弦波振荡器的原理图,它属于振荡器。
电路与模拟电子技术基础(第2版)第3章正弦稳态电路的分析习题解答..
第3章 正弦稳态电路的分析习题解答3.1 已知正弦电压,当时,。
求出有效值、频率、()V 314sin 10θ-=t u 0=t V 5=u 周期和初相,并画波形图。
解 有效值为 V07.7210==U ;Hz 502314==πf s 02.01==f T 将 , 代入,有 ,求得初相。
波形图如下0=t V 5=u )sin(105θ-=︒-=30θ3.2 正弦电流的波形如图3.1所示,写出瞬时值表达式。
i图3.1 习题3.2波形图解 从波形见,电流的最大值是,设的瞬时值表达式为i A 20i A π2sin 20⎪⎭⎫ ⎝⎛+=θt T i 当 时,,所以 ,求得或 。
0=t A =10i θsin 2010=︒=30θ6π=θ当 时,,所以 ,求得 。
s 2=t A =20i ⎪⎭⎫ ⎝⎛+⨯=6π2π2sin 2020Ts 12=T 所以 。
A ⎪⎭⎫ ⎝⎛︒+=306πsin 20t i 3.3正弦电流,。
求相位差,说明超前滞()A 120 3cos 51︒-=t i A )45 3sin(2︒+=t i 后关系。
解 若令参考正弦量初相位为零,则的初相位,而初相位1i ︒-=︒-︒=30120901θ2i,其相位差 , 所以滞后于 角,或︒=452θ︒-=︒-︒-=-=75453021θθϕ1i 2i ︒75超前 角。
2i 1i ︒753.4 正弦电流和电压分别为(1)V)60 4sin(23o 1+=t u (2)V)75 4cos(52︒-=t u (3)A)90 4sin(2o 1+-=t i (4) V)45 4cos(252︒+-=t i 写出有效值相量,画出相量图。
解 (1) ,相量图如图(1)V 6031︒∠=∙U (2) V)15 4sin(5)75 4cos(52︒+=︒-=t t u 有效值相量为 ,相量图如图(2)V 15252︒∠=∙U (3) ()()A90 4sin 290 4sin 21︒-=︒+-=t t i 有效值相量为 ,相量图如图(3)A 9021︒-∠=∙I (4) ()()A45 4sin 2545 4cos 252︒-=︒+-=t t i 有效值相量为 ,相量图如图(4)A 4552︒-∠=∙I3.5 图3.2中,已知,,求。
正弦波振荡器试题及答案
题目编号:14578 知识点:17正弦波振荡器 题型:单项选择题 难度:中振 荡 器 之 所 以 能 获 得 单 一 频 率 的 正 弦 波 输 出 电 压,是 依 靠 了 振 荡 器 中 的 ( )。
A. 选 频 环 节B. 正 反 馈 环 节C. 基 本 放 大 电 路 环 节 【答案】A====================================================================== 题目编号:14579 知识点:17正弦波振荡器 题型:单项选择题 难度:中自 激 正 弦 振 荡 器 是 用 来 产 生 一 定 频 率 和 幅 度 的 正 弦 信 号 的 装 置,此 装 置 之 所 以 能 输 出 信 号 是 因 为( ) 。
A. 有 外 加 输 入 信 号 B. 满 足 了 自 激 振 荡 条 件C. 先 施 加 输 入 信 号 激 励振 荡 起 来,然 后 去 掉 输 入 信 号 【答案】B====================================================================== 题目编号:14580 知识点:17正弦波振荡器 题型:单项选择题 难度:中一 个 振 荡 器 要 能 够 产 生 正 弦 波 振 荡,电 路 的 组 成 必 须 包 含( )。
