第三章液压泵
第三章 液压泵
3.6 航空液压泵的特性及选用
3.6.1、液压泵的气穴
广义地说,在某一温度下当油泵吸油腔压力降 低到空气分离压以下时,混溶与油中的空气就分离 出来形成气泡;而当吸油压力继续降低到该温度的 饱和蒸汽压力以下时,油液便汽化沸腾,形成大量 的气泡,这些现象统称为气穴现象。
3.6.1、液压泵的气穴
当气(汽)泡被带到高压油腔时,在高压作用 下,气(汽)泡便急剧溃灭或急剧缩小体积, 从而产生局部液压冲击现象,引起零件表面 的剥蚀损坏,表现为气蚀现象;同时也使得 泵的输出压力不稳定,影响设备正常工作。
3.6.4、液压泵的性能比较及选用
设计液压系统时,应根据所要求的工作情况合 理选择液压泵。
外啮合齿轮泵实物结构
内啮合齿轮泵实物结构
单作用式叶片泵
双作用叶片泵
单柱塞式液压泵
径向柱塞泵
通过齿轮端面与端盖之间的轴向间隙;
轮齿啮合线处的接触间隙。
因此,普通齿轮泵的容积效率比较低,输出压力也 不易提高。在高压齿轮泵中,一般都使用轴向间隙 补偿装置以减少轴向泄漏,提高其容积效率。
3、径向力不平衡
1.齿轮受到来自压油腔 高压油的油压力作用;
2.压油腔的油液沿泵体 内孔和齿顶圆之间的径 向间隙向吸油腔泄漏时, 其油压力是递减的,也 作用于齿轮上。
3.4.5、柱塞泵优缺点及选用
优点:
1、工作压力、容积效率及总效率均最高; 2、可传输的功率最大; 3、较宽的转速范围; 4、较长的使用寿命及功率密度高; 5、良好的双向变量能力。
3.4.5、柱塞泵优缺点及选用
缺点:
1、对介质洁净度要求较苛刻; 2、流量脉动较大,噪声较高; 3、结构较复杂,造价高,维修困难。
排量和流量
第三章 液压泵和液压马达
第三章 液压泵和液压马达 液压泵和液压马达的工作原理 齿轮泵和齿轮马达 叶片泵和叶片式马达 柱塞泵和柱塞式液压马达超颖工作室 金沐灶§3-1液压泵和液压马达的基本工作原理泵的分类定量泵 齿轮泵 叶片泵泵 变量泵 叶片泵 轴向柱塞泵径向柱塞泵 轴向柱塞泵超颖工作室 金沐灶马达的分类马达定量马达 齿轮马达 径向柱塞马达 轴向柱塞马达 低速液压马达变量马达 轴向柱塞马达超颖工作室 金沐灶一、液压泵的基本工作原理图中为单柱塞泵的工作原理。
图中为单柱塞泵的工作原理。
凸轮由电动机带 动旋转。
当凸轮推动柱塞向上运动时, 动旋转。
当凸轮推动柱塞向上运动时,柱塞和缸体 形成的密封体积减小,油液从密封体积中挤出, 形成的密封体积减小,油液从密封体积中挤出,经 单向阀排到需要的地方去。
单向阀排到需要的地方去。
当凸轮旋转至曲线的下降 部位时, 部位时,弹簧迫使柱塞向 形成一定真空度, 下,形成一定真空度,油 箱中的油液在大气压力的 作用下进入密封容积。
作用下进入密封容积。
凸 轮使柱塞不断地升降, 轮使柱塞不断地升降,密 封容积周期性地减小和增 超颖工作室 金沐灶 泵就不断吸油和排油。
大,泵就不断吸油和排油。
容积式液压泵的共同工作原理如下: 容积式液压泵的共同工作原理如下: (1)容积式泵必定有一个或若干个周期变化的密封容积。
密封容积变小使油液被挤出, 封容积。
密封容积变小使油液被挤出,密封容积变 大时形成一定真空度,油液通过吸油管被吸入。
大时形成一定真空度,油液通过吸油管被吸入。
密 封容积的变换量以及变化频率决定泵的流量。
封容积的变换量以及变化频率决定泵的流量。
配流装置。
(2)合适的配流装置。
不同形式泵的配流装置虽 合适的配流装置 然结构形式不同,但所起作用相同,并且在容积式 然结构形式不同,但所起作用相同, 泵中是必不可少的。
泵中是必不可少的。
容积式泵排油的压力决定于排油管道中油液所 受到的负载。
第三章 液压泵和液压马达
二、轴向柱塞式液压马达
轴向柱塞式液压马达的工作原理可参照轴向柱塞泵
斜盘 2-缸体 3-柱塞 4-配流盘 5-轴 6-弹簧
2、结构特点
齿轮马达和齿轮泵在结构上的主要区别如下:
(1)齿轮泵一般只需一个方向旋转,为了减小径向不平衡液压力,
因此吸油口大,排油口小。而齿轮马达则需正、反两个方向旋转,
因此进油口大小相等。
(2)齿轮马达的内
泄漏不能像齿轮泵那样直接引到低压腔去,而必须单独的泄漏通
道引到壳体外去。因为齿轮马达低压腔有一定背压,如果泄漏油
积每转内吸油、压油两次,
称为双作用泵。双作用使
流量增加一倍,流量也相
应增加。
压油
吸油
图3-13 双作用叶片工作原理
2、结构上的若干特点
(1)保持叶片与定子内表面接触
转子旋转时保证叶片与定子内表面接触时泵正常工作的必要 条件。前文已指出叶片靠旋转时离心甩出,但在压油区叶片顶部 有压力油作用,只靠离心力不能保证叶片与定子可靠接触。为此, 将压力油也通至叶片底部。但这样做在吸油区时叶片对定子的压 力又嫌过大,使定子吸油区过渡曲线部位磨损严重。减少叶片厚 度可减少叶片底部的作用力,但受到叶片强度的限制,叶片不能 过薄。这往往成为提高叶片泵工作压力的障碍。
容积式液压泵的共同工作原理如下:
(1)容积式液压泵必定有一个或若干个周期变化的密封容积。密 封容积变小使油液被挤出,密封容积变大时形成一定真空度,油液 通过吸油管被吸入。密封容积的变换量以及变化频率决定泵的流量。 (2)合适的配流装置。不同形式泵的配流装置虽然结构形式不同, 但所起作用相同,并且在容积式泵中是必不可少的。