A. 放 大 电 路,负 反 馈 电 路B. 负 反 馈 电 路、选 频 电 路C. 放 大 电 路、 正 反 馈 电 路、 选 频 电 路 【答案】C====================================================================== 题目编号:14581 知识点:17正弦波振荡器 题型:单项选择题 难度:中振 荡 电 路 的 幅 度 特 性 和 反 馈 特 性 如 图 所 示,通 常 振 荡 幅 度 应 稳 定 在 ( )。
大学_《高频电子电路》(王卫东版)课后答案下载
《高频电子电路》(王卫东版)课后答案下载《高频电子电路》(王卫东版)内容简介绪论0.1通信系统的组成0.2发射机和接收机的组成0.3本书的研究对象和任务第1章高频小信号谐振放大器1.1LC选频网络1.1.1选频网络的基本特性1.1.2LC选频回路1.1.3LC阻抗变换网络__1.1.4双耦合谐振回路及其选频特性1.2高频小信号调谐放大器1.2.1晶体管的高频小信号等效模型1.2.2高频小信号调谐放大器1.2.3多级单调谐放大器__1.2.4双调谐回路谐振放大器__1.2.5参差调谐放大器1.2.6谐振放大器的稳定性1.3集中选频放大器1.3.1集中选频滤波器1.3.2集成宽带放大器1.3.3集成选频放大器的应用1.4电噪声1.4.1电阻热噪声1.4.2晶体三极管噪声1.4.3场效应管噪声1.4.4噪声系数__小结习题1第2章高频功率放大器2.1概述2.2高频功率放大器的工作原理 2.2.1工作原理分析2.2.2功率和效率分析2.2.3D类和E类功率放大器简介 2.2.4丙类倍频器2.3高频功率放大器的动态分析----------DL2.FBD2.3.1高频功率放大器的动态特性 2.3.2高频功率放大器的负载特性2.3.3高频功率放大器的调制特性2.3.4高频功率放大器的放大特性2.3.5高频功率放大器的调谐特性2.3.6高频功放的高频效应2.4高频功率放大器的实用电路2.4.1直流馈电电路2.4.2滤波匹配网络2.4.3高频谐振功率放大器设计举例2.5集成高频功率放大电路简介2.6宽带高频功率放大器与功率合成电路2.6.1宽带高频功率放大器2.6.2功率合成电路__小结习题2第3章正弦波振荡器3.1概述3.2反馈型自激振荡器的工作原理 3.2.1产生振荡的基本原理3.2.2反馈振荡器的振荡条件3.2.3反馈振荡电路的判断3.3LC正弦波振荡电路3.3.1互感耦合LC振荡电路3.3.2三点式LC振荡电路3.4振荡器的频率稳定度3.4.1频率稳定度的定义3.4.2振荡器的稳频原理3.4.3振荡器的稳频措施3.5晶体振荡器3.5.1石英晶体谐振器概述3.5.2晶体振荡器电路3.6集成电路振荡器3.6.1差分对管振荡电路3.6.2单片集成振荡电路E16483.6.3运放振荡器3.6.4集成宽带高频正弦波振荡电路3.7压控振荡器3.7.1变容二极管3.7.2变容二极管压控振荡器3.7.3晶体压控振荡器__3.8RC振荡器3.8.1RC移相振荡器3.8.2文氏电桥振荡器__3.9负阻振荡器3.9.1负阻器件的基本特性----------DL3.FBD3.9.2负阻振荡电路 3.10振荡器中的几种现象3.10.1间歇振荡3.10.2频率拖曳现象3.10.3振荡器的频率占据现象3.10.4寄生振荡__小结习题3第4章频率变换电路基础4.1概述4.2非线性元器件的特性描述4.2.1非线性元器件的基本特性4.2.2非线性电路的工程分析方法4.3模拟相乘器及基本单元电路4.3.1模拟相乘器的基本概念4.3.2模拟相乘器的基本单元电路4.4单片集成模拟乘法器及其典型应用 4.4.1MC1496/MC1596及其应用4.4.2BG314(MC1495/MC1595)及其应用 4.4.3第二代、第三代集成模拟乘法器 __小结习题4第5章振幅调制、解调及混频5.1概述5.2振幅调制原理及特性5.2.1标准振幅调制信号分析5.2.2双边带调幅信号5.2.3单边带信号5.2.4AM残留边带调幅5.3振幅调制电路5.3.1低电平调幅电路5.3.2高电平调幅电路5.4调幅信号的解调5.4.1调幅波解调的方法5.4.2二极管大信号包络检波器5.4.3同步检波----------DL4.FBD5.5混频器原理及电路 