结束
§3-3 叶片泵和叶片油马达
叶片泵有两类:双作用和单作用叶片泵,双作用 叶片泵是定量泵,单作用泵往往做成变量泵。而马达只 有双作用式。
第三章 液压泵
22
双作用叶片泵
结构组成 – 定子 其内环由两段大半径R 圆弧、两段小半 径 r 圆弧和四段过渡曲线组成 – 转子 铣有Z个叶片槽,且与定子同心,宽度 为b – 叶片 在叶片槽内能自由滑动 – 左、右配流盘 开有对称布置的吸、压油窗口 – 传动轴
2013-7-14
23
2013-7-14
24
工作原理 (动画) • 当转子依顺时针方向旋转时,左上角和右下角的 叶片向转子外伸出,使密封工作腔容积逐渐增大, 形成局部真空,于是经配油盘上相应的腰形窗口 将油吸入,实现吸油过程;右上角和左下角的叶 片向转子内缩进,使密封工作腔容积逐渐缩小, 原来吸入的油液受挤压后经配油盘上相应的窗口 压入系统,实现排油过程。在吸、压油窗口之间 有一段封油区将它们隔开,避免吸、排油口互相 窜通。 排量公式
工作原理是柱塞在液压缸内作往复运动来实现吸 油和压油。与齿轮泵和叶片泵相比,该泵能以最 小的尺寸和最小的重量供给最大的动力,为一种 高效率的泵,但制造成本相对较高,该泵用于高 压、大流量、大功率的场合。它可分为轴向式和 径向式两种形式。 柱塞沿径向放置的泵称为径向柱塞泵,柱塞轴向 布置的泵称为轴向柱塞泵。
2013-7-14 21
2.3叶片液压泵
• 叶片泵分为双作用叶片泵和单作用叶片泵。双作 用叶片泵只能作定量泵用,单作用叶片泵可作变 量泵用。 • 双作用叶片泵因转子旋转一周,叶片在转子叶片 槽内滑动两次,完成两次吸油和压油而得名。 • 单作用叶片泵转子每转一周,吸、压油各一次, 故称为单作用。
2013-7-14
10
液压泵的图形符号
2013-7-14
11
2.2 齿轮泵
• 齿轮泵是利用齿轮啮合原理工作的,根据啮合形 式不同分为外啮合齿轮泵和内啮合齿轮泵。
3第三章 液压泵
泵的输出功率可由下式求得 N出 P Q 63 105 53 103 / 60 5565W 总效率为输出功率与输入功率之比 N出 5565 0.795 N 入 7000 机械效率 m
0.795 0.840 v 0.946
maojian@
2 2
R,r 定子圆弧部分的长短半径;
叶片倾角;
s 叶片厚度; z 叶片数。
maojian@
§3-4 柱塞泵
一、径向柱塞泵的工作原理和流量计算
图3—22 径向柱塞泵的工作原理 1—柱塞 2—缸体 3—衬套 4—定子 5—配油轴
maojian@
径向柱塞泵的排量和流量计算:
二、内啮合齿轮泵
内啮合齿轮泵优点: 1.结构紧凑,体积小; 2.零件少,转速可高达10000r/mim; 3.运动平稳,噪声低; 4.容积效率较高。 内啮合齿轮泵缺点: 1.转子的制造工艺复杂。
maojian@
汽车自动变速器的内啮合齿轮泵
maojian@
§3-3 叶片泵
5 6
2)电机驱动功率 P输入 P输出 / 45.9 / 0.9 51kW
maojian@
三、液压泵的类型
1.液压泵类型
柱塞式 轴向柱塞式 径向柱塞式 单作用叶片式 双作用叶片式 外啮合式 内啮合式
maojian@
液 压 泵
叶片式
齿轮式
maojian@
例2:某液压泵输出压力为200×105Pa,转速 n=1450r/min,排量为100 ml/r,该泵的容积效 率为0.95、总效率为0.9,试求这时泵的输出功 率和电动机的驱动功率。
解:1)泵的输出功率: P输出 pq实际 p V nv 200 10 100 10 1450 0.95 45916W 60 45.9kW
03第三章 液压泵x
际输入转矩Tt之比。即
m
Tt T Tt Tt Tl 1 1 Tl / Tt
式中Tl——转矩损失。 (6)总效率:泵的实 际输出功率P与实际输入功 率Pr之比,即
P Pr pq
T
Tt qt
q
T
v m
液压泵性能特性曲线 如右图:
4.转速 (1)额定转速:额定压力下,允许液压泵 连续运转的最高转速(容积效率最高)。 (2)最高转速:额定压力下,允许短暂运 行的最大转速(受“汽穴”现象限制)。 (3)最低转速:运行液压泵正常运转的最 低转速(受容积效率的限制)。 5.自吸能力 液压泵正常运转时,并不发生汽穴或汽蚀 的条件下,吸液口允许的最低压力。
(3)工作压力:泵实际工作时的压力,其 大小取决于外负载和排油管路上的压力损失。 液压泵按工作压力分: 低压泵 <2.5 MPa 机床 中压泵 2.5~8 MPa 机床 中高压泵 8~16 MPa 工程、冶金、农 业机械 高压泵 16~32 MPa 工程、冶金、采掘 机械 超高压泵 >32 MPa 液压支架 (4)吸入压力:泵入口处的压力。
外反馈限压变量叶片泵变量原 理
内反馈限压变量叶片泵变量原理
3)限压变量叶片泵 的工作性能(右图) 用在机床液压系统中 要求执行元件有快、慢速 和保压阶段的场合。
叶片泵的特点:
优点:运转平稳,流量均匀,噪声小。 缺点:结构复杂,吸油特性不太好,对 油液的污染比较敏感。
第四节 柱塞泵
一、径向柱塞泵 1.轴配流径向柱塞泵 1)组成:转子 偏心安装; 定子 柱塞——径向装入转子; 配流轴——固定不动。 2)工作原理(右图)
2)设置专门的配流机构; 3)油箱内液体的绝对压力必须恒等于或大 于大气压力。 3.液压泵的分类 液压泵按其在每转一周所能输出的油液体 积是否可调节分成定量泵和变量泵。 按构成密封又可以变化的容积空间的零件 结构来划分:齿轮泵、叶片泵、柱塞泵等。 二、液压泵的压力建立条件及其安装高度 1.压力建立条件——外载荷 液压泵的压力,一般是指其出口截面3-3处 的液压力。根据伯努利方程可得
液压泵
二、液压泵的主要性能参数
• • • • •
m /r V 1. 排量 2. 流量 1)理论流量 qt Vn 2)实际流量 q qt ql 3)额定流量
3
液压泵在额定转速、额定压力下,按实验标准规定必须保证的流量。 按实验标准规定,液压泵能够实现连续运转的最高压力称为液 压泵的额定压力
二、液压泵的主要性能参数
V 6.66m zB
2
q 6.66m zBnV
2
2.外啮合齿轮泵的流量计算
q 6.66m zBnV
2
m z mz m
2
mz 不变,减少齿数,
增大模数,可以在不增大 泵体积的前提下提高泵的 输出流量
3.流量脉动率
qmax qmin q
外啮合齿轮泵齿数越少,流量脉 动率就越大,其最大值可达20% 以上。
二、单作用叶片泵
1. 结构: 转子、定子、叶片、配油盘、壳体、端盖等。
特点: ●定子和转子偏心; ●定子内曲线是圆; ●配油盘有二个月牙形 窗口。 ●叶片靠离心力伸出。
2. 工作原理
单作用叶片泵
• 密封工作腔(转子、定子、叶片、配油盘组成) • 吸油过程:叶片伸出→V ↑ → p ↓ →吸油; • 排油过程:叶片缩回→V ↓ → p ↑ →排油。 • 旋转一周,完成一次吸油,一次排油——单作用泵 • 径向力不平衡——非平衡式叶片泵 (一个吸油区,一个排油区)
一种抽吸设备,水平管出口通大气,当水平管内液 体流量达到某一数值时,垂直管子将从液箱内抽吸 液体。液箱表面与大气相通,水平管内液体和被抽 吸液体相同。若不计液体流动时的能量损失,问水 平管内流量达到多大时才能开始抽吸。
10
9 8
7 6 5 4
3第三章液压泵及液压马达(1)
2. 工作原理
3. 流量
q 2 k z m2 b n V
4. 特点
流量和压力的脉动较小;无困油区,噪声较低; 加工难价格高;轮齿接触应力小,泵的寿命较长。
(二)摆线形内啮合齿轮泵
1 . 主要组成
摆线齿轮泵又称为转子泵,由两齿轮及 前后端盖等组成。且两齿轮相差一个齿。
2. 工作原理
吸油 —— 左半部分,轮齿脱开啮合,容积↑ 压油 —— 右半部分,轮齿进入啮合,容积↓
三 液压泵(马达)的性能参数
液压泵(马达)的性能参数主要有: 压力 转速
排量和流量 功率和效率
一、 排量、流量和压力
1. 压 力
⑴ 工作压力(p) —— 液压泵(或马达)工作时输出液体的实际压力。 其值取决于负载(包括管路阻力)。
(2) 额定压力(p n)—— 油泵(或马达)铭牌上标注的压力值。指在 连续运转情况下所允许使用的工作压力。它能使泵(或马达)具有较高的 容积效率和较长的使用寿命。
轴套 采用浮动轴套的中高压齿轮泵结构图
2. 高压内啮合齿轮泵
➢ 轴向间隙补偿原理
与外啮合齿轮泵浮动侧板的补偿相似,也是利用背压使两侧的浮 动侧板紧贴在小齿轮、内齿环和填隙片端面上;磨损后,也可利用背 压自动补偿。
➢ 径向间隙补偿原理
径向半圆支承块(15)的下面也有两个背压室,各背压室均与压 油腔相同。在背压作用下,半圆支承块推动内齿环,内齿环(6)又 推动填隙片与小齿轮齿顶相接触,形成高压区的径向密封。同时,可 自动补偿各相对运动间的磨损。
qt qm
qm q qm
1
q qm
(6) 马达总效率(ηm)
液压马达的总效率是实际输出功率与实际输入功率的比值,即:
m
第三章液压泵讲义与液压马达
2. 困油现象 动画演示
1) 产生原因:
压
吸
ε> 1,构成闭死容积Vb
2)危害:
Vb由大→小,p↑↑, 油液发 热,轴承磨损。
Vb由小→大,p ↓↓, 汽蚀、 噪声、振动、金属表面剥蚀。
(三)液压马达的转速和容积效率
理论转速:nt= qM /VM 容积效率:
ηMv= qMt / qM =( qM -ql )/ qM = 1- ql / qM
输出转速nM= (qM -ql )/VM= qM /VM ηMv
(四)液压马达的转矩和机械效率
实际输出转矩 TM=TMt-ΔT 理论输出转矩 TMt=Δp VM/ 2π 机械效率ηMm=TM/TMt
q=Vnηv =πDhbnηv =2πzm2bn ηv
三、齿轮泵结构特点
1、泄漏问题
泄漏
齿轮泵存在端面泄漏、径向泄漏和轮齿
啮合处泄漏。其中端面泄漏占80%—85%。
减少泄露的措施:间隙补偿
其中端面间隙补偿采用静压 平衡
在齿轮和盖板之间增加一个 补偿零件,如浮动轴套或浮动侧 板,在浮动零件的背面引入压力 油,让作用在背面的液压力稍大 于正面的液压力,其差值由一层 很薄的油膜承受。
周所排出的液体体积。
2.理论流量qt (m3/s) 是指在不考虑泄漏的情况下,单位时间内排出的
液体体积。
qt =Vn 3.实际流量qp
指液压泵工作时的输出流量。
qp= qt - △ q
4.额定流量qn 指在额定转速和额定压力下泵输出的流量。
(四)功率与效率