5.5.1混频器原理5.5.2混频器主要性能指标5.5.3实用混频电路5.5.4混频器的干扰5.6AM发射机与接收机5.6.1AM发射机5.6.2AM接收机5.6.3TA7641BP单片AM收音机集成电路 __小结习题5第6章角度调制与解调6.1概述6.2调角信号的分析6.2.1瞬时频率和瞬时相位6.2.2调角信号的分析与特点6.2.3调角信号的频谱与带宽6.3调频电路6.3.1实现调频、调相的方法6.3.2压控振荡器直接调频电路6.3.3变容二极管直接调频电路6.3.4晶体振荡器直接调频电路6.3.5间接调频电路6.4调频波的解调原理及电路6.4.1鉴频方法及其实现模型6.4.2振幅鉴频器6.4.3相位鉴频器6.4.4比例鉴频器6.4.5移相乘积鉴频器6.4.6脉冲计数式鉴频器6.5调频制的`抗干扰性及特殊电路6.5.1调频制中的干扰及噪声6.5.2调频信号解调的门限效应6.5.3预加重电路与去加重电路6.5.4静噪声电路6.6FM发射机与接收机6.6.1调频发射机的组成6.6.2集成调频发射机6.6.3调频接收机的组成6.6.4集成调频接收机__小结习题6----------DL5.FBD第7章反馈控制电路 7.1概述7.2反馈控制电路的基本原理与分析方法 7.2.1基本工作原理7.2.2数学模型7.2.3基本特性分析7.3自动增益控制电路7.3.1AGC电路的工作原理7.3.2可控增益放大器7.3.3实用AGC电路7.4自动频率控制电路7.4.1AFC电路的组成和基本特性7.4.2AFC电路的应用举例7.5锁相环路7.5.1锁相环路的基本工作原理7.5.2锁相环路的基本应用7.6单片集成锁相环电路简介与应用 7.6.1NE5627.6.2NE562的应用实例__小结习题7第8章数字调制与解调8.1概述8.2二进制振幅键控8.2.12ASK调制原理8.2.22ASK信号的解调原理8.3二进制频率键控8.3.12FSK调制原理8.3.22FSK解调原理8.4二进制相移键控8.4.12PSK调制原理8.4.22PSK解调原理8.5二进制差分相移键控8.5.12DPSK调制原理8.5.22DPSK解调原理__小结习题8第9章软件无线电基础9.1概述9.2软件无线电的关键技术 9.3软件无线电的体系结构 9.4软件无线电的应用__小结习题9附录A余弦脉冲分解系数表部分习题答案参考文献《高频电子电路》(王卫东版)图书目录本书为普通高等教育“十二五”、“十一五”国家级规划教材。
模拟电子技术基础课后习题—正弦波振荡电路答案
习题6-1 正弦波振荡电路产生自激振荡需具备哪些条件? 解:幅值平衡条件:1=F A相位平衡条件:φA +φF =±2n π(n =0,1,2,3,…)。
6-2 有一LC 并联谐振回路,已知其振荡频率0f =465kHz ,电容C =200pF ,试计算线圈的电感值应为多少?解:根据LCf π=21059.041202≈=Cf L πH 6-3 标出图6-23所示电路中变压器的同名端,使其满足相位平衡条件。
如图所示。
6-4 请根据自激振荡的相位条件判断图6-24所示电路能否产生自激振荡?解:a 不能b 不能c 能d 不能e 不能f 不能aV CCbR B2R V CC图6-23 习题6-3图6-5 为使电路能产生正弦波振荡,请将图6-25中a 、b 、c 、d 点正确连接。
解:CCca+V CCb+V CC图6-24 习题6-4图def图6-25 题6-5图bb6-6 为使电路能产生正弦波振荡,请将图6-26连成桥式振荡电路(图中R t 具有负的温度解:6-7 如图6-27桥式振荡电路,R 1为多大能起振?若R P 可以从0调到15k Ω,试计算振荡频率范围?(C =0.1μF )解:反馈电阻R f 和R 1关系满足R f >2R 1能起振,因此可根据R f 确定R 1。
R P =15k Ω时6.10105.1212130≈⨯⨯⨯==CRC f ππkHz 若RP 从0调到15k Ω,振荡频率范围为0~10.6kHz 。