1.输入功率: Pi=2πnT 2.输出功率: Po=ppqp 3.容积效率: ηpv =qp /qt 4.总效率: ηp =Po /Pi= ppqp/2πnT=ηpm ηpv 5.机械效率: ηpm = η /ηpv
第三章液压泵新
2) 危害:ηv↓
3) 防泄措施:
a) 减小端面间隙
b) 端面间隙补偿装置
浮动侧板
浮动轴套
防泄措施
a) 减小轴向间隙
小流量:间隙0.025-0.04 mm
大流量:间隙0.04-0.06 mm
b) 轴向间隙补偿装置
浮动侧板
浮动轴套
F1稍大于F2
四、齿轮泵优缺点和用途
优点:体积小,重量轻,结构紧凑,工作可靠,自吸
转的最高压力。
(3)最高压力:短时间运行允许最高压力。
2、排量V:不考虑泄漏情况下,泵(马达)每转一圈
所排出液体的体积,一般由其结构尺寸计算得来。
3、流量q:单位时间内能排出的流体体积。单位:m3/s
(1)理论流量qvt:不考虑泄露
qvt=V×n
(2)实际流量qv:
(3)额定流量qvn: 额定压力、额定转速下泵输出的流量
1—偏心轮
2—柱塞
3—泵体
4—弹簧
5,6—单向阀
c—工作腔
配流装置使密封容积轮流和油箱或负载相通。
容积式液压泵正常工作的三个必备条件
▲1必须具有一个由运动件和非运动件所构成的密闭容
积;
▲2密闭容积的大小作周期性的变化, 容积由小变大—
—吸油,由大变小——压油;
▲3吸油口和排油口应严格分开,并有合适的配流装置,
2) 流量:
q 2B[(R 2 r 2 )
其中:B - 叶片宽度
R - 定子长轴半径
r - 定子短轴半径
θ – 叶片倾角
δ – 叶片厚度
吸
R r
z ]nv
cos
压
三、单作用叶片泵
1. 结构:
转子、定子、叶片、配油盘、壳体、端盖等。
第三章 液压泵与液压马达
q max q min q
它是衡量容积式泵流量品质的一个重要指标。在 容积式泵中,齿轮泵的流量脉动最大,并且齿数愈少 ,脉动率愈大。这是外啮合齿轮泵的一个缺点。所以 ,齿轮泵一般用于对工作平稳性要求不高的场合,要 求平稳性高的高精度机械不宜采用齿轮泵。
第二节、外啮合齿轮泵的困油现象
一、困油现象 齿轮泵要平稳地工作,齿轮啮合的重合度必须大于 1,即有两对轮齿同时啮合的时刻,因此,就会有一部 分油液困在两对轮齿所形成的封闭容积之内,如图所示 。这个封闭容积先随齿轮转动逐渐减小(由图(a)到 图(b)),然后又逐渐增大(由图(b)到图(c)) 。
一、径向不平衡力: 在齿轮泵中,液体作用在齿轮外 缘的压力是不均匀的,从低压腔到高 压腔,压力沿齿轮旋转的方向逐齿递 增,因此齿轮和轴受到径向不平衡力 的作用。工作压力越高,径向不平衡 力也越大。径向不平衡力很大时,能 使泵轴弯曲,导致齿顶接触泵体,产 生摩擦;同时也加速轴承的磨损,降 低轴承使用寿命。为了减小径向不平 衡力的影响,常采取缩小压油口的办 法,使压油腔的压力油仅作用在一个 齿到两个齿的范围内;同时适当增大 径向间隙,使齿顶不和泵体接触。
第一节 外啮合齿轮泵工作原理及流量公式
吸排方向取 决于转向, 脱开啮合的 一侧与吸入 管连通,进 入啮合的一 侧与排出管 连通。
一、外啮合齿轮泵工作原理
密封工作腔:泵体、端盖和齿轮的各个齿 间槽组成了若干个密封工作容积。
配流:齿轮啮合线将吸油区和压油区隔开, 起配流作用。 吸油过程:轮齿脱开啮合→V ↑ → p ↓ →吸油; 排油过程:轮齿进入啮合→V ↓ → p ↑ →排油。
(2)输出功率
理论输出功率 Pot qt .p
实际输出功率 Pop q p .p
第三章液压泵
第3章液压泵内容提要本章主要介绍液压动力元件的几种典型液压泵(齿轮泵、叶片泵、柱塞泵的工作原理、性能参数、基本结构、性能特点及应用范围等)。
基本要求、重点和难点基本要求:掌握齿轮泵、叶片泵、柱塞泵的工作原理、性能参数、结构特点。
了解各类泵的典型结构及应用范围。
重点:通过本章学习,要求掌握液压泵的工作原理、功能、性能参数(压力和流量等)、性能特点及应用范围。
难点: ①密闭容积的确定(特别是齿轮泵)。
②容积效率的概念。
③额定压力和实际压力的概念。
④外反馈限压式变量叶片泵的特性。
⑤柱塞泵的变量机构。
3.1液压泵基本概述液压泵作为液压系统的动力元件,将原动机(电动机、柴油机等)输入的机械能(转矩T 和角速度ω)转换为压力能(压力p 和流量q )输出,为执行元件提供压力油。
液压泵.的性能好坏直接影响到液压系统的工作性能和可靠性,在液压传动中占有极其重要的地位。
3.1.1液压泵的工作原理如图3-1所示,单柱塞泵由偏心轮1、柱塞2、弹簧3、缸体4和单向阀5、6等组成,柱塞与缸体孔之间形成密闭容积。
当原动机带动偏心轮顺时针方向旋转时,柱塞在弹簧力的作用下向下运动,柱塞与缸体孔组成的密闭容积增大,形成真空,油箱中的油液在大气压力的作用下经单向阀5进入其内(单向阀6关闭)。
这一过程称为吸油,当偏心轮的几何中心转到最下点O 1/时,容积增大到极限位置,吸油终止。
吸油过程完成后,偏心轮继续旋转,柱塞随偏心轮向上运动,柱塞与缸体孔组成的密闭容积减小,油液受挤压经单向阀6排出(单向阀5关闭),这一过程称为排油,当偏心轮的几何中心转到最上点O 1//时,容积减小至极限位置,排油终止。
偏心轮连续旋转,柱塞上下往复运动,泵在半个周期内吸油、半个周期内排油,在一个周期内吸排油各一次。
图3-1 单柱塞泵工作原理 1-偏心轮 2-柱塞 3-弹簧 4-缸体 5、6-单向阀 7-油箱如果记柱塞直径为d ,偏心轮偏心距为e ,则柱塞向上最大行程e s 2=,排出的油液体积2422e d s d V ππ==。
第三章 液压泵
第一节 概 述
2.分类
➢ 按结构将液压泵分为:
➢齿轮泵 ➢外啮合齿轮泵 ➢内啮合齿轮泵
➢叶片泵 ➢单作用叶片泵
➢双作用叶片泵 ➢柱塞泵
➢径向柱塞泵 ➢轴向柱塞泵
➢ 按排量能否改变可分为: ➢定量泵 ➢变量泵
➢ 根据其排量和排液方向能否改变 又可分为: ➢单向定量泵 ➢双向定量泵 ➢单向变量泵 ➢双向变量泵
➢排量取决于泵的结构参数,而与其工况无关,它是衡量和比较不同泵的供液能 力的统一标准,是液压泵的一个特征参数。
➢ 流量——是指泵在单位时间内排除液体的体积,以Q表示,单位L/min。
➢流量有理论流量、实际流量和额定流量三种。
➢ 理论流量——是指不考虑泄漏的理想情况下泵在单位时间(常指每分钟)内
排出的液体的体积,以Ql表示。
– 在渐开线齿形内啮合齿轮泵中,小齿轮和内齿轮之间要装一块月牙形隔板,以便把吸油腔 和压油腔隔开,见图3-10a所示。
– 摆线齿形内啮合齿轮泵又称摆线转子泵,在这种泵中,小齿轮和内齿轮只相差一齿,因而 不需设置隔板,见图3-10b所示。
量或称空在排量)。
➢对于性能正常的液压泵,其容积效率大小随泵的结构类型不同而异。如
齿轮泵为0.7~0.9,叶片泵为0.8~0.95,柱塞泵为0.9~0.95。
第一节 概 述
2. 机械效率ηj
机械效率是表征泵摩擦损失的性能参数,它等于泵的理论输出功率与
输入功率之比。
Pl
j
Pd
3. 总效率η
总效率是表征泵总功率损失的性能参数,它等于泵的实际输出功率与
➢ 内泄漏——是指泵的排液腔向吸液腔的泄漏; ➢ 外泄漏——是指从泵的吸排液腔向其他自由空间的泄漏。 ➢ 泄漏量的大小取决于运动副的间隙、工作压力和液体黏度等因素,而与泵的运动速度关 系不大。 ➢ 当泵的结构和采用的液体粘度一定时,泄漏量将随工作压力的提高而增大,即压力
第3章液压泵和液压马达
排量和流量 功率和效率
台州学院
机械工程学院
1、泵的压力
(1)工作压力 pp
- 液压泵工作时输出的实际压力
- pp的大小取决于负载
台州学院
机械工程学院
(2)额定压力 pn
- 泵在正常工作条件下,按试验标准规定连续运转的 最高压力。即泵工作时允许达到的最高压力
- pn的大小受泵本身的结构强度和泄漏决定
台州学院
机械工程学院
消除困油的方法
方法:在泵前后两盖板上开卸荷槽(如图虚线方框),以消
除困油。
吸油腔
压油腔
a
原则:两槽间距a为最小困油容积,隔开吸压油腔(图b)
当密封容积减小, p↑,使之通压油腔(图a) 当密封容积增大,p↓,使之通吸油腔 (图c)
注意:两卸荷槽的间距应确保不使吸、压油腔相通
台州学院
排量
- 轴转过一周泵排出的油液体积
齿槽 轮齿
- 近似为两个齿轮的齿槽容积之和
- 设齿槽容积=轮齿容积,则排量 V=一个齿轮的齿槽容积+轮齿容积
- 则齿轮泵排量(动画):
B
P
A
V
4 2 m2 zb
2 ( z 2) m ( z 2) m b 2
- 实际,齿槽容积>轮齿容积, π取3.33,
台州学院
机械工程学院
一、双作用叶片泵
- 泵轴转一周,完成两次吸油和压油
动画按钮 台州学院
机械工程学院
1、双作用叶片泵的结构组成
定子:内表面椭圆形,包括
- 两段大半径R圆弧 - 两段小半径r圆弧 - 四段过渡曲线
定子 转子
第三章 液压泵与液压马达
吸
2、径向压力不 平衡问题
措施:
减少压油口的
尺寸
开压力平衡槽
3、泄漏问题
齿顶 端面 啮合处 措施: 弹性侧板 浮动轴套
高压齿轮泵
四、内啮合齿轮泵 与外啮合齿 轮泵相比,内 啮合渐开线齿 轮泵具有流量 脉动小,结构 紧凑,重量轻, 噪音小,效率 高,无困油现 象等一系列优 点。
1 T pV m 2
q n V V
3.6.2 叶片马达
叶片马达的工作原理
3.6.3 轴向柱塞马达
1.轴向柱塞式液压马达的工作原理
TZ FT l
4
d 2 ptg R sin i
1 1 2 1 T pVm p d DZtg m pd 2 DZtg m 2 2 4 8
二、轴向柱塞泵
录像
1、工作原理
2、流量计算
V
4
d DZtg 2Fra bibliotekq
4
d DZn V tg
2
3、结构要点 (1)缸体端面间隙自动补偿。 (2)滑履结构:柱塞与滑履为球面接触,滑履与斜 盘为平面接触,改善了受力状态。 (3)变量机构:改变斜盘倾角可以改变其排量。
3.6 液压马达
3.6.1 液压马达的主要性能参数 1.液压马达的转矩 2.液压马达的转速
二、 双作用叶片泵 (动画)
1、工作原理 组成:定子、转子、叶 片、配流盘、泵轴、 泵体等。
2、流量计算
V=2π(R2-r2)b q=Vnηv = 2π(R2-r2)b ηv (忽略叶片厚度) 如考虑叶片厚度 V=2π(R2-r2)b -2bsz(R-r)/cosθ q=Vnηv = 2π(R2-r2)bn ηv -2bsz(R-r)/cosθ nηv
第三章:液压泵和液压马达(含习题答案)