6-8 如图所示6-28为某超外差收音机中的本振电路。
(1)说明振荡器类型及各元件作用; (2)标出变压器的同名端;(3)C 4=20pF ,计算振荡频率调节范围。
解:(1)LC 振荡器。
(2)同名端如图所示。
(3)C = C 3//(C 4 +C 5)=28.9pF ~142.1pFb cf go aob图6-27 习题6-7图5 0.0212pF-250pF根据LCf π210=振荡频率调节范围为42.2kHz ~93.7kHz 。
第3章 正弦波振荡器答案
第3章 正弦波振荡器3.1 为什么振荡电路必须满足起振条件、平衡条件和稳定条件?试从振荡的物理过程来说明这三个条件的含义。
答:(1)在刚接通电源时,电路中会存在各种电扰动,这些扰动在接通电源瞬间会引起电路电流的突变(如晶体管b i 或c i 突变),这些突变扰动的电流均具有很宽的频谱,由于集电极LC 并联谐振回路的选频作用,其中只有角频率为谐振角频率o ω的分量才能在谐振回路两端产生较大的电压()o o u j ω。
通过反馈后,加到放大器输入端的反馈电压()f o u j ω与原输入电压()i o u j ω同相,并且有更大的振幅,则经过线性放大和正反馈的不断循环,振荡电压振幅会不断增大。
故要使振荡器在接通电源后振荡幅度能从小到大增长的条件是:()()()()f o o i o i o u j T j u j u j ωωωω=>即: ()1o T j ω> ……起振条件 (2)振荡幅度的增长过程不可能无休止地延续下去。
随着振幅的增大,放大器逐渐由放大区进入饱和区截止区,其增益逐渐下降。
当因放大器增益下降而导致环路增益下降至1时,振幅的增长过程将停止,振荡器达到平衡状态,即进入等幅状态。
振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。
故平衡条件为:()1o T j ω=(3)振荡器在工作过程中,不可避免地要受到各种外界因素变化的影响,如电源电压波动、噪声干扰等。
这些会破坏原来的平衡条件。
如果通过放大和反馈的不断循环,振荡器能产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。
振荡器在其平衡点须具有阻止振幅变化、相位变化的能力,因此:振幅平衡状态的稳定条件是:()0iiAo i U UT U ω=∂<∂;相位平衡状态的稳定条件是:()0oT o ωωϕωω=∂<∂3.2 图题3.2所示的电容反馈振荡电路中,1100pF C =,2300pF C =,50μH L =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么?解:否。
因为满足起振与平衡条件后,振荡由小到大并达到平衡。
但当外界因素(T 、V CC )变化时,平衡条件受到破坏,若不满足稳定条件,振荡器不能回到平衡状态,导致停振。
3-2 一反馈振荡器,欲减小因温度变化而使平衡条件受到破坏,从而引起振荡振幅和振荡频率的变化,应增大i osc )(V T ∂∂ω和ωωϕ∂∂)(T ,为什么?试描述如何通过自身调节建立新平衡状态的过程(振幅和相位)。
解:由振荡稳定条件知:振幅稳定条件:0)(iAi osc <∂∂VV T ω相位稳定条件:0)(oscT <∂∂=ωωωωϕ若满足振幅稳定条件,当外界温度变化引起V i 增大时,T(ωosc )减小,V i 增大减缓,最终回到新的平衡点。
若在新平衡点上负斜率越大,则到达新平衡点所需V i 的变化就越小,振荡振幅就越稳定。
若满足相位稳定条件,外界因素变化→ωosc ↑→ϕT (ω)↓最终回到新平衡点。
这时,若负斜率越大,则到达新平衡点所需ωosc 的变化就越小,振荡频率就越稳定。
3-3 并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率的相频特性?解:并联谐振回路在电流激励下,回路端电压V的频率特性才会产生负斜率的相频特性,如图(a)所示。