第三章液压泵和液压马达第一节液压泵第二节齿轮泵第三节叶片泵第四节柱塞泵第五节液压马达第六节液压泵和液压马达的选用重点:液压泵和液压马达的工作原理、效率功率计算难点:结构教学目的:理解原理,熟悉结构在液压系统中,液压泵和液压马达都是能量转换装置。
液压泵:把驱动电动机的机械能转换成液压系统中油液的压力能,供系统使用;液压马达:把输来的油液的压力能转换成机械能,使工作部件克服负载而对外做功。
工作原理上,大部分液压泵和液压马达是可逆的。
一、液压泵的工作原理二、液压泵的性能参数三、液压泵的分类一、液压泵的工作原理容积式液压泵:靠密封工作腔的容积变化进行工作,其输出流量的大小由密封工作容积变化的大小来决定。
i P T ω=o V P pq =η=ηV按结构形式分为:齿轮式、叶片式、柱塞式三大类。
按输出(输入)流量分为:定量液压泵和变量液压泵。
第一节液压泵三、液压泵的分类a)单向定量液压泵b)双向定量液压泵c)单向变量液压泵d) 双向变量液压泵液压泵的图形符号作业:3-2齿轮泵优点:结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸能力强、对油液污染不灵敏、维修方便及工作可靠,因此在汽车上得到了广泛的应用。
齿轮泵缺点:泄漏较大,流量脉动大,噪声较高,径向不平衡力大,所能达到的额定压力不够高,目前其最高工作压力30MPa 。
第二节齿轮泵齿轮泵按结构形式分为:①外啮合齿轮泵②内啮合齿轮泵泵的泵体内装有一对相同的外啮合齿轮,齿轮两侧靠端盖密封。
泵体、端盖和齿轮的各个齿间一、外啮合齿轮泵1. 外啮合齿轮泵工作原理第二节齿轮泵槽组成了许多密封的工作腔。
b zm Dhb V 22ππ==排量:b zm V 266.6=排量修正:排量近似计算:假设齿间的工作容积与轮齿的有效体积相等,则齿轮每转排量等于主动齿轮的所有齿间容积及其所有轮齿的有效体积之和(1)困油现象:齿轮泵要平稳而连续地工作,齿轮啮合的重合度系数必须大于1,因此总有两对轮齿同时啮合,并有一部分油液被围困在两对轮齿所形成的封闭容积之间,困油容积由大变小,再由小变大,使油压变化,产生振动和噪声。
第三章 液压泵
转子受有不平衡的径向液压力,且径向不平 衡力随泵的工作压力提高而提高,因此这种 泵的工作压力不能太高。
应用最多的油泵,主要用于丰田自动变 速器车
NBT系列液压泵(直齿共轭高压内齿轮泵)
是一种设计新颖的液压动力元件。它采用了直线(齿 轮)-直线共轭线(齿圈)齿形,按工作时无困油设计, NBT系列泵具有高压力、低噪音、长寿命、稳定可靠 等优点,广泛适用于各种领域。 直线共轭内啮合齿轮泵在液压界被 誉为“永不磨损的液压泵”,用于 高,精,专液压系统。 NBT系列齿轮泵聚集了柱塞泵的 压力高,螺杆泵的低噪音,压力脉动 小和普通齿轮泵的工作可靠,长寿命 等主要的优点于一身,广泛用于锻压 机,叉车,压砖机,注塑机,船舶,摩天轮 及航空航天事业等。
qt=n0Vt(L/min)
n0—液压泵输出压力为零时的主轴转(r/min)
实际流量q:计泄露,泄漏量为△q。
q=qt- △q 同时:q=n V
理论流量qt:不计泄露量
容积效率ηv :液压泵的实际排量与理论排量之比 值称为容积效率,一般用ηv表示。
精确测量用调速电机,否则用一般普通交流电机 驱动主轴转速不变 n0=n,则液压泵实际流量的计算 q qt q 公式为:
汽蚀现象
外部齿轮泵是 容积式泵2个并 排联锁齿轮集。 当齿轮转动时, 不同的牙齿创 建一个扩展卷 在流体了。然 后运送流体在 外围和驱逐牙 齿合并。
3.径向不平衡力
在齿轮泵中,作用在齿轮外圆 上的压力是不相等的,在压油 腔和吸油腔齿轮外圆和齿廓表 面承受工作压力(高压)和吸 油腔压力(低压) 可以认为压力由压油腔压力逐 渐分级下降到吸油腔压力,这些油 液压力综合作用下,相当于给齿轮 一个径向的作用力,使齿轮和轴承 受载。
第三章液压泵马达参数计算
机械效率:
m
Tt T
(Nm) (Nm)
1.液压泵
(w)
总效率:
Pout Pin
v m
(w)
2.液压马达
输入功率: (w)
Pin pq
输出功率: (w)
(Pa)
Pout T
(Nm)
(m 3/s)
(rad/s)
2.液压马达
理论流量: (m3/s)
qt Vn
(r/s)
容积效率:
(m 3 /r)
v
qt q
(m 3/s) (m 3/s)
2.液压马达
理论转矩: (Nm)
(Pa)
(m 3 /r)
pV
Tt 2
机械效率:
m
T Tt
(Nm) (Nm)
2.液压马达
(w)
总效率:
Pout Pin
v m
(w)
3.例题
例1 某液压泵铭牌标示:转速n 1450r/min,额定流 量 qH 60L/min ,额定压力为 pH 8MPa ,泵的总效 率 0.8 ,试求:
5 10 3 w 5kw
3.例题
例2 已知某液压马达的排量为0.2L/r,额定压力为 7Mpa,设 其总效率0.75 ,容积效率0.8,试计算 1、它能输出的转矩为多少 Nm? 2、当外负载为140 Nm时的油压为多少 Mpa? 3、如果要求转速为50 r/min ,则应输入油液的流量为多少 L/min? 4、在外负载为140 Nm、转速为50 r/min时输出功率为多 少kw?