串联谐振回路在电压激励下,回路电流I的频率特性才会产生负斜率的相频特性,如图(b)所示。
ωosc ↓ 阻止ωosc增大,3-5 试判断下图所示交流通路中,哪些可能产生振荡,哪些不能产生振荡。
若能产生振荡,则说明属于哪种振荡电路。
解:(a) 不振。
同名端接反,不满足正反馈;(b) 能振。
变压器耦合反馈振荡器;(d) 能振。
但L2C2回路呈感性,ωosc < ω2,L1C1回路呈容性,ωosc > ω1,组成电感三点式振荡电路。
(e) 能振。
计入结电容C b'e,组成电容三点式振荡电路。
(f) 能振。
但L1C1回路呈容性,ωosc > ω1,L2C2回路呈感性,ωosc > ω2,组成电容三点式振荡电路。
3-6 试画出下图所示各振荡器的交流通路,并判断哪些电路可能产生振荡,哪些电路不能产生振荡。
图中,C B、C C、C E、C D为交流旁路电容或隔直流电容,L C为高频扼流圈,偏置电阻R B1、R B2、R G不计。
解:画出的交流通路如图所示。
(b) 可振,为电容三点式振荡电路。
(c) 不振,不满足三点式振荡电路组成法则。
(d) 可振,为电容三点式振荡电路,发射结电容C b'e为回路电容之一。
(e) 可振,为电感三点式振荡电路。
(f) 不振,不满足三点式振荡电路组成法则。
3-7 如图所示电路为三回路振荡器的交流通路,图中f01、f02、f03分别为三回路的谐振频率,试写出它们之间能满足相位平衡条件的两种关系式,并画出振荡器电路(发射极交流接地)。
解:(1) L2C2、L1C1若呈感性,f osc < f01、f02,L3C3 呈容性,f osc > f03,所以f03 < f osc < f01、f02。
(2) L2C2、L1C1若呈容性,f osc > f01、f02,L3C3 呈感性,f osc < f03,所以f03 > f osc > f01、f02。
3-8 试改正如图所示振荡电路中的错误,并指出电路类型。
图中C B、C D、C E均为旁路电容或隔直流电容,L C、L E、L S均为高频扼流圈。
解:改正后电路如图所示。
图(a)中L 改为C 1,C 1改为L 1,构成电容三点式振荡电路。
图(b)中反馈线中串接隔值电容C C ,隔断电源电压V CC 。
图(c)中去掉C E ,消除C E 对回路影响,加C B 和C C 以保证基极交流接地并隔断电源电压V CC ;L 2改为C 1构成电容三点式振荡电路。
3-9 试运用反馈振荡原理,分析如图所示各交流通路能否振荡。
解:图(a)满足正反馈条件,LC 并联回路保证了相频特性负斜率,因而满足相位平衡条件。
图(b)不满足正反馈条件,因为反馈电压fV比i1V 滞后一个小于90︒的相位,不满足相位平衡条件。
图(c)负反馈,不满足正反馈条件,不振。
3-13 在下图所示的电容三点式振荡电路中,已知L = 0.5 μH ,C l = 51 pF ,C 2 = 3300 pF , C 3 =(12 ~ 250)pF ,R L = 5 k Ω,g m = 30 mS ,C b 'e = 20 pF ,β 足够大。
Q 0 = 80,试求能够起振的频率范围,图中C B 、C C 对交流呈短路,L E 为高频扼流圈。
解:在L E 处拆环,得混合Ⅱ型等效电路如图所示。
由振幅起振条件知,i L m 1ng g ng +'>(1) 式中015.0211='+=C C C n ,其中mS 301pF 3320m ee b 22===+=''g r C C C ,。
代入(1),得 mS 443.0L<'g 由eoL L11R R g +=',得k Ω115.4eo >R 则能满足起振条件的振荡频率为rad/s 109.1026o eo⨯>=LQ R ω。
由图示电路知,21213C C C C C C '+'+=∑。