解:(1)
T
pV
2
m
7 10 6 0.2 10 3 0.75 2 3.14 0.8
208 .99 Nm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章液压泵§1概论液压泵的分类§2齿轮泵特点:结构简单、紧凑,体积小,重量轻,转速范围大,自吸性能好,对油液的污染不敏感,不容易咬死,容易加工制造,成本低廉。
容积效率低,流量脉动和噪音大,由于齿轮轴径向的一平衡力使轴承的载荷加大,所以压力提高受到了限制。
一、外啮合齿轮泵1.排量和流量排量公式q=2πm2zb(厘米3/转)式中:m——齿轮模数(厘米)z——齿数b——齿宽(厘米)设齿轮转速为n,容积效率为η,则齿轮泵流量Q0为vQ0=n q0=2πn m2zbηv(厘米3/转)2.齿轮泵的结构问题1)齿轮参数对流量特性的影响齿轮的齿数、齿宽和模数都对液压泵的流量有影响,但增加齿数会使液压泵的结构庞大,增加齿宽会增加齿轮的径向不平衡力。
加大模数是增加液压泵流量的最有效的方法。
另外,齿轮泵的瞬时流量不均匀,齿数多,流量脉动就小,齿数少则流量脉动大。
齿轮形式有直齿轮、斜齿轮和人字齿轮。
斜齿轮运动平稳,但会出现轴向力,人字齿轮运动平稳,没有轴向力,但加工较困难。
2)困油问题困油问题严重,需开设卸荷槽。
3)径向力不平衡问题由于进出油口压力不同,分布在齿轮外径和泵体内腔的压力是不平衡的。
为解决这个问题,可开设压力平衡槽,但这样使高压油腔与低压油腔接近,增加了泄漏。
另外,还可以采用缩小压油口直径的方法,减小压力油作用在齿轮上的面积,也可减小径向的不平衡力。
4)转速问题转速不能过高或过低。
转速过高则油液在离心力作用下不能充满整个工作油腔,且增加了吸油的阻力,易发生空穴现象,一般最大圆周速度不超过5~6米/秒。
转速过低会相对降低容积效率,最小圆周速度可按下式计算v=0.17p/(米/秒)最小式中:p——液压泵工作压力(公斤力/厘米2)0E——油液在50℃时的相对粘度50二、楔块式内啮合齿轮泵1.流量计算排量计算q 0=πm2b[2z+(1-i)(1-1/12·π2cos2α)](厘米3/转)式中:b——齿宽(厘米)m——齿轮模数(厘米)z——主动小齿轮轴齿数i——主动小齿轮轴与从动齿轮齿数比α——齿轮压力角当压力角α为20°时,上式为q=πm2b[2z+0.274(1-i)](厘米3/转)流量按下式计算Q 0=πnηvm2b[2z+(1-i)(1-1/12·π2cos2α)](厘米3/转)三、摆线转子泵1.流量计算排量计算q 0=πb(D12-D22)(厘米3/转)式中:b——转子宽度(厘米)D1——内转子长径(厘米)D2——内转子短径(厘米)流量计算Q 0=nπηvb(D12-D22)(厘米3/转)§3叶片泵特点:运转平稳,流量均匀,排量大,噪音小,结构紧凑,体积小,工作压力一般为70~105 公斤力/厘米2,流量为4~200升/分,容积效率可达95%以上,结构较复杂,零件要求精度高,吸油条件和油液清洁度要求比较严格。
一、单作用叶片泵1.这种叶片泵每转一圈,完成一次吸油和压油的工作。
缺点是轴承受到较大载荷。
可变量。
2.流量计算当叶片沿转子径向安装时,排量为q=2eb(πD-δz)(厘米3/转)式中:e——定子与转子偏心距(厘米)D——定子内径(厘米)δ——叶片厚度(厘米)z——叶片数b——叶片宽度(厘米)流量为Q 0=2ebnηv(πD-δz)(厘米3/转)当叶片相对于转子径向偏斜θ角时,排量为q=2eb(πD-δz/cosθ)(厘米3/转)流量为Q 0=2ebnηv(πD-δz/cosθ)(厘米3/转)二、双作用叶片泵1.这种叶片泵每转一圈,每个工作空间完成两次吸油和压油。
这种泵作用在转子上的液压作用力互相平衡。
叶片为双数。
2.流量计算排量计算q=2b(R-r)[π(R+r)-δz/cosθ](厘米3/转)式中:R——定子内腔的大半径(厘米)r——定子内腔的小半径(厘米)流量计算Q 0=2bnηv(R-r)[π(R+r)-δz/cosθ](厘米3/转)三、叶片泵的结构问题1.双作用叶片泵的定子曲线问题窗口之间的为工作曲线,窗口上的为过渡曲线。
工作曲线包括两条大半径为R和两条小半径为r的圆弧。
为保证吸油窗口与压油窗口彼此封闭,工作曲线对应的圆心角必须大于或等于相邻两叶片的夹角。
工作曲线的半径差(R-r)直接影响泵的流量,其值越大,流量越大。
但差值过大,叶片伸出部分越长,越容易折断。
且使过渡曲线斜度变大,叶片因离心力不够,不能贴紧定子内腔而产生脱空。
一般(R-r)值应小于7.3毫米。
过渡曲线必须使得叶片径向运动速度近似于常量,且斜度不能太大。
过渡曲线与工作曲线的连接点上必须有公切线,以防叶片经过该点时产生跳跃、冲击而产生噪音和过度磨损。
一般有阿基米德螺线、正弦曲线、余弦曲线、等加速曲线。
2.叶片问题1)叶片的倾角双作用叶片泵中叶片倾斜方向与转子转动的方向相同,单作用叶片泵中叶片倾斜方向与转子转动的方向相反。
2)叶片的数量叶片数目必须大于6且为4的倍数。
一般为8,12,16等。
3)叶片的厚度叶片过厚,则叶片底部的油压力和离心力变大,且会增加流量脉动;如果叶片过薄,则强度和刚度不够,叶片易折断和变形,且难于加工。
一般取2~2.5毫米。
4)叶片的卸荷一般采用双叶片、弹簧叶片、阶梯叶片、复合叶片等方法。