当C 3 = 12pF 时,C ∑ = 62.23 pF ,rad/s 102.17916omax ⨯==∑LC ω当C 3 = 250pF 时,C ∑ = 300 pF 。
可见该振荡器的振荡角频率范围ωmin ~ ωmax = (102.9 ~ 179.2) ⨯ 106 rad/s , 即振荡频率范围f min ~ f max = 16.38 ~ 28.52 MHz 。
3-15 一LC 振荡器,若外界因素同时引起ω0、ϕf 、Q e 变化,设o oωω>',f f ϕϕ>',e Q '分别大于Q e 或小于Q e ,试用相频特性分析振荡器频率的变化。
解:振荡回路相频特性如图,可见:(1)当o oωω>'时,osc osc ωω>',且o osc ωω∆≈∆; (2)当f f ϕϕ>'时,设为oscω'',osc osc ωω>''; (3)当Q e 增加时,相频特性趋于陡峭,ϕf 不变,ωosc ↓ϕf 变化,Q e ↑→ ∆ ωosc ↓,Q e ↓→ ∆ ωosc ↑。
3-16 如图所示为克拉泼振荡电路,已知L = 2 μH ,C 1=1000 pF ,C 2 = 4000 pF ,C 3 = 70 pF ,Q 0 = 100,R L = 15 k Ω,C b 'e = 10 pF ,R E = 500 Ω,试估算振荡角频率ωosc 值,并求满足起振条件时的I EQmin 。
设 β 很大。
解:振荡器的交流等效电路如图所示。
由于C 1>> C 3,C 2 >> C 3,因而振荡角频率近似为rad/s 1052.84163osc ⨯=≈LC ω已知 R e0 = ωosc LQ 0 =16.9 k ΩpF 4010k Ω95.7//e b 22e0L L =+='==''C C C R R R ,求得 pF 4.80021212,1='+'=C C C C C ,08.02,1332=+=C C C n Ω='≈''88.50L 22L R n R 又 m T EQ T EQ E e E i 2111112.0g V I V I R r R g C C C n =≈+=+=≈'+=, 根据振幅起振条件,,i Lm 1ng g ng +''> 即,)1(L T EQ n n g V I -''>求得I EQ > 3.21mA3-18 试指出如图所示各振荡器电路的错误,并改正,画出正确的振荡器交流通路,指出晶体的作用。
图中C B 、C C 、C E 、C S 均为交流旁路电容或隔直流电容。
解:改正后的交流通路如图所示。
图(a)L 用C 3取代,为并联型晶体振荡器,晶体呈电感。
图(b)晶体改接到发射极,为串联型晶体振荡器,晶体呈短路元件。
3-22 试判断如图所示各RC振荡电路中,哪些可能振荡,哪些不能振荡,并改正错误。
图中,C B、C C、C E、C S对交流呈短路。
解:改正后的图如图所示。
(a)为同相放大器,RC移相网络产生180︒相移,不满足相位平衡条件,因此不振。
改正:将反馈线自发射极改接到基极上。
(b)中电路是反相放大器,RC移相网络产生180︒相移,满足相位平衡条件,可以振荡。
(c)中放大环节为同相放大器,RC移相网络产生180︒相移,不满足相位平衡条件,因此不振。
改正:移相网络从T2集电极改接到T1集电极上。
(d)中放大环节为反相放大器,因为反馈环节为RC串并联电路,相移为0︒,所以放大环节应为同相放大。
改正:将T1改接成共源放大器。
3-23 图(a)所示为采用灯泡稳幅器的文氏电桥振荡器,图(b)为采用晶体二极管稳幅的文氏电桥振荡器,试指出集成运算放大器输入端的极性,并将它们改画成电桥形式的电路,指出如何实现稳幅。
解:电桥形式电路如图所示。
(a)中灯泡是非线性器件,具有正温度系数。
起振时,灯泡凉,阻值小(R t),放大器增益大,便于起振。
随着振荡振幅增大,温度升高,R t增加,放大器增益相应减小,最后达到平衡。
(b)中D1、D2是非线性器件,其正向导通电阻阻值随信号增大而减小。
起振时,D1、D2截止,负反馈最弱,随着振荡加强,二极管正向电阻减小,负反馈增大,使振幅达到平衡。