§4轴向柱塞泵一、概论1.原理轴向柱塞泵柱塞的数目对流量脉动影响很大,柱塞数目多,流量脉动小,采用奇数柱塞比采用偶数柱塞脉动小。
该泵属于高压和超高压泵,压力一般为100~320公斤力/厘米2。
结构紧凑径向尺寸小,转动惯量小,容积效率高,能在高压和高速条件下工作。
轴向尺寸大,结构比较复杂,制造困难,价格较高。
2.分类1)直轴式与斜轴式样驱动轴与缸体轴线一致的轴向柱塞泵称为直轴式,它依靠传动盘的倾斜角度调整流量,也称斜盘式。
驱动轴与缸体倾斜一定的角度的轴向柱塞泵称为斜轴式,它依靠缸体倾斜的角度调整流量,又称摆缸式。
直轴式(斜盘式)的结构简单、紧凑、效率高,能用于较高的压力,允许的转速也较高,但柱塞端部与传动斜盘的接触部位薄弱,不耐冲击振动;吸油性好,但对油液过滤精度要求较高。
斜轴式(摆缸式)耐冲击振动性能好,缸体摆角可达25°,对油液过滤精度要求较低,但结构复杂,外形尺寸大,在大流量时允许较低的转速。
2)点接触式与滑履式是指柱塞与传动盘的接触方式。
点接触式结构简单,但接触应力很大,一般用于100公斤力/厘米2之内,不适用于更高的压力。
滑履式结构较复杂,但接触应力较小。
3)阀配流与端面配流阀配流即是在泵的进出油口设两个单向阀,它结构简单,密封可靠,但结构较大,自吸能力差,且影响泵与马达的可逆性。
端面配流结构简单,压力和转速范围较大,自吸能力较好,磨损后能自动补偿,但对油液纯净度要求较高,不影响泵与马达的可逆性。
4)通轴式与非通轴式通轴式即缸体的传动轴穿过斜盘。
它的轴承在传动轴两端,径向载荷由传动轴支承,轴径较大,缸体孔分布圆直径也较大,滑履滑动速度高,但重量轻,体积小,零件少,可串联辅助液压泵。
非通轴式传动轴不穿过斜盘,缸体装在泵体的轴承上,限制缸体倾斜,轴径较小。
5)单铰式、双铰式和无铰式单铰式流量脉动较大,不宜高速旋转。
双铰式流量脉动比单铰式小,可提高转速。
无铰式结构强度高,能承受冲击载荷。
3.流量计算直轴式(斜盘式)流量Q=π/4·nd2zD0tgγ1 (厘米3/分)斜轴式(摆缸式)流量Q=π/4·nd2zD0sinγ2 (厘米3/分)式中:Q——流量n——液压泵转速(转/分)d——柱塞直径(厘米)z——柱塞数D——柱塞分布直径(厘米)——斜盘倾角γ1γ——缸体倾角2§5径向柱塞泵一、概论1.原理该泵的缸体和柱塞呈径向星形均布状态。
分曲轴式径向柱塞泵和缸体旋转式径向柱塞泵两种结构。
曲轴式采用阀式配流,密封性很好,可产生很高的压力,一般在200公斤力/厘米2以上,但变量困难,一般只用定量泵用。
缸体旋转式流量大,轴向尺寸小,径向尺寸和转动惯量大,运动副摩擦表面的速度高,因而转速受到限制。
配流轴封油区小,易泄漏,受单边径向力大,直径较大,压力一般为100~200公斤力/厘米2。
2.流量计算Q=π/2·nd2ze (厘米3/分)式中:d——柱塞直径(厘米)e——偏心距(厘米)z——柱塞数目n——转速(转/分)§6直列柱塞泵柱塞并排地布在传动曲轴的一侧或对称地布在曲轴两侧的柱塞泵称作直列式柱塞泵。
其承载能力大,寿命长,结构紧凑,工作可靠,密封性好,容积效率高。
§7螺杆泵1.原理螺杆泵无困油现象,噪音小,运转平稳,损耗小,效率高,寿命长,自吸能力强,工作可靠,可输送粘性大或有颗粒的油液,它的零件少,结构紧凑,但轴向尺寸较大,螺杆的螺旋面加工很复杂,因此产量较低。
为使吸压油口不会经螺旋槽相通,螺杆根数与螺纹头数应保持一定关系,即z 1=k(z2-1)式中:z1——主动螺杆螺纹头数z2——从动螺杆螺纹头数k——从动螺杆根数2.流量计算一般情况下螺杆导程取10/3d p,因而流量可按下式计算Q=4.143d p3n (厘米3/分)式中:d p——节圆直径(厘米)§7液压泵的使用一、各种液压泵的性能及应用范围液压泵的技术性能与应用二、液压泵压力的选择一般80公斤力/厘米2以下的中低压泵,适用于以下几种情况:1.液压缸、液压马达出力较小,并需要精确控制正确位置的场合。
2.要求液压缸有足够刚性的情况下。
3.油压传递距离较短的场合。
4.功率小的场合。
5.由于成本的要求,需要采用价格便宜的泵如齿轮泵或叶片泵的情况下。
200公斤力/厘米2以上的高压泵,适用于以下几种情况:1.液压缸、液压马达等出力大,并要求很高速度的情况下。
2.需要将长配管之间动力损失控制在某种程度的场合。
3.功率大的场合。
4.由于使用高压,使液压缸、阀、配管、机械装置的体积、重量变小,并使综合成本降低的情况下。
在液压缸力和功率一定的条件下,提高泵压力相应减轻了泵的流量,从而使得缸、阀、蓄能器、油箱、管接头、配管的体积减小,相应减轻了重量。
但当压力达到某值,体积和重量的减少达到了极限时,若继续提高液压泵压力,因为强度的需要,各元件的壁厚及其它尺寸需加大,使体积和重量增大。
液压系统的温升与压力成正比。
压力与液压缸的挠曲成正比。
另外泵压力的大小与系统的可靠性,寿命亦有一定的关系。
三、液压泵流量形式的选择定量泵主要用于中低压和功率较小的系统,或作为高压系统的辅助泵。
适用于动力、速度变化较小,或运转时间较短的液压装置。
它的功率损失较大,必须与安全溢流阀配合使用。
变量泵主要用于大功率和精密机械或机床的液压系统,特别是动力、速度变化较大,长时间工作的液压系统。
它可以提高系统效率,减少温升。
液压系统还常常采用高低压组合泵和定变量组合泵以适应各种液压装置的动力需要。